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with scheduling (such as decomposition, assignment, and execution ordering oftasks) or the management of other resources such as memory, disk, and networks.The metacomputing environment introduces �ve challenging resource man-agement problems: site autonomy, heterogeneous substrate, policy extensibility,co-allocation, and online control.1. The site autonomy problem refers to the fact that resources are typicallyowned and operated by di�erent organizations, in di�erent administrativedomains [5]. Hence, we cannot expect to see commonality in acceptable usepolicy, scheduling policies, security mechanisms, and the like.2. The heterogeneous substrate problem derives from the site autonomy problemand refers to the fact that di�erent sites may use di�erent local resourcemanagement systems [16], such as Condor [18], NQE [1], CODINE [11],EASY [17], LSF [28], PBS [14], and LoadLeveler [15]. Even when the samesystem is used at two sites, di�erent con�gurations and local modi�cationsoften lead to signi�cant di�erences in functionality.3. The policy extensibility problem arises because metacomputing applicationsare drawn from a wide range of domains, each with its own requirements.A resource management solution must support the frequent development ofnew domain-speci�c management structures, without requiring changes tocode installed at participating sites.4. The co-allocation problem arises because many applications have resourcerequirements that can be satis�ed only by using resources simultaneously atseveral sites. Site autonomy and the possibility of failure during allocationintroduce a need for specialized mechanisms for allocatingmultiple resources,initiating computation on those resources, and monitoring and managingthose computations.5. The online control problem arises because substantial negotiation can be re-quired to adapt application requirements to resource availability, particularlywhen requirements and resource characteristics change during execution. Forexample, a tele-immersive application that needs to simulate a new entitymay prefer a lower-resolution rendering, if the alternative is that the entitynot be modeled at all. Resource managementmechanisms must support suchnegotiation.As we explain in Section 2, no existing resource management systems ad-dresses all �ve problems. Some batch queuing systems support co-allocation, butnot site autonomy, policy extensibility, and online control [16]. Condor supportssite autonomy, but not co-allocation or online control [18]. Gallop [26] addressesonline control and policy extensibility, but not the heterogeneous substrate orco-allocation problem. Legion [12] does not address the heterogeneous substrateproblem.In this paper, we describe a resource management architecture that we havedeveloped to address the �ve problems. In this architecture, developed in thecontext of the Globus project [10], we address problems of site autonomy andheterogeneous substrate by introducing entities called resource managers to pro-vide a well-de�ned interface to diverse local resource management tools, policies,



and security mechanisms. To support online control and policy extensibility,we de�ne an extensible resource speci�cation language that supports negotia-tion between di�erent components of a resource management architecture, andwe introduce resource brokers to handle the mapping of high-level applicationrequests into requests to individual managers. We address the problem of co-allocation by de�ning various co-allocation strategies, which we encapsulate inresource co-allocators.One measure of success for an architecture such as this is its usability in apractical setting. To this end, we have implemented and deployed this architec-ture on GUSTO, a large computational grid testbed comprising 15 sites, 330computers, and 3600 processors, using LSF, NQE, LoadLeveler, EASY, Fork,and Condor as local schedulers. To date, this architecture and testbed havebeen used by ourselves and others to implement numerous applications and halfa dozen di�erent higher-level resource management strategies. This experimentrepresents a signi�cant step forward in terms of number of global metacomputingservices implemented and number and variety of commercial and experimentallocal resource management systems employed. A more quantitative evaluationof the approach remains as a signi�cant challenge for future work.The rest of this paper is structured as follows. In the next section, we reviewcurrent distributed resource management solutions. In subsequent sections we�rst outline our architecture and then examine each major function in detail:the resource speci�cation language, local resource managers, resource brokers,and resource co-allocators. We summarize the paper and discuss future work inSection 8.2 Resource Management ApproachesPrevious work on resource management for metacomputing systems can be bro-ken into two broad classes:{ Network batch queuing systems. These systems focus strictly on resourcemanagement issues for a set of networked computers. These systems do notaddress policy extensibility and provide only limited support for online con-trol and co-allocation.{ Wide-area scheduling systems. Here, resource management is performed as acomponent of mapping application components to resources and schedulingtheir execution. To date, these systems do not address issues of heterogeneoussubstrates, site autonomy, and co-allocation.In the following, we use representative examples of these two types of system toillustrate the strengths and weaknesses of current approaches.2.1 Networked Batch Queuing SystemsNetworked batch queuing systems, such as NQE [1], CODINE [11], LSF [28],PBS [14], and LoadLeveler [15], handle user-submitted jobs by allocating re-sources from a networked pool of computers. The user characterizes application



resource requirements either explicitly, by some type of job control language, orimplicitly, by selecting the queue to which a request is submitted. Networkedbatch queuing systems typically are designed for single administrative domains,making site autonomy di�cult to achieve. Likewise, the heterogeneous substrateproblem is also an issue because these systems generally assume that they are theonly resource management system in operation. One exception is the CODINEsystem, which introduces the concept of a transfer queue to allow jobs submittedto CODINE to be allocated by some other resource management system, at areduced level of functionality. An alternative approach to supporting substrateheterogeneity is being explored by the PSCHED [13] initiative. This project isattempting to de�ne a uniform API through which a variety of batch schedulingsystems may be controlled. The goals of PSCHED are similar in many ways tothose of the Globus Resource Allocation Manager described in Section 5.Batch scheduling systems provide a limited form of policy extensibility inthat resource management policy is set by either the system or the system ad-ministrator, by the creation of scheduling policy or batch queues. However, thiscapability is not available to the end users, who have little control over how thebatch scheduling system interprets their resource requirements.Finally, we observe that batch queuing systems have limited support for on-line allocation, as these systems are designed to support applications in whichthe requirements speci�cations are in the form \get X done soon", where Xis precisely de�ned but \soon" is not. In metacomputing applications, we havemore complex, 
uid constraints, in which we will want to make tradeo�s betweentime (when) and space (physical characteristics). Such constraints lead to a needfor the resource management system to provide capabilities such as negotiation,inquiry interfaces, information-based control, and co-allocation, none of whichare provided in these systems.In summary, batch scheduling systems do not provide in themselves a com-plete solution to metacomputing resource managementproblems. However, clearlysome of the mechanisms developed for resource location, distributed process con-trol, remote �le access, to name a few, can be applied to wide-area systems aswell. Furthermore, we note that network batch queuing systems will necessarilybe part of the local resource management solution. Hence, any metacomputingresource management architecture must be able to interface to these systems.2.2 Wide-Area Scheduling SystemsWe now examine how resource management is addressed within systems de-veloped speci�cally to schedule metacomputing applications. To gain a goodperspective on the range of possibilities, we discuss four di�erent schedulers,designed variously to support speci�c classes of applications (Gallop [26]), anextensible object-oriented system (Legion [12]), general classes of parallel pro-grams (PRM [22]), and high-throughput computation (Condor [18]).The Gallop [26] system allocates and schedules tasks de�ned by a statictask graph onto a set of networked computational resources. (A similar mech-anism has been used in Legion [27].) Resource allocation is implemented by a



scheduling manager, which coordinates scheduling requests, and a local man-ager, which manages the resources at a local site, potentially interfacing to site-speci�c scheduling and resource allocation services. This decomposition, whichwe also adopt, separates local resource management operations from global re-source management policy and hence facilitates solutions to the problems of siteautonomy, heterogeneous substrates, and policy extensibility. However, Gallopdoes not appear to handle authentication to local resource management services,thereby limiting the level of site autonomy that can be achieved.The use of a static task-graph model makes online control in Gallop di�cult.Resource selection is performed by attempting to minimize the execution timeof task graph as predicted by a performance model for the application and theprospective resource. However, because the minimization procedure and the costmodel is �xed, there is no support for policy extensibility. Legion [12] overcomesthis limitation by leveraging its object-oriented model. Two specialized objects,an application-speci�c Scheduler and a resource-speci�c Enactor negotiate withone another to make allocation decisions. The Enactor can also provide co-allocation functions.Gallop supports co-allocation for resources maintained within an administra-tive domain, but depends for this purpose on the ability to reserve resources. Un-fortunately, reservation is not currently supported by most local resource man-agement systems. For this reason, our architecture does not rely on reservationto perform co-allocation, but rather uses a separate co-allocation managementservice to perform this function.The Prospero Resource Manager [22] (PRM) provides resource manage-ment functions for parallel programs written by using the PVM message-passinglibrary. PRM consists of three components: a system manager, a job manager,and a node manager. The job manager makes allocation decisions, while the sys-tem and node manager actually allocate resources. The node manager is solelyresponsible for implementing resource allocation functions. Thus, PRM doesnot address issues of site autonomy or substrate heterogeneity. A variety of jobmanagers can be constructed, allowing for policy extensibility, although there isno provision for composing job managers so as to extend an existing manage-ment policy. As in our architecture, PRM has both an information infrastructure(Prospero [21]) and a management API, providing the infrastructure needed toperform online control. However, unlike our architecture, PRM does not supportco-allocation of resources.Condor [18] is a resource management system designed to support high-throughput computations by discovering idle resources on a network and allo-cating those resources to application tasks. While Condor does not interfacewith existing resource management systems, resources controlled by Condor aredeallocated as soon as the \rightful" owner starts to use them. In this sense,Condor supports site autonomy and heterogeneous substrates. However, Condorcurrently does not interoperate with local resource authentication, limiting thedegree of autonomy a site can assert. Condor provides an extensible resourcedescription language, called classi�ed ads, which provides limited control over



resource selection to both the application and resource. However, the matchingof application component to resource is performed by a system classi�er, whichde�nes how matches|and consequently resource management|take place, lim-iting the extensibility of this selection policy. Finally, Condor provides no supportfor co-allocation or online control.In summary, our review of current resource management approaches revealeda range of valuable services, but no single system that provides solutions to all�ve metacomputing resource management problems posed in the introduction.3 Our Resource Management Architecture
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Fig. 1. The Globus resource management architecture, showing how RSL speci�cationspass between application, resource brokers, resource co-allocators, and local managers(GRAMs). Notice the central role of the information service.Our approach to the metacomputing resource management problem is illustratedin Figure 1. In this architecture, an extensible resource speci�cation language(RSL), discussed in Section 4 below, is used to communicate requests for re-sources between components: from applications to resource brokers, resourceco-allocators, and resource managers. At each stage in this process, informationabout resource requirements, coded as an RSL expression by the application,



is re�ned by one or more resource brokers and co-allocators; information aboutresource availability and characteristics is obtained from an information service.Resource brokers are responsible for taking high-level RSL speci�cations andtransforming them into more concrete speci�cations through a process we callspecialization. As illustrated in Figure 2, multiple brokers may be involved in ser-vicing a single request, with application-speci�c brokers translating applicationrequirements into more concrete resource requirements, and di�erent resourcebrokers being used to locate available resources that meet those requirements.Transformations e�ected by resource brokers generate a speci�cation in whichthe locations of the required resources are completely speci�ed. Such a groundrequest can be passed to a co-allocator, which is responsible for coordinatingthe allocation and management of resources at multiple sites. As we describe inSection 7, a variety of co-allocators will be required in a metacomputing system,providing di�erent co-allocation semantics.
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Fig. 2. This view of the Globus resource management architecture shows how di�erenttypes of broker can participate in a single resource requestResource co-allocators break a multirequest|that is, a request involving re-sources at multiple sites|into its constituent elements and pass each component



to the appropriate resource manager. As discussed in Section 5, each resourcemanager in the system is responsible for taking an RSL request and translatingit into operations in the local, site-speci�c resource management system.The information service is responsible for providing e�cient and pervasiveaccess to information about the current availability and capability of resources.This information is used to locate resources with particular characteristics, toidentify the resource manager associated with a resource, to determine propertiesof that resource, and for numerous other purposes as high-level resource spec-i�cations are translated into requests to speci�c managers. We use the Globussystem's Metacomputing Directory Service (MDS) [8] as our information ser-vice. MDS uses the data representation and application programming interface(API) de�ned on the Lightweight Directory Access Protocol (LDAP) to meet re-quirements for uniformity, extensibility, and distributed maintenance. It de�nesa data model suitable for distributed computing applications, able to representcomputers and networks of interest, and provides tools for populating this datamodel. LDAP de�nes a hierarchical, tree-structured name space called a direc-tory information tree (DIT). Fields within the namespace are identi�ed by aunique distinguished name (DN). LDAP supports both distribution and replica-tion. Hence, the local service associated with MDS is exactly an LDAP server(or a gateway to another LDAP server, if multiple sites share a server), plusthe utilities used to populate this server with up-to-date information about thestructure and state of the resources within that site. The global MDS serviceis simply the ensemble of all these servers. An advantage of using MDS as ourinformation service is that resource management information can be used byother tools, as illustrated in Figure 3.4 Resource Speci�cation LanguageWe now discuss the resource speci�cation language itself. The syntax of an RSLspeci�cation, summarized in Figure 4, is based on the syntax for �lter speci�ca-tions in the Lightweight Directory Access Protocol and MDS. An RSL speci�ca-tion is constructed by combining simple parameter speci�cations and conditionswith the operators &; to specify conjunction of parameter speci�cations, |; toexpress the disjunction of parameter speci�cations, +; or to combine two or morerequests into a single compound request, or multirequest.The set of parameter-name terminal symbols is extensible: resource brokers,co-allocators, and resource managers can each de�ne a set of parameter namesthat they will recognize. For example, a resource broker that is specialized fortele-immersive applications might accept as input a speci�cation containing aframes-per-second parameter and might generate as output a speci�cationcontaining an mflops-per-secondparameter, to be passed to a broker that dealswith computational resources. Resource managers, the system components thatactually talk to local scheduling systems, recognize two types of parameter-nameterminal symbols:



Fig. 3. The GlobusView tool uses MDS information about resource manager statusto present information about the current status of a metacomputing testbed. On theleft, we see the sites that are currently participating in the testbed; on the right isinformation about the total number of nodes that each site is contributing, the numberof those nodes that are currently available to external users, and the usage of thosenodes by Globus users.speci�cation := requestrequest := multirequest j conjunction j disjunction j parametermultirequest := + request-listconjunction := & request-listdisjunction := | request-listrequest-list := ( request ) request-list j ( request )parameter := parameter-name op valueop := = j > j < j >= j <= j !=value := ([a..Z][0..9][ ])+Fig. 4. BNF grammar describing the syntax of an RSL request



{ MDS attribute names, used to express constraints on resources: for exam-ple, memory>=64 or network=atm. In this case, the parameter name refersto a �eld de�ned in the MDS entry for the resource being allocated. Thetruth of the parameter speci�cation is determined by comparing the valueprovided with the speci�cation with the current value associated with thecorresponding �eld in the MDS. Arbitrary MDS �elds can be speci�ed byproviding their full distinguished name.{ Scheduler parameters, used to communicate information regarding the job,such as count (number of nodes required), max time (maximum time re-quired), executable, arguments, directory, and environment (environ-ment variables). Schedule parameters are interpreted directly by the resourcemanager.For example, the speci�cation&(executable=myprog)(|(&(count=5)(memory>=64))(&(count=10)(memory>=32)))requests 5 nodes with at least 64 MB memory, or 10 nodes with at least32 MB. In this request, executable and count are scheduler attribute names,while memory is an MDS attribute name.Our current RSL parser and resource manager disambiguate these two pa-rameter types on the basis of the parameter name. That is, the resource managerknows which �elds it will accept as scheduler parameters and assumes all oth-ers are MDS attribute names. Name clashes can be disambiguated by using thecomplete distinguished name for the MDS �eld in question.The ability to include constraints on MDS attribute values in RSL speci�-cations is important. As we discuss in Section 5, the state of resource managersis stored in MDS. Hence, resource speci�cations can refer to resource charac-teristics such as queue-length, expected wait time, and number of processorsavailable. This technique provides a powerful mechanism for controlling how anRSL speci�cation is interpreted.The following example of a multirequest is derived from the example shownin Figure 2.+(&(count=80)(memory>=64M)(executable=sf_express)(resourcemanager=ico16.mcs.anl.gov:8711))(&(count=256)(network=atm)(executable=sf_express)(resourcemanager=neptune.cacr.caltech.edu:755))(&(count=300)(memory>=64M)(executable=sf_express)(resourcemanager=modi4.ncsa.edu:4000))This is a ground request: every component of the multirequest speci�es a re-source manager. A co-allocator can use the resourcemanager parameters spec-i�ed in this request to determine to which resource manager each component ofthe multirequest should be submitted.Notations intended for similar purposes include the Condor \classi�ed ad" [18]and Chapin's \task description vector" [5]. Our work is novel in three respects:



the tight integration with a directory service, the use of speci�cation rewriting toexpress broker operations (as described below), and the fact that the languageand associated tools have been implemented and demonstrated e�ective whenlayered on top of numerous di�erent low-level schedulers.We conclude this section by noting that it is the combination of resourcebrokers, information service, and RSL that makes online control possible in ourarchitecture. Together, these services make it possible to construct requests dy-namically, based on current system state and negotiation between the applicationand the underlying resources.5 Local Resource ManagementWe now describe the lowest level of our resource management architecture: thelocal resource managers, implemented in our architecture as Globus ResourceAllocation Managers (GRAMs). A GRAM is responsible for1. processing RSL speci�cations representing resource requests, by either deny-ing the request or by creating one or more processes (a \job") that satisfythat request;2. enabling remote monitoring and management of jobs created in response toa resource request; and3. periodically updating the MDS information service with information aboutthe current availability and capabilities of the resources that it manages.A GRAM serves as the interface between a wide area metacomputing envi-ronment and an autonomous entity able to create processes, such as a parallelcomputer scheduler or a Condor pool. Hence, a resource manager need not cor-respond to a single host or a speci�c computer, but rather to a service that actson behalf of one or more computational resources. This use of local schedulerinterfaces was �rst explored in the software environment for the I-WAY network-ing experiment [9], but is extended and generalized here signi�cantly to providea richer and more 
exible interface.A resource speci�cation passed to a GRAM is assumed to be ground: that is,to be su�ciently concrete that the GRAM can identify local resources that meetthe speci�cation without further interaction with the entity that generated therequest. A particular GRAM implementation may achieve this goal by schedul-ing resources itself or, more commonly, by mapping the resource speci�cationinto a request to some local resource allocation mechanisms. (To date, we haveinterfaced GRAMs to six di�erent schedulers or resource allocators: Condor,EASY, Fork, LoadLeveler, LSF, and NQE.) Hence, the GRAM API plays forresource management a similar role to that played by IP for communication: itcan co-exist with local mechanisms, just as IP rides on top of ethernet, FDDI,or ATM networking technology.The GRAM API provides functions for submitting and for canceling a job re-quest and for asking when a job (submitted or not) is expected to run. An imple-mentation of the latter function may use queue time estimation techniques [24].



When a job is submitted, a globally unique job handle is returned that canthen be used to monitor and control the progress of the job. In addition, a jobsubmission call can request that the progress of the requested job be signaledasynchronously to a supplied callback URL. Job handles can be passed to otherprocesses, and callbacks do not have to be directed to the process that submittedthe job request. These features of the GRAM design facilitate the implementa-tion of diverse higher-level scheduling strategies. For example, a high-level brokeror co-allocator can make a request on behalf of an application, while the appli-cation monitor the progress of the request.5.1 GRAM Scheduling ModelWe discuss brie
y the scheduling model de�ned by GRAM because this is rele-vant to subsequent discussion of co-allocation. This model is illustrated in Fig-ure 5, which shows the state transitions that may be experienced by a GRAMjob.
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Fig. 5. State transition diagram for resource allocation requests submitted to theGRAM resource management APIWhen submitted, the job is initially pending, indicating that resources havenot yet been allocated to the job. At some point, the job is allocated the requestedresources, and the application starts running. The job then transitions to theactive state. At any point prior to entering the done state, the job can beterminated, causing it to enter the failed state. A job can fail because of explicittermination, an error in the format of the request, a failure in the underlyingresource management system, or a denial of access to the resource. The sourceof the failure is provided as part of the noti�cation of state transition. When allof the processes in the job have terminated and resources have been deallocated,the job enters the done state.5.2 GRAM ImplementationThe GRAM implementations that we have constructed have the structure shownin Figure 6. The principal components are the GRAM client library, the gate-keeper, the RSL parsing library, the job manager, and the GRAM reporter. The



Globus security infrastructure (GSI) is used for authentication and for autho-rization.
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computer centers. The mapping of remote user to locally recognized user nameminimizes the amount of code that must run as a privileged program; it alsoallows us to delegate most authorization issues to the local system.The job manager is responsible for creating the actual processes requested bythe user. This task typically involves submitting a resource allocation request tothe underlying resource management system, although if no such system existson a particular resource, a simple fork may be performed. Once processes arecreated, the job manager is also responsible for monitoring the state of thecreated processes, notifying the callback contact of any state transitions, andimplementing control operations such as process termination. The job managerterminates once the job for which it is responsible has terminated.The GRAM reporter is responsible for storing into MDS various informationabout scheduler structure (e.g., whether the scheduler supports reservation andthe number of queues) and state (e.g., total number of nodes, number of nodescurrently available, currently active jobs, and expected wait time in a queue). Anadvantage of implementing the GRAM reporter as a distinct component is thatMDS reports can continue even when no gatekeeper or job manager is running:for example, when the gatekeeper is run from inetd.As noted above, GRAM implementations have been constructed for six localschedulers to date: Condor, LSF, NQE, Fork, EASY, and LoadLeveler. Much ofthe GRAM code is independent of the local scheduler, and so only a relativelysmall amount of scheduler-speci�c code needed to be written in each case. Inmost cases, this code comprises shell scripts that use the local scheduler's user-level API. State transitions are handled mostly by polling, because this provedto be more reliable than monitoring job processes by using mechanisms providedby the local schedulers.6 Resource BrokersAs noted above, we use the term resource broker to denote an entity in ourarchitecture that translates abstract resource speci�cations into more concretespeci�cations. As illustrated in Figure 2, this de�nition is broad enough to en-compass a variety of behaviors, including application-level schedulers [3] thatencapsulate information about the types of resource required to meet a particu-lar performance requirement, resource locators that maintain information aboutthe availability of various types of resource, and (ultimately) traders that cre-ate markets for resources. In each case, the broker uses information maintainedlocally, obtained from MDS, or contained in the speci�cation to specialize thespeci�cation, mapping it into a new speci�cation that contain more detail. Re-quests can be passed to several brokers, e�ectively composing the behaviors ofthose brokers, until eventually the speci�cation is specialized to the point thatit identi�es a speci�c resource manager. This speci�cation can then be passedto the appropriate GRAM or, in the case of a multirequest, to a resource co-allocator.



We claim that our architecture makes it straightforward to develop a varietyof higher-level schedulers. In support of this claim, we note that following thede�nition and implementation of GRAM services, a variety of people, includingpeople not directly involved in GRAM de�nition, were able to construct half adozen resource brokers quite quickly. We describe three of these here.6.1 Nimrod-GDavid Abramson and Jonathan Giddy are using GRAM mechanisms to developNimrod-G, a wide-area version of the Nimrod [2] tool. Nimrod automates thecreation and management of large parametric experiments. It allows a user torun a single application under a wide range of input conditions and then toaggregate the results of these di�erent runs for interpretation. In e�ect, Nimrodtransforms �le-based programs into interactive \meta-applications" that invokeuser programs much as we might call subroutines.When a user �rst requests that a computational experiment be performed,Nimrod/G queries MDS to locate suitable resources. It uses information in MDSentries to identify su�cient nodes to perform the experiment. The initial Nimrod-G prototype operates by generating a number of independent jobs, which arethen allocated to computational nodes using GRAM. This module hides thenature of the execution mechanism on the underlying platform from Nimrod,hence making it possible to schedule work using a variety of di�erent queuemanagers without modi�cation to the Nimrod scripts. As a result, a reasonablycomplex cluster computing system could be retargeted for wide-area executionwith relatively little e�ort.In the future, the Nimrod-G developers plan to provide a higher level brokerthat allows the user to specify time and cost constraints. These constraints willbe used to select computational nodes that can meet user requirements for timeand cost or, if constraints cannot be met, to explain the nature of the cost/timetradeo�s. As part of this work, a dynamic resource allocation module is plannedthat will monitor the state of each system and relocate work when necessary inorder to meet the deadlines.6.2 AppLeSRich Wolski has used GRAM mechanisms to construct an application-levelscheduler (AppLeS) [3] for a large, loosely coupled problem from computationalmathematics. As in Nimrod-G, the goal was to map a large number of inde-pendent tasks to a dynamically varying pool of available computers. GRAMmechanisms were used to locate resources (including parallel computers) andto initiate and manage computation on those resources. AppLeS itself providedfault tolerance, so that errors reported by GRAM would result in a task beingresubmitted elsewhere.



6.3 A Graphical Resource SelectorThe graphical resource selector (GRS) illustrated in Figure 7 is an example of aninteractive resource selector constructed with our services. This Java applicationallows the user to build up a network representing the resources required for anapplication; another network can be constructed to monitor the status of candi-date physical resources. A combination of automatic and manual techniques isthen used to guide resource selection, eventually generating an RSL speci�cationfor the resources in question. MDS services are used to obtain the informationused for resource monitoring and selection, and resource co-allocator servicesare used to generate the GRAM requests required to execute a program once aresource selection is made.
Fig. 7. A screen shot of the Graphical Resource Selector. This network shows threecandidate resources and associated network connections. Static information regardingoperating system version and dynamically updated information regarding the numberof currently available nodes (freenodes) and network latency and bandwidth (in msecand Mb/s, respectively) allows the user to select appropriate resources for a particularexperiment.7 Resource Co-allocationThrough the actions of one or more resource brokers, the requirements of anapplication are re�ned into a ground RSL expression. If the expression consistsof a single resource request, it can be submitted directly to the manager thatcontrols that resource. However, as discussed above, a metacomputing applica-tion often requires that several resources|such as two or more computers and



intervening networks|be allocated simultaneously. In these cases, a resourcebroker produces a multirequest, and co-allocation is required. The challenge inresponding to a co-allocation request is to allocate the requested resources ina distributed environment, across two or more resource managers, where globalstate, such as availability of a set of resources, is di�cult to determine.Within our resource management architecture, multirequests are handled byan entity called a resource co-allocator. In brief, the role of a co-allocator is tosplit a request into its constituent components, submit each component to theappropriate resource manager, and then provide a means for manipulating theresulting set of resources as a whole: for example, for monitoring job status orterminating the job. Within these general guidelines, a range of di�erent co-allocation services can be constructed. For example, we can imagine allocatorsthat{ mirror current GRAM semantics: that is, require all resources to be availablebefore the job is allowed to proceed, and fail globally if failure occurs at anyresource;{ allocate at least N out of M requested resources and then return; or{ return immediately, but gradually return more resources as they becomeavailable.Each of these services is useful to a class of applications. To date, we have hadthe most experience with a co-allocator that takes the �rst of these approaches:that is, extends GRAM semantics to provide for simultaneous allocation of acollection of resources, enabling the distributed collection of processes to betreated as a unit. We discuss this co-allocator in more detail.Fundamental to a GRAM-style concurrent allocation algorithm is the abilityto determine whether the desired set of resources is available at some time in thefuture. If the underlying local schedulers support reservation, this question canbe easily answered by obtaining a list of available time slots from each participat-ing resource manager, and choosing a suitable timeslot [23]. Ideally, this schemewould use transaction-based reservations across a set of resource managers, asprovided by Gallop [26]. In the absence of transactions, the ability either to makea tentative reservation or to retract an existing reservation in needed. However,in general, a reservation-based strategy is limited because currently deployedlocal resource management solutions do not support reservation.In the absence of reservation, we are forced to use indirect methods to achieveconcurrent allocation. These methods optimistically allocate resources in thehope that the desired set will be available at some \reasonable" time in thefuture. Guided by sources of information, such as the current availability ofresources (provided by MDS) or queue-time estimation [24,7], a resource brokercan construct an RSL request that is likely, but not guaranteed, to succeed. Iffor some reason the allocation eventually fails, all of the started jobs must beterminated. This approach has several drawbacks:{ It is ine�cient in that computational resource are wasted while waiting forall of the requested to become available.



{ We need to ensure that application components do not start to execute beforethe co-allocator can determine whether the request will succeed. Therefore,the application must perform a barrier operation to synchronize startupacross components, meaning that the application must be altered beyondwhat is required for GRAM.{ Detecting failure of a request can be di�cult if some of the request compo-nents are directed to resource managers that interface to queue-based localresource management systems. In these situations, a timeout must be usedto detect failure.However, in spite of all of these drawbacks, co-allocation can frequently beachieved in practice as long as the resource requirements are not large comparedwith the capacity of the metacomputing system.We have implemented a GRAM-compatible co-allocator that implements ajob abstraction in which multiple GRAM subjobs are collected into a singledistributed job entity. State information for the distributed job is synthesizedfrom the individual states of each subjob, and job control (e.g., cancellation) isautomatically propagated to the resource managers at each subjob site. Subjobsare started independently and as discussed above must perform a runtime check-in operation. With the exception of this check-in operation, the co-allocatorinterface is a drop-in replacement for GRAM.We have used this co-allocator to manage resources for SF-Express [19,4], alarge-scale distributed interactive simulation application. Using our co-allocatorand the GUSTO testbed, we were able to simultaneously obtain 852 computenodes on three di�erent architectures located at six di�erent computer centers,controlled by three di�erent local resource managers. The use of a co-allocationservice signi�cantly simpli�ed the process of resource allocation and applicationstartup.Running SF-Express \at scale" on a realistic testbed allowed us to studythe scalability of our co-allocation strategy. One clear lesson learned is that thestrict \all or nothing" semantics of the distributed job abstraction severely limitsscalability. Even if each individual parallel computer is reasonably reliable andwell understood, the probability of subjob failure due to improper con�guration,network error, authorization di�culties, and the like. increases rapidly as thenumber of subjobs increases. Yet many such failure modes resulted simply froma failure to allocate a speci�c instance of a commodity resource, for which anequivalent resource could easily have been substituted. Because such failuresfrequently occur after a large number of subjobs have been successfully allocated,it would be desirable to make the substitution dynamically, rather than to cancelall the allocations and start over.We plan to extend the current co-allocation structure to support such dy-namic job structure modi�cation. By passing information about the nature ofthe subjob failure out of the co-allocator, a resource broker can edit the speci�ca-tion, e�ectively implementing a backtracking algorithm for distributed resourceallocation. Note that we can encode the necessary information about failure in amodi�ed version of the original RSL request, which can be returned to the com-
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