
Job Re-Packing for Enhancing the Performance

of Gang Scheduling

B. B. Zhou1, R. P. Brent2, C. W. Johnson3, and D. Walsh3

1 Computer Sciences Laboratory, Australian National University,
Canberra, ACT 0200, Australia

2 Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford OX1 3QD, UK

3 Department of Computer Science, Australian National University,
Canberra, ACT 0200, Australia

Abstract. This paper presents some ideas for efficiently allocating re-
sources to enhance the performance of gang scheduling. We first intro-
duce a job re-packing scheme. In this scheme we try to rearrange the order
of job execution on their originally allocated processors in a scheduling
round to combine small fragments of available processors from differ-
ent time slots together to form a larger and more useful one in a single
time slot. We then describe an efficient resource allocation scheme based
on job re-packing. Using this allocation scheme we are able to decrease
the cost for detecting available resources when allocating processors and
time to each given job, to reduce the average number of time slots per
scheduling round and also to balance the workload across the processors.

1 Introduction

With the rapid developments in both hardware and software technology the
performance of scalable systems such as clusters of workstations/PCs/SMPs has
significantly been improved. It is expected that this kind of system will dominate
the parallel computer market in the near future because of the continued cost-
effective growth in performance. For this type of machine to be truly utilised as
general-purpose high-performance computing servers for various kinds of appli-
cations, effective job scheduling facilities have to be developed to achieve high
efficiency of resource utilisation.

It is known that coordinated scheduling of parallel jobs across the proces-
sors is a critical factor to achieve efficient parallel execution in a time-shared
environment. Currently the most popular scheme for coordinated scheduling is
explicit coscheduling [4], or gang scheduling [3]. With gang scheduling processes
of the same job will run simultaneously for only certain amount of time which
is called scheduling slot. When a scheduling slot is ended, the processors will
context-switch at the same time to give the service to processes of another job.
All parallel jobs in the system take turns to receive the service in a coordinated
manner.



Because there are multiple processors in a system, the resource allocation
will include both space partitioning and time sharing in the gang scheduling
context. One disadvantage associated with the conventional gang scheduling for
clustered (or networked) computing systems is its purely centralised control for
context-switches across the processors, that is, a central controller is used to fre-
quently broadcast messages to all the processors telling which job should obtain
the service next. When the size of a system is large, efficient space partitioning
policies are not easily incorporated mainly due to this frequent signal broad-
casting. Currently most allocation schemes for gang scheduling only consider
processor allocation within the same time slot and the allocation in one time
slot is independent of the allocation in other time slots. To ensure a high effi-
ciency of resource utilisation, however, we believe that allocation of resources in
both time and space has to be considered simultaneously.

We have designed a new coscheduling scheme called loose gang scheduling, or
scalable gang scheduling [7, 8]. Using our scheduling scheme the disadvantages as-
sociated with conventional gang scheduling are significantly alleviated, especially
the requirement for frequent signal-broadcasting. The basic structure of this
scheduling scheme has been implemented on a 16-processor Fujitsu AP1000+.
Although the function of the current coscheduling system is limited and needs to
be further enhanced, the preliminary experimental results show that the scheme
works as expected [6]. This enables us to consider the allocation of resources in
both space and time at the same time in a more effective way to significantly
enhance the performance of gang scheduling.

In this paper we present some resource allocation schemes for achieving high
system and job performance. We first give some simple examples in Section 2 to
show that regularity is still an important factor in designing resource allocation
policies even for a parallel system with an unstructured interconnection or fully
connected pattern between processors, and that resource allocation in different
time slots should be considered at the same time to achieve a higher efficiency
in resource utilisation. It is known that allocation schemes which take regularity
into account can cause the problem of fragmentation. In Section 3 we introduce
a job re-packing scheme. Using this scheme small fragments in different time
slots can under certain conditions be combined together to form a much larger
and useful one in a single time slot. Based on job re-packing we then describe
in Section 4 a simple and practical resource allocation scheme which considers
the workload conditions in both space and time dimensions at the same time
(rather than just in each individual time slot) when allocating resources to a
given job. With this scheme we are able to reduce the average number of time
slots per scheduling round, to balance workloads across the processors and thus
to achieve high system and job performance.

2 Motivation

To design efficient processor allocation policies for conventional distributed-
memory MPPs we should consider two important factors, regularity and locality,



in order to minimise communication costs and to avoid communication con-
tention between different jobs. On certain parallel machines such as clusters of
workstations or PCs or SMPs interconnected via a Gigabit Ethernet or a cross-
bar switch network, however, the communication costs may not depend on the
location of processors. Thus regularity and locality may become less important
issues when only space partitioning is considered. In this case a simple random

allocation scheme may be preferable, that is, we can arbitrarily choose a set of
available processors to a given job regardless of their localities. With this simple
scheme we may alleviate the problem of fragmentation caused by those allocation
schemes taking regularity into consideration.

The question is if the simple random allocation scheme can also be incor-
porated in gang scheduling to efficiently allocate resources in each time slot. It
seems that the answer to this question is positive. When a new job arrives, we
first search to see if there are enough available processors in an existing time slot.
If there are, a set of available processors regardless of their localities is allocated
to that job. A new time slot will be created if we cannot find enough available
resources in any existing time slot.

S2

S3

S4

S1

P1 P2 P3 P4 P5 P6 P7 P8

J1 J1 J1 J1

J2 J2

J4

J3 J3 J3

J4 J4

Fig. 1. One possible situation caused by using the random allocation scheme.

The problem, however, is not associated with how to allocate resources in
each time slot to new jobs, rather it is with how to effectively reuse freed re-
sources due to the job termination if there are no new arrivals. Let us consider
a simple example. Originally the system was very busy and four time slots had
to be created. After a certain period of time small jobs were all terminated and
there left only a few large jobs scattered across the processors in different time
slots, as shown in Fig. 1. We know that the processes of the same parallel job
need coordination during the computation. Because processors are arbitrarily
allocated to jobs in each time slot, one possible situation, as depicted in Fig. 1,
is that neither the total number of time slots can be reduced, nor can the freed
resources be efficiently reallocated to those running jobs even though proces-
sors in the system are only active less than fifty percent of time on the average.
The simulation results presented in [1] show that this situation can significantly
be improved if a well known regular allocation strategy such as the first fit, or
the buddy is adopted instead. The main reason is that, when regularity is taken



into account, the number of unification counts can greatly be increased, jobs
will have better chances to run in multiple time slots and then both the perfor-
mance of parallel jobs and the efficiency of resource utilisation can be enhanced.
(The number of unification counts is defined as the number of times the same
set of processors in two time slots are united and allocated to a single parallel
job [1] and a parallel job running in more than one time slot is sometimes called
multi-slice job [5].)

It can be seen from the above discussion that to design efficient job allo-
cation strategies for gang scheduling regularity is an important factor. Many
existing schemes for space partitioning take regularity into consideration. By
simply adopting one of such schemes and allocating resources independently in
each time slot as we conventionally do, however, efficient resource utilisation
may still not be guaranteed.

First regular allocation schemes can have the problem of small fragments,
that is, a fragment of available processors in a time slot is too small to be
allocated to any job. The second main problem associated with the conventional
allocation method is that space partitioning and time sharing are not considered
simultaneously. Consider two space partitioning schemes, that is, the first fit

and the buddy, which are widely used in Gang scheduling for resource allocation
in each time slot. Although the internal fragmentation caused by the buddy
allocation scheme may be more serious than the external fragmentation caused
by the first fit, simulation results show that the DHC allocation scheme [2]
which is based on the buddy performs better than those based on other regular
allocation schemes if slot unification is allowed [1]. The main reason may be as
follows: With the buddy allocation scheme each time processors are divided into
two subsets of equal size. If the same policy is applied to every time slot, two
jobs allocated to different subsets of processors, whether in the same time slot
or not, will never overlap with each other. When a job is terminated, the freed
resources in one time slot are more likely to be united with those in another time
slot and then reallocated to a single job. Thus space partitioning and time sharing
are implicitly (though not thoroughly) considered at the same time. Since the
allocation of resources is essentially independent in different time slots and small
internal fragments cannot be grouped together, however, using a simple buddy
based allocation scheme may still be difficult to achieve an optimal solution in
resource utilisation.

3 Job Re-Packing

We cannot totally avoid the problem of fragmentation in each time slot when
regularity is taken into consideration. However, we have to adopt regular allo-
cation schemes in order to achieve a better system performance as discussed in
the previous section. The question is thus if we can find a way to alleviate the
fragmentation problem. In this section we introduce a job re-packing scheme.
Using this scheme we are able to combine certain small fragments from different
time slots into a larger and more useful one in a single time slot.



In the following discussion we assume that processors in a parallel system
are logically organised as a one-dimensional linear array. Note that the term
one-dimensional linear array is purely defined in the gang scheduling context.
A logical one-dimensional array is defined as a set of N processors which are
enumerated from 1 to N (or from 0 to N−1) regardless of their physical locations
in the system. Thus we can simply use a two-dimensional global scheduling
matrix such as the one in Fig. 1. Using the term linear array we mean that
only consecutively numbered processors can be allocated to a given job. Thus
regularity is only associated with the global scheduling matrix, but not with the
physical locations of processors.

P1 P2 P3 P4 P5 P7P6 P8

S3

S2

S1

J7 J7

J1 J1 J2 J2 J4 J4

J3J3 J3J5 J5 J5 J6 J6

(c)

P1 P2 P3 P4 P5 P7P6 P8

S3

S2

S1 J3J3 J3

J7 J7

J1 J1 J2 J2

J5 J5 J5 J6 J6

J4 J4

(a)

P1 P2 P3 P4 P5 P7P6 P8

S3

S2

S1 J3J3 J3

J1 J1 J2 J2 J4 J4

J5 J5 J5 J6 J6 J7 J7

(b)

P8P1 P2 P3 P4 P5 P6 P7

S2

S1 J3J3 J3J5 J5 J5 J6 J6

J1 J1 J2 J2 J4 J4 J7 J7

(d)

(J ′) (J ′′)(J ′) (J ′) (J ′) (J ′′)

Fig. 2. Job re-packing to reduce the total number of time slot in a scheduling round.



We first give a simple example, as shown in Fig. 2, to demonstrate the basic
ideas of our re-packing scheme. In this example the system has eight processors
and originally three slots are created to handle the execution of nine jobs. Now
assume that two jobs J ′ and J ′′ in slot S2 are terminated. When using the
idea of unification, certainly jobs J1 and J2 in slot S1 (or J5 on S3) and job
J7 on S3 can occupy the freed resources in S2 to become multi-slice jobs. This
might be the best assignment if the performance of these jobs were just required
to be enhanced. However, the assignment may not be optimal from the overall
system performance point of view because there are still some small fragments
which are not utilised and other running jobs in the system cannot obtain any
benefit. Things become worse if there arrives a new job which requires six or more
processors – the fourth time slot has to be created and then the performance of
the existing jobs will be degraded.

With certain rearrangement or re-packing of jobs, however, we can eliminate
one time slot under the same situation. The procedure is as follows: First we
reallocate jobs J1 and J2 from slot S1 to slot S2, as shown in Fig. 2(b). After
this step two fragments in S1 and S2 are combined into a larger one in slot S1.
This new fragment can further be combined with the one in slot S3 by taking
jobs J5 and J6 down to slot S1, as shown in Fig. 2(c). Finally we simply bring
job J7 down to slot S2. Slot S3 now becomes empty and can then be removed.
It is obvious that this type of job re-packing can greatly improve the overall
system performance. Note that during the re-packing only processes of the same
job are shifted from one time slot to another. Therefore, this kind of re-packing
is actually to rearrange the order of job execution on their originally allocated
processors in a scheduling round and there is no process migration between
processors involved.

Because processes of the same job require to coordinate with each other
during the computation, all processes of the same job must be shifted together
to the same time slot at the same time. Thus there is a restriction to shift jobs
during the re-packing. In Fig. 2(a), for example, processes of J4 on S2 cannot be
shifted to either S1 or S3 because the size of the fragment in either slot is not
big enough to accommodate all the processes of J4. A shift is said to be legal
if all processes of a job are shifted to the same slot at the same time. In job
re-packing we try to use this kind of legal shift to rearrange jobs between time
slots so that small fragments of available processors in different time slots can
be combined into a larger and more useful one.

When processors are logically organised as a one-dimensional linear array,
we have two interesting properties which are described below.

Property 1. Assume that processors are logically organised as a one-dimensional
linear array. Any two adjacent fragments of available processors can be grouped
together in a single time slot.

Proof: It is trivial when two fragments are adjacent in the same slot. We thus
assume that the two adjacent fragments are in different time slots, either sharing
a common vertical boundary, or partially overlapping with each other.



J1 J1 J1 J1

J3 J3 J3 J4 J4 J4

J2 J2

J5 J5

P9 P10P8P1 P2 P3 P4 P5 P6 P7

Cl

S1

S2

C1

J1 J1 J1 J1

J3 J3 J3

J4 J4 J4

J2 J2

J5 J5

P9 P10P8P1 P2 P3 P4 P5 P6 P7

Cl

S1

S2

C2

P9 P10P8P1 P2 P3 P4 P5 P6 P7

J3 J3 J3

J1 J1 J1 J1 J4 J4 J4

J2 J2 J5 J5

S1

S2

(a)

(c)

(b)

Fig. 3. Small fragments combined into a larger one in a single time slot.

Define a cut as a vertical line which is set between two processors and across
certain (not necessarily consecutive) time slots in the global scheduling matrix
to cut those slots into two parts. A cut is said to be a legal cut if it does not
cut existing jobs into two parts, that is, all the existing jobs will have their
two boundaries of the allocated processors on the same side of the cut. Let us
introduce two legal cuts through two time slots in a given system. Then all the
jobs bounded by these two cuts in one slot can legally exchange their positions
at the same time with their counterpart in the other slot. This is because every
job bounded between these legal cuts will have all its processes in the bounded
region and they will still be in the same slot after the exchange. In the following
discussion all cuts will be considered as legal cuts.

Because it is a one-dimensional linear array, its left (or right) end will form
a natural boundary and no jobs can come across. We can thus set our first
legal cut there, as shown in Fig 3(a). Our second cut will be set between the
two fragments. It is also a legal cut because no jobs can reside on both sides
of this cut when regularity is considered in the processor allocation. Thus jobs
bounded by these two legal cuts can exchange their positions, which enables the
two fragments to be grouped together in a single slot, as depicted in Fig. 3(b).

In the above example the two small fragments share a common boundary.
When two fragments partially overlap with each other, our second legal cut can
be set anywhere between the overlapped region and then a larger fragment can
be produced. ⊓⊔



The proof is constructive, that is, it describes an algorithm for job re-packing.
In this algorithm we use the left (or right) end of the array as a legal cut, then
set another legal cut between the adjacent fragments and finally exchange jobs
bounded by the two cuts.

We can continue this process in Fig. 3(b) by setting another cut and then
four original small fragments in the two slots will be reduced to two larger ones
in two such re-packing steps.

When we can introduce more than one cuts in the middle of the array through
two time slots at the same time, however, the above algorithm will not be very
efficient. In Fig. 3, J1 and J3 are swapped twice and then back to their original
positions. Thus these exchanges are redundant and should be avoided. It is easy
to verify that the following algorithm will work more efficiently: First find all the
legal cuts which divide the slots into several regions and then swap only once
the jobs between the two slots in alternating regions. The proof is simple and
omitted. For the same problem as that in Fig. 3 we can simultaneously introduce
two cuts to divide the array into three regions and then need only to swap jobs
in the middle region to obtain the same result, as depicted in Fig. 4.

J1 J1 J1 J1

J3 J3 J3 J4 J4 J4

J2 J2

J5 J5

P9 P10P8P1 P2 P3 P4 P5 P6 P7

Cl

S1

S2

C1 C2 Cr

J1 J1 J1 J1

J3 J3 J3 J5 J5

P9 P10P8P1 P2 P3 P4 P5 P6 P7

Cl

S1

S2

C1 C2 Cr

J2 J2

J4 J4 J4

(a)

(b)

Fig. 4. A more efficient way for job re-packing between two time slots.

Property 2. Assume that processors are logically organised as a one-dimensional
linear array. If every processor has an idle fragment, jobs in the system can be
re-packed such that all the idle fragments will be combined together in a single
time slot which can then be eliminated.

Proof: It is actually a simple extension of Property 1. We have already given
an example, as depicted in Fig. 2. We can easily prove that the property holds
for general case by the following simple induction.



Assume that the first k small fragments on the first k processors have been
combined together as a single fragment of size k in time slot Si and that the
fragment on processor Pk+1 is in time slot Sj . Setting a cut at one end of the
array and a cut between the two processors Pk and Pk+1, we can then combine
the two fragments into one of size k+1 in either Si or Sj according to Property 1.

⊓⊔

In the above discussion we assumed that processors are organised as a one-
dimensional linear array. To merge two adjacent fragments actually only one cut
is required because the boundaries of the array can be utilised as natural legal
cuts. For a one-dimensional ring in which two fragments at the two ends of a
linear array are able to be combined into one in the same time slot, however, the
situation becomes a bit more complicated. Because there are no natural bound-
aries like those in a linear array, to merge two adjacent fragments in different
slots we have to find two legal cuts. The first one can be considered as a cut used
to break the ring and then the properties discussed above for one-dimensional
array can be applied.

Note that the re-packing may increase the scheduling overhead on a clustered
parallel system because a message notifying the changes in the global scheduling
matrix should be broadcast to processors so that the local scheduling tables
on each processor can be modified accordingly. However, there is no need to
frequently re-pack jobs between slots. The re-packing is applied only when the
working condition is changed, e.g., when a job is terminated, or when a new job
arrives. In these cases certain local scheduling tables need to be updated even
without job re-packing. Thus the extra system cost introduced by the re-packing
may not be high. In the next section we shall see that, when job re-packing is
allowed, the procedure for searching available resources can be simplified and
then the overall system overhead for resource allocation may even be reduced.

4 Resource Allocation Based on Job Re-Packing

Conventionally the procedure for allocating processors to a new job is first to
search if there is a suitable subset of available processors in an existing time
slot. The job will then be allocated if such a suitable subset can be found. The
purpose of this search is to try to avoid creating a new time slot which is not
necessary. Because the search is done slot by slot and only local information on
each time slot is considered, however, the results can often be far from optimal.
This search procedure may also become expensive for large systems.

Consider a simple example depicted in Fig. 5. In the figure there are currently
four time slots in a scheduling round. Assume that there is now a new job which
requires five processors. Using the conventional method the system first starts
search for a subset of consecutive idle processors of size greater than or equal to
five in an existing time slot. In this particular example such a suitable subset of
available processors cannot be found and then a new time slot has to be created.
If job re-packing is allowed, however, it is easy to see that the new job can be



allocated to processors P3 to P7 (or P4 to P8) in time slot S2 by simply shifting
job J4 to slot S3. Thus the search effort is totally wasted and the creation of a
new time slot is also unnecessary.

Based on job re-packing we can obtain a new scheme for resource allocation.
This new scheme can significantly simplify the search procedure and make better
decisions for resource allocation.

222 32100

J8 J8

WLV

S4

P8

J1 J1 J1

P1

J4

J5 J6

P6 P7

J4

J5 J6

J7 J7J7

J3

S3

S2

S1

J4

J2

J4

P5P4P3P2

J3

J2

Fig. 5. Resource allocation using a workload vector WLV.

In addition to the global scheduling matrix, we introduce a workload vector

(WLV) of length equal to the number of processors in the system, as depicted
in Fig. 5. An integer value is assigned to each entry to record the number of
idle slots on the associated processor. For example, the entry corresponding to
processor P1 is given a value 0 because there is no idle slot on that processor,
while the last entry value of the vector is equal to 3 denoting there are currently
three idle slots on processor P8.

For the conventional allocation method adding this workload vector may not
be able to assist the decision making for resource allocation. This is because the
information contained in the vector does not tell which slot is idle on a processor,
but processes of the same job have to be allocated in the same time slot. With
job re-packing, however, we know that on a one-dimensional linear array any two
adjacent fragments of available processors can be grouped together into a single
time slot according to Property 1 discussed in the previous section. To search
for a suitable subset of available processors, therefore, we only need to count
consecutive nonzero entries in the workload vector if job re-packing is allowed.
Thus the problem for searching on the entire two-dimensional scheduling matrix
to find a suitable subset of available processors becomes a simple one-dimensional
search problem. It is easy to see in Fig. 5 that, because there are six consecutive
nonzeros in the workload vector, with a simple job re-packing process the new
job which requires five processors can be allocated without creating a new time



slot. Therefore, problems caused by the conventional method can significantly
be alleviated.

Our new scheme for resource allocation consists of three main steps. First
we search in the workload vector WLV for a required number of consecutive
nonzeros. A new time slot is created only if the required number of consecutive
nonzeros in that vector cannot be found. This step determines a suitable subset of
consecutive processors to be allocated to a new job. Then we trace adjacent idle
fragments just within this subset of processors and group them into a single time
slot through proper re-packing procedures such as those discussed in the previous
section. This will determine in which time slot the new job resides. Finally we
update the scheduling matrix and also local scheduling tables on each processors
if there is any. Using this scheme the search for a suitable subset of available
processors is simplified and the total number of time slots in a scheduling round
can be kept low. Thus system performance may be enhanced.

To ensure a high system and job performance it is very important to balance
workloads across the processors. Another advantage of our allocation scheme is
that it is able to handle the problem of load balancing. Because the workload on
each processor is recorded in the workload vector, the system can easily choose
a subset of less active processors for an incoming job if there are several suitable
subsets. In Fig. 5 there are two subsets of available processors suitable for a new
job requiring five processors, that is, one from P3 to P7 and the other from P4

to P8. When the load balancing is taken into consideration, the second subset is
preferable. It can be seen in the above example that the system can still allocate
resources to a new job which requires six processors without creating a new time
slot if the second subset is chosen.

With job re-packing the buddy based algorithm can be implemented in a
more efficient way. Assume that a job of size p arrives for n/2 < p ≤ n and n
being a power of 2. To find a suitable subset of available processors in an existing
time slot, we need only to divide the workload vector into m groups of size n for
m = N/n and N being the number of processors in the system and check if there
is a group in which all entry values are nonzero. If there are several available
groups, we can choose the least loaded one by simply checking the entry values.
Thus there is no need to scan all the existing time slots for finding a suitable
subset and the workloads can more easily be balanced. Since there is a natural
boundary between each pair of groups and no jobs can come across, re-packing
jobs in the selected group will not affect the local scheduling tables of processors
outside the group.

The procedure for detecting a suitable subset of available processors can fur-
ther be simplified for the buddy based resource allocation system by introducing
an additional binary tree structure to record the average group workload, as
depicted in Fig. 6. The tree has logN levels for N the number of processors in
the system. The node at the top level is associated with all N processors. The
N processors are divided into two subsets of equal size and each subset is then
associated with a child node of the root. The division and association continues
until the bottom level is reached. Each node on the tree is assigned a value ac-



0

WLT

J5

0 0

50

3230

S3

1

J6J5 J6

2 1 1

J5

WLV 1 2

P1

J1 J1

J3 J4J3 J3

J2

J4J4J3S2

S1

P8P7P6P5P4P3P2

J2

Fig. 6. The workload vector (WLV) and an additional binary tree (WLT) for recording
the average group workload used for a buddy based resource allocation system.

cording to the values of its two children. It is just a sum of the two values of the
children when both values are nonzero. Otherwise, it is set to zero. When the
value is set to zero, the associated subset of processors will not be available for
new arrivals under the current situation.

This binary tree is simple to manage and can greatly assist the decision
making in resource allocation. We can let an existing job on a subset of processors
run in multiple time slots when the value of the associated node is nonzero. It is
easy to see in Fig. 6 that jobs J2 and J6 can run in multiple time slots because
the values of two nodes on the right at the bottom level are nonzero. However,
the value of the right node at the middle level is also nonzero. We are able to
run job J4 in multiple time slots by shifting J6 down to time slot S1 (or J2 up
to S3).

Assume that job J1 in Fig. 6 is terminated. The entry values associated
with processors P1 and P2 in the workload vector become nonzero. Then the
value of the two leftmost nodes at the bottom level of the binary tree will also
be nonzero. This will cause the value of the left node at the middle level to
become nonzero and so the root value. Since the top node is associated with all
processors in the system, we know that there is at least one idle slot on each
processor. According to Property 2 discussed in the previous section these idle
fragments can be combined together in a single time slot which can then be
eliminated. Using this binary tree, therefore, we are able to know quickly when



a time slot can be deleted by simply checking the value of the root node to see
if it is nonzero.

We can also quickly find a suitable subset of available processors for a new
arrival simply by reading the values of those nodes at a proper level. Consider
the situation depicted in Fig. 6 again and assume that a new job of size 4
arrives. In this case we need only to check the two nodes at the middle level.
Since the value of the second node is nonzero, we know that the second subset
of processors is available. We may then re-pack job J6 into time slot S1 and
allocate four processors from P4 to P8 in time slot S3 to the new arrival. Finally
the values of the associated node and its children are updated. (In this particular
case they are all set to zero.)

In the buddy based algorithm processors are continuously divided into two
equal subsets and processes of the same job are allocated only in a selected
subset. As we mentioned previously, with this arrangement the number of uni-
fication counts can be increased and jobs may have better chances to run in
multiple time slots to enhance system and job performance. However, simply
running jobs in multiple time slots may not be desirable when fairness is taken
into consideration. In the above example jobs J2 and J6 can run in both time
slots S1 and S3 before the new job arrives. Assume that no existing jobs are
completed when the new job arrives. A new time slot has to be created and then
the performance of those jobs running in a single time slot will be degraded.

Another potential problem associated with simply running jobs in multiple
time slots is that the total number of time slots may become large when the
system is busy. The system overhead will be increased when trying to manage
a large number of time slots. Therefore, a better way to achieve a high system
and job performance is to combine the procedures of slot unification and slot
minimisation together. This combination can easily be implemented with simple
modifications to our allocation technique discussed in this section.

5 Conclusions

In this paper we presented some ideas for resource allocation to enhance the
performance of gang scheduling.

We introduced a job re-packing scheme. In this scheme we try to rearrange
the order of job execution on their originally allocated processors in a scheduling
round to combine small fragments of available processors into a larger and more
useful one. We presented two interesting properties for re-packing jobs on a
parallel system which is logically organised as a one-dimensional linear array.
These two properties indicate that job re-packing is simple, the system costs
may not be high and thus the scheme can be practical.

Based on job re-packing we developed an efficient resource allocation scheme.
When processors are logically organised as a one-dimensional linear array any
adjacent fragments can be grouped together to become a larger one in a single
time slot. Thus we can use a workload vector which records the number of idle
slots on each processor to detect a suitable subset of available processors for a



given job. The problem for searching available processors on a two-dimensional
global scheduling matrix then becomes a simple one-dimensional search prob-
lem. Because the scheme considers workload conditions in both space and time
dimensions simultaneously, it is possible that the average number of slots per
scheduling round can be kept low and workloads also be well balanced across the
processors. Therefore, the resources in the system may be utilised more efficiently
and the performance of parallel jobs may also be enhanced significantly.

There are many interesting and open problems relating to job re-packing.
In this paper we only discussed how to re-pack jobs between rows in the global
scheduling matrix. Therefore, an optimal solution in minimising the average
number of time slots per scheduling round is achievable only when process or
thread migration is not allowed. When processes can also be moved between
columns in the global scheduling matrix, situations will become much more com-
plicated because we must seriously consider the system overhead.

We only considered in the paper a simple system configuration, that is, pro-
cessors in the system are logically organised as a one-dimensional linear array.
The allocation schemes may work well for clusters of workstations/PCs/SMPs.
However, there are parallel systems in which processor localities have to be con-
sidered in order to reduce the communication cost and to alleviate the problem
of communication contention. An interesting problem is thus how to effectively
re-pack jobs on other system configurations.

With job re-packing we are able to combine the procedures of slot unification
and slot minimisation together. An interesting problem is how to determine when
slot unification should be applied and when the total number of slots needs to
be reduced such that the overall system and job performance can be enhanced.

Job re-packing may introduce extra system costs because of the extra require-
ment for updating the local scheduling tables on a distributed parallel system.
On the other hand job re-packing may reduce the system overhead because the
procedure for finding a suitable subset of available processors becomes cheaper
especially for a buddy based resource allocation system. Extensive testing on
real parallel machines is required to measure the actual system overhead and to
try to find effective methods to further minimise the system costs.

Experiments based on the ideas described in this paper are to be undertaken
on distributed-memory parallel machines, the Fujitsu AP1000+ and AP3000, at
the Australian National University.

References

1. D. G. Feitelson, Packing schemes for gang scheduling, In Job Scheduling Strate-

gies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Lecture Notes
Computer Science, Vol. 1162, Springer-Verlag, 1996, pp.89-110.

2. D. G. Feitelson and L. Rudolph, Distributed hierarchical control for parallel pro-
cessing, Computer, 23(5), May 1990, pp.65-77.

3. D. G. Feitelson and L. Rudolph, Gang scheduling performance benefits for fine-
grained synchronisation, Journal of Parallel and Distributed Computing, 16(4),
Dec. 1992, pp.306-318.



4. J. K. Ousterhout, Scheduling techniques for concurrent systems, Proceedings of

Third International Conference on Distributed Computing Systems, May 1982,
pp.20-30.

5. K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi and M. Tukamoto, Time sharing
systems that use a partitioning algorithm on mesh-connected parallel computers,
Proceedings of the Ninth International Conference on Distributed Computing Sys-

tems, 1996, pp.268-275.
6. D. Walsh, B. B. Zhou, C. W. Johnson and K. Suzaki, The implementation of a scal-

able gang scheduling scheme on the AP1000+, Proceedings of the 8th International

Parallel Computing Workshop, Singapore, Sep. 1998, P1-G-1 – P1-G-6.
7. B. B. Zhou, R. P. Brent, D. Walsh and K. Suzaki, Job scheduling strategies for

networks of workstations, In Job Scheduling Strategies for Parallel Processing, D.
G. Feitelson and L. Rudolph (Eds.), Lecture Notes Computer Science, Vol. 1459,
Springer-Verlag, 1998.

8. B. B. Zhou, X. Qu and R. P. Brent, Effective scheduling in a mixed parallel and
sequential computing environment, Proceedings of the 6th Euromicro Workshop on

Parallel and Distributed Processing, Madrid, Jan 1998.


