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Abstract. Metacomputing systems are intended to support remote and/or
concurrent use of geographically distributed computational resources.
Resource management in such systems is complicated by five concerns
that do not typically arise in other situations: site autonomy and hetero-
geneous substrates at the resources, and application requirements for pol-
icy extensibility, co-allocation, and online control. We describe a resource
management architecture that addresses these concerns. This architec-
ture distributes the resource management problem among distinct local
manager, resource broker, and resource co-allocator components and de-
fines an extensible resource specification language to exchange informa-
tion about requirements. We describe how these techniques have been
implemented in the context of the Globus metacomputing toolkit and
used to implement a variety of different resource management strategies.
We report on our experiences applying our techniques in a large testbed,
GUSTO, incorporating 15 sites, 330 computers, and 3600 processors.

1 Introduction

Metacomputing systems allow applications to assemble and use collections of
computational resources on an as-needed basis, without regard to physical loca-
tion. Various groups are implementing such systems and exploring applications
in distributed supercomputing, high-throughput computing, smart instruments,
collaborative environments, and data mining [10,12,18,20,22,6,25].

This paper is concerned with resource management for metacomputing: that
is, with the problems of locating and allocating computational resources, and
with authentication, process creation, and other activities required to prepare a
resource for use. We do not address other issues that are traditionally associated



with scheduling (such as decomposition, assignment, and execution ordering of
tasks) or the management of other resources such as memory, disk, and networks.

The metacomputing environment introduces five challenging resource man-
agement problems: site autonomy, heterogeneous substrate, policy extensibility,
co-allocation, and online control.

1. The site autonomy problem refers to the fact that resources are typically
owned and operated by different organizations, in different administrative
domains [5]. Hence, we cannot expect to see commonality in acceptable use
policy, scheduling policies, security mechanisms, and the like.

2. The heterogeneous substrate problem derives from the site autonomy problem
and refers to the fact that different sites may use different local resource
management systems [16], such as Condor [18], NQE [1], CODINE [11],
EASY [17], LSF [28], PBS [14], and LoadLeveler [15]. Even when the same
system is used at two sites, different configurations and local modifications
often lead to significant differences in functionality.

3. The policy extensibility problem arises because metacomputing applications
are drawn from a wide range of domains, each with its own requirements.
A resource management solution must support the frequent development of
new domain-specific management structures, without requiring changes to
code installed at participating sites.

4. The co-allocation problem arises because many applications have resource
requirements that can be satisfied only by using resources simultaneously at
several sites. Site autonomy and the possibility of failure during allocation
introduce a need for specialized mechanisms for allocating multiple resources,
initiating computation on those resources, and monitoring and managing
those computations.

5. The online control problem arises because substantial negotiation can be re-
quired to adapt application requirements to resource availability, particularly
when requirements and resource characteristics change during execution. For
example, a tele-immersive application that needs to simulate a new entity
may prefer a lower-resolution rendering, if the alternative is that the entity
not be modeled at all. Resource management mechanisms must support such
negotiation.

As we explain in Section 2, no existing resource management systems ad-
dresses all five problems. Some batch queuing systems support co-allocation, but
not site autonomy, policy extensibility, and online control [16]. Condor supports
site autonomy, but not co-allocation or online control [18]. Gallop [26] addresses
online control and policy extensibility, but not the heterogeneous substrate or
co-allocation problem. Legion [12] does not, address the heterogeneous substrate
problem.

In this paper, we describe a resource management architecture that we have
developed to address the five problems. In this architecture, developed in the
context of the Globus project [10], we address problems of site autonomy and
heterogeneous substrate by introducing entities called resource managers to pro-
vide a well-defined interface to diverse local resource management tools, policies,



and security mechanisms. To support online control and policy extensibility,
we define an extensible resource specification language that supports negotia-
tion between different components of a resource management architecture, and
we introduce resource brokers to handle the mapping of high-level application
requests into requests to individual managers. We address the problem of co-
allocation by defining various co-allocation strategies, which we encapsulate in
resource co-allocators.

One measure of success for an architecture such as this is its usability in a
practical setting. To this end, we have implemented and deployed this architec-
ture on GUSTO, a large computational grid testbed comprising 15 sites, 330
computers, and 3600 processors, using LSF, NQE, LoadLeveler, EASY, Fork,
and Condor as local schedulers. To date, this architecture and testbed have
been used by ourselves and others to implement numerous applications and half
a dozen different higher-level resource management strategies. This experiment
represents a significant step forward in terms of number of global metacomputing
services implemented and number and variety of commercial and experimental
local resource management systems employed. A more quantitative evaluation
of the approach remains as a significant challenge for future work.

The rest of this paper is structured as follows. In the next section, we review
current distributed resource management solutions. In subsequent sections we
first outline our architecture and then examine each major function in detail:
the resource specification language, local resource managers, resource brokers,
and resource co-allocators. We summarize the paper and discuss future work in
Section 8.

2 Resource Management Approaches

Previous work on resource management for metacomputing systems can be bro-
ken into two broad classes:

— Network batch queuing systems. These systems focus strictly on resource
management issues for a set of networked computers. These systems do not
address policy extensibility and provide only limited support for online con-
trol and co-allocation.

— Wide-area scheduling systems. Here, resource management is performed as a
component of mapping application components to resources and scheduling
their execution. To date, these systems do not address issues of heterogeneous
substrates, site autonomy, and co-allocation.

In the following, we use representative examples of these two types of system to
illustrate the strengths and weaknesses of current approaches.

2.1 Networked Batch Queuing Systems

Networked batch queuing systems, such as NQE [1], CODINE [11], LSF [28],
PBS [14], and LoadLeveler [15], handle user-submitted jobs by allocating re-
sources from a networked pool of computers. The user characterizes application



resource requirements either explicitly, by some type of job control language, or
implicitly, by selecting the queue to which a request is submitted. Networked
batch queuing systems typically are designed for single administrative domains,
making site autonomy difficult to achieve. Likewise, the heterogeneous substrate
problem is also an issue because these systems generally assume that they are the
only resource management system in operation. One exception is the CODINE
system, which introduces the concept of a transfer queue to allow jobs submitted
to CODINE to be allocated by some other resource management system, at a
reduced level of functionality. An alternative approach to supporting substrate
heterogeneity is being explored by the PSCHED [13] initiative. This project is
attempting to define a uniform API through which a variety of batch scheduling
systems may be controlled. The goals of PSCHED are similar in many ways to
those of the Globus Resource Allocation Manager described in Section 5.

Batch scheduling systems provide a limited form of policy extensibility in
that resource management policy is set by either the system or the system ad-
ministrator, by the creation of scheduling policy or batch queues. However, this
capability is not available to the end users, who have little control over how the
batch scheduling system interprets their resource requirements.

Finally, we observe that batch queuing systems have limited support for on-
line allocation, as these systems are designed to support applications in which
the requirements specifications are in the form “get X done soon”, where X
is precisely defined but “soon” is not. In metacomputing applications, we have
more complex, fluid constraints, in which we will want to make tradeoffs between
time (when) and space (physical characteristics). Such constraints lead to a need
for the resource management system to provide capabilities such as negotiation,
inquiry interfaces, information-based control, and co-allocation, none of which
are provided in these systems.

In summary, batch scheduling systems do not provide in themselves a com-
plete solution to metacomputing resource management problems. However, clearly
some of the mechanisms developed for resource location, distributed process con-
trol, remote file access, to name a few, can be applied to wide-area systems as
well. Furthermore, we note that network batch queuing systems will necessarily
be part of the local resource management solution. Hence, any metacomputing
resource management architecture must be able to interface to these systems.

2.2 Wide-Area Scheduling Systems

We now examine how resource management is addressed within systems de-
veloped specifically to schedule metacomputing applications. To gain a good
perspective on the range of possibilities, we discuss four different schedulers,
designed variously to support specific classes of applications (Gallop [26]), an
extensible object-oriented system (Legion [12]), general classes of parallel pro-
grams (PRM [22]), and high-throughput computation (Condor [18]).

The Gallop [26] system allocates and schedules tasks defined by a static
task graph onto a set of networked computational resources. (A similar mech-
anism has been used in Legion [27].) Resource allocation is implemented by a



scheduling manager, which coordinates scheduling requests, and a local man-
ager, which manages the resources at a local site, potentially interfacing to site-
specific scheduling and resource allocation services. This decomposition, which
we also adopt, separates local resource management operations from global re-
source management policy and hence facilitates solutions to the problems of site
autonomy, heterogeneous substrates, and policy extensibility. However, Gallop
does not appear to handle authentication to local resource management services,
thereby limiting the level of site autonomy that can be achieved.

The use of a static task-graph model makes online control in Gallop difficult.
Resource selection is performed by attempting to minimize the execution time
of task graph as predicted by a performance model for the application and the
prospective resource. However, because the minimization procedure and the cost
model is fixed, there is no support for policy extensibility. Legion [12] overcomes
this limitation by leveraging its object-oriented model. Two specialized objects,
an application-specific Scheduler and a resource-specific Enactor negotiate with
one another to make allocation decisions. The Enactor can also provide co-
allocation functions.

Gallop supports co-allocation for resources maintained within an administra-
tive domain, but depends for this purpose on the ability to reserve resources. Un-
fortunately, reservation is not currently supported by most local resource man-
agement systems. For this reason, our architecture does not rely on reservation
to perform co-allocation, but rather uses a separate co-allocation management
service to perform this function.

The Prospero Resource Manager [22] (PRM) provides resource manage-
ment functions for parallel programs written by using the PVM message-passing
library. PRM consists of three components: a system manager, a job manager,
and a node manager. The job manager makes allocation decisions, while the sys-
tem and node manager actually allocate resources. The node manager is solely
responsible for implementing resource allocation functions. Thus, PRM does
not address issues of site autonomy or substrate heterogeneity. A variety of job
managers can be constructed, allowing for policy extensibility, although there is
no provision for composing job managers so as to extend an existing manage-
ment policy. As in our architecture, PRM has both an information infrastructure
(Prospero [21]) and a management API, providing the infrastructure needed to
perform online control. However, unlike our architecture, PRM does not support
co-allocation of resources.

Condor [18] is a resource management system designed to support high-
throughput computations by discovering idle resources on a network and allo-
cating those resources to application tasks. While Condor does not interface
with existing resource management systems, resources controlled by Condor are
deallocated as soon as the “rightful” owner starts to use them. In this sense,
Condor supports site autonomy and heterogeneous substrates. However, Condor
currently does not interoperate with local resource authentication, limiting the
degree of autonomy a site can assert. Condor provides an extensible resource
description language, called classified ads, which provides limited control over



resource selection to both the application and resource. However, the matching
of application component to resource is performed by a system classifier, which
defines how matches—and consequently resource management—take place, lim-
iting the extensibility of this selection policy. Finally, Condor provides no support
for co-allocation or online control.

In summary, our review of current resource management approaches revealed
a range of valuable services, but no single system that provides solutions to all
five metacomputing resource management problems posed in the introduction.

3 Our Resource Management Architecture
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Fig. 1. The Globus resource management architecture, showing how RSL specifications
pass between application, resource brokers, resource co-allocators, and local managers
(GRAMs). Notice the central role of the information service.

Our approach to the metacomputing resource management problem is illustrated
in Figure 1. In this architecture, an extensible resource specification language
(RSL), discussed in Section 4 below, is used to communicate requests for re-
sources between components: from applications to resource brokers, resource
co-allocators, and resource managers. At each stage in this process, information
about resource requirements, coded as an RSL expression by the application,



is refined by one or more resource brokers and co-allocators; information about
resource availability and characteristics is obtained from an information service.

Resource brokers are responsible for taking high-level RSL specifications and
transforming them into more concrete specifications through a process we call
spectalization. As illustrated in Figure 2, multiple brokers may be involved in ser-
vicing a single request, with application-specific brokers translating application
requirements into more concrete resource requirements, and different resource
brokers being used to locate available resources that meet those requirements.

Transformations effected by resource brokers generate a specification in which
the locations of the required resources are completely specified. Such a ground
request can be passed to a co-allocator, which is responsible for coordinating
the allocation and management of resources at multiple sites. As we describe in
Section 7, a variety of co-allocators will be required in a metacomputing system,
providing different co-allocation semantics.
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Fig. 2. This view of the Globus resource management architecture shows how different
types of broker can participate in a single resource request

Resource co-allocators break a multirequest—that is, a request involving re-
sources at multiple sites—into its constituent elements and pass each component



to the appropriate resource manager. As discussed in Section 5, each resource
manager in the system is responsible for taking an RSL request and translating
it into operations in the local, site-specific resource management system.

The nformation service i1s responsible for providing efficient and pervasive
access to information about the current availability and capability of resources.
This information is used to locate resources with particular characteristics, to
identify the resource manager associated with a resource, to determine properties
of that resource, and for numerous other purposes as high-level resource spec-
ifications are translated into requests to specific managers. We use the Globus
system’s Metacomputing Directory Service (MDS) [8] as our information ser-
vice. MDS uses the data representation and application programming interface
(APT) defined on the Lightweight Directory Access Protocol (LDAP) to meet re-
quirements for uniformity, extensibility, and distributed maintenance. It defines
a data model suitable for distributed computing applications, able to represent
computers and networks of interest, and provides tools for populating this data
model. LDAP defines a hierarchical, tree-structured name space called a direc-
tory information tree (DIT). Fields within the namespace are identified by a
unique distinguished name (DN). LDAP supports both distribution and replica-
tion. Hence, the local service associated with MDS is exactly an LDAP server
(or a gateway to another LDAP server, if multiple sites share a server), plus
the utilities used to populate this server with up-to-date information about the
structure and state of the resources within that site. The global MDS service
is simply the ensemble of all these servers. An advantage of using MDS as our
information service is that resource management information can be used by
other tools, as illustrated in Figure 3.

4 Resource Specification Language

We now discuss the resource specification language itself. The syntax of an RSL
specification, summarized in Figure 4, is based on the syntax for filter specifica-
tions in the Lightweight Directory Access Protocol and MDS. An RSL specifica-
tion 1s constructed by combining simple parameter specifications and conditions
with the operators &; to specify conjunction of parameter specifications, |; to
express the digjunction of parameter specifications, +; or to combine two or more
requests into a single compound request, or multirequest.

The set of parameter-name terminal symbols is extensible: resource brokers,
co-allocators, and resource managers can each define a set of parameter names
that they will recognize. For example, a resource broker that is specialized for
tele-immersive applications might accept as input a specification containing a
frames—per—-second parameter and might generate as output a specification
containing an mf lops-per-second parameter, to be passed to a broker that deals
with computational resources. Resource managers, the system components that
actually talk to local scheduling systems, recognize two types of parameter-name
terminal symbols:
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Fig.3. The GlobusView tool uses MDS information about resource manager status
to present information about the current status of a metacomputing testbed. On the
left, we see the sites that are currently participating in the testbed; on the right is
information about the total number of nodes that each site is contributing, the number
of those nodes that are currently available to external users, and the usage of those
nodes by Globus users.

specification := request

request = multirequest | conjunction | disjunction | parameter
multirequest := + request-list

conjunction := & request-list

disjunction := | request-list

request-list = ( request ) request-list | ( request )

parameter := parameter-name op value

op == > <|>=|<=]|!=

value := ([a..2][0..9][])+

Fig.4. BNF grammar describing the syntax of an RSL request



— MDS attribute names, used to express constraints on resources: for exam-
ple, memory>=64 or network=atm. In this case, the parameter name refers
to a field defined in the MDS entry for the resource being allocated. The
truth of the parameter specification is determined by comparing the value
provided with the specification with the current value associated with the
corresponding field in the MDS. Arbitrary MDS fields can be specified by
providing their full distinguished name.

— Scheduler parameters, used to communicate information regarding the job,
such as count (number of nodes required), max_time (maximum time re-
quired), executable, arguments, directory, and environment (environ-
ment variables). Schedule parameters are interpreted directly by the resource
manager.

For example, the specification

&(executable=myprog)
(1 (&(count=5) (memory>=64)) (&(count=10) (memory>=32)))

requests 5 nodes with at least 64 MB memory, or 10 nodes with at least
32 MB. In this request, executable and count are scheduler attribute names,
while memory is an MDS attribute name.

Our current RSL parser and resource manager disambiguate these two pa-
rameter types on the basis of the parameter name. That is, the resource manager
knows which fields it will accept as scheduler parameters and assumes all oth-
ers are MDS attribute names. Name clashes can be disambiguated by using the
complete distinguished name for the MDS field in question.

The ability to include constraints on MDS attribute values in RSL specifi-
cations is important. As we discuss in Section 5, the state of resource managers
is stored in MDS. Hence, resource specifications can refer to resource charac-
teristics such as queue-length, expected wait time, and number of processors
available. This technique provides a powerful mechanism for controlling how an
RSL specification is interpreted.

The following example of a multirequest is derived from the example shown
in Figure 2.

+(&(count=80) (memory>=64M) (executable=sf_express)
(resourcemanager=icol6.mcs.anl.gov:8711))
(&(count=256) (network=atm) (executable=sf_express)
(resourcemanager=neptune.cacr.caltech.edu:755))
(&(count=300) (memory>=64M) (executable=sf_express)
(resourcemanager=modi4.ncsa.edu:4000))

This is a ground request: every component of the multirequest specifies a re-
source manager. A co-allocator can use the resourcemanager parameters spec-
ified in this request to determine to which resource manager each component of
the multirequest should be submitted.

Notations intended for similar purposes include the Condor “classified ad” [18]
and Chapin’s “task description vector” [5]. Our work is novel in three respects:



the tight integration with a directory service, the use of specification rewriting to
express broker operations (as described below), and the fact that the language
and associated tools have been implemented and demonstrated effective when
layered on top of numerous different low-level schedulers.

We conclude this section by noting that it is the combination of resource
brokers, information service, and RSL that makes online control possible in our
architecture. Together, these services make it possible to construct requests dy-
namically, based on current system state and negotiation between the application
and the underlying resources.

5 Local Resource Management

We now describe the lowest level of our resource management architecture: the
local resource managers, implemented in our architecture as Globus Resource

Allocation Managers (GRAMs). A GRAM is responsible for

1. processing RSL specifications representing resource requests, by either deny-
ing the request or by creating one or more processes (a “job”) that satisfy
that request;

2. enabling remote monitoring and management of jobs created in response to
a resource request; and

3. periodically updating the MDS information service with information about
the current availability and capabilities of the resources that it manages.

A GRAM serves as the interface between a wide area metacomputing envi-
ronment and an autonomous entity able to create processes, such as a parallel
computer scheduler or a Condor pool. Hence, a resource manager need not cor-
respond to a single host or a specific computer, but rather to a service that acts
on behalf of one or more computational resources. This use of local scheduler
interfaces was first explored in the software environment for the I-WAY network-
ing experiment [9], but is extended and generalized here significantly to provide
a richer and more flexible interface.

A resource specification passed to a GRAM is assumed to be ground: that is,
to be sufficiently concrete that the GRAM can identify local resources that meet
the specification without further interaction with the entity that generated the
request. A particular GRAM implementation may achieve this goal by schedul-
ing resources itself or, more commonly, by mapping the resource specification
into a request to some local resource allocation mechanisms. (To date, we have
interfaced GRAMs to six different schedulers or resource allocators: Condor,
EASY, Fork, LoadLeveler, LSF, and NQE.) Hence, the GRAM API plays for
resource management a similar role to that played by IP for communication: it
can co-exist with local mechanisms, just as IP rides on top of ethernet, FDDI,
or ATM networking technology.

The GRAM API provides functions for submitting and for canceling a job re-
quest and for asking when a job (submitted or not) is expected to run. An imple-
mentation of the latter function may use queue time estimation techniques [24].



When a job is submitted, a globally unique job handle is returned that can
then be used to monitor and control the progress of the job. In addition, a job
submission call can request that the progress of the requested job be signaled
asynchronously to a supplied callback URL. Job handles can be passed to other
processes, and callbacks do not have to be directed to the process that submitted
the job request. These features of the GRAM design facilitate the implementa-
tion of diverse higher-level scheduling strategies. For example, a high-level broker
or co-allocator can make a request on behalf of an application, while the appli-
cation monitor the progress of the request.

5.1 GRAM Scheduling Model

We discuss briefly the scheduling model defined by GRAM because this is rele-
vant to subsequent discussion of co-allocation. This model is illustrated in Fig-
ure 5, which shows the state transitions that may be experienced by a GRAM
job.

Fig.5. State transition diagram for resource allocation requests submitted to the
GRAM resource management API

When submitted, the job is initially pending, indicating that resources have
not yet been allocated to the job. At some point, the job is allocated the requested
resources, and the application starts running. The job then transitions to the
active state. At any point prior to entering the done state, the job can be
terminated, causing it to enter the failed state. A job can fail because of explicit
termination, an error in the format of the request, a failure in the underlying
resource management system, or a denial of access to the resource. The source
of the failure 1s provided as part of the notification of state transition. When all
of the processes in the job have terminated and resources have been deallocated,
the job enters the done state.

5.2 GRAM Implementation

The GRAM implementations that we have constructed have the structure shown
in Figure 6. The principal components are the GRAM client library, the gate-
keeper, the RSL parsing library, the job manager, and the GRAM reporter. The



Globus security infrastructure (GSI) is used for authentication and for autho-
rization.
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Fig.6. Major components of the GRAM implementation. Those represented by thick-
lined ovals are long-lived processes, while the thin-lined ovals are short-lived processes
created in response to a request.

The GRAM client library is used by an application or a co-allocator acting
on behalf of an application. It interacts with the GRAM gatekeeper at a remote
site to perform mutual authentication and transfer a request, which includes a
resource specification and a callback (described below).

The gatekeeper is an extremely simple component that responds to a request
by doing three tasks: performing mutual authentication of user and resource,
determining a local user name for the remote user, and starting a job manager
which executes as that local user and actually handles the request. The first two
security-related tasks are performed by calls to the Globus security infrastruc-
ture (GSI), which handles issues of site autonomy and substrate heterogeneity
in the security domain. To start the job manager, the gatekeeper must run as a
privileged program: on Unix systems, this is achieved via suid or inetd. How-
ever, because the interface to the GSI is small and well defined, it is easy for
organizations to approve (and port) the gatekeeper code. In fact, the gatekeeper
code has successfully undergone security reviews at a number of large super-



computer centers. The mapping of remote user to locally recognized user name
minimizes the amount of code that must run as a privileged program; it also
allows us to delegate most authorization issues to the local system.

The job manager is responsible for creating the actual processes requested by
the user. This task typically involves submitting a resource allocation request to
the underlying resource management system, although if no such system exists
on a particular resource; a simple fork may be performed. Once processes are
created, the job manager is also responsible for monitoring the state of the
created processes, notifying the callback contact of any state transitions, and
implementing control operations such as process termination. The job manager
terminates once the job for which it is responsible has terminated.

The GRAM reporter is responsible for storing into MDS various information
about scheduler structure (e.g., whether the scheduler supports reservation and
the number of queues) and state (e.g., total number of nodes, number of nodes
currently available, currently active jobs, and expected wait time in a queue). An
advantage of implementing the GRAM reporter as a distinct component is that
MDS reports can continue even when no gatekeeper or job manager is running:
for example, when the gatekeeper is run from inetd.

As noted above, GRAM implementations have been constructed for six local
schedulers to date: Condor, LSF, NQE, Fork, EASY, and LoadLeveler. Much of
the GRAM code is independent of the local scheduler, and so only a relatively
small amount of scheduler-specific code needed to be written in each case. In
most cases, this code comprises shell scripts that use the local scheduler’s user-
level API. State transitions are handled mostly by polling, because this proved
to be more reliable than monitoring job processes by using mechanisms provided
by the local schedulers.

6 Resource Brokers

As noted above, we use the term resource broker to denote an entity in our
architecture that translates abstract resource specifications into more concrete
specifications. As illustrated in Figure 2, this definition i1s broad enough to en-
compass a variety of behaviors, including application-level schedulers [3] that
encapsulate information about the types of resource required to meet a particu-
lar performance requirement, resource locators that maintain information about
the availability of various types of resource, and (ultimately) traders that cre-
ate markets for resources. In each case, the broker uses information maintained
locally, obtained from MDS, or contained in the specification to specialize the
specification, mapping it into a new specification that contain more detail. Re-
quests can be passed to several brokers, effectively composing the behaviors of
those brokers, until eventually the specification is specialized to the point that
it identifies a specific resource manager. This specification can then be passed
to the appropriate GRAM or, in the case of a multirequest, to a resource co-
allocator.



We claim that our architecture makes it straightforward to develop a variety
of higher-level schedulers. In support of this claim, we note that following the
definition and implementation of GRAM services, a variety of people, including
people not directly involved in GRAM definition, were able to construct half a
dozen resource brokers quite quickly. We describe three of these here.

6.1 Nimrod-G

David Abramson and Jonathan Giddy are using GRAM mechanisms to develop
Nimrod-G, a wide-area version of the Nimrod [2] tool. Nimrod automates the
creation and management of large parametric experiments. It allows a user to
run a single application under a wide range of input conditions and then to
aggregate the results of these different runs for interpretation. In effect, Nimrod
transforms file-based programs into interactive “meta-applications” that invoke
user programs much as we might call subroutines.

When a user first requests that a computational experiment be performed,
Nimrod/G queries MDS to locate suitable resources. It uses information in MDS
entries to identify sufficient nodes to perform the experiment. The initial Nimrod-
G prototype operates by generating a number of independent jobs, which are
then allocated to computational nodes using GRAM. This module hides the
nature of the execution mechanism on the underlying platform from Nimrod,
hence making it possible to schedule work using a variety of different queue
managers without modification to the Nimrod scripts. As a result, a reasonably
complex cluster computing system could be retargeted for wide-area execution
with relatively little effort.

In the future, the Nimrod-G developers plan to provide a higher level broker
that allows the user to specify time and cost constraints. These constraints will
be used to select computational nodes that can meet user requirements for time
and cost or, if constraints cannot be met, to explain the nature of the cost/time
tradeoffs. As part of this work, a dynamic resource allocation module is planned
that will monitor the state of each system and relocate work when necessary in
order to meet the deadlines.

6.2 AppLeS

Rich Wolski has used GRAM mechanisms to construct an application-level
scheduler (AppLeS) [3] for a large, loosely coupled problem from computational
mathematics. As in Nimrod-G, the goal was to map a large number of inde-
pendent tasks to a dynamically varying pool of available computers. GRAM
mechanisms were used to locate resources (including parallel computers) and
to initiate and manage computation on those resources. AppLeS itself provided
fault tolerance, so that errors reported by GRAM would result in a task being
resubmitted elsewhere.



6.3 A Graphical Resource Selector

The graphical resource selector (GRS) illustrated in Figure 7 is an example of an
interactive resource selector constructed with our services. This Java application
allows the user to build up a network representing the resources required for an
application; another network can be constructed to monitor the status of candi-
date physical resources. A combination of automatic and manual techniques is
then used to guide resource selection, eventually generating an RSL specification
for the resources in question. MDS services are used to obtain the information
used for resource monitoring and selection, and resource co-allocator services
are used to generate the GRAM requests required to execute a program once a
resource selection is made.
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Fig.7. A screen shot of the Graphical Resource Selector. This network shows three
candidate resources and associated network connections. Static information regarding
operating system version and dynamically updated information regarding the number
of currently available nodes (freenodes) and network latency and bandwidth (in msec
and Mb/s, respectively) allows the user to select appropriate resources for a particular

experiment,.

7 Resource Co-allocation

Through the actions of one or more resource brokers, the requirements of an
application are refined into a ground RSL expression. If the expression consists
of a single resource request, it can be submitted directly to the manager that
controls that resource. However, as discussed above, a metacomputing applica-
tion often requires that several resources—such as two or more computers and



intervening networks—be allocated simultaneously. In these cases; a resource
broker produces a multirequest, and co-allocation is required. The challenge in
responding to a co-allocation request is to allocate the requested resources in
a distributed environment, across two or more resource managers, where global
state, such as availability of a set of resources, is difficult to determine.

Within our resource management architecture, multirequests are handled by
an entity called a resource co-allocator. In brief, the role of a co-allocator is to
split a request into its constituent components, submit each component to the
appropriate resource manager, and then provide a means for manipulating the
resulting set of resources as a whole: for example, for monitoring job status or
terminating the job. Within these general guidelines, a range of different co-
allocation services can be constructed. For example, we can imagine allocators
that

— mirror current GRAM semantics: that is, require all resources to be available
before the job is allowed to proceed, and fail globally if failure occurs at any
resource;

— allocate at least N out of M requested resources and then return; or

— return immediately, but gradually return more resources as they become
available.

Each of these services is useful to a class of applications. To date, we have had
the most experience with a co-allocator that takes the first of these approaches:
that is, extends GRAM semantics to provide for simultaneous allocation of a
collection of resources, enabling the distributed collection of processes to be
treated as a unit. We discuss this co-allocator in more detail.

Fundamental to a GRAM-style concurrent allocation algorithm is the ability
to determine whether the desired set of resources is available at some time in the
future. If the underlying local schedulers support reservation, this question can
be easily answered by obtaining a list of available time slots from each participat-
ing resource manager, and choosing a suitable timeslot [23]. Ideally, this scheme
would use transaction-based reservations across a set of resource managers, as
provided by Gallop [26]. In the absence of transactions, the ability either to make
a tentative reservation or to retract an existing reservation in needed. However,
in general, a reservation-based strategy is limited because currently deployed
local resource management solutions do not support reservation.

In the absence of reservation, we are forced to use indirect methods to achieve
concurrent allocation. These methods optimistically allocate resources in the
hope that the desired set will be available at some “reasonable” time in the
future. Guided by sources of information, such as the current availability of
resources (provided by MDS) or queue-time estimation [24,7], a resource broker
can construct an RSL request that is likely, but not guaranteed, to succeed. If
for some reason the allocation eventually fails, all of the started jobs must be
terminated. This approach has several drawbacks:

— It is inefficient in that computational resource are wasted while waiting for
all of the requested to become available.



— We need to ensure that application components do not start to execute before
the co-allocator can determine whether the request will succeed. Therefore,
the application must perform a barrier operation to synchronize startup
across components, meaning that the application must be altered beyond
what is required for GRAM.

— Detecting failure of a request can be difficult if some of the request compo-
nents are directed to resource managers that interface to queue-based local
resource management systems. In these situations, a timeout must be used
to detect failure.

However, in spite of all of these drawbacks, co-allocation can frequently be
achieved in practice as long as the resource requirements are not large compared
with the capacity of the metacomputing system.

We have implemented a GRAM-compatible co-allocator that implements a
job abstraction in which multiple GRAM subjobs are collected into a single
distributed job entity. State information for the distributed job is synthesized
from the individual states of each subjob, and job control (e.g., cancellation) is
automatically propagated to the resource managers at each subjob site. Subjobs
are started independently and as discussed above must perform a runtime check-
in operation. With the exception of this check-in operation, the co-allocator
interface is a drop-in replacement for GRAM.

We have used this co-allocator to manage resources for SF-Express [19,4], a
large-scale distributed interactive simulation application. Using our co-allocator
and the GUSTO testbed, we were able to simultaneously obtain 852 compute
nodes on three different architectures located at six different computer centers,
controlled by three different local resource managers. The use of a co-allocation
service significantly simplified the process of resource allocation and application
startup.

Running SF-Express “at scale” on a realistic testbed allowed us to study
the scalability of our co-allocation strategy. One clear lesson learned is that the
strict “all or nothing” semantics of the distributed job abstraction severely limits
scalability. Even if each individual parallel computer is reasonably reliable and
well understood, the probability of subjob failure due to improper configuration,
network error, authorization difficulties, and the like. increases rapidly as the
number of subjobs increases. Yet many such failure modes resulted simply from
a failure to allocate a specific instance of a commodity resource, for which an
equivalent resource could easily have been substituted. Because such failures
frequently occur after a large number of subjobs have been successfully allocated,
it would be desirable to make the substitution dynamically, rather than to cancel
all the allocations and start over.

We plan to extend the current co-allocation structure to support such dy-
namic job structure modification. By passing information about the nature of
the subjob failure out of the co-allocator, a resource broker can edit the specifica-
tion, effectively implementing a backtracking algorithm for distributed resource
allocation. Note that we can encode the necessary information about failure in a
modified version of the original RSL request, which can be returned to the com-



ponent that originally requested the co-allocation services. In this way, we can
iterate through the resource-broker/co-allocation components of the resource
management architecture until an acceptable collection of resources has been
acquired on behalf of the application.

8 Conclusions

We have described a resource management architecture for metacomputing sys-
tems that addresses requirements of site autonomy, heterogeneous substrates,
policy extensibility, co-allocation, and online control. This architecture has been
deployed and applied successfully in a large testbed comprising 15 sites, 330
computers, and 3600 processors, within which LSF, NQE, LoadLeveler, EASY,
Fork, and Condor were used as local schedulers.

The primary focus of our future work in this area will be on the development
of more sophisticated resource broker and resource co-allocator services within
our architecture, and on the extension of our resource management architecture
to encompass other resources such as disk and network. We are also interested
in the question of how policy information can be encoded so as to facilitate
automatic negotiation of policy requirements by resources, users, and processes
such as brokers acting as intermediaries.
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