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Abstract

This paper describes a method for efficiently
finding a short path between two nodes in a
graph, by minimizing the number of nodes vis-
ited during the search. The main contribution of
this paper is an automated mechanism for learn-
ing a heuristic function that can guide the search
in the right direction. Our heuristic function is
parameterized by a vector of importance weights
over a set of features, which are typically simple
abstractions of the search space. The importance
weights are trained in an online manner using
nodes to which the true distance has already been
revealed during previous search stages. Our ex-
periments demonstrate that the proposed method
typically finds the optimal path while signifi-
cantly reducing the search complexity. A theo-
retical analysis describes conditions under which
finding the shortest path can be guaranteed.

Introduction

O((|E| + |V])log|V]) time, and using the Fibonacci heap
improves this taD(|E| + |V|log|V|).

The second line of research introduced a heuristic factor
into the search process. A prototypical representative of
this line of research, is thd* algorithm (originally sug-
gested by [5]). The assumption guididyg, is that in ad-
dition to the search problem variables (graph, startingenod
and target node), the algorithm receives as input a heuris-
tic function which is used to evaluate the remaining dis-
tance from each visited node to the target node. Adding
this heuristic score to the nodes stored in Dijkstra’s prior
ity queue can guide the search towards the target and thus
avoid visiting a substantial part of the graph. Thtalgo-
rithm can guarantee that the shortest path is found when the
heuristic functionh never overestimates the true distance
from a certain node to the target. Sinke= 0 is always
admissible, the admissibility guarantee seems to be mean-
ingless without the notion heuristic dominance. Heuristic
dominance provides that an admissible heurigtiwhich
consistently provides higher estimations than the hearist
function &/, will never visit during the search more nodes
than’’ (see [11] and references within).

The paper by [15] associated tasks that require intelligenc
with heuristic search. However, the intelligence applied i

Searching a shortest path between two nodes in a gragolving these tasks should in fact be attributed to the de-
is a classical problem in computer science, emerging irsigner of the successful heuristic. This paper addresses th
many domains ranging from train scheduling [12] to com-question of whether the task of designing an appropriate
puter graphics [10]. The well known Dijkstra’s shortest heuristics for a certain search space, might be automated.
path search algorithm remains one of the top 10 cited comAs was stated above, Dijkstra’s algorithm is still widely
puter science papers many years after it was first pubdsed despite the existence 4f, which seems to indicate
lished. However, the time complexity of Dijkstra’s algo- that the challenge of heuristic design is a significant karri
rithm, O(|V|?) is intolerable if a quick answer is required in the application of heuristic search algorithms. Morepve
while searching a very large graph. Two complementaryn certain settings manually designing a heuristic furrctio
lines of research have responded to the challenge of effimight not be possible. For example, imagine a large scale
ciently finding short paths in large graphs. distributed communication network used by military vehi-

, . . . . clesin which every node can transmit, receive or relay com-
The first line of research focuses on !_’“pro‘,"”g the_ P munications from neighboring nodes. In this ad hoc graph,
ority queue d_ata structure used by Dijkstra’s algorlthm’When vehicles must communicate with a distant vehigle
while attempting to make use of different graph Properyq goal is to transmit the conversation in real time through

ues. I_:or examplg, I ha§ been demonstrate.d that if Fh e least energy consuming path. Since the graph might
graph is sparse using a binary heap, the algorithm requires



be continuously changing as the forces progress a stati@:, s¢, g:) and must reply by producing the edges on the
heuristic function might be sub-optintal shortest patlp; for reachingg; from s,.

The initial step in automating the process of heuristic de-Our setting follows thed* framework and assumes that the
sign followed the observation that abstractions of thedear number of nodes visited during the search process must be
space can provide simplified evaluation functions [9]. Thisminimized using a heuristic functidn: V' x V' — R. This
theme, first suggested in the 60-s has been developdtkuristic function guides the search by prioritizing whidh
throughout the years with increasing sophistication [6].the nodes in the search frontier will be expanded next. The
Thus, elementary heuristics derived from by domain ab-priority scoref(v) = k(s,v) + h(v, g) is the sum of the
straction can be automatically composed into complex addistancek(s, v), required to reach nodefrom nodes, and
missible heuristics (e.g. by taking the maximum value ofof the heuristic contributioh(v, g) estimating the remain-
the elementary heuristics). This paper builds upon the noing distance needed to reach the goal ngdeom node
tion of domain abstraction and suggests a family of algo-v. Unlike the traditionald* setting in which the heuristic
rithms aimed at automating the heuristic composition profunction’ is manually designed and assumed to be known
cess, utilizing state-of-the-art online learning meckars.  in advance, our setting assumes tha notknown a-priori
Sa}(nsd must therefore be learned online during Theearch

Our setting assumes that a sequence of related search ta
rounds.

must be performed using ati* mechanism and that at the

end of each search task the currently held composite heuri©ur setting focuses on heuristics over gearch-spacé&’,

tic receives feedback indicating which of its estimateshav which are induced by linear regression functions in a re-
maximally deviated from the true distances. Using thislatedR" learning-space

feedback the parameters of the heuristic are updated so it , ,

can better capture the characteristics of the distancerunde h(v,v') = T(w - ¢(v,v)) . 1)

lying the specific sequence of observed graphs. Our settinii is assumed that a function : V x V — R" is pro-

ided, which receives a pair of nodés,v’) from the
search space and returnsradimensional feature mapping

8n the learning-space. Each featyres a search-space ab-
straction, typically a simplification generated by ignarin
The feedback signal we require for training the heuristicsome of the domain constraints. The regression function
function h, could naturally emerge as part of the searchmultiplies the features i by a weight vectow < R"
process. For example, in the vehicle communication sysand then applies some reversible non-decreasing function,
tem, the shortest path search procedure must be performéd: R — R, mapping distance values from the learning-
efficiently. However, once the target was foundeaal time space, back to distances in the search-space. We will later
the system can derive the evaluation feedback by performrely on the assumption that this transformation must main-
ing an exact searcbff line. This reverse search can start tain that as a certain distance in the learning-space goes to
from the target node and traverse the graph in order to caP, the analog distance in the search-space goes to 0 as well.
culate the true distances to all of the evaluations the keuri Although somewhat limited, we demonstrate that this fam-
tic » performed during theeal timesearch. Unlike tradi- ily of heuristics is not as meager as it initially seems.

tional online supervised learning settings in which IabeIsA,[ each round in our online setting atr search process
require an external teacher, training in search problerss hqs performed using the current heuristic function Dur-
the elegant property of being able to rely on exact searcy g this search the algorithm visits a set of nodes, we de-

mechanisms for supervision. note asM;. When the search is concluded, the shortest
pathp, must be returned. In order to tune the vector of
2 Problem Setting regression parametews, it is assumed that after the short-
est path is found the algorithm receives a feedback signal.
LetG = (V, E) be agraph in which each edgec V, v’ € Th|f ;‘]eed_bi:t_ck |nt<_:ludt¢s thhe r(;ot(ri:ee Mt_on \Ilvrluch the cur-
V) € E is associated with a positive cosfv, v') > 0. (rdeer\]/iat‘iecl:r:lfsrcl)c es Iin?l‘l—olrgd(i ))e maximal (learning-space
We define ashortest path search probletyy the triplet My, = 9
(G, s,g) wheres € V is the source node ang € V is ve = argmax |y, — Ws - $(v, g2)|
the goal node. LetG1,s1,41)-..(Gr,sr,gr) be an on- vert, 0 ’
line sequence of shortest path search problems. At each . . L
round 1q< t < T the aIgorFi)thm receivessearch problem In addition to the maximally deviating node, the feedback
- = also includes the true distange = T!(d(v;, g)). Using
Throughout the paper we assume that the graph might be d)}-his feedback the algorithm can update the weights of the

namica”y Changing but that these Changes occur in a |O||'rger t heuristic functior: in order to imprOVe its performance in
constant than that of the search process. the subsequent rounds.

is related to other repeated graph search setting [8, 3, 4, 7.
However, while these methods rely on memorization for

machine learning notion of generalization.



true distance for the node in the current search that the ex-
isting heuristic function maximally deviated from. For ex-
ample, if at the current round the existing heuristic was de-
fined byw; = (0,0), the maximally deviating node would

be nodg2, 2) which has an actual distance of 29 to the tar-
get (whilew, - ¢((2,2), (11, 8)) is 0). Thus, the feedback

454 for training will be ((2, 2), 29).
O
@0004
Table 1: Average path length and average visited nodes.
Algorithm length # visited
Dijkstra: w=(0,0) 24,47  159.71
Block Distancew=(1,1) 24.47 103.88
Optimal Admissiblew=(3,1) 24.47 62.01
Online Learning to Search 24.49 44.32

Figure 1: A graph of the road grid in Anytown, USA. The
L-shaped structures represent shopping malls. Nodes on
the shortest path fromto g are indicated by<. Notice the  The challenge posed by our setting is in maintaining that in
increasing heuristic dominance between: Dijkstra (Black) roundt the heuristic functior is:

Block Distance (Dark Gray), Optimal Admissible (Light

Gray) and Online Learning to Search (White). 1. admissible \(,h(v, ;) < d(v,g:)) S0 that the opti-

mality of the returned path can be guaranteed

For concreteness let us review an example using the map2- Maximally dominant\(,- ,h(v, g:) > h'(v,g)), SO
in Figure 1, depicting the road grid and the shopping malls  that the search process is maximally reduced
in Anytown, USA. Let us assume that the search task at
roundt emerges from a car driver in positiep wishing  The first obstacle in achieving these goals is that if the
to receive the shortest path to a target destinagiorThis 7" search problems presented during the online stream are
degenerate example presents the same graph in all searghrelated, anything learned during the fitst- 1 rounds
rounds ¢;G; = G). In many regions, municipal pol- might be irrelevant on round It is therefore necessary to
icy, highway layout or terrain constraints cause the traf-characterize the conditions under which a heuristic func-
fic flow in a certain direction (say East-West) to be sig-tion learned from distance feedback on certain graphs, can
nificantly faster than in other directions (North-Southy). | fulfill the two criteria stated above, while searching on a
Anytown the cost of driving from any intersectianone  new graph.
block West to intersectiony is ¢(v, v") = 1, while the cost
of driving from intersectiorv one block North to intersec-
tion v” is ¢(v,v”) = 3. Using this information, the length
of the shortest path (indicated by-s) from intersection
s = (6,6) to intersectiory = (11, 8) can be calculated as:
7x 1+ 2x 3= 13. An appropriate two dimensional fea-
ture mapping for this example 8,1 (vy, v),) = vy — V|
and¢2(vy, vy,) = |vy — v, |, wherev, andv, are the coor-
dinates of intersection on the road grid (in this example
T(z) = z). In the following section we propose an algo-
rithm which learns during an online sequence of searches@ The Online Learning to Search Algorithm
weight vectow aimed at maximizing the tradeoff between
admissibility and efficiency. In Figure 1 the nodes visitedWe now describe the learning algorithm aimed at acquir-
by different algorithms are color coded: Black - Dijkstra ing a heuristic evaluation function during the online sbkarc

= (0,0), Dark Gray - Block Distancev = (1, 1), Light  queries. As stated above we assume that a relevant feature
Gray - Optimal Admissiblev = (1, 3) and in White is our mappingy : V x V' — R" is provided and that our task
Online Learning to Search Algorithm. Table 1 presents theds to learn a weight vector € R™ characterizing a heuris-
path length and the number of nodes visited by the foutic function h(v,v") = T(w - ¢(v,v")). We would like
algorithms averaged over a random selection of 100 statthis heuristic function to efficiently reduce the number of
nodes and target nodes. Our algorithm learns using feeddsited nodes during the search while maintaining admissi-
back received at the end of each round which contains thbility, so that finding an optimal path could be guaranteed.

The second obstacle in achieving our two stated goals, re-
sults from the fact that these goals guide towards oppos-
ing trends. By approximating the true distance function
d(v,v") the heuristic functiorh(v,v") is maximally dom-
inant and the number of nodes visited during the search
can be minimized. However, approximatid@, v’) jeop-
ardizes the path optimality, sinégv, v’) can occasionally
overestimate(v, v) and thus be rendered non-admissible.



The proposed method relies on the linear regression alNPUT: ¢(v,v’) feature mapping
gorithms described within the online Passive Aggressive T learn-space to search-space reversible transformati
framewor.k [2]. For clarity of presentation we focu_s ¢ learning feasibility parameter
on adapting the simplest mechanism within the Passwel- ) 0
Aggressive framework. This regression mechanism as- VI TIALIZE: w1
sumes that the family of learned heuristichas the capac- For ¢t =1,2,...
ity to approximate the true distancé&, v') up to a small define current search heuristi¢v, v') = T(w; - ¢(v,v"))
czonhstant,;. Tge more c?‘mpl)leg mer(]:_hanisms p_roposc(ejd i'r|]| receive search problet@, s, g;)

Vi van relaxing thi mption and wi .
[2] have the advantage of relaxing this assumption a provide path(p:, M) — A*(Gy, 51, o, h)

be briefly mentioned later on. ) | (0.00)
) receivey; = argmax Yo — Wt - OV, gt
Recall that on every round, our algorithm performs4in el 17y

search using the currently held heuristic function. Once wherey, =T~ (d(v, g1))
concluding this search, the algorithm receives as feedback S€tlw, — [[ye — wede| — €4
the nodev; € M; on which the current heuristic estimation If lw, >0

had the maximal deviation in the learning-space. Thus, the
instance used for training in the learning-spacé(is, g:)
(abbreviatey;) and the target value ig = T~ (d(vy, g¢))- update:w; 1 «— w; + sign(y: — wi¢r) 71 ¢
We will address such paifg:;, y;), as our learning exam-
ples. Our algorithm relies on theinsensitive hinge loss
function:

. lw
Set.Tt = —”d);”Q

0 lw-¢—y|<e Figure 2: The online learning to search algorithm.

le(w; (¢, y)) = { lw-¢—y|—e otherwise ’
wherec > 0 is a learning feasibility parameter controlling where the feedback signal provided at each round includes

the sensitivity to regression errors. This loss is zero whef!! the true distances rather than just the most deviant one
the predicted target deviates from the true target by lesbll- One additional modification might be appropriate for

thane and otherwise grows linearly witlw - ¢ — /. applications in \_/vhich_ path optimal_ity is essential. If tigs
the case we might aim at evaluating(v, v) rather than

Our algorithm is initialized by setting/, to (0,...,0). At d(s,¢'), where0 < o < 1, is a parameter controlling the

the end of each round, this weight vector is updated to be tradeoff between path optimality and computational effi-

1 ciency.

W1 = afvgerﬂgyiln?\w—th s.t. (W (o, 1)) =0 .
4 Representationsin Learning Space

The set{w € R™ : I.(w;(¢t,y:)) = 0} is a hyper-slab

of width 2¢. The rational behind this update rule is to per- Aithough, the family of heuristic functions parameterized

form the minimal adjustment to the present weight vectorhy Eq. (1) relies on linear regression functions, it never-

that makes it accurately predict the target value of raund theless has the capacity to characterize several integesti

Geometricallyw is projected onto the-insensitive hyper-  search spaces. This will be demonstrated by providing

slab at the end of every round. Using the following threegnree realization of the feature mappitcgand the appro-

definitions, priate reversible non-decreasing transfer functiBns
h(w) = y—w-¢ 1. Weighted Block distance: is formally defined as,
lw, = le(we; (0,91)) ¢i(v,v") = |v; — vj], where¢i, indicates theith out-
' I put feature value of the functiof. The learned weights
Tt = T ¢W|’"2 over the features (coordinates) express the degree of impor
t

tance each dimension has in determining the total distance.
the update rule can be restated by the closed form solutiof;0r weighted block distance the identity transfer function

' T(x) = T~(x) = z, is appropriate. We will later focus
sign(d(wy)) 7 b . our analysis on this type of representations.

el 2. Weighted Euclidean distance: can occasionally cap-
It should be noted that [2] provide modifications of this rule ture the search-space better than the weighted block dis-
which are more resistant to noisy data and evaluation outtance. Learning this weighted distance could be cast as a
liers. The essential change is constraining the magnitudknear regression task by definigg(v, v') = (v; —v})? and
of 7, so that the update steps are less aggressive. In adaintaining thafl(z) = \/x (@andT~!(z) = x2). Here too
dition generalizations of this update rule exist for sgfsin the regression function learns to associate an importance

Wii1 = W +



weight to each deviation in an individual dimension in theamples where), € R", y, € R and||¢:|| < R for all ¢.
search-space. Assume that there exists a vectosuch that,, = 0 for all

3. Weighted Mahalanobisdistance: does not preserve the t. Then, the cumulative squared loss on this sequence of
examples is bounded by,

dimensionality of the search-space representation (go tha

n = k? wherek is the dimension of the search-space). This T
feature mapping is defined as(v, v') = (v; —v}) (v —v;) le < |u|?R? .
whereT(z) = /z. If the n elements ofw are reorganized et e

as a matrix4, a linear regression over the defingdan ex-
press distances of general quadratic fafttw - ¢ (v, v')) =

\/ZM Aji(v; —v%) (v —vp). With some constraints on  Lemma 2 If a heuristic functiom never overestimates the
the learning process af, A could be maintained a posi- true distanced by more than a constant value then the
tive semi definite (PSD) matrix, which enables importancepath p returned by anA* search using: is guaranteed to
weights to be assigned to linear combinations of the origbe not greater than(s, g) + r,

inal search-space rather than to each dimension individu-

ally [13]. Thus, if the matrixA resulting from reorganizing Z c(v,v') —d(s,g) <r

the elements ot is PSD, A could be decomposed into (v,0")ep

A= B'Band/(v—v)A(v—") = | Bv— Bv'|. This
means that the distance learnedwys equivalent to mea-
suring Euclidean distance betweergndv’ after both vec-
tors had undergone the linear transformatipA.

Proof We abbreviate the length of path as |p| =

> (v,0ep €0, v'). If using the heuristich, Ax returns a
strictly suboptimal pathp then all nodes with arf value
Finally it is worth while mentioning that the algorithm from smaller tharp| have been expanded. In addition some of
Figure 2 can be further enriched by incorporating Mercerthe nodes within the optimal path have not been expanded
kernels. Note that the vecter can be represented as a sum (or an optimal path would have been found). Let us assume
of vectors of the formp(v;, g;) wherei < t. We can there- for the purpose of contradiction that the length of the opti-
fore replace the inner-products in this sum with a generamal pathd(s, g), is smaller tharp| —r. Thus, all the nodes

Mercer kernel operatof (¢(vi, gi), ¢(vj, g;))- on the optimal path have afivalue smaller thamp| and
must have been expanded while usingThis contradicts
5 Analyss t.he fact thatA* usingh found a strictly suboptimal path.

We denote by, = I(u; (¢, y:)) the loss of a fixed predic-  1heorem 1 WhenT(z) = T~!(x) = a, if the conditions
toru € R"™ to which we are comparing our performance. of Lemma 1 hold and” — oo then the value bounds

Our analysis focuses on the realizable case, thus assumi@lge average deviation of the returned paghsrom the true
that there exists a vectar such that,, = 0 for all t. We distances

start with a lemma that provides a loss bound on the cumu-

lative square(_j loss of the maximally deviating nodes. This ( Z (v,0') — d(50,9¢)) < € .
lemma is a simple adaptation of Theorem 2 from [2] and
is provided in the Appendix for completeness. Next, we
follow [14] and provide the: additive admissible lemma,
stating that if a heuristic functioh never overestimatas ~ Proof Lemma 1 provides that),_, 12, < |u|*R?. Di-

by more than a constant valugethen the path returned by viding by 7', we obtain that the average squared loss goes
A* usingh is guaranteed to be not longer théd(s, g) + . 10 0,(([ly: — w¢ - é¢| — €]+)?)+ — 0. And therefore it holds
Using these two lemmas we prove that whBfx) = =  that the average loss itself goes to 0 as well,

and for a sufficiently largd” the average deviation of the

(v,v")€Ep:e

returned heuristic paths from the optimal ones goes to (([lyt — we - & — €]))e — 0 . )
Whene goes to zero we obtain convergence to the optimal
paths. Using Eq. (2) and the fact thaty; — w¢ - ¢ — €|+ >

ly: — wy - ¢¢| — €, we obtain the following bound,
Lemmal Let(¢1,v1),...,(¢r,yr) be a sequence of ex-
- ((ye —we - el))e <€ .
2If on a certain map the optimal weights ane, = (1, —
1 L 1), implying thatB:( 7‘% ‘g .thenthelearned Therefore, since the average loss is bounded by is the

2y T 92
2 2 1 H H
representation found the appropriate heuristic for traifiit flows ~ maximal deviance in the search space,

three times faster in the NE-SW axes. This is knowledge tke fir
two representations could not have acquired. ((|hwy (Vt, gt) — d(ve, g)]))e < € 3)



Let us define the maximal divergence in search space &1 RoutePlanning
roundt as,r; = |hw, (v, g¢) — d(ve, g¢)|. Using this defi-
nition we now average Lemma 2 over all theounds, and ~ Our first experimentfocused on a route planning task where

obtain that, nodes were 231 cities along the East coast of the United
States and Canada. Graph edges were defined by road dis-
( Z c(v,0") — (s, ge)Ve < (re)e tances. Longitude and latitude coordinates of the cities

were provided as the source of heuristic information. The
selected representation was weighted Euclidean distances
The online sequence of search tasks included 100 trials,
each of which was composed of a randomly selected start-
ing city s; and a randomly selected and goal qjty Per-
( Z (v, ') — d(s, g¢)) < € . formance of _threeﬁl* heuristics was compgred: Dijkstra’s
search algorithmvg; = (0,0)), Euclidean distances(; =
(1,1)) and our Online Learning to Search mechanism. Ta-
m Dble 2 displays the average path length and the average num-
ber of nodes visited by these three alternatives. It could be
If u can attain a loss df with ane that approaches, the  geen that the average deviation of the Online Learning to
returned paths will converge to the optimal ones. The congearch algorithm from the optimal path is 1 mile. However,
vergence ta is a function of ratio betweeju||*R* andT".  the percentage of visited nodes compared to Dijkstra’s al-

Intuitively, [[ul|* z* indicates the necessary complexity of gorithm (7%) and to the Aerial distance heuristié0gs)
correctly characterizing the examples in the online searchyignt justify this sub-optimality.

stream. Thus, although using a sufficiently high dimen-
sional feature mapping might make a smalt feasible,

this procedure will typically increase the complexity term Table 2: East coast map: path lengths and search extent.
|lu||>R? by swelling the radius of the training examples.

(v,v")€Epe

Since from Eq. (3) we know that,); < ¢ we conclude
that,

(v,v")€Ep:e

Algorithm length # visited

. Dijkstra 826 143
6 Experiments Admissible Aerial distance 826 113
Online Learning to Search 827 68

Our experiments were aimed at examining whether the On- (full matrix) 827 56

line Learning to Search algorithm can return near optimal

paths while using the feedback signal to gradually reduce

the number of visited nodes. Experiment 1 focuses orn @ second variation of this experiment the representation
a path finding task and is aimed at demonstrating that #as modified to the weighted Mahalanobis distance. Using
learned distance adapted to the Specific Contingencies élpls representation a further reduction in the number of vis
the data can have an advantage over a predefined heuristited was observed (Table 1: full matrix Online Learning to
Experiment 2 shows that the Online Learning to Search alSearch). The learning process leading to a gradual reduc-
gorithm can prune down the search process without prioFion in the average number of visited nodes is depiCted in
domain knowledge. For this, a naive representation of théigure 3. When averaging over the last 20 rounds we
TopSpin puzzle is applied and the learning mechanism i§eceive the vectow = (16.22,10.71, —1.11). This result
provided with a |arge set of automatica”y generated abjmplies that the learned metric acquired the fact that trave
stract representations. Experiment 3, shows that even ini89 in the North-South axis (along the coast) is on average
well studied domain, such as the 8-puzzle, where certaighorter (in road distance) than traveling in the orthogonal
abstractions are known to be effective, the Online Learninglirection.

to Search algorithm can nevertheless, contribute to improv

ing performance. It should be noted that the feedback sige.2 TopSpin

nal provided in all the reported experiments was derived

at the end of each search by running a Dijkstra proces®ur second experiment, focused on a sim-
which started at the goal state and continued until exact displified  version of the TopSpin puzzle (see
tances to all of the nodes visited during the current searclwww.passionforpuzzles.com/virtualcube/topspin).  The
were evaluated. Note, that approximate feedback can beaive representation of using the number 1 as anchor and
obtained by replacing the Dijkstra process with a heuristicenumerating clockwise was selected. In this experiment
search originating at the goal nogeand traversing back 128 elementary domain abstraction were incorporated into
to start nodes. Preliminary experimentation in this setting ¢. Each of these featurascounted within an arbitrary
shows results which are surprisingly similar to those ob-set of dimensions how many mismatches were present
tained by the exact feedback process. between the current state and the desired goal state (while



e for every other tile (except that a piece in the center scores
ol gl el T 1). Thus, in this case the representation is well known and
well studied yet the question remains whether the weights
assigned for each feature are indeed optimal. The 18 di-
mensional representation included: 9 Manhattan distance
features + 8 binary Nilsson sequence features describing
whether each of the peripheral tiles follows the appropriat
o predecessor + 1 binary feature describing whether the cen-
tral tile is in place. Here too 100, rounds of online search
task were presented. As can been seen in Table 4, the On-
o B » e e w e o w % W line Learning to Search is capable of significantly outper-
forming Nilsson’s Heuristic while maintaining admissibil
Figure 3: Average cumulative number of visited nodes: Di-ity-
jkstra (dashed), Aerial distance (doted) and Online Learn-
ing to Search method (solid).

Visited Nodes

Table 4: 8-Puzzle: path lengths and search extent.

Algorithm length # visited
ignoring all other dimensions). For examplgl00 only
counted mismatches in dimensions 3, 4 and 5. Each of  pijkstra 4.22 148.50
these dimensions is an admissible heuristic. The task of  Njlsson’s Sequence 4.28 45.90
the Online Learning to Search mechanism was to discover  QOnline Learning to Search ~ 4.22 15.77

during the 100 online rounds, which of the large set of

candidate features truly contributes to the heuristicdear

Table 3 displays the fact that although the abstract feature ) ] .

were an arbitrary selection, the Online Learning to Searc/  Discussion and future extensions

mechanism, managed to tune onto a set of weights that

maintained admissibility, while significantly pruning dow We described a method termed Online Learning to Search,
the search process. which utilizes state-of-the-art machine learning mecha-
nisms for acquiring a heuristic evaluation function. We re-
lied on the notion of-admissibility, to prove that when the

Table 3: TopSpin: path lengths and search extent. regression learning task is realizable with a sm#tlen the

Algorithm length # visited average divergence from the optimal paths can go to zero.

The nature of the regression task ensures that the learned
Dijkstra 3.4 281 heuristics are highly dominant, in the sense that they effec
Online Learning to Search 3.4 88 tively prune down the search process.

It is important to note that batch regression methods (e.g.

Support Vector Regression) can be applied to our setting
6.3 8-puzzle as well. However, providing formal guarantees using these

alternative models is a challenging task. Specificallys it i
Our last experiment returns to the well studied 8-puzzledifficult to see how the i.i.d assumption, which is the cor-
where the (non-admissible) Nilsson sequence score igerstone of statistical inference in the batch setting hinig
known to be highly effective in pruning down the searchhold in our setting (where the evaluation functions must be
space. This score is defined over two featutds, g) = learned and applied to data with many dependencies).

P(v,9) + 35(v,g). The featureP(v, g) is the Manhat- o, proposed online learning mechanism can be extended

tan distance of each t'k_a in from its proper posm_on N in several ways. First, the online setting could be applied
g and _the featuréi(v, g) is a sequence score obtained byduring a single search task. The rounds in this online set-
checking ar(_)und the non-centr_al squares in turn, aIIOttIng!ing could be derived either by a lookahead procedure or by
2 for every tile not followed by its proper successor and Ousing the known lengthis(s, v), of reaching a visited node
3t was (wrongly) assumed that the features that observe th& from nodes. The challenge in the single search setting

maximal number of elements will be most informative and gett emerges from learning when only approximate feedback is
highest weights. Surprisingly, the highest weights wenese®  available. Second, our online mechanism is suitable for
tently assigned to features of intermediate abstractian (@unt- tackling scenarios where the optimal weights might be in

ing mismatches in 4 elements). The challenge of interpyetiis ti tate of drift dating d .
results remains open, however it is apparent that the agesma & Continuous state of drift (6.g. accommodating dynamic

learning process can occasionally be free of misleadinggsithe  traffic changes during the day). Finally, we believe that the
human designer might possess. proposed online algorithm is an initial step towards apply-



ing machine learning techniques to the fundamental chalJsing the assumption that the sequence is realizable by the

lenges of artificial intelligence.

Appendix: proof of Lemma 1

Let (¢1,41),.-., (¢, yr) be an arbitrary sequence of ex-
amples, wherg, € R™ andy, € R for all t. DefineA; to
be||wy — u? — |[we1 — ul|?. Firstnote thad~, A, isa
telescopic sum which collapses to,

>
[[w1

[we —ul* = [[wesr —ul]?)

—ul® = [lwrir —uf*.

Using the facts thadv, is defined to be the zero vector and
that|[wr 1 —u/|? is non-negative, we can upper bound the
right-hand side of the above iy ||? and conclude that,

T
S A < uf?
t=1

We focus our attention on bounding; from below on
those rounds wherd; # 0. Using the recursive defini-
tion of w1, we rewriteA; as,

(4)

Ay

[we —ul|? — [|we — u+ sign(d: (we)) e [|* =
—sign(d;(we))27 (we — ) - ¢ — 77|
We now add and subtract the tesign(d;(w¢))27y; from
the right-hand side above to get the bound,

Ay >
+sign(ds(wy)) 27 (5 (we))
—sign(d;(wy))27¢(6¢(u))
=1 loel® .
Sincesign(d:(wt))o:(we) = [0:(w)|. We only need to
consider the case whefe, # 0, SOly, = |J:(w¢)| — e and
we can rewrite the bound in Eq. (5) as,

A > 27y (I, +e) — sign(de (we)) 27 (6 (w) — 77| de* -

We also know that-sign(d;(w¢))d:(u) > —|d:(u)| and
that —|6;(u)| > —(lu + €). This enables us to further
bound,

Ap = 271(lw, +€) = 27e(la +€) — 77[|¢¢]?
Tt(2lwt — Tt||¢tH2 — 2lu) .

Summing the above over alland comparing to the upper
bound in Eq. (4) proves that for amye R"™,

T
S5 2w, = mllel? = 20) < . ()
t=1

model (there exists a for which [, = 0 for all ¢) and
plugging the definition of into the left-hand side of the
above gives,

Now using the fact that¢,||> < R? for all ¢, we get,
T
Y L /R < ul
t=1
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