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Abstract. This paper evaluates the performance of job scheduling sche-
mes for pure space sharing among rigid jobs. Conventional job scheduling
schemes for the pure space sharing among rigid jobs have been achieved
by First Come First Served (FCFS). However, FCFS has a drawback
such that it can not utilize processors efficiently. This paper evaluates
the performance of job scheduling schemes that are proposed to alle-
viate the drawback of FCFS by simulation, performance analysis and
experiments on a real multiprocessor system. The results showed that
Fit Processors First Served (FPFS), which searches the job queue and
positively dispatches jobs that fit idle processors, was more effective and
more practical than others.

1 Introduction

Parallel processing schemes such as SPMD [1] and Multigrain parallel processing
scheme [2] are used on multiprocessor systems. In these schemes, a user or a com-
piler specifies the number of processors on which the job (program) is executed
and optimizes the job (program) considering data locality. On the execution of
these jobs, the job requests a certain number of processors. The number of pro-
cessors that the job requests is specified by a user or a compiler. A job scheduler
dispatches the job to the requested number of processors. Each job is exclusively
executed until its completion on these processors. These jobs are called “rigid
jobs” and this kind of scheduling is called “pure space sharing” [3].

The pure space sharing among rigid jobs has several advantages such that
implementation is simple and any user can have optimal performance by execut-
ing the job on the requested number of processors exclusively. Although more
complex scheduling schemes such as gang scheduling and adaptive space sharing
are also discussed in the literature [4—6], the pure space sharing among rigid jobs



is adopted on most multiprocessor systems currently installed for practical use
because of these advantages.

Processor allocation strategies for the pure space sharing among rigid jobs
such as Frame Sliding, First Fit, Best Fit and Non-contiguous processor allo-
cation algorithm, which allocate processors to jobs, have been proposed [7—11].
In these strategies, processors are allocated to the job at the head of the job
queue. In other words, a job scheduling i1s achieved by First Come First Served
(FCFS) manner. However, FCFS has a drawback such that it can not utilize pro-
cessors efficiently [9]. In FCFS, when the number of idle processors is less than
the number of processors requested by the job at the head of the job queue, a
job scheduler does not dispatch any job to processors and causes low processor
utilization.

Several schemes have been proposed to alleviate the drawback of FCFS.
Queue sorting is the technique that a job scheduler sorts jobs in the job queue
by the number of requested processors. Both techniques that sort jobs by non-
increasing order and by non-decreasing order were discussed [12,13]. Another
technique, which positively dispatches jobs that fit idle processors, was also dis-
cussed. Here, “a job that fits idle processors” means “a job that requests pro-
cessors whose number 1s not exceeding the number of idle processors.” In Fit
Processors First Served (FPFS), a job scheduler searches jobs in the job queue
and dispatches a job that fits idle processors to processors [14-16] . Backfilling
is a similar scheme to FPFS. In Backfilling, when the job at the head of the job
queue waits for being dispatched because there are not enough idle processors for
it, a job scheduler dispatches other jobs that fit idle processors without affecting
the start time of the job at the head of the job queue [13,17,18].

Several job scheduling schemes described in the previous paragraph has been
evaluated either by simulation or experiments on real machines [13,16-18]. How-
ever, none of work has compared performance of all these job scheduling schemes
and has evaluated their performance by an analytical method.

This paper evaluates the performance of job scheduling schemes for pure
space sharing among rigid jobs. First, this paper evaluates and compares the
performance of these job scheduling schemes by simulation. Next, the perfor-
mance of two job scheduling schemes that showed best performance in the sim-
ulation, FPFS and Fit Processors Most Processors First Served (FPMPFS), is
analyzed using queueing model and one-dimensional bin-packing problem. The
authors have implemented the FPFS and FPMPFS on a multiprocessor system
NEC Cenju-3 [19]. Experimental results on the Cenju-3 are also shown.

The rest of this paper is organized as follows. Section 2 describes the job
scheduling model assumed in this paper. Next, Sect. 3 describes job scheduling
schemes evaluated in this paper and Sect. 4 shows simulation results. Then, Sect.
5 shows performance analysis results of FPFS and FPMPFS, and Sect. 6 shows
experimental results on a multiprocessor system NEC Cenju-3.

! This scheme is referred to as FCFS-fill in [15] and as LSF-RTC in [16]. However, this

paper refers to this as FPFS for convenience.



2 Job Scheduling Model

This section describes the job scheduling model assumed in this paper.

The multiprocessor system under consideration consists of a number of pro-
cessors connected equally by a crossbar network or a multi-stage interconnection
network. Since the execution time of a job is insensitive to the location of each
processor that executes the job on this multiprocessor system, this paper as-
sumes that a job scheduler can dispatch a job to any idle processor existing
arbitrary location.

Figure 1 illustrates the model of the job scheduler. A job arrives at the
job queue dynamically. Each job requests a certain number of processors. The
number of processors i1s specified by a user or a compiler. The job scheduler
obtains status of processors. Whenever a new job arrives or a job being executed
on processors finishes, the job scheduler dispatches the job in the job queue to idle
processors using a certain scheduling scheme. At this time, each job is dispatched
to idle processors whose number is same as the number that the job requests.
The job that has been dispatched to processors 1s executed exclusively until its
completion. For an arrived job, the job scheduler has knowledge about only the
number of processors that the job requests, because it is generally difficult that
a job scheduler knows the execution time of an arrived job before its execution.
However, this paper assumes that the execution time of the job is also known
before its execution when Backfilling is applied 2.
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Fig. 1. The model of the job scheduler

2 Backfilling requires execution time of jobs for its scheduling process.



3 Job Scheduling Schemes

This section describes job scheduling schemes evaluated in this paper. Table 1
shows the summary of scheduling schemes evaluated in this paper.

Table 1. Scheduling schemes

schemes |sorting queue|searching queue
FCFS no no
MPFS yes no
LPFS yes no
FPFES no yes
FPMPFS |yes yes
FPLPFS |yes yes
Backfilling | no yes

3.1 FCFS

First Come First Served (FCFS) is a conventional scheme that is currently used
on most multiprocessor systems. A job scheduler dispatches the job at the head
of the job queue when the number of processors requested by the job is not
exceeding the number of idle processors.

3.2 Queue Sorting

Whenever a new job arrives at the job queue, jobs in the job queue are sorted by
the number of processors that jobs request. A job scheduler dispatches the job
at the head of the sorted job queue when the number of processors requested by
the job is not exceeding the number of idle processors. Jobs in the job queue can
be sorted by non-increasing order or by non-decreasing order. This paper refers
to the former as Most Processors First Served (MPFS) and refers to the latter
as Least Processors First Served (LPFS).

The basic idea of MPFS is to utilize idle processors efficiently by sorting jobs
by non-increasing order of the number of requested processors. It is known that
sorting items by non-increasing order of items’ size improves packing efficiency
in bin-packing problem [20]. The basic idea of LPFS is to reduce mean response
time of jobs by dispatching a large number of small jobs, jobs that request a
small number of processors, preferentially.

3.3 FPFS

The basic idea of Fit Processors First Served (FPFS) is to utilize idle processors
efficiently by positively dispatching jobs that fit idle processors. The schedul-
ing algorithm of FPFS is as follows. Here, ¢ indicates the order of jobs in the



job queue and n indicates the number of jobs in the job queue. Requested PE;
denotes the number of processors requested by Job; and Idle PE denotes the
number of idle processors.

1.i=1.
2. Compare RequestedPFE; and Idle PE.
(a) if RequestedPFE; > IdlePFE, go to 3.
(b) if RequestedPE; < IdlePFE, dispatch Job; to Requested PE; of proces-
sors. Then, IdlePE = IdlePE — Requested PE;. Go to 3.
3.i=:14+1.ife<nand IdlePE >0, go to 2.
4. Goto 1.

The following algorithm is executed when a job being executed on processors
finishes.

1. Relinquish processors on which the job has been executed.
2. IdlePE = IdlePE + number of relinquished processors

FPFS can be applied with the queue sorting technique. This paper refers
to FPFS’s with queue sorting as Fit Processors Most Processors First Served
(FPMPFS) and Fit Processors Least Processors First Served (FPLPFS). In
FPMPEFS, a job scheduler sorts jobs in the job queue by non-increasing order
of the number of requested processors and then dispatches jobs to processors
in the same way as FPFS. In FPLPFS, a job scheduler dispatches jobs in the
same way except sorting jobs in the job queue by non-decreasing order. However,
FPLPFS causes same job scheduling results as LPFS because of the following
reason. During searching jobs sorted by non-decreasing order of the number of
requested processors, if a job scheduler finds the job that does not fit idle pro-
cessors, no more job that remains in the job queue fits idle processors.

3.4 Backfilling

Backfilling is a similar scheme as FPFS except it does not affect the start time
of the job at the head of the job queue. When the job at the head of the job
queue, Jobs,p, waits for being dispatched because there are not enough idle
processors for it, a job scheduler calculates the start time of Jobs,, from the
remaining execution time of jobs that are in execution. Then, the job scheduler
begins to search the job queue. When the job scheduler finds the job that fits idle
processors, Joby;, the job scheduler verifies if dispatching Joby;; delays the start
time of Jobs,p. If dispatching Jobs;; does not delay the start time of Job;,,, the
Jjob scheduler dispatches Joby;; to idle processors . Otherwise, the job scheduler
does not dispatch Joby;;. Dispatching Joby;; does not delay the start time of
Jobiop in the following cases.

1. Joby;: is going to finish and release processors before the start time of Joby,p.

2. Jobg;s is not going to finish before the start time of Job;,,. However, another
job 1s going to finish and release processors so that there are going to exist
enough idle processors for Job;,, before its start time.



Backfilling has difficulty for practical use, because it assumes that the exe-
cution time of each job is known before its execution. Generally, it is difficult
that a job scheduler knows execution time of an arrived job before its execution.
Therefore, this paper assumes that a job scheduler has knowledge about only
the number of processors requested by the job. However, in order to compare
the performance of Backfilling with others, this paper also assumes that the ex-
ecution time of an arrived job is known before its execution when Backfilling is
applied.

3.5 Avoiding Starvation

It is possible that starvation occurs in FPFS, FPMPFS, FPLPFS, MPFS and
LPFS. In order to avoid starvation, Wait Limit, which is a deadline that a job
continues waiting for being dispatched to processors, is given to each job.

In FPFS, FPMPFS and FPLPFS with Wait Limit, a job scheduler gives a
priority to Joboyerw ait Limit, Which is a job waiting for being dispatched after its
Wait Limit. The algorithm of FPFS, FPMPFS and FPLPFS with Wait Lemat
can be derived by changing 2(a) of the algorithm in Sect. 3.3 as follows.

2. Compare RequestedPFE; and Idle PE.
(a) if RequestedPFE; > IdlePE,
if Job; 18 JobyyerwastLimit, 0 to 4, else go to 3.

In schemes that apply the queue sorting, or MPFS, LPFS, FPMPFS and
FPLPFS, a job scheduler suppresses sorting jobs when there is a Jobgyerw ait Limit
in the job queue. In other words, a job scheduler does not enter any of newly
arrived jobs at the position before JoboyerwaitLimst in the job queue.

4 Simulation

This section describes the performance evaluation of job scheduling schemes
by simulation. In this simulation, the performance is measured by processor
utilization, mean response time and the variance of response time.

4.1 Simulation Model

The multiprocessor system in this simulation i1s assumed to be as what described
in Sect. 2.

The execution time of a job is exponentially distributed and the average
execution time is 10[sec.]. The execution time includes overhead for loading a
program and so on.

Job arrival is assumed to be Poisson and load is defined by (1).

load = p = Ar (1)
m-



Here, A denotes the mean arrival rate of arrived jobs. p1 denotes the mean service
rate per processor, or 1/u denotes the mean execution time of a job. p indicates
the mean number of processors requested by the job and m denotes the total
number of processors on the multiprocessor system. Scheduling overhead for each
job scheduling scheme is assumed to be negligible.

The number of processors on the multiprocessor system and the number of
processors requested by a job are assumed to be the alternative of following two
models.

1. Uniform Dist.
The number of processors requested by a job is uniformly distributed on
[1,256], and the multiprocessor system has 256 processors.

2. Real Dist.
The number of processors requested by a job follows the distribution on
Table 2. Table 2 is obtained by recent 10027 jobs that have been executed
on a real multiprocessor system NEC Cenju-3 3 installed in the authors’
laboratory. The Cenju-3 has eight processors. In the distribution, the number
of jobs that request powers of two processors is larger than others, and this
characteristic is consistent with previous reports [13,21]. Furthermore, the
number of jobs that request eight processors is largest. It means that many
users have attempted to execute their programs on all processors, or eight
processors, because the Cenju-3 was a small system.

Table 2. The number of requested processors

number of requested
processors ratio

1 0.1698

0.1718
0.0464
0.1837
0.0295
0.0316
0.0357
0.3314

O~ O ULk WD

In the simulation, 5000 jobs are requested and executed in one replication
and 100 replications with different jobs are practiced. All results have confidence
intervals of 10% or less at a 95% confidence level. The performance of FPLPFS
is represented by LPFS because these two schemes cause same results.

% See Sect. 6 for details.



4.2 Processor Utilization and Mean Response Time

Figure 2 through Fig. 6 show processor utilization and mean response time by the
simulation where the number of processors requested by a job follows Uniform
Dast.

Figure 2 and Fig. 3 show processor utilization and mean response time by
the job scheduling schemes. In these results, Wait Limit is not given to any job.
Figure 2 and Fig. 3 show that MPFS and LPFS improve processor utilization
compared with FCFS. It means that the efficiency of packing jobs into idle pro-
cessors 1s improved by queue sorting. LPFS keeps mean response time lower
than MPFS and FCFS. It is caused by the reason that a large number of small
jobs are dispatched prior to a small number of large jobs, which request a large
number of processors, by LPFS. However performance improvement by both
MPFS and LPFS is slight. On the other hand, FPFS, FPMPFS and Backfilling
improve processor utilization considerably and keep mean response time much
lower compared with others. It means that dispatching jobs that fit idle proces-
sors improves the efficiency of packing jobs into idle processors more considerably
than MPFS and LPFS. The performance of FPFS, FPMPFS and Backfilling is
almost same. However, FPMPFS shows slightly better performance than FPFS
and Backfilling follows FPFS.

In MPFS, LPFS, FPFS, FPMPFS and FPLPFS, Wait Limit should be given
to each job to avoid starvation. Figure 4 and Fig. 5 show processor utilization and
mean response time where Wait Limit, which is equal to 600[sec.], is given to each
job. Figure 4 and Fig. 5 show that processor utilization by FPFS and FPMPFS is
degraded in high load while the degradation of others is slight. It is caused by the
reason that searching jobs in the job queue is suppressed by Wait Limit in FPFS
and FPMPFS. At low load, the degradation by Wa#t Limat is negligible because
the number of jobs that continues waiting for being dispatched for long time
is a few. However, FPFS and FPMPFS improve processor utilization compared
with FCFS, MPFS and LPFS despite performance degradation by WaitLimit.
Furthermore, the degradation for mean response time by FPFS and FPMPFS is
slight. FCFS and Backfilling show no performance degradation because they did
not caused starvation in the simulation. Backfilling shows the best improvement
of processor utilization in this case.

Figure 6 shows processor utilization by FPFS when various Wait Limit’s are
defined. On Fig. 6, WL denotes Wait Limit[sec.]. Figure 6 shows that processor
utilization is degraded at high load when Wait Lemat is given. It is clear that
the scheduling result by FPFS with WaitLimit = 0 i1s same as FCFS. There-
fore, processor utilization by FPFS with Wait Limit becomes closer to FCFS as
Wait Limit decreases. FPMPFS with Waitlimit showed almost same results in
the simulation.

4.3 Variance of Response Time

Table 3 shows the variance of the response time of jobs when load = 0.5. The
number of processors requested by a job follows Uniform Dist. Wait Limit, which
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Fig.6. Processor utilization by FPFS with various WaitLimit in simulation results

(Uniform Dist.)

is equal to 600[sec.] is given to each job. MPFS and LPFS increase variance com-
pared with FCFS. FPFS, FPMPFS and Backfilling reduce variance compared
with FCFS. These results show that the technique searching the job queue and
positively dispatching jobs that fit idle processors decreases the variance of the

response time of jobs, however, sorting jobs in the job queue increases the vari-
ance.

Table 3. Variance of response time

schemes |variance
FCFS 639
MPFS 1765
LPFS 1058
FPFES 365
FPMPFS 498
Backfilling 370
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4.4 Processor Utilization under Real Dist.

Figure 7 shows processor utilization by the simulation where the number of pro-
cessors requested by a job follows Real Dist. Figure 7 shows that FPFS, FPMPFS
and Backfilling improve processor utilization considerably. However, the perfor-
mance of all job scheduling schemes are improved compared with results on Fig.
2. Especially, the performance improvement of MPFS is considerable. It means
that the performance is sensitive to the distribution of the number of processors
requested by a job. In this case, it seems that the efficiency of packing jobs that
follows Real Dist. is higher than that follows Uniform Dist., because the number
of jobs that request all processors, or eight processors, is large in Real Dist.

100 r——Fcrs
—>— MPFS
80 —<— LPFS
—e— FPFS
T —o— FPMPFS
= 60 F—o— Backfilling
o
S 40}
E
20 +
O 1 1 1 1
0 0.2 0.4 06 0.8

load

Fig. 7. Processor utilization in simulation results (Real Dist.)

4.5 Summary of Simulation Results

The performance of job scheduling schemes obtained by the simulation are clas-
sified into two categories.

MPFS and LPFS, which sort the job queue by the number of requested
processors, showed almost same performance that is as follows.

1. Both MPFS and LPFS improved processor utilization and reduced mean
response time slightly compared with FCFS.
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2. The performance degradation by Wait Limit of these schemes was slight.
3. These schemes increased the variance of the response time of jobs compared

with FCFS.

FPFS, FPMPFS and Backfilling, which search the job queue and positively
dispatch jobs that fit idle processors, showed almost same performance that is
as follows.

1. FPFS, FPMPFS and Backfilling improved processor utilization and reduced
mean response time considerably compared with MPFS, LPFS and FCFS.

2. Although processor utilization by FPFS and FPMPFS was degraded when
Wait Limit was given to each job, they maintained better performance than
FCFS, MPFS and LPFS. In this case, Backfilling showed the best improve-
ment of processor utilization. The degradation of processor utilization de-
pended on value of Wait Limit.

3. These schemes decreased the variance of the response time of jobs compared

with FCFS.

According to these results, it can be assumed that FPFS, FPMPFS and
Backfilling caused better performance improvement than others. It shows that
the effectiveness of the technique that searches the job queue and positively dis-
patches jobs that fit idle processors. However, Backfilling has difficulty for prac-
tical use, because it assumes that the execution time of each job is known before
its execution. Therefore, this paper assumes that FPFS and FPMPFS cause best
performance improvement among the job scheduling schemes discussed in this
paper. Simulation results in previous work [13,15] also showed effectiveness of a
part of these job scheduling schemes, LPFS and FPFS (or Backfilling). Results
obtained in this section are consistent with them.

5 Performance Analysis

This section describes the performance analysis of job scheduling schemes that
showed best performance in the simulation, or FPFS and FPMPFS. The perfor-
mance analysis of FCFS is also described to compare the performance of FPFS
and FPMPFS with FCFS. In this analysis, the performance is measured by
processor utilization and stability condition.

5.1 Processor Utilization and Stability Condition
In M/M/m queueing model, which assumes that the inter-arrival time and the

service time of jobs are exponentially distributed and there are m servers, the
stability condition is given by

== <1 2
P < (2)
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and the utilization of servers, U, is given by

A
= pr<l
mep
U{—>1, p=>1 ®)

Here, A denotes the mean arrival rate of a job and p denotes the mean service
rate per server. The stability condition is the condition to keep the system stable.
If the stability condition is satisfied, the mean response time of a job is stable[22].
In other words, if stability condition is not satisfied, the response time of a job
rises suddenly.

In the job scheduling model assumed in this paper, an arrived job is executed
on the requested number of processors simultaneously. Therefore, the following
formula is derived from (2) where p denotes the average number of processors
requested by a job.

p=—""<1 (4)

In M/M/m queueing model, all of m servers are active when there are jobs
waiting for being dispatched in the job queue. However, in the job scheduling
model assumed in this paper, when the number of idle processors is not zero
but less than the number of processors requested by any job in the job queue,
idle processors remain idle. In other words, the number of active servers when
there are jobs in the job queue is equal to or less than m. Therefore, the stability
condition in the job scheduling model assumed in this paper is given by

A-p
vem - p

< 1. (5)

Here, v-m denotes the mean number of active servers when there are jobs waiting
for being dispatched in the job queue. In other words, v 1s the ratio of active
servers to all processors in the multiprocessor system when there are jobs in the
job queue. Then, the following formula is derived from (4), (5).

p<v (6)
and processor utilization, U is given by

— AP
U{_m~u’p<v (7)
—v, p>v

from (4), (6).
The v defines the stability condition and an upper limit of processor utiliza-
tion in the job scheduling model assumed in this paper. Therefore, the processor

utilization (the upper limit of processor utilization) and the stability condition
can be improved by increasing the value of v.

5.2 Derivation of v

The value of v can be derived from one-dimensional bin-packing problem. There
are one-dimensional bins, B;, (j = 1,--m), and a list of one-dimensional items,
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pi, (i = 1,- - n). The capacity of B; is C. The length of p;, s(pi), is s(p;) < C.
One-dimensional bin-packing problem attempts to minimize the number of bins
to pack all items in the list satisfying Zp,EBj s(p;) < C. Next Fit (NF), First
Fit (FF) and First Fit Decreasing (FFD) are proposed as algorithm for one-
dimensional bin-packing problem [20].

The job scheduling model assumed in this paper can be considered as one-
dimensional bin-packing problem in which a job scheduler attempts to pack
jobs into the idle processors. Here, the job corresponds to the item and “the
number of processors requested by the job” is s(p;). Similarly, the idle processors
correspond to the bin and “the number of idle processors” is C'. Then, it can be
assumed that the value of v is same as the utilization of B; in one-dimensional
bin-packing problem. In several previous works, two-dimensional bin-packing
problem has been used for the job scheduling model in which the job has two-
dimensional quantity, the number of requested processors and the execution time
[23]. However, one-dimensional bin-packing is suitable for the job scheduling
model assumed in this paper because this paper assumes that the execution
time of a job is unknown.

Worst Case Analysis. The performance of NF, FF and FFD in the worst case
is given as follows [20]. Here, hyc(A) denotes the number of bins to pack n items
by algorithm A in the worst case and h(opt) denotes the number of bins to pack
n items in the optimal case.

hue(NF)
hue(FF) 17
7h(opt) =15 " — 0 (9)
hue(FFD) 11

Since it 1s safe to say that there is no fragmentation in bins in the optimal
case, utilization by NF, FF and FFD is the reciprocal of (8), (9) and (10) respec-
tively. Therefore, values of v by FCFS, FPFS and FPMPFS in the worst case,
Ve (FCFS), vy (FPFS) and vy (F PM PFS) are given as follows respectively.

1
vue(FCFS) = 5= 05 (11)

10
vue(FPFS) = 1= = 0.588 (12)
Vwe(FPMPFS) = % =0.818 (13)

These results show that FPFS and FPMPFS improve processor utilization
and stability condition in the worst case as compared with FCFS. These results
also show that FPMPFS improves performance more than FPFS.
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Average Case Analysis. The performance of NF in the average case where
s(p;) is uniformly distributed on (0, 1] is given as follows [24]. Here, hqe(A)
denotes the number of bins to pack n items by algorithm A in the average case
and h(opt) denotes the number of bins to pack n items in the optimal case.

hao(NF) 4
h(opt) 3" e (14

Next, the performance of FF in the average case is given by
hae(FF) = h(opt) +6(n%) (15)

[24,25]. Since s(p;) is uniformly distributed on (0,1], h(opt) = n/2. Then,

7]1;6((055) — 14 9:};) =1+0(n"%) (16)
is derived from (15) and then,
hzc((::f;) =1, n— oco. (17)
In the same way, the performance of FFD in the average case is given by
hae(FFD) = h(opt) + 6(n?) (18)
[24]. Then,
ha;l((l:;;)D) =1, n— oco. (19)

From (14), (17) and (19), values of v by FCFS, FPFS and FPMPFS in the
average case, Uge(FCFS), Uge (FPFS) and vg.(FPMPFS) are given as follows
respectively.

Vg (FCFS) = % =0.75 (20)
Ve (FPFS) =1 (21)
Vae(FPMPFS) =1 (22)

These results show that FPFS and FPMPFS improve processor utilization
and stability condition in the average case as compared with FCFS.

5.3 Comparison with Simulation Results

Figure 8 shows processor utilization obtained by the simulation (on Fig. 2) and
results of average case analysis. On Fig. 8, solid lines indicate processor utiliza-
tion in the simulation and dotted lines indicate results of the average case anal-
ysis. Figure 8 shows that processor utilization by FCFS is saturated at nearby
load = 0.75 or more, while processor utilization by FPFS and FPMPFS maintain
to improve at high load.
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Fig. 8. Processor utilization in simulation results and average case analysis

Furthermore, on Fig. 3, mean response time by FCFS rises suddenly when
load is less than 0.75, because the stability condition is not satisfied at load >
0.75. On the other hand, FPFS and FPMPFS keep mean response time lower
than FCFS, because FPFS and FPMPFS improve the stability condition com-
pared with FCFS. These results show that the performance of FCFS, FPFS and
FPMPFS in the simulation follows results in the average case analysis.

6 Experiments on a Cenju-3

This section describes experimental results of FPFS and FPMPFS on a multi-
processor system NEC Cenju-3.

6.1 Architecture of a Cenju-3

Cenju-3 is composed of up to 256 processor elements (PE’s) connected by a multi-
stage interconnection network like baseline network. The system 1s connected to
the workstation, which acts as a host computer. Each PE has a microprocessor
VR4400 and up to 64 ,MB local memory. The multi-stage interconnection net-
work is composed of 4 x 4 switches, and its maximum throughput is 40 ,MB/s
[19].

Figure 9 illustrates architecture of a multiprocessor system NEC Cenju-3
Model 8S that is used for the experiments. Cenju-3 Model 8S has eight PE’s.
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The peak performance of a single PE is 33.3 MFlops and each PE has 32 ,MB
local memory in the system. The host computer, NEC EWS4800/330 EX, is
connected to the system.

Multi-stage interconnection network

PEO PE1l PE7

CPU
(VR4400SC) EEEmEEma=

Local Memory
(32MByte)

Host Computer
(EWS4800/330EX)

Fig. 9. Architecture of a Cenju-3 Model 85

6.2 Job Scheduling Mechanism on a Cenju-3

The job scheduling mechanism on a Cenju-3 is achieved by two processes exe-
cuted on a host computer, Job Scheduler and Maser. Job Scheduler decides the
scheduling of arrived jobs and sends the scheduling result to MASER. MASER
watches information about PE’s, sends the information to Job Scheduler and
executes the job on PE’s following the scheduling result sent by Job Scheduler
[26].

The authors have developed the new job scheduler based on the original Job
Scheduler to evaluate performance of FPFS and FPMPFS. Figure 10 shows ba-
sic scheduling routines on the new job scheduler. On Fig. 10, FCFS_Scheduler
or FPFS_Scheduler dispatches jobs to processors by FCFS or FPFS respectively.
A job scheduler executes one of these routines repeatedly. FPMPFS_job_spooler
registers arrived jobs into the job queue and sorts jobs by non-increasing order
of the number of requested processors. FPFS_Scheduler is also used for FPMPFS.
Processor_relinquishment relinquishes processors on which the job finishes execu-
tion.

6.3 Results on a Cenju-3

In the experiment, the authors executed 500 jobs composed of three application
programs, Electro-magnetic field analysis [27], 3D multigrid [28] and Sparse ma-
trix solver by Gauss-Seidel method. Arrival of these jobs are Poisson. All PE’s



queue[QUEUEMAX]; /* job queue */

queueli].job; /* a job ati th position in a job queue */
queue[i].job.penum; /¥ number of demanded PE's by queueli].job */
queueli].job.wl; /* WaitLimit of queueli].job */

Queuelength; /* number of jobs in a job queue */
IdlePeNumber; /* number of idle processors */

ArrivalJob; [* arrival job */

ArrivalJob.penum; /* number of requested PE's by ArrivalJob */
FinishJob; * job which finished its execution */
FinishJob.penum; /* number of demanded PE's by FinishJob */

FCFS_Scheduler()

while (){
if(queue[l].job.penum <= IdlePeNumber){
Dispatch_queue[l].job_to_Processors;
IdlePeNumber - = queue[l].job.penum;

}
}
FPFS_Scheduler()
while (){
i=1;

while(i <= QueuelLength && IdlePeNumber > 0){
if(queueli].job.penum <= IdlePeNumber){
Dispatch_queueli].job_to_Processors;
IdlePeNumber - = queueli].job.penum;

i++;
}else {
if(queuelil.job.wl <= waiting_time_of_queue[i].job )
break;
else
i++;
}
}
}
}
FPMPFS_job_spooler()
{
i = QueueLength;
while(i > 0){
if(queuelil.job.wl <= waiting_time_of_queue][i].job )
break;
if(queueli].job.penum < Arrivaljob.penum)
i--
else
break;
}
Insert_Arrivaljob_into_(i+1 )th_position_in_a_job_queue;
}
Processor_relinquishment()
{

Release_processors_which_executed_Finishjob;
IdlePeNumber += FinishJob.penum;

}

Fig. 10. Basic structure of job scheduling routines on a Cenju-3

19



20

on the Cenju-3 are dedicated to the experiment. Among these 500 jobs, the num-
ber of processors requested by a job is uniformly distributed on [1,8] and the
average execution time of a job including time for loading a program and so on
is 32[sec.]. Each job is given Wait Limit, which is equal to 600[sec.], for FPFS
and FPMPFS.

Figure 11 and Fig. 12 show processor utilization and mean response time in
the experiment. FCFS(native) denotes the native version of FCFS implemented
on a Cenju-3 generally and FCFS(improved) denotes the improved version of
FCFS that the authors have developed newly. Difference between FCFS(native)
and FCFS(improved) is scheduling overhead. In FCFS(native), Job Scheduler
inquires MASER periodically to obtain the number of idle processors and this
process requires large overhead. In FCFS(improved), Job Scheduler has a local
data, or table, to watch the number of idle processors.

Figure 11 and Fig. 12 show that FPFS and FPMPFS improve processor
utilization and keep mean response time lower compared with FCFS. FPFS im-
proves processor utilization by 9[%] compared with FCFS(improved) and by
19[%] compared with FCFS(native) at load = 0.9. Mean response time by
FCFS(native) and FCFS(improved) rises suddenly at load = 0.7 and load =
0.8 respectively, however, FPFS and FPMPFS keep mean response time below
116[sec.] at load = 0.8.

Processor utilization by FPFS and FPMPFS is degraded to 81[%] at load =
0.95 because of the influence by WaitLimit. Processor utilization by FPMPFS
is degraded by 3[%)] compared with FPFS at load = 0.9, because searching jobs
in the job queue in FPMPFS was suppressed 12 times more than FPFS. In
other words, FPMPFS suffered the influence by WaitLimit more than FPFS.
FCFS(improved) shows much better performance than FCFS(native), because
FCFS(native) requires larger overhead to watch the number of idle processors
than FCFS(improved).

These experimental results on a Cenju-3 show that FPFS and FPMPFS
improve processor utilization and keep mean response time lower, or improve
stability condition, compared with FCFS as results in the simulation and the
performance analysis.

7 Conclusions

This paper evaluated the performance of job scheduling schemes for pure space
sharing among rigid jobs. More complex scheduling schemes such as gang schedul-
ing and adaptive space sharing are discussed in the literature. However, the dis-
cussion of job scheduling schemes for pure space sharing among rigid jobs is still
important, because these schemes are adopted on most multiprocessor systems
currently installed for practical use. The performance of these job scheduling
schemes has been discussed in the literature. In most of the previous work, the
performance has been evaluated by either simulation, performance analysis or
experiments. However,; this paper evaluated performance of the job scheduling
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schemes by combination of simulation, performance analysis and experiments to
verify the effectiveness and the practicality of these schemes.

Simulation results showed that FPFS, FPMPFS and Backfilling caused con-
siderable performance improvement compared with others. This result means
that searching the job queue and positively dispatching jobs that fit idle proces-
sors can utilize processors more efficiently and keep mean response time lower
than others. However, Backfilling has difficulty for practical use, because it as-
sumes that the execution time of each job is known before its execution. Per-
formance analysis of job scheduling schemes that showed best performance in
the simulation, or FPFS and FPMPFS, showed that these schemes improved
processor utilization and stability condition compared with FCFS in both worst
case and average case. The comparison of results in the simulation and those
in the average case analysis showed that simulation results followed the analy-
sis. Experimental results on a multiprocessor system NEC Cenju-3 also showed
the advantage of FPFS and FPMPFS as the simulation and the performance
analysis.

According to these results, this paper concludes that,

1. FPFS and FPMPFS, which search the job queue and positively dispatch jobs
that fit 1dle processors, are more effective and more practical than other job
scheduling schemes discussed in this paper. Although Backfilling can also
improve performance, it has difficulty for practical use because it requires
knowledge about the execution time of an arrived job before its execution.

2. Performance improvement by FPFS and FPMPFS is almost same. Therefore,
FPFS is more practical than FPMPFS because the algorithm of FPFS is
simpler than FPMPFS in average case.

Results in Sect. 4.4 showed that the performance of job scheduling schemes
was sensitive to the distribution of the number of processors requested by a job.
Further investigation on the sensitivity is required as future work.
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