
Job Scheduling Scheme for Pure Space Sharingamong Rigid JobsKento Aida1, Hironori Kasahara2, and Seinosuke Narita21 Department of Mathematical and Computing Sciences,Tokyo Institute of Technology2-12-1, O-okayama, Meguro-ku, Tokyo, JAPAN 152aida@noc.titech.ac.jphttp://www.noc.titech.ac.jp/~aida2 Department of Electrical, Electronics and Computer Engineering,Waseda University3-4-1, Ohkubo, Shinjuku-ku, Tokyo, JAPAN 169fkasahara,naritag@oscar.elec.waseda.ac.jphttp://www.oscar.elec.waseda.ac.jp/Abstract. This paper evaluates the performance of job scheduling sche-mes for pure space sharing among rigid jobs. Conventional job schedulingschemes for the pure space sharing among rigid jobs have been achievedby First Come First Served (FCFS). However, FCFS has a drawbacksuch that it can not utilize processors e�ciently. This paper evaluatesthe performance of job scheduling schemes that are proposed to alle-viate the drawback of FCFS by simulation, performance analysis andexperiments on a real multiprocessor system. The results showed thatFit Processors First Served (FPFS), which searches the job queue andpositively dispatches jobs that �t idle processors, was more e�ective andmore practical than others.1 IntroductionParallel processing schemes such as SPMD [1] and Multigrain parallel processingscheme [2] are used on multiprocessor systems. In these schemes, a user or a com-piler speci�es the number of processors on which the job (program) is executedand optimizes the job (program) considering data locality. On the execution ofthese jobs, the job requests a certain number of processors. The number of pro-cessors that the job requests is speci�ed by a user or a compiler. A job schedulerdispatches the job to the requested number of processors. Each job is exclusivelyexecuted until its completion on these processors. These jobs are called \rigidjobs" and this kind of scheduling is called \pure space sharing" [3].The pure space sharing among rigid jobs has several advantages such thatimplementation is simple and any user can have optimal performance by execut-ing the job on the requested number of processors exclusively. Although morecomplex scheduling schemes such as gang scheduling and adaptive space sharingare also discussed in the literature [4{6], the pure space sharing among rigid jobs



2is adopted on most multiprocessor systems currently installed for practical usebecause of these advantages.Processor allocation strategies for the pure space sharing among rigid jobssuch as Frame Sliding, First Fit, Best Fit and Non-contiguous processor allo-cation algorithm, which allocate processors to jobs, have been proposed [7{11].In these strategies, processors are allocated to the job at the head of the jobqueue. In other words, a job scheduling is achieved by First Come First Served(FCFS) manner. However, FCFS has a drawback such that it can not utilize pro-cessors e�ciently [9]. In FCFS, when the number of idle processors is less thanthe number of processors requested by the job at the head of the job queue, ajob scheduler does not dispatch any job to processors and causes low processorutilization.Several schemes have been proposed to alleviate the drawback of FCFS.Queue sorting is the technique that a job scheduler sorts jobs in the job queueby the number of requested processors. Both techniques that sort jobs by non-increasing order and by non-decreasing order were discussed [12,13]. Anothertechnique, which positively dispatches jobs that �t idle processors, was also dis-cussed. Here, \a job that �ts idle processors" means \a job that requests pro-cessors whose number is not exceeding the number of idle processors." In FitProcessors First Served (FPFS), a job scheduler searches jobs in the job queueand dispatches a job that �ts idle processors to processors [14{16] 1. Back�llingis a similar scheme to FPFS. In Back�lling, when the job at the head of the jobqueue waits for being dispatched because there are not enough idle processors forit, a job scheduler dispatches other jobs that �t idle processors without a�ectingthe start time of the job at the head of the job queue [13, 17, 18].Several job scheduling schemes described in the previous paragraph has beenevaluated either by simulation or experiments on real machines [13,16{18]. How-ever, none of work has compared performance of all these job scheduling schemesand has evaluated their performance by an analytical method.This paper evaluates the performance of job scheduling schemes for purespace sharing among rigid jobs. First, this paper evaluates and compares theperformance of these job scheduling schemes by simulation. Next, the perfor-mance of two job scheduling schemes that showed best performance in the sim-ulation, FPFS and Fit Processors Most Processors First Served (FPMPFS), isanalyzed using queueing model and one-dimensional bin-packing problem. Theauthors have implemented the FPFS and FPMPFS on a multiprocessor systemNEC Cenju-3 [19]. Experimental results on the Cenju-3 are also shown.The rest of this paper is organized as follows. Section 2 describes the jobscheduling model assumed in this paper. Next, Sect. 3 describes job schedulingschemes evaluated in this paper and Sect. 4 shows simulation results. Then, Sect.5 shows performance analysis results of FPFS and FPMPFS, and Sect. 6 showsexperimental results on a multiprocessor system NEC Cenju-3.1 This scheme is referred to as FCFS-�ll in [15] and as LSF-RTC in [16]. However, thispaper refers to this as FPFS for convenience.



32 Job Scheduling ModelThis section describes the job scheduling model assumed in this paper.The multiprocessor system under consideration consists of a number of pro-cessors connected equally by a crossbar network or a multi-stage interconnectionnetwork. Since the execution time of a job is insensitive to the location of eachprocessor that executes the job on this multiprocessor system, this paper as-sumes that a job scheduler can dispatch a job to any idle processor existingarbitrary location.Figure 1 illustrates the model of the job scheduler. A job arrives at thejob queue dynamically. Each job requests a certain number of processors. Thenumber of processors is speci�ed by a user or a compiler. The job schedulerobtains status of processors. Whenever a new job arrives or a job being executedon processors �nishes, the job scheduler dispatches the job in the job queue to idleprocessors using a certain scheduling scheme. At this time, each job is dispatchedto idle processors whose number is same as the number that the job requests.The job that has been dispatched to processors is executed exclusively until itscompletion. For an arrived job, the job scheduler has knowledge about only thenumber of processors that the job requests, because it is generally di�cult thata job scheduler knows the execution time of an arrived job before its execution.However, this paper assumes that the execution time of the job is also knownbefore its execution when Back�lling is applied 2.
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43 Job Scheduling SchemesThis section describes job scheduling schemes evaluated in this paper. Table 1shows the summary of scheduling schemes evaluated in this paper.Table 1. Scheduling schemesschemes sorting queue searching queueFCFS no noMPFS yes noLPFS yes noFPFS no yesFPMPFS yes yesFPLPFS yes yesBack�lling no yes3.1 FCFSFirst Come First Served (FCFS) is a conventional scheme that is currently usedon most multiprocessor systems. A job scheduler dispatches the job at the headof the job queue when the number of processors requested by the job is notexceeding the number of idle processors.3.2 Queue SortingWhenever a new job arrives at the job queue, jobs in the job queue are sorted bythe number of processors that jobs request. A job scheduler dispatches the jobat the head of the sorted job queue when the number of processors requested bythe job is not exceeding the number of idle processors. Jobs in the job queue canbe sorted by non-increasing order or by non-decreasing order. This paper refersto the former as Most Processors First Served (MPFS) and refers to the latteras Least Processors First Served (LPFS).The basic idea of MPFS is to utilize idle processors e�ciently by sorting jobsby non-increasing order of the number of requested processors. It is known thatsorting items by non-increasing order of items' size improves packing e�ciencyin bin-packing problem [20]. The basic idea of LPFS is to reduce mean responsetime of jobs by dispatching a large number of small jobs, jobs that request asmall number of processors, preferentially.3.3 FPFSThe basic idea of Fit Processors First Served (FPFS) is to utilize idle processorse�ciently by positively dispatching jobs that �t idle processors. The schedul-ing algorithm of FPFS is as follows. Here, i indicates the order of jobs in the



5job queue and n indicates the number of jobs in the job queue. RequestedPEidenotes the number of processors requested by Jobi and IdlePE denotes thenumber of idle processors.1. i = 1.2. Compare RequestedPEi and IdlePE.(a) if RequestedPEi > IdlePE, go to 3.(b) if RequestedPEi � IdlePE, dispatch Jobi to RequestedPEi of proces-sors. Then, IdlePE = IdlePE � RequestedPEi. Go to 3.3. i = i+ 1. if i � n and IdlePE > 0, go to 2.4. Go to 1.The following algorithm is executed when a job being executed on processors�nishes.1. Relinquish processors on which the job has been executed.2. IdlePE = IdlePE + number of relinquished processorsFPFS can be applied with the queue sorting technique. This paper refersto FPFS's with queue sorting as Fit Processors Most Processors First Served(FPMPFS) and Fit Processors Least Processors First Served (FPLPFS). InFPMPFS, a job scheduler sorts jobs in the job queue by non-increasing orderof the number of requested processors and then dispatches jobs to processorsin the same way as FPFS. In FPLPFS, a job scheduler dispatches jobs in thesame way except sorting jobs in the job queue by non-decreasing order. However,FPLPFS causes same job scheduling results as LPFS because of the followingreason. During searching jobs sorted by non-decreasing order of the number ofrequested processors, if a job scheduler �nds the job that does not �t idle pro-cessors, no more job that remains in the job queue �ts idle processors.3.4 Back�llingBack�lling is a similar scheme as FPFS except it does not a�ect the start timeof the job at the head of the job queue. When the job at the head of the jobqueue, Jobtop, waits for being dispatched because there are not enough idleprocessors for it, a job scheduler calculates the start time of Jobtop from theremaining execution time of jobs that are in execution. Then, the job schedulerbegins to search the job queue. When the job scheduler �nds the job that �ts idleprocessors, Jobfit, the job scheduler veri�es if dispatching Jobfit delays the starttime of Jobtop. If dispatching Jobfit does not delay the start time of Jobtop, thejob scheduler dispatches Jobfit to idle processors . Otherwise, the job schedulerdoes not dispatch Jobfit. Dispatching Jobfit does not delay the start time ofJobtop in the following cases.1. Jobfit is going to �nish and release processors before the start time of Jobtop.2. Jobfit is not going to �nish before the start time of Jobtop. However, anotherjob is going to �nish and release processors so that there are going to existenough idle processors for Jobtop before its start time.



6 Back�lling has di�culty for practical use, because it assumes that the exe-cution time of each job is known before its execution. Generally, it is di�cultthat a job scheduler knows execution time of an arrived job before its execution.Therefore, this paper assumes that a job scheduler has knowledge about onlythe number of processors requested by the job. However, in order to comparethe performance of Back�lling with others, this paper also assumes that the ex-ecution time of an arrived job is known before its execution when Back�lling isapplied.3.5 Avoiding StarvationIt is possible that starvation occurs in FPFS, FPMPFS, FPLPFS, MPFS andLPFS. In order to avoid starvation, WaitLimit, which is a deadline that a jobcontinues waiting for being dispatched to processors, is given to each job.In FPFS, FPMPFS and FPLPFS with WaitLimit, a job scheduler gives apriority to JoboverWaitLimit, which is a job waiting for being dispatched after itsWaitLimit. The algorithm of FPFS, FPMPFS and FPLPFS with WaitLimitcan be derived by changing 2(a) of the algorithm in Sect. 3.3 as follows.2. Compare RequestedPEi and IdlePE.(a) if RequestedPEi > IdlePE,if Jobi is JoboverWaitLimit, go to 4, else go to 3.In schemes that apply the queue sorting, or MPFS, LPFS, FPMPFS andFPLPFS, a job scheduler suppresses sorting jobs when there is a JoboverWaitLimitin the job queue. In other words, a job scheduler does not enter any of newlyarrived jobs at the position before JoboverWaitLimit in the job queue.4 SimulationThis section describes the performance evaluation of job scheduling schemesby simulation. In this simulation, the performance is measured by processorutilization, mean response time and the variance of response time.4.1 Simulation ModelThe multiprocessor system in this simulation is assumed to be as what describedin Sect. 2.The execution time of a job is exponentially distributed and the averageexecution time is 10[sec.]. The execution time includes overhead for loading aprogram and so on.Job arrival is assumed to be Poisson and load is de�ned by (1).load = � = � � pm � � (1)



7Here, � denotes the mean arrival rate of arrived jobs. � denotes the mean servicerate per processor, or 1=� denotes the mean execution time of a job. p indicatesthe mean number of processors requested by the job and m denotes the totalnumber of processors on the multiprocessor system. Scheduling overhead for eachjob scheduling scheme is assumed to be negligible.The number of processors on the multiprocessor system and the number ofprocessors requested by a job are assumed to be the alternative of following twomodels.1. Uniform Dist.The number of processors requested by a job is uniformly distributed on[1; 256], and the multiprocessor system has 256 processors.2. Real Dist.The number of processors requested by a job follows the distribution onTable 2. Table 2 is obtained by recent 10027 jobs that have been executedon a real multiprocessor system NEC Cenju-3 3 installed in the authors'laboratory. The Cenju-3 has eight processors. In the distribution, the numberof jobs that request powers of two processors is larger than others, and thischaracteristic is consistent with previous reports [13, 21]. Furthermore, thenumber of jobs that request eight processors is largest. It means that manyusers have attempted to execute their programs on all processors, or eightprocessors, because the Cenju-3 was a small system.Table 2. The number of requested processorsnumber of requestedprocessors ratio1 0.16982 0.17183 0.04644 0.18375 0.02956 0.03167 0.03578 0.3314In the simulation, 5000 jobs are requested and executed in one replicationand 100 replications with di�erent jobs are practiced. All results have con�denceintervals of 10% or less at a 95% con�dence level. The performance of FPLPFSis represented by LPFS because these two schemes cause same results.3 See Sect. 6 for details.



84.2 Processor Utilization and Mean Response TimeFigure 2 through Fig. 6 show processor utilization and mean response time by thesimulation where the number of processors requested by a job follows UniformDist.Figure 2 and Fig. 3 show processor utilization and mean response time bythe job scheduling schemes. In these results, WaitLimit is not given to any job.Figure 2 and Fig. 3 show that MPFS and LPFS improve processor utilizationcompared with FCFS. It means that the e�ciency of packing jobs into idle pro-cessors is improved by queue sorting. LPFS keeps mean response time lowerthan MPFS and FCFS. It is caused by the reason that a large number of smalljobs are dispatched prior to a small number of large jobs, which request a largenumber of processors, by LPFS. However performance improvement by bothMPFS and LPFS is slight. On the other hand, FPFS, FPMPFS and Back�llingimprove processor utilization considerably and keep mean response time muchlower compared with others. It means that dispatching jobs that �t idle proces-sors improves the e�ciency of packing jobs into idle processors more considerablythan MPFS and LPFS. The performance of FPFS, FPMPFS and Back�lling isalmost same. However, FPMPFS shows slightly better performance than FPFSand Back�lling follows FPFS.In MPFS, LPFS, FPFS, FPMPFS and FPLPFS,WaitLimit should be givento each job to avoid starvation. Figure 4 and Fig. 5 show processor utilization andmean response time whereWaitLimit, which is equal to 600[sec.], is given to eachjob. Figure 4 and Fig. 5 show that processor utilization by FPFS and FPMPFS isdegraded in high load while the degradation of others is slight. It is caused by thereason that searching jobs in the job queue is suppressed byWaitLimit in FPFSand FPMPFS. At low load, the degradation by WaitLimit is negligible becausethe number of jobs that continues waiting for being dispatched for long timeis a few. However, FPFS and FPMPFS improve processor utilization comparedwith FCFS, MPFS and LPFS despite performance degradation by WaitLimit.Furthermore, the degradation for mean response time by FPFS and FPMPFS isslight. FCFS and Back�lling show no performance degradation because they didnot caused starvation in the simulation. Back�lling shows the best improvementof processor utilization in this case.Figure 6 shows processor utilization by FPFS when variousWaitLimit's arede�ned. On Fig. 6, WL denotes WaitLimit[sec.]. Figure 6 shows that processorutilization is degraded at high load when WaitLimit is given. It is clear thatthe scheduling result by FPFS with WaitLimit = 0 is same as FCFS. There-fore, processor utilization by FPFS with WaitLimit becomes closer to FCFS asWaitLimit decreases. FPMPFS with Waitlimit showed almost same results inthe simulation.4.3 Variance of Response TimeTable 3 shows the variance of the response time of jobs when load = 0:5. Thenumber of processors requested by a job followsUniform Dist.WaitLimit, which
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Fig. 2. Processor utilization in simulation results (Uniform Dist.)
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Fig. 3. Mean response time in simulation results (Uniform Dist.)
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Fig. 4. Processor utilization in simulation results (WaitLimit = 600[sec.], UniformDist.)
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Fig. 5. Mean response time in simulation results (WaitLimit = 600[sec.], UniformDist.)
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Fig. 6. Processor utilization by FPFS with various WaitLimit in simulation results(Uniform Dist.)is equal to 600[sec.] is given to each job. MPFS and LPFS increase variance com-pared with FCFS. FPFS, FPMPFS and Back�lling reduce variance comparedwith FCFS. These results show that the technique searching the job queue andpositively dispatching jobs that �t idle processors decreases the variance of theresponse time of jobs, however, sorting jobs in the job queue increases the vari-ance. Table 3. Variance of response timeschemes varianceFCFS 639MPFS 1765LPFS 1058FPFS 365FPMPFS 498Back�lling 370



124.4 Processor Utilization under Real Dist.Figure 7 shows processor utilization by the simulation where the number of pro-cessors requested by a job followsReal Dist. Figure 7 shows that FPFS, FPMPFSand Back�lling improve processor utilization considerably. However, the perfor-mance of all job scheduling schemes are improved compared with results on Fig.2. Especially, the performance improvement of MPFS is considerable. It meansthat the performance is sensitive to the distribution of the number of processorsrequested by a job. In this case, it seems that the e�ciency of packing jobs thatfollows Real Dist. is higher than that follows Uniform Dist., because the numberof jobs that request all processors, or eight processors, is large in Real Dist.
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Fig. 7. Processor utilization in simulation results (Real Dist.)4.5 Summary of Simulation ResultsThe performance of job scheduling schemes obtained by the simulation are clas-si�ed into two categories.MPFS and LPFS, which sort the job queue by the number of requestedprocessors, showed almost same performance that is as follows.1. Both MPFS and LPFS improved processor utilization and reduced meanresponse time slightly compared with FCFS.



132. The performance degradation by WaitLimit of these schemes was slight.3. These schemes increased the variance of the response time of jobs comparedwith FCFS.FPFS, FPMPFS and Back�lling, which search the job queue and positivelydispatch jobs that �t idle processors, showed almost same performance that isas follows.1. FPFS, FPMPFS and Back�lling improved processor utilization and reducedmean response time considerably compared with MPFS, LPFS and FCFS.2. Although processor utilization by FPFS and FPMPFS was degraded whenWaitLimit was given to each job, they maintained better performance thanFCFS, MPFS and LPFS. In this case, Back�lling showed the best improve-ment of processor utilization. The degradation of processor utilization de-pended on value of WaitLimit.3. These schemes decreased the variance of the response time of jobs comparedwith FCFS.According to these results, it can be assumed that FPFS, FPMPFS andBack�lling caused better performance improvement than others. It shows thatthe e�ectiveness of the technique that searches the job queue and positively dis-patches jobs that �t idle processors. However, Back�lling has di�culty for prac-tical use, because it assumes that the execution time of each job is known beforeits execution. Therefore, this paper assumes that FPFS and FPMPFS cause bestperformance improvement among the job scheduling schemes discussed in thispaper. Simulation results in previous work [13,15] also showed e�ectiveness of apart of these job scheduling schemes, LPFS and FPFS (or Back�lling). Resultsobtained in this section are consistent with them.5 Performance AnalysisThis section describes the performance analysis of job scheduling schemes thatshowed best performance in the simulation, or FPFS and FPMPFS. The perfor-mance analysis of FCFS is also described to compare the performance of FPFSand FPMPFS with FCFS. In this analysis, the performance is measured byprocessor utilization and stability condition.5.1 Processor Utilization and Stability ConditionIn M=M=m queueing model, which assumes that the inter-arrival time and theservice time of jobs are exponentially distributed and there are m servers, thestability condition is given by � = �m � � < 1 (2)



14and the utilization of servers, U , is given byU �= �m�� ; � < 1! 1; � � 1: (3)Here, � denotes the mean arrival rate of a job and � denotes the mean servicerate per server. The stability condition is the condition to keep the system stable.If the stability condition is satis�ed, the mean response time of a job is stable[22].In other words, if stability condition is not satis�ed, the response time of a jobrises suddenly.In the job scheduling model assumed in this paper, an arrived job is executedon the requested number of processors simultaneously. Therefore, the followingformula is derived from (2) where p denotes the average number of processorsrequested by a job. � = � � pm � � < 1 (4)In M=M=m queueing model, all of m servers are active when there are jobswaiting for being dispatched in the job queue. However, in the job schedulingmodel assumed in this paper, when the number of idle processors is not zerobut less than the number of processors requested by any job in the job queue,idle processors remain idle. In other words, the number of active servers whenthere are jobs in the job queue is equal to or less than m. Therefore, the stabilitycondition in the job scheduling model assumed in this paper is given by� � p� �m � � < 1: (5)Here, ��m denotes the mean number of active servers when there are jobs waitingfor being dispatched in the job queue. In other words, � is the ratio of activeservers to all processors in the multiprocessor system when there are jobs in thejob queue. Then, the following formula is derived from (4), (5).� < � (6)and processor utilization, U , is given byU �= ��pm�� ; � < �! �; � � � (7)from (4), (6).The � de�nes the stability condition and an upper limit of processor utiliza-tion in the job scheduling model assumed in this paper. Therefore, the processorutilization (the upper limit of processor utilization) and the stability conditioncan be improved by increasing the value of �.5.2 Derivation of �The value of � can be derived from one-dimensional bin-packing problem. Thereare one-dimensional bins, Bj ; (j = 1; � �m), and a list of one-dimensional items,



15pi; (i = 1; � � n). The capacity of Bj is C. The length of pi, s(pi), is s(pi) � C.One-dimensional bin-packing problem attempts to minimize the number of binsto pack all items in the list satisfying Ppi2Bj s(pi) � C. Next Fit (NF), FirstFit (FF) and First Fit Decreasing (FFD) are proposed as algorithm for one-dimensional bin-packing problem [20].The job scheduling model assumed in this paper can be considered as one-dimensional bin-packing problem in which a job scheduler attempts to packjobs into the idle processors. Here, the job corresponds to the item and \thenumber of processors requested by the job" is s(pi). Similarly, the idle processorscorrespond to the bin and \the number of idle processors" is C. Then, it can beassumed that the value of � is same as the utilization of Bj in one-dimensionalbin-packing problem. In several previous works, two-dimensional bin-packingproblem has been used for the job scheduling model in which the job has two-dimensional quantity, the number of requested processors and the execution time[23]. However, one-dimensional bin-packing is suitable for the job schedulingmodel assumed in this paper because this paper assumes that the executiontime of a job is unknown.Worst Case Analysis. The performance of NF, FF and FFD in the worst caseis given as follows [20]. Here, hwc(A) denotes the number of bins to pack n itemsby algorithm A in the worst case and h(opt) denotes the number of bins to packn items in the optimal case.hwc(NF )h(opt) = 2:0; n!1 (8)hwc(FF )h(opt) = 1710 ; n!1 (9)hwc(FFD)h(opt) = 119 ; n!1 (10)Since it is safe to say that there is no fragmentation in bins in the optimalcase, utilization by NF, FF and FFD is the reciprocal of (8), (9) and (10) respec-tively. Therefore, values of � by FCFS, FPFS and FPMPFS in the worst case,�wc(FCFS), �wc(FPFS) and �wc(FPMPFS) are given as follows respectively.�wc(FCFS) = 12 = 0:5 (11)�wc(FPFS) = 1017 = 0:588 (12)�wc(FPMPFS) = 911 = 0:818 (13)These results show that FPFS and FPMPFS improve processor utilizationand stability condition in the worst case as compared with FCFS. These resultsalso show that FPMPFS improves performance more than FPFS.



16Average Case Analysis. The performance of NF in the average case wheres(pi) is uniformly distributed on (0; 1] is given as follows [24]. Here, hac(A)denotes the number of bins to pack n items by algorithm A in the average caseand h(opt) denotes the number of bins to pack n items in the optimal case.hac(NF )h(opt) = 43 ; n!1 (14)Next, the performance of FF in the average case is given byhac(FF ) = h(opt) + �(n 23 ) (15)[24,25]. Since s(pi) is uniformly distributed on (0,1], h(opt) = n=2. Then,hac(FF )h(opt) = 1 + �(n 23 )n=2 = 1 + �(n� 13 ) (16)is derived from (15) and then,hac(FF )h(opt) = 1; n!1: (17)In the same way, the performance of FFD in the average case is given byhac(FFD) = h(opt) + �(n 12 ) (18)[24]. Then, hac(FFD)h(opt) = 1; n!1: (19)From (14), (17) and (19), values of � by FCFS, FPFS and FPMPFS in theaverage case, �ac(FCFS), �ac(FPFS) and �ac(FPMPFS) are given as followsrespectively. �ac(FCFS) = 34 = 0:75 (20)�ac(FPFS) = 1 (21)�ac(FPMPFS) = 1 (22)These results show that FPFS and FPMPFS improve processor utilizationand stability condition in the average case as compared with FCFS.5.3 Comparison with Simulation ResultsFigure 8 shows processor utilization obtained by the simulation (on Fig. 2) andresults of average case analysis. On Fig. 8, solid lines indicate processor utiliza-tion in the simulation and dotted lines indicate results of the average case anal-ysis. Figure 8 shows that processor utilization by FCFS is saturated at nearbyload = 0:75 or more, while processor utilization by FPFS and FPMPFS maintainto improve at high load.
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Fig. 8. Processor utilization in simulation results and average case analysisFurthermore, on Fig. 3, mean response time by FCFS rises suddenly whenload is less than 0.75, because the stability condition is not satis�ed at load �0:75. On the other hand, FPFS and FPMPFS keep mean response time lowerthan FCFS, because FPFS and FPMPFS improve the stability condition com-pared with FCFS. These results show that the performance of FCFS, FPFS andFPMPFS in the simulation follows results in the average case analysis.6 Experiments on a Cenju-3This section describes experimental results of FPFS and FPMPFS on a multi-processor system NEC Cenju-3.6.1 Architecture of a Cenju-3Cenju-3 is composed of up to 256 processor elements (PE's) connected by a multi-stage interconnection network like baseline network. The system is connected tothe workstation, which acts as a host computer. Each PE has a microprocessorVR4400 and up to 64 ,MB local memory. The multi-stage interconnection net-work is composed of 4 � 4 switches, and its maximum throughput is 40 ,MB/s[19].Figure 9 illustrates architecture of a multiprocessor system NEC Cenju-3Model 8S that is used for the experiments. Cenju-3 Model 8S has eight PE's.



18The peak performance of a single PE is 33.3MFlops and each PE has 32 ,MBlocal memory in the system. The host computer, NEC EWS4800/330 EX, isconnected to the system.
Multi-stage interconnection network

PE0

CPU
  (VR4400SC)
Local Memory
  (32MByte)

 PE7PE1

Host Computer
(EWS4800/330EX)Fig. 9. Architecture of a Cenju-3 Model 8S6.2 Job Scheduling Mechanism on a Cenju-3The job scheduling mechanism on a Cenju-3 is achieved by two processes exe-cuted on a host computer, Job Scheduler and Maser. Job Scheduler decides thescheduling of arrived jobs and sends the scheduling result to MASER. MASERwatches information about PE's, sends the information to Job Scheduler andexecutes the job on PE's following the scheduling result sent by Job Scheduler[26].The authors have developed the new job scheduler based on the original JobScheduler to evaluate performance of FPFS and FPMPFS. Figure 10 shows ba-sic scheduling routines on the new job scheduler. On Fig. 10, FCFS Scheduleror FPFS Scheduler dispatches jobs to processors by FCFS or FPFS respectively.A job scheduler executes one of these routines repeatedly. FPMPFS job spoolerregisters arrived jobs into the job queue and sorts jobs by non-increasing orderof the number of requested processors. FPFS Scheduler is also used for FPMPFS.Processor relinquishment relinquishes processors on which the job �nishes execu-tion.6.3 Results on a Cenju-3In the experiment, the authors executed 500 jobs composed of three applicationprograms, Electro-magnetic �eld analysis [27], 3D multigrid [28] and Sparse ma-trix solver by Gauss-Seidel method. Arrival of these jobs are Poisson. All PE's
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queue[QUEUEMAX];          /* job queue */
queue[i].job;                          /* a job at i th position in a job queue */
queue[i].job.penum;            /* number of demanded PE's by queue[i].job */
queue[i].job.wl;                     /* WaitLimit  of queue[i].job */
QueueLength;                      /* number of jobs in a job queue */
IdlePeNumber;                     /* number of idle processors */
ArrivalJob;                             /* arrival job */
ArrivalJob.penum;               /* number of requested PE's by ArrivalJob */
FinishJob;                              /* job which finished its execution */
FinishJob.penum;                /* number of demanded PE's by FinishJob */

FCFS _S cheduler()
{
    while (){
        if(queue[1].job.penum <= IdlePeNumber){
            Dispatch_queue[1].job_to_Processors;
            IdlePeNumber - = queue[1].job.penum;
        }
}

FPFS _S cheduler()
{
    while (){
        i = 1;
        while(i <= QueueLength && IdlePeNumber > 0){
            if(queue[i].job.penum <= IdlePeNumber){
                Dispatch_queue[i].job_to_Processors;
                IdlePeNumber - = queue[i].job.penum;
                i++;
            } else {
                if(queue[i].job.wl <= waiting_time_of_queue[i].job )
                     break;
                else
                     i++;
            }
        }
    }
}

FPMPFS _job_spooler()
{
    i = QueueLength;
    while(i > 0){
        if(queue[i].job.wl <= waiting_time_of_queue[i].job )
            break;
        if(queue[i].job.penum < Arrivaljob.penum)
            i - -;
        else
            break;
    } 
    Insert_Arrivaljob_into_( i+1 )th_position_in_a_job_queue ;
}

Processor_relinquishment()
{
    Release_processors_which_executed_Finishjob;
    IdlePeNumber += FinishJob.penum;
}Fig. 10. Basic structure of job scheduling routines on a Cenju-3



20on the Cenju-3 are dedicated to the experiment. Among these 500 jobs, the num-ber of processors requested by a job is uniformly distributed on [1,8] and theaverage execution time of a job including time for loading a program and so onis 32[sec.]. Each job is given WaitLimit, which is equal to 600[sec.], for FPFSand FPMPFS.Figure 11 and Fig. 12 show processor utilization and mean response time inthe experiment. FCFS(native) denotes the native version of FCFS implementedon a Cenju-3 generally and FCFS(improved) denotes the improved version ofFCFS that the authors have developed newly. Di�erence between FCFS(native)and FCFS(improved) is scheduling overhead. In FCFS(native), Job Schedulerinquires MASER periodically to obtain the number of idle processors and thisprocess requires large overhead. In FCFS(improved), Job Scheduler has a localdata, or table, to watch the number of idle processors.Figure 11 and Fig. 12 show that FPFS and FPMPFS improve processorutilization and keep mean response time lower compared with FCFS. FPFS im-proves processor utilization by 9[%] compared with FCFS(improved) and by19[%] compared with FCFS(native) at load = 0:9. Mean response time byFCFS(native) and FCFS(improved) rises suddenly at load = 0:7 and load =0:8 respectively, however, FPFS and FPMPFS keep mean response time below116[sec.] at load = 0:8.Processor utilization by FPFS and FPMPFS is degraded to 81[%] at load =0:95 because of the in
uence by WaitLimit. Processor utilization by FPMPFSis degraded by 3[%] compared with FPFS at load = 0:9, because searching jobsin the job queue in FPMPFS was suppressed 12 times more than FPFS. Inother words, FPMPFS su�ered the in
uence by WaitLimit more than FPFS.FCFS(improved) shows much better performance than FCFS(native), becauseFCFS(native) requires larger overhead to watch the number of idle processorsthan FCFS(improved).These experimental results on a Cenju-3 show that FPFS and FPMPFSimprove processor utilization and keep mean response time lower, or improvestability condition, compared with FCFS as results in the simulation and theperformance analysis.7 ConclusionsThis paper evaluated the performance of job scheduling schemes for pure spacesharing among rigid jobs. More complex scheduling schemes such as gang schedul-ing and adaptive space sharing are discussed in the literature. However, the dis-cussion of job scheduling schemes for pure space sharing among rigid jobs is stillimportant, because these schemes are adopted on most multiprocessor systemscurrently installed for practical use. The performance of these job schedulingschemes has been discussed in the literature. In most of the previous work, theperformance has been evaluated by either simulation, performance analysis orexperiments. However, this paper evaluated performance of the job scheduling
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22schemes by combination of simulation, performance analysis and experiments toverify the e�ectiveness and the practicality of these schemes.Simulation results showed that FPFS, FPMPFS and Back�lling caused con-siderable performance improvement compared with others. This result meansthat searching the job queue and positively dispatching jobs that �t idle proces-sors can utilize processors more e�ciently and keep mean response time lowerthan others. However, Back�lling has di�culty for practical use, because it as-sumes that the execution time of each job is known before its execution. Per-formance analysis of job scheduling schemes that showed best performance inthe simulation, or FPFS and FPMPFS, showed that these schemes improvedprocessor utilization and stability condition compared with FCFS in both worstcase and average case. The comparison of results in the simulation and thosein the average case analysis showed that simulation results followed the analy-sis. Experimental results on a multiprocessor system NEC Cenju-3 also showedthe advantage of FPFS and FPMPFS as the simulation and the performanceanalysis.According to these results, this paper concludes that,1. FPFS and FPMPFS, which search the job queue and positively dispatch jobsthat �t idle processors, are more e�ective and more practical than other jobscheduling schemes discussed in this paper. Although Back�lling can alsoimprove performance, it has di�culty for practical use because it requiresknowledge about the execution time of an arrived job before its execution.2. Performance improvement by FPFS and FPMPFS is almost same. Therefore,FPFS is more practical than FPMPFS because the algorithm of FPFS issimpler than FPMPFS in average case.Results in Sect. 4.4 showed that the performance of job scheduling schemeswas sensitive to the distribution of the number of processors requested by a job.Further investigation on the sensitivity is required as future work.References1. High Performance Fortran Forum. High Performance Fortran Language Speci�ca-tion Version 1.0, 1993.2. H. Kasahara, H. Honda, K. Aida, M. Okamoto, and S. Narita. OSCAR FortranCompiler. In Proc. Workshop on Compilation of Languages for Parallel Computers,pages 30{37, 1991.3. D. G. Feitelson and L. Rudolph. Toward Convergence in Job Schedulers for Par-allel Supercomputers. In Job Scheduling Strategies for Parallel Processing, LectureNotes in Computer Science 1162, pages 1{26. Springer-Verlag, 1996.4. S. T. Leutenegger and M. K. Vernon. The Performance of Multiprogrammed Mul-tiprocessor Scheduling Policies. In Proc. of 1990 ACM SIGMETRICS Conferenceon Measurement and Modeling of Computer Systems, pages 226{236, 1990.5. A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating System Schedul-ing Policies and Synchronization Methods on the Performance of Parallel Appli-cations. In Proc. of 1991 ACM SIGMETRICS Conference on Measurement andModeling of Computer Systems, pages 120{132, 1991.
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