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Abstract. We present a new scheduling method for batch jobs on mas-
sively parallel processor architectures. This method is based on the First—
come—first—serve strategy and emphasizes the notion of fairness. Severe
fragmentation is prevented by using gang scheduling which is only initi-
ated by highly parallel jobs. Good worst—case behavior of the scheduling
approach has already been proven by theoretical analysis. In this paper
we show by simulation with real workload data that the algorithm is also
suitable to be applied in real parallel computers. This holds for several
different scheduling criteria like makespan or sum of the flow times. Sim-
ulation is also used for determination of the best parameter set for the
new method.

1 Introduction

The job scheduling strategy is one of the key elements in the resource man-
agement of a massively parallel processor (MPP). It is therefore of interest to
both, the manufacturer and the owner of such a machine. For the manufacturer
a better management system may be used as an additional marketing argument
while also requiring more development effort to implement the necessary system
components. On the other hand, the owner would like to see a flexible system
which can be fine tuned to his specific environment. Unfortunately, this usually
requires significant effort from the system administrator to select the correct pa-
rameter setting. In both cases the performance evaluation of a strategy together
with a parameter set is a necessity.

Unfortunately, such a performance evaluation is a difficult task. Theoretical
worst case analysis is only of limited help as typical workloads on production
machines never exhibit the specific structure that will create a really bad case.
Further, there is no random distribution of job parameter values, see e.g. Feitel-
son and Nitzberg [4]. Hence, a theoretical analysis of random workloads will not
provide the desired information either. A trial and error approach on a commer-
cial machine will be tedious and may affect system performance in a significant
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fashion. Therefore, most users will probably object to such an approach except
for the final fine tuning. This just leaves simulation for all other cases.

Simulation may either be based on real trace data or on a workload model.
While workload models, see e.g. Jann et al. [14] or Feitelson and Nitzberg [4],
enable a wide range of simulations by allowing job modifications, like a varying
amount of assigned processor resources, the concurrency with real workloads is
not always guaranteed. This 1s especially true in the case of workloads whose
characteristics change over time. On the other hand, trace data restrict the free-
dom to select different allocation and scheduling strategies as the performance
of a specific job 1s only known under the given circumstances. For instance, trace
data specifying the execution time of a batch job do not provide similar informa-
tion, if the job would be assigned to a different subset of processors. Therefore,
the selection of the base data for the simulation depends on the circumstances
determined by the scheduling strategy and the MPP architecture. There are al-
ready a variety of examples for simulation based on a workload model, see e.g.
Feitelson [2], Feitelson and Jette [3] or on trace data, see e.g. Wang et al. [21].
Here, we describe the use of trace data for the evaluation of different parameter
settings for a preemptive scheduling strategy.

In particular, we address a specific kind of gang scheduling to be used in the
management system of the IBM RS/6000 SP2, a widely available commercial
parallel computer. Gang scheduling has already been subject of many studies, see
e.g. Feitelson and Rudolph [5, 7], and a significant number of manufacturers, like
Intel, TMC or SGI, have included gang scheduling into their operating systems.
A gang scheduling prototype for the SP2 has also been presented [11,20]. The
performance of this prototype has already been analyzed by Wang et al. [21].
Although these results were in favor of gang scheduling for the SP2, typical
installations do not include it yet.

In this paper we present a new scheduling strategy consisting of a combination
of gang scheduling together with a First-come-first-serve approach. Moreover,
we show that the performance of gang scheduling is dependent on the selected
parameters of the scheduler and that significant gains are achievable. In addition,
we address the problem of finding a suitable criterion for measuring the scheduler
performance.

To this end we first derive a machine model and a job scheduling model for the
IBM RS/6000 SP2 based on the description of Hotovy [13]. Next, we describe the
workload data obtained during a period of 11 months from the Cornell Theory
Center (CTC) SP2. Then, various scheduling objectives are discussed. Based
on those objectives we suggest a new fairness criterion. In Section 5 our new
scheduling concept is introduced and its parameters are explained. Finally, we
present our simulation results and discuss some of them in detail.



2 The Model

2.1 The Machine Model

We assume an MPP architecture where each node contains one or more pro-
cessors, main memory, and local hard disks while there is no shared memory.
The system may contain different types of nodes characterized e.g. by type and
number of processors, by the amount of memory or by the specific task this
node is supposed to perform. An example for the last category are those nodes
which provide access to mass storage. In particular, IBM SP2 architectures may
presently contain three types of nodes: thin nodes, wide nodes, and high (SMP)
nodes. A wide node usually has some kind of server functionality and contains
more memory than a thin node while there is little difference in processor per-
formance. Recently introduced high nodes contain several processors and cannot
form a partition with other nodes at this time. However, it should be noted that
most installations are predominantly equipped with thin nodes. In 1996 only 48
out of a total of 512 nodes in the CTC SP2 were wide nodes while no high nodes
were used at all. Although in most installations the majority of nodes have the
same or a similar amount of memory, a wide range of memory configurations
is possible. For instance, the CTC SP2 contains nodes with memory ranging
from 128 MB to 2048 MB with more than 80% of the nodes having 128 MB
and an additional 12% being equipped with 256 MB. For more details see the
description of Hotovy [13]. For these reasons we use a model where all nodes are
identical.

Fast communication between the nodes is achieved via a special intercon-
nection network. This network does not prioritize clustering of some subsets of
nodes over others as in a hypercube or a mesh, i.e. the communication delay
and the bandwidth between any pair of nodes is assumed to be constant. The
network aspect and its consequences on job scheduling will be further discussed
in the next subsection.

In our model the computer further supports gang scheduling by switching
simultaneously the context of a subset of nodes. This context switch 1s assumed
to be executed by use of the local processor memory and/or the local hard disk
while the interconnection network is not affected except for synchronization [20].
Here, we use gang scheduling (preemption) without migration, that is no change
of the node subset assigned to a job will occur during job execution. Any context
switch may result in a time penalty due to processor synchronization, draining
the networks of not yet delivered messages, saving of job status, page faults, and
cache misses. In the simulation this penalty is considered by adding a constant
time delay to the execution time of a job for each time the job is preempted.
In our model no node of an affected subset is able to execute any part of a job
during this time delay. Note that our scheduler deviates substantially from the
prototype scheduler presented in [20] and analyzed in [21].



2.2 The Job Model

Our job model is also derived from Hotovy’s description [13]. For the simulation
we restrict ourselves to batch jobs as for interactive jobs the execution time
cannot be assumed to be independent of the starting time and of the number
of preemptions. Therefore, we just consider the batch partition of the CTC SP2
which comprises 430 nodes. As highly parallel interactive jobs are rather unlikely
our scheduling schemes have little or no effect on the interactive partition as will
become clear from the description of the scheduling algorithm in Section 5.

At the CTC SP2 a job is assigned to a subset of nodes in an exclusive
fashion once it is supposed to be executed. This subset is described by the
number of nodes it must contain from each type of node. Any subset matching
this description is assumed to require the same time for execution of the job as
the interconnection network does not favor any specific subset. Therefore, free
variable partitioning [6] is supported. Once a job is started on a subset it is run
to completion or canceled if its time limit has expired.

As we are using gang scheduling our model deviates from the description
above. We require that at any time instant any node executes at most a single
job while a second job may have been preempted and now waits for resumption
of its execution. However, on each node there may only be a single preempted
job at any moment. Note that data and status of the preempted job can be
stored on the local hard disk of a node in the same way as the disk is presently
used for swapping. Further, gang scheduling requires that at any time instant
either all nodes allocated to a job run this job or none of them does.

The scheduling policy of the CTC is described in detail by Hotovy [13].
Here, we just want to give a brief summary of it: A user specifies the resource
requirements of his batch job and assigns it to a batch queue. The batch queues
are defined by the maximum job execution time (wall clock time), that is the
permitted time limit of a job. The resource requirements include the maximum
and the minimum number of nodes the job needs. This feature is disregarded in
our simulation as we do not know from the workload traces how the execution
time of a job would change with a different number of nodes allocated to the
job. Hence, we assume that for each job the size of the subset 1s invariable and
given by the trace data. Using the terminology of Feitelson and Rudolph [8] we
therefore do not allow moldable jobs. As already mentioned, our simulation is
based on a machine with identical nodes, although in general the simulator is
able to handle specific resource requests as well. Jobs can be submitted at any
time. Note that our model allows a combination of space and time sharing.

3 The Workload Data

As already mentioned, we use the workload traces originating from the IBM SP2
of the Cornell Theory Center. The data were compiled during the months July
1996 to May 1997. The original data include the following information:

— Number of nodes allocated to the job



— Time of job submission

— Time of job start

— Time of job completion

— Additional hardware requests of the job: Amount of memory, type of node,
access to mass storage, type of adapter.

Further data like the job name, class (LoadLeveler class), type, and comple-
tion status are presently of no relevance to our simulation experiments.

For the simulation we need the node requirements, the submission time, and
the execution time of a job. The execution time is determined by the difference
between start and completion time of a job as nodes are assigned exclusively
to a job in the batch partition. As stated in Section 2, the additional hardware
request of a job 1s not used at the moment. But it can easily be considered
in the simulator and may provide valuable information for choosing the best
configuration of an MPP.

The CTC uses a batch partition with 430 nodes. As will be further explained
in Section 6.1, in our simulation we assume batch partitions of 128 and 256 nodes
respectively. Hence, jobs with an node allocation exceeding 128 or 256 nodes are
ignored as we do not want to change individual job data. Table 1 shows that
this only results in a small reduction in the total number of jobs.

Total number| Jobs requiring at Jobs requiring at

of jobs most 256 nodes most 128 nodes
Jul 96 7953 7933 99.75% 7897 99.30%
Aug 96 7302 7279 99.69% 7234 99.07%
Sep 96 6188 6180 99.87% 6106 98.67%
Oct 96 7288 7277 99.85% 7270 99.75%
Nov 96 7849 7841 99.90% 7816 99.58%
Dec 96 7900 7893 99.91% 7888 99.85%
Jan 97 7544 7538 99.92% 7506 99.50%
Feb 97 8188 8177 99.87% 8159 99.65%
Mar 97 6945 6933 99.83% 6909 99.48%
Apr 97 6118 6102 99.74% 6085 99.46%
May 97 5992 5984 99.87% 5962 99.50%

Table 1. Number of Jobs in the CTC Workload Data for Each Month (Submission
Time)

4 The Scheduling Policy

If the amount of requested nodes for a job exceeds the nodes available on the
parallel computer, a scheduling policy is used to settle those resource conflicts.
This policy 1s supposed to reflect the objectives of the owner of the parallel com-
puter as well as the wishes of the users. As jobs may be submitted at any time,



often some kind of First—comefirst—serve (FCFS) strategy is used. Especially
for parallel computers which do not support preemption and if no knowledge of
future job arrival is available, various versions of FCFS strategy are frequently
used. This also includes modifications like backfilling [17]. Also, an FCFS strat-
egy reflects the notion of fairness which is probably the reason for being more
or less accepted by most users. If several queues are used, FCFS may be applied
separately to each queue or it may span several or even all queues. For instance,
the CTC uses a modified FCFS approach for all batch queues with the exception
of a queue for short running jobs (less than 15 minutes). This last queue receives
a slightly higher priority.

A scheduling policy is evaluated by use of some scheduling criteria. In order
to satisfy the user, his objectives must be reflected in those criteria. It can be
safely assumed that a small job response time is desired for many jobs. However
as already mentioned, it is typically not possible to execute each job immediately
due to limited resources. In this situation most users would expect some kind of
fairness policy which is a reason for the frequent use of FCFS. Of course, there
may always be jobs which must be executed immediately or whose execution
can be postponed to the night or the weekend. In return those jobs should be
associated with some kind of either higher or lower costs. Also, a part of the
parallel computer may be reserved exclusively for a specific group of jobs [13].

In the theoretical scheduling community the criteria most frequently used
in this context are either makespan (=completion time of the last job in all
queues) or the sum of the completion or flow/response times (= completion
time - submission time) of all jobs [9]. The makespan is closely related to the
utilization throughput and represents an owner centric point of view [8]. Adding
the completion or flow time corresponds to a consideration of the individual user
criteria ‘minimization of the turnaround time’. Note that the completion time
is of very limited interest in a practical setting where individual jobs are not
submitted at the same time. Further, it must be emphasized that addressing
only the makespan or only the flow time criterion is often not good enough, as
an optimal makespan will not necessarily guarantee a minimal or even small sum
of flow times and vice versa [18].

Apart from these general criteria, there may be some specific priority criteria
based upon the intentions of the owner of a parallel computer. The owner may
wish to prioritize highly parallel jobs over mostly sequential jobs or the other
way around (throughput maximization) [9]. Also, some users may receive a larger
allocation of compute time while others are only allowed to use selected time
slots. Altogether, it i1s possible to think of a large number of different strategies.
Some of these strategies can be implemented by using weights in connection
with each job resulting in a weighted flow time criterion. In this case, the pri-
ority strategy must still be linked with the necessary selection of job weights.
Hotovy [13] pointed out that in a real machine environment the selection of a
priority strategy and its implementation is a complex and iterative process. But
the overall goal of the policy established by the CTC is never explicitly stated
and the final strategy is the result of several experiments which were evaluated



with respect to backlog and average waiting time. Lifka [17] addressed a similar
problem by describing the properties of his universal scheduler.
In our simulation, we use the following three criteria:

1. Makespan of the whole schedule
2. Sum of flow times over all jobs
3. Sum of weighted flow times over all jobs with a special selection of the weights

Note that the simple adding of flow times (second criterion) does not consider
the resource use of a job. In order to minimize the sum of flow times it is
preferable to immediately schedule a large number of jobs requiring few nodes
and running only for a short time and postpone all highly parallel jobs which
require a long time to execute. Thus, this criterion indirectly prioritizes small
jobs over others. While it may also increase throughput, the application of this
criterion may contradict the purpose of a parallel computer to run long and
highly parallel jobs. Moreover, it is beneficial for a user to split a parallel job
into many sequential jobs even if this results in increased resource usage.

Therefore, we suggest to consider the objectives fairness and resource con-
sumption by selecting weights appropriately. In particular, we define the weight
of a job by the product of the execution time of the job and the nodes required
by the job. This weight can also be used as the cost of the job for the purpose
of accounting. This way there 1s no gain in splitting a parallel job into many
sequential jobs or in combining many independent short jobs into one long job
or vice versa. Only the overhead of a parallel job in comparison to its sequential
version must be paid for. Using this type of weight (cost) for the purpose of
accounting has the additional advantage that the user is only charged for the
actual resource consumption instead of the projected value. This 1s especially
important for long running jobs which fail immediately due to the lack of an in-
put file or a similar cause. As the execution time of a job is not certainly known
before the termination of the job, the actual weight is not available at the start
of a job. Therefore, the scheduling algorithm cannot take the actual weight of a
job into account when making its decisions. Only the maximum weight is pro-
vided due to the time limit of a job. A theoretical analysis of a scheduler based
on this kind of weight selection is given in [19].

5 The Algorithm

We already mentioned the close relation between FCFS and fairness in the pre-
vious section. Note however that while FCFS guarantees that jobs are started
in the order of their arrivals the same property does not necessarily hold for the
completion of the jobs due to differences in job execution times. A fair schedule
strategy can also be defined as a strategy where the completion time of any
job does not depend on any other job submitted after it. Lifka’s backfilling [17]
method tries to obey this kind of fairness principle as only those jobs are moved
up in the queues which are supposed not to affect the execution time of any
job submitted before them. However, if job execution times are not known, this
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Fig. 1. Example for Fragmentation in FCFS by Wide Jobs

notion of fairness can only be preserved by aborting those backfilled jobs which
would delay the start of a job submitted before then. Also, a preemptive sched-
ule will not be fair in general even if the jobs are started in FCFS order. In this
paper we therefore use a more general fairness notion called x—fairness which
has been introduced in [19]:

A scheduling strategy ts k-fair if all jobs submatted after a job ¢ cannot in-
crease the flow time of i by more than a factor k.

Note that the term k-fairness is not closely related to other schedule criteria.
Therefore, we are looking for a scheduling strategy, which produces schedules
with small deviations for makespan, sum of (weighted) flow times, and x from
the optimal values.

Since 1t is much harder to approximate the optimal total weighted flow time
than the optimal total weighted completion time, as shown by Leonardi and Raz
[16], many theoretical researchers focused on the completion time problem. This
may be justified as both measures differ from each other by only a constant.
Therefore, it is sufficient to consider just one of both criteria for the purpose of
comparing two schedules.

For the sake of completeness we now repeat a few theoretical results which
were already presented in other publications.

Using a pure FCFS schedule will obviously minimize «. If all jobs are sequen-
tial it will also guarantee small deviations from the optimum values provided our
weight selection is used with respect to the total weighted completion time. Here
we denote by h; and w; the execution time and the weight of job ¢ respectively.
The following theorem can be derived from [15,12,10] and has been stated in
this form in [19]. The makespan and the total completion time of a schedule S
are described by mg and cg, respectively.



Theorem 1. For all FCFS schedules S with only sequential jobs i and w; = h;
the following properties hold

1. mg < 2-mgp,
2. s < 1.21 - copt, and
3. S s 1-fair.

For the parallel case, it is usually assumed that FCFS scheduling may possibly
generate big deviations for the makespan and the sum of flow times from the
optimal values because fragmentation may occur and lead to a large number of
idle nodes. The amount of fragmentation grows if jobs require large subsets of
nodes, see Fig. 1. In the displayed example, job T6 cannot be started before
time ¢ although it became the first job of the FCFS queue at time ¢5. However,
if the maximum degree of parallelism is restricted, FCFS still guarantees small
deviations from the optimal case for parallel job systems with limited resource
(node) numbers. Here we use r; to denote the required nodes. Further R is the
maximum number of nodes. The following results are also presented in [19].

Theorem 2. For all FCFS schedules with r; < % and w; = r; - h; there is

1. mg < 3 - mgp,
2. cs < 2-copt, and
3. S s 1-fair.

From Table 1 we can see that highly parallel jobs are only a very small part
of the workload. This explains the acceptable performance of FCFS schedulers
in commercial MPPs in contrast to the bad behavior predicted by theoretical
worst case analysis [19]. However, if more jobs with a small degree of parallelism
are moved from MPPs to SMP workstations, it can be assumed that FCFS
performance will suffer more severely.

As the percentage of idle nodes caused by jobs that require only a few nodes
is rather small, our new scheduling strategy, called preemptive FCFS (PFCFS),
especially cares for the highly parallel jobs. While in FCFS scheduling idle nodes
must stay idle until the next job in line is started (with the notable exception of
backfilling), we allow highly parallel jobs to interrupt the execution of currently
running jobs.

Intuitively, we can describe PFFS by using two different schedules for small
and for highly parallel jobs, which are then partially interleaved.

It is shown in [19] that PFCFS generates good theoretical results for make-
span and completion time.

Theorem 3. If the execution times of all jobs are unknown and w; = r; - h;
holds for each job and n — co and § > A, then for all schedules S produced by
the PFCFEFS Algorithm there is

1. ms < (44 2p)mope,
2. cs < (3.56 + 3.24p)copt, and



3. S is (2 + 2p)-fair.

For this concept to be applied in practice, theoretical analysis is not sufficient.
Therefore, parameters must be chosen to fine tune the strategy. In particular our
new strategy and its parameters can be described as follows:

1. Any job requiring less than % of the total number of nodes in the batch
partition (in the following called small job) is scheduled in an FCFS fashion.

2. Any job requiring at least % of the nodes (wide job) will preempt other
running jobs under the following conditions:
(a) The wide job is the next job to be started in FCFS order.
(b) No other previously submitted wide job is still active.
(c) A time span of J seconds has passed since the moment the previous two

conditions became valid.

3. If a wide job has been determined to start in a preemptive fashion a suitable
subset of nodes (preemptive subset) is selected.

4. Once the machine is in a preemptive mode caused by a wide job, there is a
context switch in the subset every A seconds up to a maximum of n context
switches.

Note that not all currently running nodes must be preempted by a wide job.
A wide job only preempts enough running jobs to generate a sufficiently large
preemptive subset. Those small jobs are selected by a simple greedy strategy to
preempt as few jobs as possible. The strategy also tries to adjust the size of the
preemptive subset as much as possible to the requested node number. If n is odd,
the wide job will be run to completion after the maximum number of context
switches is exhausted. Otherwise those small jobs which are allocated to nodes
of the preemptive subset all complete before the wide job if the latter has not
finished at the last permitted context switch. Whether the size of the preemptive
subset may change during the preemptive mode depends on the implementation.
Altogether, the strategy is characterized by the selection of the four parameters
z, 8, A, and n. It is the task of our simulation experiments to determine the
best parameter set.

Fig. 2 gives an example for such a schedule. The system is executing jobs T1 -
T5 with wide job T6 being due to execution at time ¢5. That means 7§ is the next
job to be scheduled in the FCFS queue. After a time delay § = ¢ —t, a sufficient
large resource set to execute T6 is selected. The delay 1s introduced to prevent
a possible starvation of smaller jobs if many wide jobs arrive in succession.

At this time t1, all small jobs in the selected preemptive subset are inter-
rupted. In the example, wide job T6 requires 9 resources for which jobs T1 to
T4 must be preempted. After the preemption the wide job is started in the now
available node subset. The wide job runs for a parameterized amount of time
A = t5 — t1. Next, we preempt the wide job and resume the execution of the
previously preempted jobs (¢2). This cycle between the wide job and the small
job gang will be repeated until a gang has been completed. In the example, T6
completes at {4 after which the remaining jobs T1 and T3 of the smaller gang
are immediately continued.
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Fig. 2. Example for Gang Scheduling of a Wide Job (T6) without Migration

Intuitively, a schedule produced by rules outlined above can be described
as the interleaving of two non preemptive FCFS schedules, where one of the
schedules contains at most one wide job at any time instant. Note again that
only a wide job can cause preemption and therefore increase the completion
time of a previously submitted job. However, as the subset of a job is invariably
determined at the starting time, it is also possible that the preemptive mode will
actually increase the completion time of the wide job causing the preemption.

6 Simulation

6.1 Description of the Simulation

For obtaining information on the influence of the parameters and to determine
good parameter values, various simulations have been done. For each strategy
and each month we determined the makespan, the total flow time, and the total
weighted flow time using our weight selection and compared these values with
the results of a simple non-preemptive FCFS schedule. To compare the algorithm
performance with a non-FCFS strategy, we made simulations with a backfilling
scheduling policy.

Further, we examined variations on the specification of wide jobs. We also
simulated with different gang lengths @ and start delays é before the start of the
preemption.

The work traces of the Cornell Theory Center reflect a batch partition com-
prising 430 nodes. There are only very few jobs in these traces that use between
215 (%) and 430 nodes, as seen in Table 1. A reason is the tendency to use a
number of processors which is equal to a power of 2. Taking into account that a
noticeable gain by PFCFS can only be expected for a suitable number of wide



T n A 1)
Wide job| Maximum | Start | Gang
spec. |preemptions| Delay |Length
40% 1 60 sec| 1 sec
45% 2 120 sec| 60 sec
50% 3 240 sec| A
55% 10 600 sec
60% 11 1800 sec
3600 sec

Table 2. Different Parameter Settings for Simulation Experiments

Jjobs, we assume parallel computers with 128, respectively 256 resource. This is
also reasonable as most installations only have a smaller number of nodes, and
it can be assumed that there the percentage of wide jobs will be larger than for
the CTC. This approach prevents the direct comparison of the simulation results
with the original schedule data of the CTC.

In order to evaluate our scheduling strategy we assume a homogeneous MPP,
that is a computer with identical nodes. As already mentioned, the batch parti-
tion of the CTC SP2 consists mainly of thin nodes with 128 or 256 MB memory.
Therefore, our reference computer is almost homogeneous in this respect. Spe-
cial hardware requests of the jobs are currently ignored. Although it is easy to
consider those requests in the scheduler, it is not helpful in determining basic
properties of the new strategy. Those requests can be taken into account in future
studies.

As the CTC schedule itself is not suitable for comparison due to these devi-
ations, we use a simple FCFS schedule for reference in this analysis.

Table 2 shows the parameter spectrum of our simulations.

The theoretical analysis [19] suggests # = 50%. We chose several values
around 50% to determine the sensitivity of the schedule quality on this param-
eter. While good theoretical results require a potentially unlimited number of
preemptions we wanted to determine whether in practice a restriction of this pa-
rameter 1s sufficient. The time period between two context switches A is selected
to span a wide range. However, to prevent a significant affect of the preemption
penalty a minimum value of 60 seconds was used. The theory also suggests to
set § = A. We additionally used two fixed values for §.

Finally, we ignored any preemption penalty in our simulations although it
can easily be included into the simulator.

Moreover, as migration is not needed and only local hard disks are used for
saving of job data and job status, the strategy allows gang scheduling imple-
mentations with a relatively small preemption penalty. Note that a preemption
penalty of 1 second as assumed in [21] will still be small compared to the minimal
value of A.

Finally, our experiments were conducted for each month separately to deter-
mine the variance of our results. This is another reason why the CTC schedule



Relative Overall Improvement over FCFS
with minimum and maximum deviation of the months
91,56% 88,85%
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Fig. 3. Comparison of PFCFS with FCFS for Different Criteria

Resources | 128 | 256
Wide job spec. = 40% 45%
Max. preemptions n 1 1
Start delay & 60 sec | 60 sec

Gang length A not applicable

Table 3. Parameter Setting for the Results Shown in Fig. 3

data could not be used for comparison as in the original schedule there are jobs
which were submitted in one month and executed in another.

6.2 Analysis of the Results

Fig. 3 shows that the preemptive FCFS strategy was able to improve FCFS for
all scheduling criteria if the best parameter setting was used, see Table 3. The
preemptive FCFS strategy also outperformed the backfilling scheduling policy.
This algorithm does not utilize preemption, but requires the user to provide a
maximuim execution time for a each job.

However, it can be noticed that the effect on the flow or weighted flow time
is more pronounced for a 256 node parallel computer while the smaller 128 node
machine achieves a better result for the makespan criteria. It can also be seen that



in every month a noticeable gain can be achieved with this set of parameters
although the actual gains depend on the workload. Note that in the selected
setting there is no time period between two context switches as with n = 1 a
wide job will interrupt some small jobs and then run to completion. A similar
approach was also subject of another publication ([1]) in a different context with
dynamic jobs.

Also, there is only very little difference between the weighted flow time and
the flow time results. This can be attributed to the large amount of short run-
ning jobs which do not require a large number of nodes. The stronger emphasis
of larger highly parallel jobs in weighted flow time criterion does not have a sig-
nificant impact on the evaluation of the strategy. However, this can be expected
to change if the number of those jobs would increase.

Next, we examine the result for different limits on the number of preemptions.
The results in Fig. 4 and Fig. 5 show that there are always improvements for
odd values of n. Note that an odd n gives preference to the execution of the
wide job once the maximum number of preemptions is reached. However, the
gains change only little if the number of preemptions is increased. This indicates
that the desired improvement of the scheduling costs can already be obtained by
using a simple preemption for a wide job. On the other hand, even values of n
result in significantly worse schedules in comparison to FCFS. This is due to the
fact that the completion time of the wide job may actually be further increased
over the FCFS schedule as its node allocation is fixed at the start time of the
job and no job migration is allowed. This may then lead to a larger degree of
fragmentation.

The schedule quality is not as sensitive on the other parameters. Theoretical
studies [19] indicate that x=50% would be the best choice to separate wide jobs
from small ones. Fig. 6 and Fig. 7 show that the schedule cost increases for all
three criteria if « is selected to be larger than 50%. For real workloads a further
slight improvement can be obtained by selected values for  which are less than

50%.

A 1s irrelevant if n is selected to be 1. For all other odd values of n the
schedule cost varies only little with A. There, A = 120 sec is frequently the best
choice. If n is even, the results improve with a larger A as the chances to reach
the preemption limit become smaller.

As the choice of A has little influence on the schedule quality, it is sufficient
to just consider the cases = 1 sec and =60 sec. From theory we would expect
a better makespan for §= 1 sec as fragmentation will be reduced if wide jobs are
executed as early as possible. On the other hand, = 60 sec will permit some
short running small jobs to complete before they are interrupted by a wide job.
However, in our simulation, switching from 1 sec to 60 sec changed the schedule
costs by less than 0.01%. Therefore, § can also be ignored.
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7 Conclusion

In this paper we presented a new scheduling method called PFCFS for batch jobs
on MPPs. This strategy uses gang scheduling and is able to produce significant
improvements of up to 40% in flow time and 22% in makespan for real workload
data over FCFS.

It has been shown that the scheduling algorithm is sensitive to some of the
scheduling parameters and should be carefully adapted for the specific work-
load. Nevertheless, it is possible to apply default settings that seem to increase
schedule quality compared to FCFS. For instance, it may be sufficient to start
execution of a wide job by preempting a suitable node set and let it run to
completion. Based on our simulation this is sufficient to significantly improve
the flow time and increase the machine utilization. For better results, we sug-
gest that the parameters are determined on-line in an adaptive fashion from the
workload results of previous months.

The implementation of the scheduling algorithm can also be improved, e.g.
by allowing the start of new small jobs during gang scheduling. It may also be
beneficial to check that the preemption cycle is only initiated, if more resources
are utilized after the start of the wide job than before. Both modifications are
not used in the presented simulations.

The PFCFS strategy is especially interesting since it has only limited re-
quirements on the preemption support of the MPP. It uses no migration and
at any time instance at most 2 jobs are resident on any node. Therefore, it can
be assumed that the algorithm can be implemented on most systems with pre-
emption capabilities. Also, there is no need for users to provide additional job
information like an estimate of the execution time.
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