
Improving First-Come-First-Serve JobScheduling by Gang Scheduling ?Uwe Schwiegelshohn and Ramin YahyapourComputer Engineering Institute, University Dortmund44221 Dortmund, Germanyuwe@ds.e-technik.uni-dortmund.deyahya@ds.e-technik.uni-dortmund.deAbstract. We present a new scheduling method for batch jobs on mas-sively parallel processor architectures. This method is based on the First{come{�rst{serve strategy and emphasizes the notion of fairness. Severefragmentation is prevented by using gang scheduling which is only initi-ated by highly parallel jobs. Good worst{case behavior of the schedulingapproach has already been proven by theoretical analysis. In this paperwe show by simulation with real workload data that the algorithm is alsosuitable to be applied in real parallel computers. This holds for severaldi�erent scheduling criteria like makespan or sum of the 
ow times. Sim-ulation is also used for determination of the best parameter set for thenew method.1 IntroductionThe job scheduling strategy is one of the key elements in the resource man-agement of a massively parallel processor (MPP). It is therefore of interest toboth, the manufacturer and the owner of such a machine. For the manufacturera better management system may be used as an additional marketing argumentwhile also requiring more development e�ort to implement the necessary systemcomponents. On the other hand, the owner would like to see a 
exible systemwhich can be �ne tuned to his speci�c environment. Unfortunately, this usuallyrequires signi�cant e�ort from the system administrator to select the correct pa-rameter setting. In both cases the performance evaluation of a strategy togetherwith a parameter set is a necessity.Unfortunately, such a performance evaluation is a di�cult task. Theoreticalworst case analysis is only of limited help as typical workloads on productionmachines never exhibit the speci�c structure that will create a really bad case.Further, there is no random distribution of job parameter values, see e.g. Feitel-son and Nitzberg [4]. Hence, a theoretical analysis of random workloads will notprovide the desired information either. A trial and error approach on a commer-cial machine will be tedious and may a�ect system performance in a signi�cant? Supported by the NRW Metacomputing grant



fashion. Therefore, most users will probably object to such an approach exceptfor the �nal �ne tuning. This just leaves simulation for all other cases.Simulation may either be based on real trace data or on a workload model.While workload models, see e.g. Jann et al. [14] or Feitelson and Nitzberg [4],enable a wide range of simulations by allowing job modi�cations, like a varyingamount of assigned processor resources, the concurrency with real workloads isnot always guaranteed. This is especially true in the case of workloads whosecharacteristics change over time. On the other hand, trace data restrict the free-dom to select di�erent allocation and scheduling strategies as the performanceof a speci�c job is only known under the given circumstances. For instance, tracedata specifying the execution time of a batch job do not provide similar informa-tion, if the job would be assigned to a di�erent subset of processors. Therefore,the selection of the base data for the simulation depends on the circumstancesdetermined by the scheduling strategy and the MPP architecture. There are al-ready a variety of examples for simulation based on a workload model, see e.g.Feitelson [2], Feitelson and Jette [3] or on trace data, see e.g. Wang et al. [21].Here, we describe the use of trace data for the evaluation of di�erent parametersettings for a preemptive scheduling strategy.In particular, we address a speci�c kind of gang scheduling to be used in themanagement system of the IBM RS/6000 SP2, a widely available commercialparallel computer. Gang scheduling has already been subject of many studies, seee.g. Feitelson and Rudolph [5, 7], and a signi�cant number of manufacturers, likeIntel, TMC or SGI, have included gang scheduling into their operating systems.A gang scheduling prototype for the SP2 has also been presented [11, 20]. Theperformance of this prototype has already been analyzed by Wang et al. [21].Although these results were in favor of gang scheduling for the SP2, typicalinstallations do not include it yet.In this paper we present a new scheduling strategy consisting of a combinationof gang scheduling together with a First-come-�rst-serve approach. Moreover,we show that the performance of gang scheduling is dependent on the selectedparameters of the scheduler and that signi�cant gains are achievable. In addition,we address the problem of �nding a suitable criterion for measuring the schedulerperformance.To this end we �rst derive a machine model and a job scheduling model for theIBM RS/6000 SP2 based on the description of Hotovy [13]. Next, we describe theworkload data obtained during a period of 11 months from the Cornell TheoryCenter (CTC) SP2. Then, various scheduling objectives are discussed. Basedon those objectives we suggest a new fairness criterion. In Section 5 our newscheduling concept is introduced and its parameters are explained. Finally, wepresent our simulation results and discuss some of them in detail.



2 The Model2.1 The Machine ModelWe assume an MPP architecture where each node contains one or more pro-cessors, main memory, and local hard disks while there is no shared memory.The system may contain di�erent types of nodes characterized e.g. by type andnumber of processors, by the amount of memory or by the speci�c task thisnode is supposed to perform. An example for the last category are those nodeswhich provide access to mass storage. In particular, IBM SP2 architectures maypresently contain three types of nodes: thin nodes, wide nodes, and high (SMP)nodes. A wide node usually has some kind of server functionality and containsmore memory than a thin node while there is little di�erence in processor per-formance. Recently introduced high nodes contain several processors and cannotform a partition with other nodes at this time. However, it should be noted thatmost installations are predominantly equipped with thin nodes. In 1996 only 48out of a total of 512 nodes in the CTC SP2 were wide nodes while no high nodeswere used at all. Although in most installations the majority of nodes have thesame or a similar amount of memory, a wide range of memory con�gurationsis possible. For instance, the CTC SP2 contains nodes with memory rangingfrom 128 MB to 2048 MB with more than 80% of the nodes having 128 MBand an additional 12% being equipped with 256 MB. For more details see thedescription of Hotovy [13]. For these reasons we use a model where all nodes areidentical.Fast communication between the nodes is achieved via a special intercon-nection network. This network does not prioritize clustering of some subsets ofnodes over others as in a hypercube or a mesh, i.e. the communication delayand the bandwidth between any pair of nodes is assumed to be constant. Thenetwork aspect and its consequences on job scheduling will be further discussedin the next subsection.In our model the computer further supports gang scheduling by switchingsimultaneously the context of a subset of nodes. This context switch is assumedto be executed by use of the local processor memory and/or the local hard diskwhile the interconnection network is not a�ected except for synchronization [20].Here, we use gang scheduling (preemption) without migration, that is no changeof the node subset assigned to a job will occur during job execution. Any contextswitch may result in a time penalty due to processor synchronization, drainingthe networks of not yet delivered messages, saving of job status, page faults, andcache misses. In the simulation this penalty is considered by adding a constanttime delay to the execution time of a job for each time the job is preempted.In our model no node of an a�ected subset is able to execute any part of a jobduring this time delay. Note that our scheduler deviates substantially from theprototype scheduler presented in [20] and analyzed in [21].



2.2 The Job ModelOur job model is also derived from Hotovy's description [13]. For the simulationwe restrict ourselves to batch jobs as for interactive jobs the execution timecannot be assumed to be independent of the starting time and of the numberof preemptions. Therefore, we just consider the batch partition of the CTC SP2which comprises 430 nodes. As highly parallel interactive jobs are rather unlikelyour scheduling schemes have little or no e�ect on the interactive partition as willbecome clear from the description of the scheduling algorithm in Section 5.At the CTC SP2 a job is assigned to a subset of nodes in an exclusivefashion once it is supposed to be executed. This subset is described by thenumber of nodes it must contain from each type of node. Any subset matchingthis description is assumed to require the same time for execution of the job asthe interconnection network does not favor any speci�c subset. Therefore, freevariable partitioning [6] is supported. Once a job is started on a subset it is runto completion or canceled if its time limit has expired.As we are using gang scheduling our model deviates from the descriptionabove. We require that at any time instant any node executes at most a singlejob while a second job may have been preempted and now waits for resumptionof its execution. However, on each node there may only be a single preemptedjob at any moment. Note that data and status of the preempted job can bestored on the local hard disk of a node in the same way as the disk is presentlyused for swapping. Further, gang scheduling requires that at any time instanteither all nodes allocated to a job run this job or none of them does.The scheduling policy of the CTC is described in detail by Hotovy [13].Here, we just want to give a brief summary of it: A user speci�es the resourcerequirements of his batch job and assigns it to a batch queue. The batch queuesare de�ned by the maximum job execution time (wall clock time), that is thepermitted time limit of a job. The resource requirements include the maximumand the minimum number of nodes the job needs. This feature is disregarded inour simulation as we do not know from the workload traces how the executiontime of a job would change with a di�erent number of nodes allocated to thejob. Hence, we assume that for each job the size of the subset is invariable andgiven by the trace data. Using the terminology of Feitelson and Rudolph [8] wetherefore do not allow moldable jobs. As already mentioned, our simulation isbased on a machine with identical nodes, although in general the simulator isable to handle speci�c resource requests as well. Jobs can be submitted at anytime. Note that our model allows a combination of space and time sharing.3 The Workload DataAs already mentioned, we use the workload traces originating from the IBM SP2of the Cornell Theory Center. The data were compiled during the months July1996 to May 1997. The original data include the following information:{ Number of nodes allocated to the job



{ Time of job submission{ Time of job start{ Time of job completion{ Additional hardware requests of the job: Amount of memory, type of node,access to mass storage, type of adapter.Further data like the job name, class (LoadLeveler class), type, and comple-tion status are presently of no relevance to our simulation experiments.For the simulation we need the node requirements, the submission time, andthe execution time of a job. The execution time is determined by the di�erencebetween start and completion time of a job as nodes are assigned exclusivelyto a job in the batch partition. As stated in Section 2, the additional hardwarerequest of a job is not used at the moment. But it can easily be consideredin the simulator and may provide valuable information for choosing the bestcon�guration of an MPP.The CTC uses a batch partition with 430 nodes. As will be further explainedin Section 6.1, in our simulation we assume batch partitions of 128 and 256 nodesrespectively. Hence, jobs with an node allocation exceeding 128 or 256 nodes areignored as we do not want to change individual job data. Table 1 shows thatthis only results in a small reduction in the total number of jobs.Total number Jobs requiring at Jobs requiring atof jobs most 256 nodes most 128 nodesJul 96 7953 7933 99.75% 7897 99.30%Aug 96 7302 7279 99.69% 7234 99.07%Sep 96 6188 6180 99.87% 6106 98.67%Oct 96 7288 7277 99.85% 7270 99.75%Nov 96 7849 7841 99.90% 7816 99.58%Dec 96 7900 7893 99.91% 7888 99.85%Jan 97 7544 7538 99.92% 7506 99.50%Feb 97 8188 8177 99.87% 8159 99.65%Mar 97 6945 6933 99.83% 6909 99.48%Apr 97 6118 6102 99.74% 6085 99.46%May 97 5992 5984 99.87% 5962 99.50%Table 1. Number of Jobs in the CTC Workload Data for Each Month (SubmissionTime)4 The Scheduling PolicyIf the amount of requested nodes for a job exceeds the nodes available on theparallel computer, a scheduling policy is used to settle those resource con
icts.This policy is supposed to re
ect the objectives of the owner of the parallel com-puter as well as the wishes of the users. As jobs may be submitted at any time,



often some kind of First{come{�rst{serve (FCFS) strategy is used. Especiallyfor parallel computers which do not support preemption and if no knowledge offuture job arrival is available, various versions of FCFS strategy are frequentlyused. This also includes modi�cations like back�lling [17]. Also, an FCFS strat-egy re
ects the notion of fairness which is probably the reason for being moreor less accepted by most users. If several queues are used, FCFS may be appliedseparately to each queue or it may span several or even all queues. For instance,the CTC uses a modi�ed FCFS approach for all batch queues with the exceptionof a queue for short running jobs (less than 15 minutes). This last queue receivesa slightly higher priority.A scheduling policy is evaluated by use of some scheduling criteria. In orderto satisfy the user, his objectives must be re
ected in those criteria. It can besafely assumed that a small job response time is desired for many jobs. Howeveras already mentioned, it is typically not possible to execute each job immediatelydue to limited resources. In this situation most users would expect some kind offairness policy which is a reason for the frequent use of FCFS. Of course, theremay always be jobs which must be executed immediately or whose executioncan be postponed to the night or the weekend. In return those jobs should beassociated with some kind of either higher or lower costs. Also, a part of theparallel computer may be reserved exclusively for a speci�c group of jobs [13].In the theoretical scheduling community the criteria most frequently usedin this context are either makespan (=completion time of the last job in allqueues) or the sum of the completion or 
ow/response times (= completiontime - submission time) of all jobs [9]. The makespan is closely related to theutilization throughput and represents an owner centric point of view [8]. Addingthe completion or 
ow time corresponds to a consideration of the individual usercriteria `minimization of the turnaround time'. Note that the completion timeis of very limited interest in a practical setting where individual jobs are notsubmitted at the same time. Further, it must be emphasized that addressingonly the makespan or only the 
ow time criterion is often not good enough, asan optimal makespan will not necessarily guarantee a minimal or even small sumof 
ow times and vice versa [18].Apart from these general criteria, there may be some speci�c priority criteriabased upon the intentions of the owner of a parallel computer. The owner maywish to prioritize highly parallel jobs over mostly sequential jobs or the otherway around (throughput maximization) [9]. Also, some users may receive a largerallocation of compute time while others are only allowed to use selected timeslots. Altogether, it is possible to think of a large number of di�erent strategies.Some of these strategies can be implemented by using weights in connectionwith each job resulting in a weighted 
ow time criterion. In this case, the pri-ority strategy must still be linked with the necessary selection of job weights.Hotovy [13] pointed out that in a real machine environment the selection of apriority strategy and its implementation is a complex and iterative process. Butthe overall goal of the policy established by the CTC is never explicitly statedand the �nal strategy is the result of several experiments which were evaluated



with respect to backlog and average waiting time. Lifka [17] addressed a similarproblem by describing the properties of his universal scheduler.In our simulation, we use the following three criteria:1. Makespan of the whole schedule2. Sum of 
ow times over all jobs3. Sum of weighted 
ow times over all jobs with a special selection of the weightsNote that the simple adding of 
ow times (second criterion) does not considerthe resource use of a job. In order to minimize the sum of 
ow times it ispreferable to immediately schedule a large number of jobs requiring few nodesand running only for a short time and postpone all highly parallel jobs whichrequire a long time to execute. Thus, this criterion indirectly prioritizes smalljobs over others. While it may also increase throughput, the application of thiscriterion may contradict the purpose of a parallel computer to run long andhighly parallel jobs. Moreover, it is bene�cial for a user to split a parallel jobinto many sequential jobs even if this results in increased resource usage.Therefore, we suggest to consider the objectives fairness and resource con-sumption by selecting weights appropriately. In particular, we de�ne the weightof a job by the product of the execution time of the job and the nodes requiredby the job. This weight can also be used as the cost of the job for the purposeof accounting. This way there is no gain in splitting a parallel job into manysequential jobs or in combining many independent short jobs into one long jobor vice versa. Only the overhead of a parallel job in comparison to its sequentialversion must be paid for. Using this type of weight (cost) for the purpose ofaccounting has the additional advantage that the user is only charged for theactual resource consumption instead of the projected value. This is especiallyimportant for long running jobs which fail immediately due to the lack of an in-put �le or a similar cause. As the execution time of a job is not certainly knownbefore the termination of the job, the actual weight is not available at the startof a job. Therefore, the scheduling algorithm cannot take the actual weight of ajob into account when making its decisions. Only the maximum weight is pro-vided due to the time limit of a job. A theoretical analysis of a scheduler basedon this kind of weight selection is given in [19].5 The AlgorithmWe already mentioned the close relation between FCFS and fairness in the pre-vious section. Note however that while FCFS guarantees that jobs are startedin the order of their arrivals the same property does not necessarily hold for thecompletion of the jobs due to di�erences in job execution times. A fair schedulestrategy can also be de�ned as a strategy where the completion time of anyjob does not depend on any other job submitted after it. Lifka's back�lling [17]method tries to obey this kind of fairness principle as only those jobs are movedup in the queues which are supposed not to a�ect the execution time of anyjob submitted before them. However, if job execution times are not known, this



Fig. 1. Example for Fragmentation in FCFS by Wide Jobsnotion of fairness can only be preserved by aborting those back�lled jobs whichwould delay the start of a job submitted before then. Also, a preemptive sched-ule will not be fair in general even if the jobs are started in FCFS order. In thispaper we therefore use a more general fairness notion called �{fairness whichhas been introduced in [19]:A scheduling strategy is �-fair if all jobs submitted after a job i cannot in-crease the 
ow time of i by more than a factor �.Note that the term �-fairness is not closely related to other schedule criteria.Therefore, we are looking for a scheduling strategy, which produces scheduleswith small deviations for makespan, sum of (weighted) 
ow times, and � fromthe optimal values.Since it is much harder to approximate the optimal total weighted 
ow timethan the optimal total weighted completion time, as shown by Leonardi and Raz[16], many theoretical researchers focused on the completion time problem. Thismay be justi�ed as both measures di�er from each other by only a constant.Therefore, it is su�cient to consider just one of both criteria for the purpose ofcomparing two schedules.For the sake of completeness we now repeat a few theoretical results whichwere already presented in other publications.Using a pure FCFS schedule will obviously minimize �. If all jobs are sequen-tial it will also guarantee small deviations from the optimumvalues provided ourweight selection is used with respect to the total weighted completion time. Herewe denote by hi and wi the execution time and the weight of job i respectively.The following theorem can be derived from [15,12, 10] and has been stated inthis form in [19]. The makespan and the total completion time of a schedule Sare described by mS and cS , respectively.



Theorem 1. For all FCFS schedules S with only sequential jobs i and wi = hithe following properties hold1. mS < 2 �mopt,2. cS < 1:21 � copt, and3. S is 1-fair.For the parallel case, it is usually assumed that FCFS scheduling may possiblygenerate big deviations for the makespan and the sum of 
ow times from theoptimal values because fragmentation may occur and lead to a large number ofidle nodes. The amount of fragmentation grows if jobs require large subsets ofnodes, see Fig. 1. In the displayed example, job T6 cannot be started beforetime t2 although it became the �rst job of the FCFS queue at time t0. However,if the maximum degree of parallelism is restricted, FCFS still guarantees smalldeviations from the optimal case for parallel job systems with limited resource(node) numbers. Here we use ri to denote the required nodes. Further R is themaximum number of nodes. The following results are also presented in [19].Theorem 2. For all FCFS schedules with ri � R2 and wi = ri � hi there is1. mS < 3 �mopt,2. cS < 2 � copt, and3. S is 1-fair.From Table 1 we can see that highly parallel jobs are only a very small partof the workload. This explains the acceptable performance of FCFS schedulersin commercial MPPs in contrast to the bad behavior predicted by theoreticalworst case analysis [19]. However, if more jobs with a small degree of parallelismare moved from MPPs to SMP workstations, it can be assumed that FCFSperformance will su�er more severely.As the percentage of idle nodes caused by jobs that require only a few nodesis rather small, our new scheduling strategy, called preemptive FCFS (PFCFS),especially cares for the highly parallel jobs. While in FCFS scheduling idle nodesmust stay idle until the next job in line is started (with the notable exception ofback�lling), we allow highly parallel jobs to interrupt the execution of currentlyrunning jobs.Intuitively, we can describe PFFS by using two di�erent schedules for smalland for highly parallel jobs, which are then partially interleaved.It is shown in [19] that PFCFS generates good theoretical results for make-span and completion time.Theorem 3. If the execution times of all jobs are unknown and wi = ri � hiholds for each job and n !1 and � � �, then for all schedules S produced bythe PFCFS Algorithm there is1. mS < (4 + 2�p)mopt,2. cS < (3:56 + 3:24�p)copt, and



3. S is (2 + 2�p)-fair.For this concept to be applied in practice, theoretical analysis is not su�cient.Therefore, parameters must be chosen to �ne tune the strategy. In particular ournew strategy and its parameters can be described as follows:1. Any job requiring less than x% of the total number of nodes in the batchpartition (in the following called small job) is scheduled in an FCFS fashion.2. Any job requiring at least x% of the nodes (wide job) will preempt otherrunning jobs under the following conditions:(a) The wide job is the next job to be started in FCFS order.(b) No other previously submitted wide job is still active.(c) A time span of � seconds has passed since the moment the previous twoconditions became valid.3. If a wide job has been determined to start in a preemptive fashion a suitablesubset of nodes (preemptive subset) is selected.4. Once the machine is in a preemptive mode caused by a wide job, there is acontext switch in the subset every � seconds up to a maximum of n contextswitches.Note that not all currently running nodes must be preempted by a wide job.A wide job only preempts enough running jobs to generate a su�ciently largepreemptive subset. Those small jobs are selected by a simple greedy strategy topreempt as few jobs as possible. The strategy also tries to adjust the size of thepreemptive subset as much as possible to the requested node number. If n is odd,the wide job will be run to completion after the maximum number of contextswitches is exhausted. Otherwise those small jobs which are allocated to nodesof the preemptive subset all complete before the wide job if the latter has not�nished at the last permitted context switch. Whether the size of the preemptivesubset may change during the preemptive mode depends on the implementation.Altogether, the strategy is characterized by the selection of the four parametersx, �, �, and n. It is the task of our simulation experiments to determine thebest parameter set.Fig. 2 gives an example for such a schedule. The system is executing jobs T1 -T5 with wide job T6 being due to execution at time t0. That means T6 is the nextjob to be scheduled in the FCFS queue. After a time delay � = t1�t0, a su�cientlarge resource set to execute T6 is selected. The delay is introduced to preventa possible starvation of smaller jobs if many wide jobs arrive in succession.At this time t1, all small jobs in the selected preemptive subset are inter-rupted. In the example, wide job T6 requires 9 resources for which jobs T1 toT4 must be preempted. After the preemption the wide job is started in the nowavailable node subset. The wide job runs for a parameterized amount of time� = t2 � t1. Next, we preempt the wide job and resume the execution of thepreviously preempted jobs (t2). This cycle between the wide job and the smalljob gang will be repeated until a gang has been completed. In the example, T6completes at t4 after which the remaining jobs T1 and T3 of the smaller gangare immediately continued.



Fig. 2. Example for Gang Scheduling of a Wide Job (T6) without MigrationIntuitively, a schedule produced by rules outlined above can be describedas the interleaving of two non preemptive FCFS schedules, where one of theschedules contains at most one wide job at any time instant. Note again thatonly a wide job can cause preemption and therefore increase the completiontime of a previously submitted job. However, as the subset of a job is invariablydetermined at the starting time, it is also possible that the preemptive mode willactually increase the completion time of the wide job causing the preemption.6 Simulation6.1 Description of the SimulationFor obtaining information on the in
uence of the parameters and to determinegood parameter values, various simulations have been done. For each strategyand each month we determined the makespan, the total 
ow time, and the totalweighted 
ow time using our weight selection and compared these values withthe results of a simple non-preemptive FCFS schedule. To compare the algorithmperformance with a non-FCFS strategy, we made simulations with a back�llingscheduling policy.Further, we examined variations on the speci�cation of wide jobs. We alsosimulated with di�erent gang lengths x and start delays � before the start of thepreemption.The work traces of the Cornell Theory Center re
ect a batch partition com-prising 430 nodes. There are only very few jobs in these traces that use between215 (R2 ) and 430 nodes, as seen in Table 1. A reason is the tendency to use anumber of processors which is equal to a power of 2. Taking into account that anoticeable gain by PFCFS can only be expected for a suitable number of wide



x n � �Wide job Maximum Start Gangspec. preemptions Delay Length40% 1 60 sec 1 sec45% 2 120 sec 60 sec50% 3 240 sec �55% 10 600 sec60% 11 1800 sec3600 secTable 2. Di�erent Parameter Settings for Simulation Experimentsjobs, we assume parallel computers with 128, respectively 256 resource. This isalso reasonable as most installations only have a smaller number of nodes, andit can be assumed that there the percentage of wide jobs will be larger than forthe CTC. This approach prevents the direct comparison of the simulation resultswith the original schedule data of the CTC.In order to evaluate our scheduling strategy we assume a homogeneous MPP,that is a computer with identical nodes. As already mentioned, the batch parti-tion of the CTC SP2 consists mainly of thin nodes with 128 or 256 MB memory.Therefore, our reference computer is almost homogeneous in this respect. Spe-cial hardware requests of the jobs are currently ignored. Although it is easy toconsider those requests in the scheduler, it is not helpful in determining basicproperties of the new strategy. Those requests can be taken into account in futurestudies.As the CTC schedule itself is not suitable for comparison due to these devi-ations, we use a simple FCFS schedule for reference in this analysis.Table 2 shows the parameter spectrum of our simulations.The theoretical analysis [19] suggests x = 50%. We chose several valuesaround 50% to determine the sensitivity of the schedule quality on this param-eter. While good theoretical results require a potentially unlimited number ofpreemptions we wanted to determine whether in practice a restriction of this pa-rameter is su�cient. The time period between two context switches � is selectedto span a wide range. However, to prevent a signi�cant a�ect of the preemptionpenalty a minimum value of 60 seconds was used. The theory also suggests toset � = �. We additionally used two �xed values for �.Finally, we ignored any preemption penalty in our simulations although itcan easily be included into the simulator.Moreover, as migration is not needed and only local hard disks are used forsaving of job data and job status, the strategy allows gang scheduling imple-mentations with a relatively small preemption penalty. Note that a preemptionpenalty of 1 second as assumed in [21] will still be small compared to the minimalvalue of �.Finally, our experiments were conducted for each month separately to deter-mine the variance of our results. This is another reason why the CTC schedule



Fig. 3. Comparison of PFCFS with FCFS for Di�erent CriteriaResources 128 256Wide job spec. x 40% 45%Max. preemptions n 1 1Start delay � 60 sec 60 secGang length � not applicableTable 3. Parameter Setting for the Results Shown in Fig. 3data could not be used for comparison as in the original schedule there are jobswhich were submitted in one month and executed in another.6.2 Analysis of the ResultsFig. 3 shows that the preemptive FCFS strategy was able to improve FCFS forall scheduling criteria if the best parameter setting was used, see Table 3. Thepreemptive FCFS strategy also outperformed the back�lling scheduling policy.This algorithm does not utilize preemption, but requires the user to provide amaximum execution time for a each job.However, it can be noticed that the e�ect on the 
ow or weighted 
ow timeis more pronounced for a 256 node parallel computer while the smaller 128 nodemachine achieves a better result for the makespan criteria. It can also be seen that



in every month a noticeable gain can be achieved with this set of parametersalthough the actual gains depend on the workload. Note that in the selectedsetting there is no time period between two context switches as with n = 1 awide job will interrupt some small jobs and then run to completion. A similarapproach was also subject of another publication ([1]) in a di�erent context withdynamic jobs.Also, there is only very little di�erence between the weighted 
ow time andthe 
ow time results. This can be attributed to the large amount of short run-ning jobs which do not require a large number of nodes. The stronger emphasisof larger highly parallel jobs in weighted 
ow time criterion does not have a sig-ni�cant impact on the evaluation of the strategy. However, this can be expectedto change if the number of those jobs would increase.Next, we examine the result for di�erent limits on the number of preemptions.The results in Fig. 4 and Fig. 5 show that there are always improvements forodd values of n. Note that an odd n gives preference to the execution of thewide job once the maximum number of preemptions is reached. However, thegains change only little if the number of preemptions is increased. This indicatesthat the desired improvement of the scheduling costs can already be obtained byusing a simple preemption for a wide job. On the other hand, even values of nresult in signi�cantly worse schedules in comparison to FCFS. This is due to thefact that the completion time of the wide job may actually be further increasedover the FCFS schedule as its node allocation is �xed at the start time of thejob and no job migration is allowed. This may then lead to a larger degree offragmentation.The schedule quality is not as sensitive on the other parameters. Theoreticalstudies [19] indicate that x=50% would be the best choice to separate wide jobsfrom small ones. Fig. 6 and Fig. 7 show that the schedule cost increases for allthree criteria if x is selected to be larger than 50%. For real workloads a furtherslight improvement can be obtained by selected values for x which are less than50%.� is irrelevant if n is selected to be 1. For all other odd values of n theschedule cost varies only little with �. There, � = 120 sec is frequently the bestchoice. If n is even, the results improve with a larger � as the chances to reachthe preemption limit become smaller.As the choice of � has little in
uence on the schedule quality, it is su�cientto just consider the cases �= 1 sec and �=60 sec. From theory we would expecta better makespan for �= 1 sec as fragmentation will be reduced if wide jobs areexecuted as early as possible. On the other hand, �= 60 sec will permit someshort running small jobs to complete before they are interrupted by a wide job.However, in our simulation, switching from 1 sec to 60 sec changed the schedulecosts by less than 0.01%. Therefore, � can also be ignored.



Fig. 4. Results for Di�erent Limits on the Number of Preemptions for the 128 NodeMachine
Fig. 5. Results for Di�erent Limits on the Number of Preemptions for the 256 NodeMachine



Fig. 6. Results for Di�erent Characterizations of Wide Jobs for the 128 Node Machine
Fig. 7. Results for Di�erent Characterizations of Wide Jobs for the 256 Node Machine



7 ConclusionIn this paper we presented a new scheduling method called PFCFS for batch jobson MPPs. This strategy uses gang scheduling and is able to produce signi�cantimprovements of up to 40% in 
ow time and 22% in makespan for real workloaddata over FCFS.It has been shown that the scheduling algorithm is sensitive to some of thescheduling parameters and should be carefully adapted for the speci�c work-load. Nevertheless, it is possible to apply default settings that seem to increaseschedule quality compared to FCFS. For instance, it may be su�cient to startexecution of a wide job by preempting a suitable node set and let it run tocompletion. Based on our simulation this is su�cient to signi�cantly improvethe 
ow time and increase the machine utilization. For better results, we sug-gest that the parameters are determined on-line in an adaptive fashion from theworkload results of previous months.The implementation of the scheduling algorithm can also be improved, e.g.by allowing the start of new small jobs during gang scheduling. It may also bebene�cial to check that the preemption cycle is only initiated, if more resourcesare utilized after the start of the wide job than before. Both modi�cations arenot used in the presented simulations.The PFCFS strategy is especially interesting since it has only limited re-quirements on the preemption support of the MPP. It uses no migration andat any time instance at most 2 jobs are resident on any node. Therefore, it canbe assumed that the algorithm can be implemented on most systems with pre-emption capabilities. Also, there is no need for users to provide additional jobinformation like an estimate of the execution time.Acknowledgment The authors are especially grateful to Steve Hotovy forproviding them with the workload data of the CTC SP2.References1. S.-H. Chiang, R.K. Masharamani, and M.K. Vernon. Use of application character-istics and limited preemption for run-to-completion parallel processor schedulingpolicies. In Proceedings of ACM SIGMETRICS Conference on Measurement ofComputer Systems, pages 33{44, 1994.2. D.G. Feitelson. Packing schemes for gang scheduling. In D.G. Feitelson and L.Rudolph, editors, IPPS'96 Workshop: Job Scheduling Strategies for Parallel Pro-cessing, pages 89{110. Springer{Verlag, Lecture Notes in Computer Science LNCS1162, 1996.3. D.G. Feitelson and M.A. Jette. Improved utilization and responsiveness with gangscheduling. In D.G. Feitelson and L. Rudolph, editors, IPPS'97 Workshop: JobScheduling Strategies for Parallel Processing, pages 238{261. Springer{Verlag, Lec-ture Notes in Computer Science LNCS 1291, 1997.4. D.G. Feitelson and B. Nitzberg. Job characteristics of a production parallel scien-ti�c workload on the NASA Ames iPSC/860. In D.G. Feitelson and L. Rudolph, ed-itors, IPPS'95 Workshop: Job Scheduling Strategies for Parallel Processing, pages337{360. Springer{Verlag, Lecture Notes in Computer Science LNCS 949, 1995.



5. D.G. Feitelson and L. Rudolph. Gang scheduling performance bene�ts for �ne-grain parallelization. Journal of Parallel and Distributed Computing, 16:306{318,1992.6. D.G. Feitelson and L. Rudolph. Parallel job scheduling: Issues and approaches.In D.G. Feitelson and L. Rudolph, editors, IPPS'95 Workshop: Job SchedulingStrategies for Parallel Processing, pages 1{18. Springer{Verlag, Lecture Notes inComputer Science LNCS 949, 1995.7. D.G. Feitelson and L. Rudolph. Evaluation of design choices for gang schedulingusing distributed hierarchical control. Journal of Parallel and Distributed Com-puting, 35:18{34, 1996.8. D.G. Feitelson and L. Rudolph. Towards convergence in job schedulers for parallelsupercomputers. In D.G. Feitelson and L. Rudolph, editors, IPPS'96 Workshop:Job Scheduling Strategies for Parallel Processing, pages 1{26. Springer{Verlag, Lec-ture Notes in Computer Science LNCS 1162, 1996.9. D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and P. Wong. Theoryand practice in parallel job scheduling. In D.G. Feitelson and L. Rudolph, editors,IPPS'97 Workshop: Job Scheduling Strategies for Parallel Processing, pages 1{34.Springer{Verlag, Lecture Notes in Computer Science LNCS 1291, 1997.10. A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel machines.Theoretical Computer Science, 130:49{72, 1994.11. H. Franke, P. Pattnaik, and L. Rudolph. Gang scheduling for highly e�cient dis-tributed multiprocessor systems. In Proceedings of the 6th Symp. on the Frontiersof Massively Parallel Computation, pages 1{9, 1996.12. M. Garey and R.L. Graham. Bounds for multiprocessor scheduling with resourceconstraints. SIAM Journal on Computing, 4(2):187{200, June 1975.13. S. Hotovy. Workload evolution on the Cornell Theory Center IBM SP2. In D.G.Feitelson and L. Rudolph, editors, IPPS'96 Workshop: Job Scheduling Strategiesfor Parallel Processing, pages 27{40. Springer{Verlag, Lecture Notes in ComputerScience LNCS 1162, 1996.14. J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan. Modeling ofworkload in MPPs. In D.G. Feitelson and L. Rudolph, editors, IPPS'97 Workshop:Job Scheduling Strategies for Parallel Processing, pages 94{116. Springer{Verlag,Lecture Notes in Computer Science LNCS 1291, 1997.15. T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for themean weighted 
ow-time problem. SIAM Journal on Computing, 15(4):1119{1129,November 1986.16. S. Leonardi and D. Raz. Approximating total 
ow time on parallel machines.In Proceedings of the 29th ACM Symposium on the Theory of Computing, pages110{119, May 1997.17. D.A. Lifka. The ANL/IBM SP scheduling system. In D.G. Feitelson and L.Rudolph, editors, IPPS'95 Workshop: Job Scheduling Strategies for Parallel Pro-cessing, pages 295{303. Springer{Verlag, Lecture Notes in Computer Science LNCS949, 1995.18. U. Schwiegelshohn. Preemptive weighted completion time scheduling of paral-lel jobs. In Proceedings of the 4th Annual European Symposium on Algorithms(ESA96), pages 39{51. Springer{Verlag Lecture Notes in Computer Science LNCS1136, September 1996.19. Uwe Schwiegelshohn and Ramin Yahyapour. Analysis of First-Come-First-ServeParallel Job Scheduling. In Proceedings of the 9th SIAM Symposium on DiscreteAlgorithms, pages 629{638, January 1998.



20. F. Wang, H. Franke, M. Papaefthymiou, P. Pattnaik, L. Rudolph, and M.S. Squil-lante. A gang scheduling design for multiprogrammed parallel computing envi-ronments. In D.G. Feitelson and L. Rudolph, editors, IPPS'96 Workshop: JobScheduling Strategies for Parallel Processing, pages 111{125. Springer{Verlag, Lec-ture Notes in Computer Science LNCS 1162, 1996.21. F. Wang, M. Papaefthymiou, and M.S. Squillante. Performance evaluation of gangscheduling for parallel and distributed multiprogramming. In D.G. Feitelson andL. Rudolph, editors, IPPS'97 Workshop: Job Scheduling Strategies for ParallelProcessing, pages 277{298. Springer{Verlag, Lecture Notes in Computer ScienceLNCS 1291, 1997.


