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Abstract

A perceptual system coping with a dynamic environment must be able to learn to detect new object categories from a
few examples. However, learning from a small sample is restricted by the hindering effects of model overfitting. We
present an algorithm aimed at circumventing the effects of overfitting by utilizing a set of reusable features, learned
from several previously trained categories. We show that when applying a feature reuse strategy the algorithm learns
complex real world objects from few examples.



Introduction

Learning from few examples minimizes training cost. Two difficulties arise when one attempts to learn a perceptual
category from few examples. First, a small sample might have an infinite number of incidental characteristics that are
not representative of the entire class, which might lead to many false alarms. Second, the structure of the category
might not be fully represented in a small sample, thus leading to many misses. Both effects are a result of an overfitting
between the learned model and the small sample.

In the extreme case of learning from a single example it seems that the crippling effects of overfitting might prevent
any robust category generalization. Nevertheless, the human perceptual system possesses the capacity of learning to
detect a new visual object category from a brief exposure to a single example (see Fig. 2). We will term this as the
efficient detection learning characteristic.

In training to detect a new object the features that characterize the new category must be selected from a large
set of potential features. Detection schemes based on a selected set of simple features have been demonstrated to
exhibit robustness to noise and category variation in many qualitatively different perceptual categories like human
faces (Viola & Jones, 2002), moving cars (Levin, Viola, & Freund, 2003) and walking pedestrians (Viola, Jones, &
Snow, 2003). These methods require many labeled training examples (typically in the range of 1,000-10,000 positive
examples and usually many more negative ones). Like many other models, feature selection frameworks are prone to
the over fitting effects induced by small samples. When viewing the human efficient detection learning characteristic
(demonstrated in Fig. 2) in the context of a feature selection paradigm, it remains unclear how the effect of overfitting
is avoided.

We claim that in many natural detection settings a perceptual system might identify a restricted set of features that
captures the regularities of many perceptual categories. The existence of such a visual alphabet could explain why
the efficient detection learning capacity is not hindered by the effects of overfitting. Following Thrun (1996) we state
that a rich feature set, emerging after many years of perceptual learning and feature selection processes, might enable
efficient detection learning.

A Feature Reuse Algorithm

We have previously hypothesized that a feature set echoing the regularities of many objects in a given environment
might overcome the effects of overfitting and enable detection learning from small samples. This section describes an
algorithm aimed at implementing the feature reuse principle. We consider a scenario composed of two consecutive
stages. First, in the prolonged multiclass stage, the characteristics of many objects (N > 1) are learned. This initial
learning might require many examples of each category. Next, in the constrained stage, a novel category (N + 1)

Figure 1: Stimulus used in demonstration 1



Figure 2: When asked which of the five creatures is related to the creature in Fig. 1, most participants point out the
correct one without requiring an additional look, thus demonstrating object detection capabilities after a single-trial
learning phase.

appears in the already familiarized environment. This novel category poses limited training conditions. Our algorithm
postulates two types of perceptual learning:

1. Find a non-incidental feature set, by selecting features that characterize many of the initial IV categories.

2. Restrict training of the IV 4 1 category to the previously selected non-incidental feature set.

Although many mechanisms might be used for implementing these two types of perceptual learning (see for exam-
ple (Ullman, Vidal-Naquet, & Sali, 2002)), we chose an iterative procedure called AdaBoost as our feature selection
mechanism (see (Freund & Schapire, 1999)). In this feature selection scheme an importance weight (initialized as
w; = 1/M) is associated with each positive y; = 1 and negative y; = —1 example &; ;—1,..,ar of the trained category
n. At each round ¢ of the training process one new feature h; is selected. The criterion for selection is based on
finding a feature that discriminates well between the weighted positive and negative examples thus minimizing the
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Next the relative weights of all of the examples that were misclassified using the selected feature are increased,
thus the next feature to be selected at time ¢ 4+ 1 will focus on the sections of the sample that were difficult for the
previous features. Detection of the learned object category is performed by a voting scheme between the selected
features. This procedure could be continued until iteration 7" when the error on the labeled training sample is reduced
to zero.

A naive application of AdaBoost will perform this procedure independently for each category and select a different
feature set for each target category (Fig. 3a). In order to implement a feature reuse strategy the goal of the feature
selection procedure was modified to find at each round a non-incidental feature that characterizes well many of the N
categories, minimizing < ). hio(@m)#yn w} >,. We adopt the relaxing assumption that a feature performing slightly
better than chance on all categories could always be found. Once the initial learning stage is concluded a new object
category is efficiently learned by restricting the training to already provably non-incidental features (Fig. 3b).
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Figure 3: (a) Multiclass pseudo code for an independent feature selection strategy (b) Multiclass pseudo code for
feature reuse strategy.

Efficient Detection Learning in Office Scenes

We would like to test whether the proposed feature reuse mechanism can facilitate detection of real world objects.
Our application details (including the candidate feature set and the training and testing data) are identical to those
described at Levi, Fink, and Weiss (2004). We will therefore constrain ourselves to describing the performance
results. As in Levi et al. (2004) we selected computer monitors as our target object category for the constrained
training stage. Ten images of computer monitors were randomly selected for training and 100 pictures containing
other monitors were set aside for later evaluating the detection performance. Object images were taken from the
Caltech office scene database described at (Fink & Perona, 2003). Negative examples of the object category were
generated by cutting sections of the images known not to contain computer monitors. The AdaBoost feature selection
scheme was then applied until reaching perfect classification of the training examples. Under these conditions learning
to detect a monitor from ten examples leads to a very poor detector with a 9% detection rate (3210 ° false alarms).

We now focus on examining the feature reuse model by first performing a prolonged training stage of four other
categories frequently appearing in a similar office environment. Doors, picture frames, book shelves and light switches
were used for this initial training stage. We restrict the training of the monitor detector from the initial 1.3 million
candidate features to 100 features selected by the feature reuse model. Under these conditions the detection rate was
significantly improved to 44% (1.6210~° false alarms).



Summary

We have presented a simple algorithm for incorporating the feature reuse policy into a Boosting framework. By
restricting training to features that characterize many objects in a prolonged multiclass stage we are able to avoid
overfitting when learning future categories from few examples in the constrained stage. A similar feature reuse
strategy has been proposed by Torralba, Murphy, and Freeman (2004) while aiming at multiclass detection rather than
learning from few examples. Our proposed method relies on the hypothesis that the features encoding the classes in the
prolonged stage are both adequately restricted (in order to avoid overfitting) and nevertheless sufficiently relevant for
training the novel object detector in the constrained stage. When the number of initial classes is very large, including
many classes that are not relevant for the target class, we remain with the challenge of how to automatically prune
down the set of classes to be used in the prolonged stage. This is the focus of our current research.
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