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Abstract

This paper describes a method for efficiently
finding a short path between two nodes in a
graph, by minimizing the number of nodes vis-
ited during the search. The main contribution of
this paper is an automated mechanism for learn-
ing a heuristic function that can guide the search
in the right direction. Our heuristic function is
parameterized by a vector of importance weights
over a set of features, which are typically simple
abstractions of the search space. The importance
weights are trained in an online manner using
nodes to which the true distance has already been
revealed during previous search stages. Our ex-
periments demonstrate that the proposed method
typically finds the optimal path while signifi-
cantly reducing the search complexity. A theo-
retical analysis describes conditions under which
finding the shortest path can be guaranteed.

1 Introduction

Searching a shortest path between two nodes in a graph
is a classical problem in computer science, emerging in
many domains ranging from train scheduling [12] to com-
puter graphics [10]. The well known Dijkstra’s shortest
path search algorithm remains one of the top 10 cited com-
puter science papers many years after it was first pub-
lished. However, the time complexity of Dijkstra’s algo-
rithm, O(|V |2) is intolerable if a quick answer is required
while searching a very large graph. Two complementary
lines of research have responded to the challenge of effi-
ciently finding short paths in large graphs.

The first line of research focuses on improving the pri-
ority queue data structure used by Dijkstra’s algorithm,
while attempting to make use of different graph proper-
ties. For example, it has been demonstrated that if the
graph is sparse using a binary heap, the algorithm requires

O((|E| + |V |)log|V |) time, and using the Fibonacci heap
improves this toO(|E| + |V |log|V |).
The second line of research introduced a heuristic factor
into the search process. A prototypical representative of
this line of research, is theA∗ algorithm (originally sug-
gested by [5]). The assumption guidingA∗, is that in ad-
dition to the search problem variables (graph, starting node
and target node), the algorithm receives as input a heuris-
tic function which is used to evaluate the remaining dis-
tance from each visited node to the target node. Adding
this heuristic score to the nodes stored in Dijkstra’s prior-
ity queue can guide the search towards the target and thus
avoid visiting a substantial part of the graph. TheA∗ algo-
rithm can guarantee that the shortest path is found when the
heuristic functionh never overestimates the true distance
from a certain node to the target. Sinceh = 0 is always
admissible, the admissibility guarantee seems to be mean-
ingless without the notion heuristic dominance. Heuristic
dominance provides that an admissible heuristich which
consistently provides higher estimations than the heuristic
functionh′, will never visit during the search more nodes
thanh′ (see [11] and references within).

The paper by [15] associated tasks that require intelligence
with heuristic search. However, the intelligence applied in
solving these tasks should in fact be attributed to the de-
signer of the successful heuristic. This paper addresses the
question of whether the task of designing an appropriate
heuristics for a certain search space, might be automated.
As was stated above, Dijkstra’s algorithm is still widely
used despite the existence ofA∗, which seems to indicate
that the challenge of heuristic design is a significant barrier
in the application of heuristic search algorithms. Moreover,
in certain settings manually designing a heuristic function
might not be possible. For example, imagine a large scale
distributed communication network used by military vehi-
cles in which every node can transmit, receive or relay com-
munications from neighboring nodes. In this ad hoc graph,
when vehicles must communicate with a distant vehicleg,
the goal is to transmit the conversation in real time through
the least energy consuming path. Since the graph might



be continuously changing as the forces progress a static
heuristic function might be sub-optimal1.

The initial step in automating the process of heuristic de-
sign followed the observation that abstractions of the search
space can provide simplified evaluation functions [9]. This
theme, first suggested in the 60-s has been developed
throughout the years with increasing sophistication [6].
Thus, elementary heuristics derived from by domain ab-
straction can be automatically composed into complex ad-
missible heuristics (e.g. by taking the maximum value of
the elementary heuristics). This paper builds upon the no-
tion of domain abstraction and suggests a family of algo-
rithms aimed at automating the heuristic composition pro-
cess, utilizing state-of-the-art online learning mechanisms.

Our setting assumes that a sequence of related search tasks
must be performed using anA∗ mechanism and that at the
end of each search task the currently held composite heuris-
tic receives feedback indicating which of its estimates have
maximally deviated from the true distances. Using this
feedback the parameters of the heuristic are updated so it
can better capture the characteristics of the distance under-
lying the specific sequence of observed graphs. Our setting
is related to other repeated graph search setting [8, 3, 4, 7].
However, while these methods rely on memorization for
transferring heuristic knowledge, our method relies on the
machine learning notion of generalization.

The feedback signal we require for training the heuristic
function h, could naturally emerge as part of the search
process. For example, in the vehicle communication sys-
tem, the shortest path search procedure must be performed
efficiently. However, once the target was found inreal time,
the system can derive the evaluation feedback by perform-
ing an exact searchoff line. This reverse search can start
from the target node and traverse the graph in order to cal-
culate the true distances to all of the evaluations the heuris-
tic h performed during thereal timesearch. Unlike tradi-
tional online supervised learning settings in which labels
require an external teacher, training in search problems has
the elegant property of being able to rely on exact search
mechanisms for supervision.

2 Problem Setting

LetG = (V, E) be a graph in which each edge(v ∈ V, v′ ∈
V ) ∈ E is associated with a positive costc(v, v′) ≥ 0.
We define ashortest path search problemby the triplet
(G, s, g) wheres ∈ V is the source node andg ∈ V is
the goal node. Let(G1, s1, g1) . . . (GT , sT , gT ) be an on-
line sequence of shortest path search problems. At each
round1 ≤ t ≤ T , the algorithm receives search problem

1Throughout the paper we assume that the graph might be dy-
namically changing but that these changes occur in a longer time
constant than that of the search process.

(Gt, st, gt) and must reply by producing the edges on the
shortest pathpt for reachinggt from st.

Our setting follows theA∗ framework and assumes that the
number of nodes visited during the search process must be
minimized using a heuristic functionh : V ×V → R. This
heuristic function guides the search by prioritizing whichof
the nodes in the search frontier will be expanded next. The
priority scoref(v) = k(s, v) + h(v, g) is the sum of the
distancek(s, v), required to reach nodev from nodes, and
of the heuristic contributionh(v, g) estimating the remain-
ing distance needed to reach the goal nodeg from node
v. Unlike the traditionalA∗ setting in which the heuristic
functionh is manually designed and assumed to be known
in advance, our setting assumes thath is notknown a-priori
and must therefore be learned online during theT search
rounds.

Our setting focuses on heuristics over thesearch-spaceV ,
which are induced by linear regression functions in a re-
latedR

n learning-space,

h(v, v′) = T(w · φ(v, v′)) . (1)

It is assumed that a functionφ : V × V → R
n is pro-

vided, which receives a pair of nodes(v, v′) from the
search space and returns ann dimensional feature mapping
in the learning-space. Each featureφi is a search-space ab-
straction, typically a simplification generated by ignoring
some of the domain constraints. The regression function
multiplies the features inφ by a weight vectorw ∈ R

n

and then applies some reversible non-decreasing function,
T : R → R, mapping distance values from the learning-
space, back to distances in the search-space. We will later
rely on the assumption that this transformation must main-
tain that as a certain distance in the learning-space goes to
0, the analog distance in the search-space goes to 0 as well.
Although somewhat limited, we demonstrate that this fam-
ily of heuristics is not as meager as it initially seems.

At each round in our online setting anA∗ search process
is performed using the current heuristic functionh. Dur-
ing this search the algorithm visits a set of nodes, we de-
note asMt. When the search is concluded, the shortest
pathpt must be returned. In order to tune the vector of
regression parametersw, it is assumed that after the short-
est path is found the algorithm receives a feedback signal.
This feedback includes the nodevt ∈Mt on which the cur-
rent heuristic estimation had the maximal (learning-space)
deviation fromyv = T

−1(d(v, g)),

vt = argmax
v∈Mt

|yv −wt · φ(v, gt)| .

In addition to the maximally deviating node, the feedback
also includes the true distanceyt = T−1(d(vt, g)). Using
this feedback the algorithm can update the weights of the
heuristic functionh in order to improve its performance in
the subsequent rounds.
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Figure 1: A graph of the road grid in Anytown, USA. The
L-shaped structures represent shopping malls. Nodes on
the shortest path froms to g are indicated by×. Notice the
increasing heuristic dominance between: Dijkstra (Black),
Block Distance (Dark Gray), Optimal Admissible (Light
Gray) and Online Learning to Search (White).

For concreteness let us review an example using the map
in Figure 1, depicting the road grid and the shopping malls
in Anytown, USA. Let us assume that the search task at
roundt emerges from a car driver in positionst wishing
to receive the shortest path to a target destinationgt. This
degenerate example presents the same graph in all search
rounds (∀tGt = G). In many regions, municipal pol-
icy, highway layout or terrain constraints cause the traf-
fic flow in a certain direction (say East-West) to be sig-
nificantly faster than in other directions (North-South). In
Anytown the cost of driving from any intersectionv one
block West to intersectionv′ is c(v, v′) = 1, while the cost
of driving from intersectionv one block North to intersec-
tion v′′ is c(v, v′′) = 3. Using this information, the length
of the shortest path (indicated by×-s) from intersection
s = (6, 6) to intersectiong = (11, 8) can be calculated as:
7 × 1 + 2× 3 = 13. An appropriate two dimensional fea-
ture mapping for this example is,φ1(vx, v′x) = |vx − v′x|
andφ2(vy , v′y) = |vy − v′y|, wherevx andvy are the coor-
dinates of intersectionv on the road grid (in this example
T(x) = x). In the following section we propose an algo-
rithm which learns during an online sequence of searches a
weight vectorw aimed at maximizing the tradeoff between
admissibility and efficiency. In Figure 1 the nodes visited
by different algorithms are color coded: Black - Dijkstra
w = (0, 0), Dark Gray - Block Distancew = (1, 1), Light
Gray - Optimal Admissiblew = (1, 3) and in White is our
Online Learning to Search Algorithm. Table 1 presents the
path length and the number of nodes visited by the four
algorithms averaged over a random selection of 100 start
nodes and target nodes. Our algorithm learns using feed-
back received at the end of each round which contains the

true distance for the node in the current search that the ex-
isting heuristic function maximally deviated from. For ex-
ample, if at the current round the existing heuristic was de-
fined bywt = (0, 0), the maximally deviating node would
be node(2, 2) which has an actual distance of 29 to the tar-
get (whilewt · φ((2, 2), (11, 8)) is 0). Thus, the feedback
for training will be((2, 2), 29).

Table 1: Average path length and average visited nodes.

Algorithm length # visited

Dijkstra: w=(0,0) 24.47 159.71
Block Distance:w=(1,1) 24.47 103.88
Optimal Admissible:w=(3,1) 24.47 62.01
Online Learning to Search 24.49 44.32

The challenge posed by our setting is in maintaining that in
roundt the heuristic functionh is:

1. admissible (∀vh(v, gt) ≤ d(v, gt)) so that the opti-
mality of the returned path can be guaranteed

2. maximally dominant (∀h′,vh(v, gt) ≥ h′(v, gt)), so
that the search process is maximally reduced

The first obstacle in achieving these goals is that if the
T search problems presented during the online stream are
unrelated, anything learned during the firstt − 1 rounds
might be irrelevant on roundt. It is therefore necessary to
characterize the conditions under which a heuristic func-
tion learned from distance feedback on certain graphs, can
fulfill the two criteria stated above, while searching on a
new graph.

The second obstacle in achieving our two stated goals, re-
sults from the fact that these goals guide towards oppos-
ing trends. By approximating the true distance function
d(v, v′) the heuristic functionh(v, v′) is maximally dom-
inant and the number of nodes visited during the search
can be minimized. However, approximatingd(v, v′) jeop-
ardizes the path optimality, sinceh(v, v′) can occasionally
overestimated(v, v′) and thus be rendered non-admissible.

3 The Online Learning to Search Algorithm

We now describe the learning algorithm aimed at acquir-
ing a heuristic evaluation function during the online search
queries. As stated above we assume that a relevant feature
mappingφ : V × V → R

n is provided and that our task
is to learn a weight vectorw ∈ R

n characterizing a heuris-
tic function h(v, v′) = T(w · φ(v, v′)). We would like
this heuristic function to efficiently reduce the number of
visited nodes during the search while maintaining admissi-
bility, so that finding an optimal path could be guaranteed.



The proposed method relies on the linear regression al-
gorithms described within the online Passive Aggressive
framework [2]. For clarity of presentation we focus
on adapting the simplest mechanism within the Passive-
Aggressive framework. This regression mechanism as-
sumes that the family of learned heuristicsh has the capac-
ity to approximate the true distancesd(v, v′) up to a small
constant,ǫ. The more complex mechanisms proposed in
[2] have the advantage of relaxing this assumption and will
be briefly mentioned later on.

Recall that on every round, our algorithm performs anA∗

search using the currently held heuristic function. Once
concluding this search, the algorithm receives as feedback
the nodevt ∈Mt on which the current heuristic estimation
had the maximal deviation in the learning-space. Thus, the
instance used for training in the learning-space isφ(vt, gt)
(abbreviateφt) and the target value isyt = T

−1(d(vt, gt)).
We will address such pairs(φt, yt), as our learning exam-
ples. Our algorithm relies on theǫ-insensitive hinge loss
function:

lǫ(w; (φ, y)) =

{

0 |w · φ− y| ≤ ǫ
|w · φ− y| − ǫ otherwise

,

whereǫ ≥ 0 is a learning feasibility parameter controlling
the sensitivity to regression errors. This loss is zero when
the predicted target deviates from the true target by less
thanǫ and otherwise grows linearly with|w · φ− y|.
Our algorithm is initialized by settingw1 to (0, . . . , 0). At
the end of each round, this weight vector is updated to be,

wt+1 = argmin
w∈Rn

1

2
‖w−wt‖ s.t. lǫ

(

w; (φt, yt)
)

= 0 .

The set{w ∈ R
n : lǫ(w; (φt, yt)) = 0} is a hyper-slab

of width 2ǫ. The rational behind this update rule is to per-
form the minimal adjustment to the present weight vector
that makes it accurately predict the target value of roundt.
Geometrically,wt is projected onto theǫ-insensitive hyper-
slab at the end of every round. Using the following three
definitions,

δt(w) = yt −w · φt

lwt
= lǫ(wt; (φt, yt))

τt =
lwt

‖φt‖2

the update rule can be restated by the closed form solution,

wt+1 = wt +
sign(δt(wt)) τt

‖φt‖
φt .

It should be noted that [2] provide modifications of this rule
which are more resistant to noisy data and evaluation out-
liers. The essential change is constraining the magnitude
of τ , so that the update steps are less aggressive. In ad-
dition generalizations of this update rule exist for settings

INPUT: φ(v, v′) feature mapping

T learn-space to search-space reversible transformation

ǫ learning feasibility parameter

INITIALIZE : w1 ← 0

For t = 1, 2, . . .

define current search heuristich(v, v′) = T(wt · φ(v, v′))

receive search problem(Gt, st, gt)

provide path(pt, Mt)← A∗(Gt, st, gt, h)

receivevt = argmaxv∈Mt
|yv −wt · φ(v, gt)|

whereyv = T
−1(d(v, gt))

setlwt
← [|yt −wtφt| − ǫ]+

If lwt
> 0

set:τt =
lwt

‖φt‖2

update:wt+1 ← wt + sign(yt −wtφt) τtφt

Figure 2: The online learning to search algorithm.

where the feedback signal provided at each round includes
all the true distances rather than just the most deviant one
[1]. One additional modification might be appropriate for
applications in which path optimality is essential. If thisis
the case we might aim at evaluatingαd(v, v′) rather than
d(v, v′), where0 ≤ α ≤ 1, is a parameter controlling the
tradeoff between path optimality and computational effi-
ciency.

4 Representations in Learning Space

Although, the family of heuristic functions parameterized
by Eq. (1) relies on linear regression functions, it never-
theless has the capacity to characterize several interesting
search spaces. This will be demonstrated by providing
three realization of the feature mappingφ and the appro-
priate reversible non-decreasing transfer functionsT:

1. Weighted Block distance: is formally defined as,
φi(v, v′) = |vi − v′i|, whereφi, indicates theith out-
put feature value of the functionφ. The learned weights
over the features (coordinates) express the degree of impor-
tance each dimension has in determining the total distance.
For weighted block distance the identity transfer function
T(x) = T

−1(x) = x, is appropriate. We will later focus
our analysis on this type of representations.

2. Weighted Euclidean distance: can occasionally cap-
ture the search-space better than the weighted block dis-
tance. Learning this weighted distance could be cast as a
linear regression task by definingφi(v, v′) = (vi−v′i)

2 and
maintaining thatT(x) =

√
x (andT

−1(x) = x2). Here too
the regression function learns to associate an importance



weight to each deviation in an individual dimension in the
search-space.

3. Weighted Mahalanobis distance: does not preserve the
dimensionality of the search-space representation (so that
n = k2 wherek is the dimension of the search-space). This
feature mapping is defined asφi(v, v′) = (vj−v′j)(vl−v′l)
whereT(x) =

√
x. If the n elements ofw are reorganized

as a matrixA, a linear regression over the definedφ can ex-
press distances of general quadratic form,T(w·φ(v, v′)) =
√

∑

j,l Aj,l(vj − v′j)(vl − v′l). With some constraints on

the learning process ofw, A could be maintained a posi-
tive semi definite (PSD) matrix, which enables importance
weights to be assigned to linear combinations of the orig-
inal search-space rather than to each dimension individu-
ally [13]. Thus, if the matrixA resulting from reorganizing
the elements ofw is PSD,A could be decomposed into
A = B′B and

√

(v − v′)A(v − v′) = ‖Bv − Bv′‖. This
means that the distance learned byw is equivalent to mea-
suring Euclidean distance between,v andv′ after both vec-
tors had undergone the linear transformationB 2.

Finally it is worth while mentioning that the algorithm from
Figure 2 can be further enriched by incorporating Mercer
kernels. Note that the vectorw can be represented as a sum
of vectors of the formφ(vi, gi) wherei < t. We can there-
fore replace the inner-products in this sum with a general
Mercer kernel operator,K(φ(vi, gi), φ(vj , gj)).

5 Analysis

We denote bylu = l
(

u; (φt, yt)
)

the loss of a fixed predic-
tor u ∈ R

n to which we are comparing our performance.
Our analysis focuses on the realizable case, thus assuming
that there exists a vectoru such thatlu = 0 for all t. We
start with a lemma that provides a loss bound on the cumu-
lative squared loss of the maximally deviating nodes. This
lemma is a simple adaptation of Theorem 2 from [2] and
is provided in the Appendix for completeness. Next, we
follow [14] and provide theǫ additive admissible lemma,
stating that if a heuristic functionh never overestimatesd
by more than a constant valuer, then the path returned by
A∗ usingh is guaranteed to be not longer thand(s, g) + r.
Using these two lemmas we prove that whenT(x) = x
and for a sufficiently largeT the average deviation of the
returned heuristic paths from the optimal ones goes toǫ.
Whenǫ goes to zero we obtain convergence to the optimal
paths.

Lemma 1 Let (φ1, y1), . . . , (φT , yT ) be a sequence of ex-

2If on a certain map the optimal weights are,w = (1, −

1

2
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1

2
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√
3

2

√
3
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”

, then the learned

representation found the appropriate heuristic for trafficthat flows
three times faster in the NE-SW axes. This is knowledge the first
two representations could not have acquired.

amples whereφt ∈ R
n, yt ∈ R and‖φt‖ ≤ R for all t.

Assume that there exists a vectoru such thatlu = 0 for all
t. Then, the cumulative squared loss on this sequence of
examples is bounded by,

T
∑

t=1

l2
wt
≤ ‖u‖2R2 .

Lemma 2 If a heuristic functionh never overestimates the
true distanced by more than a constant valuer, then the
pathp returned by anA∗ search usingh is guaranteed to
be not greater thand(s, g) + r,

∑

(v,v′)∈p

c(v, v′)− d(s, g) ≤ r

Proof We abbreviate the length of pathp as |p| =
∑

(v,v′)∈p c(v, v′). If using the heuristich, A∗ returns a
strictly suboptimal pathp then all nodes with anf value
smaller than|p| have been expanded. In addition some of
the nodes within the optimal path have not been expanded
(or an optimal path would have been found). Let us assume
for the purpose of contradiction that the length of the opti-
mal pathd(s, g), is smaller than|p|− r. Thus, all the nodes
on the optimal path have anf value smaller than|p| and
must have been expanded while usingh. This contradicts
the fact thatA∗ usingh found a strictly suboptimal path.

Theorem 1 WhenT(x) = T
−1(x) = x, if the conditions

of Lemma 1 hold andT → ∞ then the valueǫ bounds
the average deviation of the returned pathspt from the true
distances,

〈
∑

(v,v′)∈pt

c(v, v′)− d(st, gt)〉t ≤ ǫ .

Proof Lemma 1 provides that
∑T

t=1 l2
wt
≤ ‖u‖2R2. Di-

viding by T , we obtain that the average squared loss goes
to 0,〈([|yt−wt ·φt|− ǫ]+)2〉t → 0. And therefore it holds
that the average loss itself goes to 0 as well,

〈([|yt −wt · φt| − ǫ]+)〉t → 0 . (2)

Using Eq. (2) and the fact that[|yt − wt · φt| − ǫ]+ ≥
|yt −wt · φt| − ǫ, we obtain the following bound,

〈(|yt −wt · φt|)〉t ≤ ǫ .

Therefore, since the average loss is bounded byǫ, so is the
maximal deviance in the search space,

〈(|hwt
(vt, gt)− d(vt, gt)|)〉t ≤ ǫ . (3)



Let us define the maximal divergence in search space at
roundt as,rt = |hwt

(vt, gt) − d(vt, gt)|. Using this defi-
nition we now average Lemma 2 over all theT rounds, and
obtain that,

〈
∑

(v,v′)∈pt

c(v, v′)− d(st, gt)〉t ≤ 〈rt〉t .

Since from Eq. (3) we know that〈rt〉t ≤ ǫ we conclude
that,

〈
∑

(v,v′)∈pt

c(v, v′)− d(st, gt)〉t ≤ ǫ .

If u can attain a loss of0 with an ǫ that approaches0, the
returned paths will converge to the optimal ones. The con-
vergence toǫ is a function of ratio between‖u‖2R2 andT .
Intuitively, ‖u‖2R2 indicates the necessary complexity of
correctly characterizing the examples in the online search
stream. Thus, although using a sufficiently high dimen-
sional feature mappingφ might make a smallǫ feasible,
this procedure will typically increase the complexity term
‖u‖2R2 by swelling the radius of the training examples.

6 Experiments

Our experiments were aimed at examining whether the On-
line Learning to Search algorithm can return near optimal
paths while using the feedback signal to gradually reduce
the number of visited nodes. Experiment 1 focuses on
a path finding task and is aimed at demonstrating that a
learned distance adapted to the specific contingencies of
the data can have an advantage over a predefined heuristic.
Experiment 2 shows that the Online Learning to Search al-
gorithm can prune down the search process without prior
domain knowledge. For this, a naive representation of the
TopSpin puzzle is applied and the learning mechanism is
provided with a large set of automatically generated ab-
stract representations. Experiment 3, shows that even in a
well studied domain, such as the 8-puzzle, where certain
abstractions are known to be effective, the Online Learning
to Search algorithm can nevertheless, contribute to improv-
ing performance. It should be noted that the feedback sig-
nal provided in all the reported experiments was derived
at the end of each search by running a Dijkstra process
which started at the goal state and continued until exact dis-
tances to all of the nodes visited during the current search
were evaluated. Note, that approximate feedback can be
obtained by replacing the Dijkstra process with a heuristic
search originating at the goal nodeg and traversing back
to start nodes. Preliminary experimentation in this setting
shows results which are surprisingly similar to those ob-
tained by the exact feedback process.

6.1 Route Planning

Our first experiment focused on a route planning task where
nodes were 231 cities along the East coast of the United
States and Canada. Graph edges were defined by road dis-
tances. Longitude and latitude coordinates of the cities
were provided as the source of heuristic information. The
selected representation was weighted Euclidean distances.
The online sequence of search tasks included 100 trials,
each of which was composed of a randomly selected start-
ing city st and a randomly selected and goal citygt. Per-
formance of threeA∗ heuristics was compared: Dijkstra’s
search algorithm (wt = (0, 0)), Euclidean distance (wt =
(1, 1)) and our Online Learning to Search mechanism. Ta-
ble 2 displays the average path length and the average num-
ber of nodes visited by these three alternatives. It could be
seen that the average deviation of the Online Learning to
Search algorithm from the optimal path is 1 mile. However,
the percentage of visited nodes compared to Dijkstra’s al-
gorithm (47%) and to the Aerial distance heuristic (60%)
might justify this sub-optimality.

Table 2: East coast map: path lengths and search extent.

Algorithm length # visited

Dijkstra 826 143
Admissible Aerial distance 826 113
Online Learning to Search 827 68

(full matrix) 827 56

In a second variation of this experiment the representation
was modified to the weighted Mahalanobis distance. Using
this representation a further reduction in the number of vis-
ited was observed (Table 1: full matrix Online Learning to
Search). The learning process leading to a gradual reduc-
tion in the average number of visited nodes is depicted in
Figure 3. When averagingwt over the last 20 rounds we
receive the vectorw = (16.22, 10.71,−1.11). This result
implies that the learned metric acquired the fact that travel-
ing in the North-South axis (along the coast) is on average
shorter (in road distance) than traveling in the orthogonal
direction.

6.2 TopSpin

Our second experiment, focused on a sim-
plified version of the TopSpin puzzle (see
www.passionforpuzzles.com/virtualcube/topspin). The
naive representation of using the number 1 as anchor and
enumerating clockwise was selected. In this experiment
128 elementary domain abstraction were incorporated into
φ. Each of these featuresi counted within an arbitrary
set of dimensions how many mismatches were present
between the current state and the desired goal state (while
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Figure 3: Average cumulative number of visited nodes: Di-
jkstra (dashed), Aerial distance (doted) and Online Learn-
ing to Search method (solid).

ignoring all other dimensions). For example,φ100 only
counted mismatches in dimensions 3, 4 and 5. Each of
these dimensions is an admissible heuristic. The task of
the Online Learning to Search mechanism was to discover
during the 100 online rounds, which of the large set of
candidate features truly contributes to the heuristic search.
Table 3 displays the fact that although the abstract features
were an arbitrary selection, the Online Learning to Search
mechanism, managed to tune onto a set of weights that
maintained admissibility, while significantly pruning down
the search process.3

Table 3: TopSpin: path lengths and search extent.

Algorithm length # visited

Dijkstra 3.4 281
Online Learning to Search 3.4 88

6.3 8-puzzle

Our last experiment returns to the well studied 8-puzzle,
where the (non-admissible) Nilsson sequence score is
known to be highly effective in pruning down the search
space. This score is defined over two features,h(v, g) =
P (v, g) + 3S(v, g). The featureP (v, g) is the Manhat-
tan distance of each tile inv from its proper position in
g and the featureS(v, g) is a sequence score obtained by
checking around the non-central squares in turn, allotting
2 for every tile not followed by its proper successor and 0

3It was (wrongly) assumed that the features that observe the
maximal number of elements will be most informative and get the
highest weights. Surprisingly, the highest weights were consis-
tently assigned to features of intermediate abstraction (e.g. count-
ing mismatches in 4 elements). The challenge of interpreting this
results remains open, however it is apparent that the automated
learning process can occasionally be free of misleading biases the
human designer might possess.

for every other tile (except that a piece in the center scores
1). Thus, in this case the representation is well known and
well studied yet the question remains whether the weights
assigned for each feature are indeed optimal. The 18 di-
mensional representation included: 9 Manhattan distance
features + 8 binary Nilsson sequence features describing
whether each of the peripheral tiles follows the appropriate
predecessor + 1 binary feature describing whether the cen-
tral tile is in place. Here too 100, rounds of online search
task were presented. As can been seen in Table 4, the On-
line Learning to Search is capable of significantly outper-
forming Nilsson’s Heuristic while maintaining admissibil-
ity.

Table 4: 8-Puzzle: path lengths and search extent.

Algorithm length # visited

Dijkstra 4.22 148.50
Nilsson’s Sequence 4.28 45.90
Online Learning to Search 4.22 15.77

7 Discussion and future extensions

We described a method termed Online Learning to Search,
which utilizes state-of-the-art machine learning mecha-
nisms for acquiring a heuristic evaluation function. We re-
lied on the notion ofǫ-admissibility, to prove that when the
regression learning task is realizable with a smallǫ then the
average divergence from the optimal paths can go to zero.
The nature of the regression task ensures that the learned
heuristics are highly dominant, in the sense that they effec-
tively prune down the search process.

It is important to note that batch regression methods (e.g.
Support Vector Regression) can be applied to our setting
as well. However, providing formal guarantees using these
alternative models is a challenging task. Specifically, it is
difficult to see how the i.i.d assumption, which is the cor-
nerstone of statistical inference in the batch setting, might
hold in our setting (where the evaluation functions must be
learned and applied to data with many dependencies).

The proposed online learning mechanism can be extended
in several ways. First, the online setting could be applied
during a single search task. The rounds in this online set-
ting could be derived either by a lookahead procedure or by
using the known length,k(s, v), of reaching a visited node
v from nodes. The challenge in the single search setting
emerges from learning when only approximate feedback is
available. Second, our online mechanism is suitable for
tackling scenarios where the optimal weights might be in
a continuous state of drift (e.g. accommodating dynamic
traffic changes during the day). Finally, we believe that the
proposed online algorithm is an initial step towards apply-



ing machine learning techniques to the fundamental chal-
lenges of artificial intelligence.

Appendix: proof of Lemma 1

Let (φ1, y1), . . . , (φT , yT ) be an arbitrary sequence of ex-
amples, whereφt ∈ R

n andyt ∈ R for all t. Define∆t to
be‖wt − u‖2 − ‖wt+1 − u‖2. First note that

∑

t ∆t is a
telescopic sum which collapses to,

T
∑

t=1

∆t =

T
∑

t=1

(

‖wt − u‖2 − ‖wt+1 − u‖2
)

= ‖w1 − u‖2 − ‖wT+1 − u‖2.

Using the facts thatw1 is defined to be the zero vector and
that‖wT+1−u‖2 is non-negative, we can upper bound the
right-hand side of the above by‖u‖2 and conclude that,

T
∑

t=1

∆t ≤ ‖u‖2 . (4)

We focus our attention on bounding∆t from below on
those rounds where∆t 6= 0. Using the recursive defini-
tion of wt+1, we rewrite∆t as,

∆t =

‖wt − u‖2 − ‖wt − u + sign(δt(wt))τtφt‖2 =

−sign(δt(wt))2τt(wt − u) · φt − τ2
t ‖φt‖2

We now add and subtract the termsign(δt(wt))2τtyt from
the right-hand side above to get the bound,

∆t ≥
+sign(δt(wt))2τt(δt(wt))

− sign(δt(wt))2τt(δt(u))

− τ2
t ‖φt‖2 .

Sincesign(δt(wt))δt(wt) = |δt(wt)|. We only need to
consider the case where∆t 6= 0, solwt

= |δt(wt)|− ǫ and
we can rewrite the bound in Eq. (5) as,

∆t ≥ 2τt(lwt
+ǫ)− sign(δt(wt))2τt(δt(u))− τ2

t ‖φt‖2 .

We also know that−sign(δt(wt))δt(u) ≥ −|δt(u)| and
that−|δt(u)| ≥ −(lu + ǫ). This enables us to further
bound,

∆t ≥ 2τt(lwt
+ ǫ) − 2τt(lu + ǫ) − τ2

t ‖φt‖2 =

τt(2lwt
− τt‖φt‖2 − 2lu) .

Summing the above over allt and comparing to the upper
bound in Eq. (4) proves that for anyu ∈ R

n,

T
∑

t=1

τt

(

2lwt
− τt‖φt‖2 − 2lu

)

≤ ‖u‖2 . (5)

Using the assumption that the sequence is realizable by the
model (there exists au for which lu = 0 for all t) and
plugging the definition ofτt into the left-hand side of the
above gives,

T
∑

t=1

l2
wt

‖φt‖2
≤ ‖u‖2 .

Now using the fact that‖φt‖2 ≤ R2 for all t, we get,

T
∑

t=1

l2
wt

/R2 ≤ ‖u‖2 .
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