
Improved Utilization and Responsivenesswith Gang SchedulingDror G. Feitelson1 and Morris A. Jette21 Institute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israelfeit@cs.huji.ac.il2 Livermore ComputingLawrence Livermore National LaboratoryLivermore, CA 94550jette@llnl.govAbstract. Most commercial multicomputers use space-slicing schemesin which each scheduling decision has an unknown impact on the future:should a job be scheduled, risking that it will block other larger jobslater, or should the processors be left idle for now in anticipation of fu-ture arrivals? This dilemma is solved by using gang scheduling, becausethen the impact of each decision is limited to its time slice, and futurearrivals can be accommodated in other time slices. This added exibilityis shown to improve overall system utilization and responsiveness. Em-pirical evidence from using gang scheduling on a Cray T3D installed atLawrence Livermore National Lab corroborates these results, and showsconclusively that gang scheduling can be very e�ective with current tech-nology.1 IntroductionAs parallel computers become more popular, there is a growing need for goodschedulers that will manage these expensive shared resources. And indeed, manyscheduling schemes have been designed, evaluated, and implemented in recentyears [5,10].Many papers investigate scheduling schemes from a system point of view,asking what the system can do to improve utilization and response time, butdisregarding the e�ect on the user. As a result they sometimes advocate solutionsthat require users to depart from common practice, e.g. to write applications ina style that supports dynamic partitioning (i.e. the allocation may change atruntime) [30,20], rather than the prevalent SPMD style.We take a di�erent approach, and ask what the system can do given theconstraint that users require jobs to execute on a �xed number of processors (asin SPMD). Within this framework, we compare variable partitioning, possiblywith reordering of the jobs in the queue, with gang scheduling. We show thatalthough gang scheduling su�ers from more overhead than variable partition-ing, it can lead to signi�cant improvements due to its added exibility. Indeed,

gang scheduling can actually give better service (reduced response time) andimproved utilization, so using it leads to a win-win situation relative to variablepartitioning.The results agree with actual experience on the LLNL Cray T3D, whichemploys a home-grown gang scheduler [12,17] (the original system software usesvariable partitioning). When this scheduler was ported to the new Cray machine,utilization nearly doubled from 33.4% to 60.9% on average. Additional tuninghas led to weekly utilizations that top 96%.2 Approaches to Scheduling Jobs of Given SizeThe schedulers of most commercial parallel systems use variable partitioning.The user speci�es the number of processors to use at the time of submitting thejob. The scheduler than carves out a partition of the required size, and dedicatesit to the job for the duration of its execution. If the required number of processorsis not available, the job is either rejected or queued. In most systems a time limitis also imposed, and if the job exceeds it it is killed.The problem with this scheme is that scheduling decisions have a potentiallylarge, persistent, and unpredictable impact on the future. Speci�cally, when anew job arrives, the system is faced with the following dilemma:{ if the new job can be accommodated, then scheduling it immediately willutilize unused resources, so it is good.{ however, if this job runs for a long time, and will block other jobs in thefuture, it may lead to more future loss than current gain. So maybe it shouldbe left aside.
64 32

tim
e

25% utilization
(128-node job queued)

64

tim
e

64 32

tim
e

(128-node job queued)
75% utilization50% utilization

(128 and 32-node jobs queued)

processors processors processors

worst case probable compromise best case

Fig. 1. Example of the problems faced by variable partitioning.

Consider the following simple case as an example (Fig. 1): a 128-node systemis currently running a 64-node job, and there are a 32-node job and a 128-nodejob in the queue. The question is, should the 32-node job be scheduled to runconcurrently with the 64-node job? Two outcomes are possible. If the 32-nodejob is scheduled and it terminates before the 64-node job, resource utilization isimproved from 50% possibly up to 75%. But if the 64-node job terminates soonafter the 32-node job is scheduled, and the 32-node job runs for a long time, theutilization drops from 50% to 25%. And, in order not to starve the 128-node job,it might be necessary to just let the 64-node job run to completion, and settlefor 50% utilization.As the future is usually unknown, there is no solution to this dilemma, andany decision may lead to fragmentation. Thus using variable partitioning maylead to signi�cant loss of computing power [18,33], either because jobs do not�t together, or because processors are intentionally left idle in anticipation offuture arrivals [26].
now

tim
e

reservation for large job

terminated

expected

termination

lost to

fragmentation

can be used

for small job

with bounded

execution time

processors

Fig. 2. Runtime bounds on executing jobs allow reservations to be made for large jobsand then back�lling with smaller jobs to reduce fragmentation.The most common solution is to reorder the jobs in the queue so as to packthem more tightly [16]. One promising approach is to allow small jobs to moveforward in the queue if they can be scheduled immediately. However, this maycause starvation of large jobs, so it is typically combined with allowing large jobsto make reservations of processors for some future time. Only short jobs are thenallowed to move ahead in the queue (Fig. 2) [3,19].

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

pe
rc

en
ta

ge
 o

f j
ob

s

percent of queue limit

CTC SP2

15 min
3 hr
6 hr

12 hr
18 hr

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

pe
rc

en
ta

ge
 o

f j
ob

s

percent of queue limit

SDSC Paragon

1 hr
4 hr

12 hr
48 hr

120 hrFig. 3. Job runtimes as a fraction of the batch queue time limit, showing that mostjobs use only a fraction of the time limit, even for queues with very long limits. Theplot for each queue limit is normalized independently.The problem with this idea is that it requires information about job runtimes.A rough approximation may be obtained from the queue time limit (in mostsystems users may choose which queue to use, the di�erence being that eachqueue has a distinct set of resource limits associated with it). The idea is thatthe user would choose the queue that best represents the application's needs, andthe system would then be able to select jobs from the di�erent queues to createa job mix that uses the system's resources e�ectively [31]. However, experienceindicates that this information is unreliable, as shown by the distributions ofqueue-time utilization in Fig. 3. The graphs show that users tend to be extremelysloppy in selecting the queue, thus undermining the whole scheme. (The graphsshow the distributions in buckets of 4 percentage points. Thus the top left datapoint in the left graph shows that about 38% of the jobs submitted to all the3-hour queues on the Cornell SP2 only used between 0 and 4% of their timelimit, i.e. they were actually shorter than 7 minutes.)Another solution to the fragmentation problem is to use adaptive partitioningrather than variable partitioning [29,28,25]. The idea here is that the numberof processors used is a compromise between the user's request and what thesystem can provide. Thus the system can take the current load into account,and reduce the partition sizes under high load conditions. However, this schemealso requires a change of user interfaces, albeit much less disruptive than dynamicpartitioning.The preferred solution is to use gang scheduling [22,7,8,27].With gang schedul-ing, jobs receive the number of processors requested, but only for a limited timequantum. Then a \multi-context-switch" is performed on all the processors atonce, and another job (or set of jobs) is scheduled instead. Thus all jobs canexecute concurrently using time slicing, as in conventional uniprocessors. As aresult, a scheduling decision only impacts the scheduling slot to which it per-tains; other slots are available to handle other jobs and future arrivals. This addsexibility and boosts performance.

tim
e

64 32

128

tim
e

64 32

128

62.5% utilization 87.5% utilization

processors processors

worst case good case

Fig. 4. Example of how the exibility a�orded by time slicing can increase systemutilization; compare with Fig. 1.Returning to the example considered earlier, the situation with gang schedul-ing is illustrated in Fig. 4. The 32-node job can safely run in the same time-slotwith the 64-node job, while the 128-node job gets a separate time-slot. There isno danger of starvation. As long as all three jobs are active, the utilization is87.5%.Even if the 64-node job terminates, leaving the 32-node job to run alone inits time-slot, the utilization is 62.5%. Naturally, a few percentage points shouldbe shaved o� these �gures to account for context-switching overhead. Neverthe-less, this is a unique case where time-slicing, despite its added overhead, canlead to better resource utilization than batch scheduling.Using gang scheduling not only improves utilization | it also reduces meanresponse time. It is well known that mean response time is reduced by theshortest-job-�rst discipline. In workloads with high variability this is approx-imated by time slicing, because chances are that a new job will have a shortruntime [24,23]. As production workloads do indeed exhibit a high variability[6], it follows that gang scheduling will reduce mean response time. Indeed, gangscheduling has even been advocated in conjunction with dynamic partitioning[21].3 Simulation Results3.1 The Compared Scheduling SchemesIn order to demonstrate the ideas described above, we simulate the performanceof a multicomputer subjected to a realistic workload and using one of a set of

di�erent scheduling schemes. these are:FCFS: the base case we use for comparison is variable partitioning with �rst-come-�rst-serve queuing. This scheme is expected to su�er from signi�cantfragmentation.Back�ll: back�lling was developed for the Argonne National Lab SP1 machine[19], and has recently also been installed on the Cornell SP2 and other ma-chines. It allows short jobs to move forward in the queue provided theydo not cause delays for any other job. Only jobs that do not cause delayare moved forward. We assume the scheduler has perfect information whenmaking such decisions, i.e. it knows the exact runtimes of all the jobs in thequeue.Prime: this policy is a simpli�ed version of a policy used on the SP2 machineat NASA Ames [14]. The idea is to distinguish between prime time andnon-prime time1: during prime time, large jobs (more than 32 nodes) arerestricted to 10 minutes, while small jobs are allowed up to 4 hours providedat least 32 nodes are available. Thus, if only a few nodes are available, all jobsare restricted to 10 minutes, and responsiveness for short jobs is improved.This achieves a similar e�ect to setting aside a pool of nodes for interactivejobs [31]. During non-prime time these restrictions are removed. Again, weassume the scheduler knows the runtimes of all jobs.Gang: gang scheduling with no information regarding runtimes. The jobs arepacked into slots using the buddy scheme, including alternate scheduling[4]. Two versions with di�erent scheduling time quanta are compared: onehas relatively small time quantum of 10 seconds, so most jobs e�ectively runimmediately, and the other has a time quantum of 10 minutes (600 seconds),so jobs may be queued for a certain time before getting to run.3.2 Simulation MethodologyThe workload model is an improved version of the model used in [4]. It is basedon workload analysis from a number of production systems [6,15,32], and ischaracterized as follows (Fig. 5):{ The distribution of job sizes emphasizes small jobs and powers of two.{ The distribution of runtimes is a three-stage hyperexponential, where therelative weights of the three stages depend on the job size. This dependenceis used to create a correlation between the job size and the runtime.{ The arrivals are Poisson, except for jobs that are re-run a number of times,in which case they are re-submitted immediately upon completion.The simulation uses the batch means method to evaluate con�dence intervals.Each batch includes 3333 job terminations. The �rst batch was discarded to ac-count for simulation warmup. The length of each experiment (i.e. the simulation1 Our workload model does not include a daily cycle of job submittals | it is a con-tinuous stream of jobs with the same statistical properties. Thus in our simulationsthe distinction is only in the scheduling policy, which is switched every 12 hours.

0

20000

40000

60000

80000

100000

120000

1 16 32 64 128

nu
m

be
r

of
 jo

bs

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

nu
m

be
r

of
 o

cc
ur

en
ce

s

run length

0

5000

10000

15000

20000

25000

1 16 32 64 128

av
er

ag
e

ru
nt

im
e

job size

4 buckets
all sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

pr
ob

ab
ili

ty

runtime

1st bucket
2nd bucket
3rd bucket
4th bucketFig. 5. Statistical properties of the workload model: (a) distribution of job sizes (b)distribution of runlengths (number of repeated executions) (c) correlation of runtimewith job size, for all sizes and when jobs are grouped into four buckets according tosize (d) cumulative distributions of runtimes for the jobs in the four buckets.for each data point in the results) is at least 3 batches, or more as required sothat the 90% con�dence interval is no larger than 10% of the data point value,up to a maximum of 100 batches. Interestingly, simulations of all schedulingschemes except gang scheduling with short time quanta used all 100 batches,without a signi�cant reductions in the con�dence interval: it was typically inthe range of 20-40% of the data point value. This reects the very high variancepresent in the workload.The sequence of job arrivals is generated once and reused for each data pointand each scheme. Only the mean interarrival time is changed to create di�erentload conditions.The performance metric is the average slowdown. The slowdown for a givenjob is de�ned as the ratio between its response time on a loaded system (i.e. itsqueuing time plus run time and possible preempted time) and its runtime on adedicated system.3.3 Experimental ResultsThe results are shown in Fig. 6. As expected, FCFS saturates at extremelylow loads, and even before saturation it tends to create very high slowdowns.

0

500

1000

1500

2000

2500

3000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

sl
ow

do
w

n

system load

fcfs
backfill
prime

gang 10
gang 600

Fig. 6. Simulation results.Back�lling and delaying large jobs to non-prime time are both much better, butback�lling can sustain a higher load and produces lower slowdowns. Attemptsto improve the performance of the prime/non-prime policy by �ddling with itsparameters (the threshold between small and large jobs, and the length of theprime shift) showed that it is relatively insensitive to the exact values of theseparameters. However, it should be remembered that our workload model is notsuitable for a detailed study of the prime/non-prime policy, because it does notinclude a daily cycle.Gang scheduling, even with relatively long quanta of 10 minutes, takes thecake: the slowdowns are very low, and saturation is delayed until system loadapproaches 1. This agrees with the informal arguments presented in Section 2.While our simulations may be criticized for not modeling the overheads involvedin gang scheduling | for example, the overhead of context switching and thee�ect of corrupting cache state | we feel that with long enough time quantathese overheads can be kept relatively low, so the main results remain valid.4 Experience with Gang Scheduling on the Cray T3DThe default mode of operation for the Cray T3D is that of variable partitioning.Generally, jobs are allocated a partition of processors as soon as a suitable setbecomes available. In the case where a job has waited for longer than somecon�gurable period of time, the initiation of all other jobs is deferred until itbegins execution. The partitions are held until the job completes and relinquishesthem, e�ectively locking out any other use for those processors. With such a

processor allocation mechanism, the computational requirements of long-runningproduction jobs directly conict with those of interactive code development work.Goals in the development of the Gang Scheduler for the Cray T3D were:{ Provide better response for interactive jobs that are submitted directly{ Provide better throughput for batch jobs that are submitted through NQS{ Permit larger jobs to be executed{ Provide optimum throughput for speci�c jobs, as designated by managementWhile achieving all of these objectives would seem impossible, the initial utiliza-tion rate of 33.4% provided a great deal of room for improvement.
NQS

Cray T3D System
256 processors

batch
requests

interactive

selected requests
using 96 processors

processors at night

jobs blocked if not
enough processors

are available

in daytime up to 256

requests

NQS

batch
requests

interactive
requests

selected requests

processors at night

using 256 processors

256 processors
and preemption instructions

Cray T3D System
256 processors

jobs never blocked

selected jobs using

in daytime up to 512

Original system

Gang SchedulerFig. 7. The place of the gang scheduler in the Cray T3D scheduling system.In a nutshell, our approach is as follows (Fig. 7). Originally, batch jobs weresubmitted via NQS and interactive jobs were submitted directly to the Cray sys-tem software. NQS bu�ered the jobs, and forwarded only few small jobs duringthe day, so that (hopefully) su�cient processors would be left free for interactiveuse. At night, NQS would submit enough jobs to �ll the whole machine. Withthe gang scheduler, NQS �lls the machine during the day and over-subscribesit during the night. The gang scheduler preempts jobs as necessary in order toprovide timely service to higher-priority jobs, notably interactive jobs. This is a\lazy" form of gang scheduling: rather than performing a context switch acrossthe whole machine at given intervals, speci�c jobs are chosen for preemptionwhen an urgent need for processors arises.Gang scheduling thus e�ectively creates a larger virtual machine, and meetsthe above objectives by:{ Time sharing processors for interactive jobs when experiencing an extremelyheavy interactive workload

{ Keeping processors fully utilized with batch jobs until preempted by aninteractive or other high priority job{ Making processors available in a timely fashion for large jobs{ Making processors available in a timely fashion for speci�c jobs and makingthose jobs non-preemptableSome might argue that interactive computing with a massively parallel computeris unreasonable, but interactive computing accounts for a substantial portion ofthe workload on the Cray T3D at Lawrence Livermore National Laboratory(LLNL): 79% of all jobs executed and 11% of all CPU cycles. The reason isthat interactivity is used for code development and rapid throughput. A singleinteractive job can be allocated up to 25% of all processors and memory, and theaggregate of all interactive work will normally consume between zero and 150%of all processors and memory. While the Cray T3D is well suited for addressingthe execution of grand challenge problems, we wanted to expand its range offunctionality into general purpose support of interactive work as well.4.1 Cray T3D Design IssuesThe Cray T3D is a massively parallel computer incorporating DEC alpha 21064microprocessors, capable of 150 MFLOPS peak performance. Each processorhas its own local memory. The system is con�gured into nodes, consisting of twoprocessors with their local memory and a network interconnect. The nodes areconnected by a bidirectional three-dimensional torus communications network.There are also four synchronization circuits (barrier wires) connected to all pro-cessors in a tree shaped structure. The system at LLNL has 256 processors, eachwith 64 megabytes of DRAM. Disk storage is required to store the job stateinformation for preempted jobs. This can be either shared or private storagespace. We have created a shared 48 gigabyte �le system for this purpose. Thestorage requirements will depend upon the T3D con�guration and the amountof resource oversubscription permitted.Without getting into great detail, the T3D severely constrains processor andbarrier wire assignments to jobs. Jobs must be allocated a processor count whichis a power of two, with a minimum of two processors (one node). The processorsallocated to a job must have a speci�c shape with speci�c dimensions for a givenproblem size. For example, an allocation of 32 processors must be made witha contiguous block with 8 processors in the X direction, 2 processors in the Ydirection and 2 processors in the Z direction. Furthermore, the possible loca-tions of the processors assignments is restricted. These very speci�c shapes andlocations for processor assignments are the result of the barrier wire structure.Jobs must be allocated one of the four barrier wires when initiated. The barrierwire assigned to a job cannot change if the job is relocated and, under some cir-cumstances, two jobs sharing a single barrier wire may not be located adjacentto each other. The number of processors assigned to a job can not change duringexecution [2].There are two fundamentally di�erent ways of providing for timesharing ofprocessors. The entire state of a job, includingmemory contents, register contents

and switch state information can be written to disk. Alternately, the register andswitch state information can be saved and the memory shared through paging.Saving the entire job state clearly makes context switches very time consuming,however, it can provide a means of relocating jobs to di�erent processors andprovide a means of preserving executing jobs over computer restarts. Sharingmemory through paging can make for much faster context switches. Our systemprovides timesharing by saving the entire state of a job to disk. Cray does notsupport paging on this architecture because of the large working sets typical ofprograms executed and in order to reduce system complexity.Timesharing by saving the entire state of a job to disk has an additionaladvantage as well. Given the T3D's constraints on processor assignment, theability to relocate jobs with this mechanism clearly make it preferable. Whilethe ability to preserve executing jobs over computer restarts has proven to be ofsome use, most programs complete in a few hours and can be restarted withoutsubstantial impact upon the system. Unfortunately, the high context switch timeprovides lower interactivity than would be desirable. It should also be noted thatthe system only supports the movement of a job's state in it's entirety. It is notpossible to initiate state transfers on a processor by processor basis, althoughthat capability would improve the context switch time.The original version of this Gang Scheduler was developed for the BBNTC2000 computer. The BBN computer permitted programs to be assigned pro-cessors without locality constraints. Its timesharing through shared memory andpaging was successful at providing both excellent interactivity and utilization[13,12].4.2 Policy OverviewThe T3D Gang Scheduler allocates processors and barrier circuits for all pro-grams. In order to satisfy the diverse computational requirements of our clients,the programs are classi�ed by access requirements:{ Interactive class jobs require responsive service{ Debug class jobs require responsive service and can not be preempted{ Production class jobs require good throughput{ Benchmark class jobs can not be preempted{ Standby class jobs have low priority and are suitable for absorbing otherwiseidle compute resourcesThere are several class-dependent scheduling parameters to achieve the de-sired performance characteristics.{ Priority: Job classes are prioritized for service. We make interactive jobshigher priority than production jobs during the daytime and assign themequal priority at night.{ Wait time: The maximum time that a job should wait before (or between)processor access. This is used to ensure timely responsiveness, especially forinteractive and debug class jobs. After a job has waited to be loaded for the

maximumwait time, an attempt will be made to reserve a block of processorsfor it. This processor reservation mechanism frequently preempts multiplesmall jobs to prevent starvation of large jobs.{ Do-not-disturb time multiplier: This parameter is multiplied by the numberof processors to arrive at the do-not-disturb time, the minimum processorallocation time before preemption. A job will never be preempted beforeits do-not-disturb time is up. This allows the desire for timely response tobe balanced against the cost of moving a job's state onto disk and back tomemory (it is similar to the scheme proposed for the Tera MTA [1]). Thedo-not-disturb time multiplier should be set to a value substantially largerthan the time required to move a job's state in one processor from memoryto disk and back to memory. This time will vary with the disk con�guration.On the LLNL T3D with 256 processors and 64 megabytes of memory each,the entire torus or processors can be repacked in about eight minutes, or onesecond per processor.{ Processor limit: The maximumnumber of processors which can be allocatedto jobs of this class. This is used to restrict the number of processors allocatedto non-preemptable jobs during the daytime.Wait Do-not-disturb ProcessorJob Class Priority Time Time Multiplier LimitInteractive 4 0 Sec 10 Sec 256Debug 4 300 Sec 1 Year 96Production 3 1 Hour 10 Sec 256Benchmark 2 1 Year 1 Year 64Standby 1 1 Year 3 Sec 256Table 1. Scheduling parameters for di�erent job classes.The scheduling parameters currently being used during the daytime on week-days are shown in Table 1. The time of one year is used in several cases to insureno preemption or an inde�nite wait for some job classes.Several non-class dependent scheduling parameters also exist to regulatecomputer-wide resource use.{ Large job size: The minimumnumber of processors requested by a job for itto be considered \large". We set this to 64 during daytime.{ Large processor limit: The maximumnumber of processors which can be al-located to \large" jobs at any time. Since \large" jobs can take a signi�cantperiod of time to have their state moved between memory and disk, interac-tivity can be improved by restricting the number of processors allocated tothem. Our limit is 192 during daytime.{ Job processor limit: The maximum number of processors which can be allo-cated to any single job. We use 256, i.e. we do not place such a limit.

{ System processor limit: The maximum number of processors used by jobseither running or swapped to disk. This de�nes the degree of over-allocation;we use 576, i.e. an overallocation factor of 2.25. A limit is required to avoid�lling the �le system used for job state information. We are conservative inour allocation of this storage area because it is shared. Jobs will be queued,but not initiated to avoid exceeding this parameter. If an attempt is madeto preempt a job when insu�cient storage is available, that job will continueexecution and no further attempts will be made to preempt it.4.3 Job Scheduling AlgorithmWe have implemented a two pass scheduling algorithm. The �rst pass checks forjobs which have waited for loading longer than their job class' maximum waittime. These jobs are viewed as having a high priority for loading and specialmeasures are taken for loading them. If there is more than one such job, a list ofthese jobs is constructed then sorted by job class priority and within each priorityvalue by the time waiting for loading. Each of these jobs is considered for loadingin the sorted order. The processor requirement for the job will be comparedagainst the scheduler's job processor limit. If the job's processor request cannotbe satis�ed, that job will no longer be considered a candidate for loading.Multiple possible processor assignments for the job are considered. For eachpossible processor assignment, a cost is computed. The cost considers the numberof nodes occupied by the potentially preempted jobs, their relative priority, andhow much time remains in their do-not-disturb time. In no case will a job bepreempted for another job of a lower priority class. Jobs of benchmark and debugclass will never be preempted. If no possible processor assignment for loadingthe waiting job is located, its loading will be deferred. If a possible processorassignment is located, the lowest cost set of processors will be reserved for theexclusive use of this waiting job and jobs occupying those processors will bepreempted when their do-not-disturb times have been exhausted.Only one job will have processors reserved for it at any point in time. Once aset of processors have been reserved for a waiting job, the reservation of proces-sors for other waiting jobs will be deferred until the selected job has been loaded.An exception is made only in the case that a higher priority class job exceedsits maximum wait time. For example, an interactive class job could preemptthe reservation of processors for a production class job. The job with reservedprocessors can be loaded into other processors if another compatible set of pro-cessors becomes available at an earlier time. As soon as that job is loaded, thereserved processors are made generally available. This mechanism insures timelyinteractivity and prevents the starvation of large jobs.In the second scheduler pass, other executable jobs are recorded in a listsorted by job class priority and within each priority by the time waiting forloading. Each job in the sorted list is considered for processor assignment. Firstthe limits (job processor limit, large job limit, and job class limit) are checkedto determine if the job should be allocated processors. Any job satisfying theselimits will have its barrier wire circuit and processor requirements considered.

If the job can have its requirements met either with unallocated resources orresources which can be made available by preempting jobs which have exceededtheir do-not-disturb time, it will have a barrier wire circuit and processors as-signed. If a speci�c barrier wire is not requested, one of those available will beassigned. All four barrier wire circuits are considered for use and selected on thebasis of lowest contention. More e�cient relocation of jobs can be achieved byusing all four barrier wire circuits.The time required to save the state of a job on disk can be up to four minutes.Given this delay, it is not ideal to queue the loading of a job until the processorsassigned to it are actually available. Whenever processors are actually madeavailable, the job scheduler is executed again. This insures that when processorsbecome available, they are assigned to the most appropriate jobs then available.When a newly started job can immediately begin execution in a variety ofpossible sets of processor, a best-�t algorithm is used to make the selection. Wealso try to locate debug and benchmark class jobs, which can not be preempted,together in order to avoid blocking large jobs.4.4 Client InterfaceThe default mode of operation for the Cray T3D requires all jobs, batch andinteractive, to be initiated through a program called mppexec, which will acceptas arguments the number of processors required, speci�c processor requirements,speci�c barrier wire requirements, etc. The Gang Scheduler takes advantage ofthis feature by creating a wrapper for mppexec which is upwardly compatiblewith it. The interface registers the job with the Gang Scheduler and waits foran assignment of processors and barrier circuit before continuing. On a heavilyutilized computer, this typically takes a matter of seconds for small numbersof processors and possibly much longer for large jobs. The only additional ar-gument to the Gang Scheduler interface is the job class, which is optional. Bydefault, interactive jobs are assigned to the interactive job class, the TotalViewdebugger jobs are assigned to the debug class, and batch jobs are assigned tothe production job class.4.5 The Gangster ToolWe provide users with an interactive tool, called \gangster", for observing thestate of the system and controlling some aspects of their jobs. Gangster commu-nicates with the Gang Scheduler to determine the state of the machine's pro-cessors and individual jobs. Gangster's three-dimensional node map displays thestatus of each node (each node consists of two processing elements on the T3D).Gangster's job summary reports the state of each job, including jobs movingbetween processors and disk. Users can use gangster to change the class of theirown jobs or to explicitly move their job's state to disk (suspending execution)or make it available for execution (resume).A sample gangster display is shown in Fig. 8. This display identi�es jobs inthe system and assigned processors. The node map is on the left. A dot or letter

h h c c a a a a CLAS JOB-USER PID COMMAND #PE BASE W ST MM:SSh h c c a a a a Int d - colombo 2976 icl1 8 100 1 R 42:44h h c c a a a a Int h - mshaw 9529 icf3d 32 020 2 R 00:33h h c c a a a a Bmrk g - grote 9264 warpslav 32 200 1 R 00:20h h c c a a a ah h c c a a a a Prod a - caturla 95396 moldy 128 400 2 R 107:35h h c c a a a a Prod b - colombo 98057 vdif 8 000 3 R 91:54h h c c a a a a Prod c - wenski 98484 pproto6. 32 220 3 R 85:12Prod e - colombo 8712 icl3 8 004 1 R 6:23b d g g a a a a Prod f - colombo 8873 icl2 8 104 2 R 4:54b d g g a a a a Prod i - dan 5684 camille 32 020 0 O 32:08e f g g a a a a Prod j - vickie 99393 kiten 64 400 3 O 132:59e f g g a a a ab d g g a a a ab d g g a a a ae f g g a a a ae f g g a a a agangster:Fig. 8. Sample gangster display. The W �eld shows the barrier wire used. The MM:SS�eld shows the total execution time. The ST �eld shows the job's state: i = swapping in,N = new job, not yet assigned nodes or barrier wire, o = swapping out, O = swappedout, R = running, S = suspended, W = waiting job, assigned nodes and barrier wire.denotes each node (two processing elements on the T3D): a dot indicates thenode is not in use, a letter designates the job currently occupying that node.On the right is a summary of all jobs. Node number 000 is in the upper leftcorner of the lowest plane. The X axis extends downward within a plane. TheY axis extends up, with one Y value in each plane. The Z axis extends to theright. This orientation was selected for ease of display for a 256 processor T3Dcon�guration.4.6 NQS Con�gurationJobs may be submitted to the Cray T3D interactively or via the NQS batchqueuing system. Interactive jobs are limited to 64 processors and 2 hours. Priorto installation of the Gang Scheduler, our NQS batch system was con�guredto leave an adequate number of processors available for interactive computingduring the day. This was changed when the Gang Scheduler was introduced, andnow NQS fully subscribes the machine during the day. At night, it oversubscribesthe machine by as much as 100% (Table 2).Note that jobs requiring more than a four hour time limit were originallylimited to 64 processors. Also note that substantial compute resources were sac-ri�ced in order to insure processors for interactive computing. This was partic-ularly noticeable in the early morning hours as the mpp-pe-limit dropped to 96at 04:00 in order to insure the availability of 160 processors for interactive use at08:00. Frequently this left many processors idle. Even so, under the occasionallyheavy interactive workload, all processors would be allocated and interactivejobs experienced lengthy initiation delays.

Global limits: User Run AggregatePeriod Limit Limit mpp-pe-limit00:00 { 04:00 2 ! 5 8 ! 20 256 ! 51204:00 { 07:00 2 ! 5 8 ! 20 96 ! 32007:00 { 18:00 2 ! 5 8 ! 20 96 ! 256-320�18:00 { 24:00 2 ! 5 8 ! 20 192 ! 320Queue limits: Job JobQueue User Run Time Processor AggregateName Limit Limit Limit Limit mpp-pe-limitpe32 1! 3 4! 8 4 h! 4 h 32! 32 128! 128pe64 1! 2 3! 2-3� 4 h! 4 h 64! 64 192! 128-192�pe64 long 2! 2 2! 2 19 h! 40 h 64! 128 96! 96-128�pe128 short 1! 1 4! 4 15 m! 15 m 128! 96 128! 128pe128 1! 0-2� 1! 1 4 h! 4 h 128! 128 128! 0-256�pe256 short 1! 0-1� 1! 1 15 m! 15 m 256! 256 256! 0-256�pe256 1! 0-1� 1! 1 4 h! 4 h 256! 256 256! 0-256��Varies by time of day and/or day of weekTable 2. Changes made in NQS con�guration parameters when the Gang Schedulerwas introduced. User Limit is the maximum number of batch jobs a single user mayhave executing. Run Limit is the maximum number of batch jobs (from a certain queue)the system may have executing at one time. mpp-pe-limit is the maximum number ofprocessors which the batch jobs may have allocate at one time.With the gang scheduler, NQS is now allowed to fully subscribes the com-puter and oversubscribe at night. The overallocation of processors permits theexecution of larger jobs and makes more jobs available for fully packing the T3D'storus of processors. NQS jobs now relinquish their processors only as needed,not in anticipation of interactive work. During periods of heavy use, this im-proves our realized throughput substantially while preserving good interactivity.While average interactivity has decreased slightly due to interference from NQSjobs, the worse case startup time has dropped from tens of minutes to about oneminute. This is still quite acceptable to our user community, especially whenaccompanied by a substantial increase in realized batch throughput. We also seea few jobs relocated to better utilize the available processors during periods ofheavy use, especially when jobs requiring 64 or 128 processors exist.4.7 Performance ResultsIn order to quantify the e�ect upon system throughput and interactivity underheavy load, we have continuously tabulate system performance with the GangScheduler. Before installing the Gang Scheduler, we did the same for the standardUNICOS MAX scheduler and the Distributed Job Manager (DJM). DJM isa gang scheduler developed by the Minnesota Supercomputer Center, whichhas undergone substantial modi�cation for performance enhancements by Cray

analysts at LLNL. All of the DJM code to accomplish job swapping is new. Theenhanced version of DJM was used for testing purposes.
Job SizeCPUUtilization(Percent) 2 4 8 16 32 64 128 25601020304050

60 Jan 96Apr 96Oct 96
Fig. 9. Changes in workload distribution due to use of the Gang Scheduler.Fig. 9 demonstrates the Gang Scheduler's ability to execute large jobs: notethe dramatic improvement in throughput of 128 and 256 processor jobs. Thischarts the distribution of resources allocated to each job size as percentage ofCPU resources actually delivered to customers. The percentage of gross CPUresources which are delivered to large jobs has increased by an even wider margin.The January 1996 period is the last full month of operation with the standardUNICOS MAX operating system. April is just after installation of the GangScheduler, and by October the workload had shifted to take advantage of itsimproved support for large jobs.The best measure of success is probably actual throughput achieved. Whileutilization is quite low on weekends, the improvement in throughput at othertimes has dramatically improved with preemptive schedulers2. Fig. 10 summa-rizes utilization of processor resources over the course of several entire weeks.Over the longer term, utilization has improved even more dramatically whileproviding good interactivity, as shown in Fig. 11. CPU utilization reported isthe percentage of all CPU cycles available which are delivered to customer com-putation. Weekly utilization rates have reached over 96%.2 While DJM would also have provided for good interactivity and throughput, it be-came available at the same time as our Gang Scheduler was completed and we feltthat continued development of our Gang Scheduler was worthwhile. In addition, ourGang Scheduler provided the means to arbitrarily lock jobs into processors. This wasimportant for us to be able to insure optimal throughput for jobs speci�ed by ourmanagement.

Consecutive WeeksCPUUtilization(Percent) 01020304050
6070 UNICOS MAXDJMGang Scheduler28.6 38.2 50.2

Fig. 10.Weekly utilization with the three schedulers. Dashed lines and numbers denoteaverages.
Monthly Data 1995-1996CPUUtilization(Percent) A S O N D J F M A M J J A S O020406080

100 UNICOS MAXDJMGang Scheduler
Fig. 11. Monthly utilization with the three schedulers.Even though the improved utilization is impressive, this should not come atthe expense of interactive jobs. To quantify this, we tabulated the slowdowns ofinteractive jobs, i.e. the ratio of the time they spent in the system to the timethey actually ran. This was done for the period of July 23 through August 12.During this period, 2659 interactive jobs were run, using a total of 44.5 millionnode-seconds, and 1328 batch jobs were run, using a total of 289.4 million node-seconds.The ratio of the total time all interactive jobs spent in the system to theirtotal runtimes was 1.18, leading one to assume only 18% overhead. However, this

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 jo

bs

slowdown

average

0

100

200

300

400

500

600

700

800

1 2 4 6 8 10

nu
m

be
r

of
 jo

bs

bounded slowdown

averageFig. 12. Histograms of slowdown and bounded slowdown of interactive jobs.is misleading, because slowdowns of individual jobs should be checked. The fulldistribution of slowdowns is plotted in Fig. 12. Actually, only the low part of thedistribution is shown, as it has a very long tail, but most jobs have rather lowslowdowns. The most extreme case was a one-second job that was delayed forjust less than 23 minutes, leading to a slowdown of 1371. The average slowdownwas determined to be 7.94.While the high average slowdown is disappointing, it too is misleading. Theproblem is that many interactive jobs have very short runtimes, so a high slow-down may not be indicative of a real problem. Indeed, merely loading the ap-plication from disk typically takes about 0.5 seconds per processor used; thusa one second job running on 4 nodes will require two seconds of load time, foran optimal slowdown of 3, which is actually quite reasonable in this case. Inorder to counter the e�ect of short jobs, we also plot the bounded slowdown [11].For long running jobs, this is the same as the slowdown. But for short jobs, thedenominator is taken as the \interactivity threshold" rather than as the actual(very short) runtime. In processing the data for Fig. 12, we used a thresholdof 10 seconds; the average bounded slowdown is then 2.27, and the tail of thedistribution is also shorter.4.8 Operational CharacteristicsFigs. 13 to 15 portray the gang scheduler in operation. These �gures are based ondetailed logs of all jobs and all job preemptions during four months of productionuse, from June 1996 through September 1996.It should be noted that only 7.5% of jobs that completed normally wereever preempted. Fig. 13 shows the likelihood of preemption as a function ofthe job size, and shows that di�erent size jobs were preempted in roughly equalproportions. While most jobs were not preempted or were only preempted a smallnumber of times, the maximal number of preemptions observed was pretty high:one job was preempted 77 times before completing. The histogram of number ofpreemptions is shown in Fig. 14.

Job SizeJobs 2 4 8 16 32 64 128 256010002000300040005000 UndisturbedPreempted
Fig. 13. Likelihood of preemption for di�erent job sizes.
0

50

100

150

200

0 10 20 30 40 50 60 70 80

nu
m

be
r

of
 jo

bs

number of preemptions

12457
495

Fig. 14. Histogram of the number of preemptions su�ered by di�erent jobs.

Job SizeAverageQuanta(Seconds) 2 4 8 16 32 64 128 256010002000300040005000 preemptedall jobs
Fig. 15. Average time quanta for di�erent size jobs.Finally, we take a look at the average length of the time quanta for the di�er-ent sizes. This is shown in Fig. 15, once for jobs that were actually preempted,and again for all jobs (i.e. including those that ran to completion without beingpreempted even once). As expected, use of the do-not-disturb time multiplierleads to larger average time quanta for larger jobs. (The 256-processor �gure isa special case of only one job. Jobs of this size are normally not preempted.)4.9 Future DevelopmentWhile the Gang Scheduler manages the currently active jobs well, the NQS batchsystem selects the jobs to be started. It would be desirable to integrate the GangScheduler with NQS in order to more e�ciently schedule all available jobs. Workis also planned for the gang scheduling of jobs across a heterogeneous collectionof computers.5 ConclusionsGang scheduling has often been advocated based on its advantages of{ presenting jobs with an environment similar to that of a dedicated machine,thus allowing �ne grain interactions based on user-level communication andbusy waiting [9],{ allowing jobs with extreme requirements to share the system: a job thatrequires all the nodes does not have to wait for all previous jobs to terminate,nor does it delay subsequent jobs,

{ support for interactive work by using time slicing, which guarantees a rea-sonable response time for short jobs, and{ not placing any restrictions or requirements on the model of computationand programming style.However, many researchers have expressed the fear that using gang schedulingwould lead to unacceptable system performance due to the overheads involvedin context switching and the loss of resources to fragmentation.In contrast, we have shown that gang scheduling can improve system perfor-mance signi�cantly relative to static space slicing policies often used in practiceon parallel supercomputers. Gang scheduling adds exibility to resource alloca-tions, and reduces the impact of bad decisions. This contributes directly to areduction in fragmentation, and more than o�sets the cost of overheads. Indeed,experience with using gang scheduling for a production workload on the CrayT3D at Lawrence Livermore National Lab has shown a dramatic increase insystem utilization.The main obstacle to widespread use of gang scheduling is memory pressure.If gang scheduling is performed at a �ne granularity, all jobs need to be memoryresident at the same time, so each has less memory available. The alternative is toswap jobs to disk when they are preempted, and swap them in again when sched-uled. This is a viable approach, but it requires su�cient resources to be investedin adequate I/O facilities. The combination of demand paging and prefetchingwith gang scheduling remains an interesting topic for future research.References1. G. Alverson, S. Kahan, R. Korry, C. McCann, and B. Smith, \Scheduling on theTera MTA". In Job Scheduling Strategies for Parallel Processing, D. G. Feitel-son and L. Rudolph (eds.), pp. 19{44, Springer-Verlag, 1995. Lecture Notes inComputer Science Vol. 949.2. Cray Research, Inc., Cray T3D System Architecture Overview. Order number HR-04033, Sep 1993.3. D. Das Sharma and D. K. Pradhan, \Job scheduling in mesh multicomputers". InIntl. Conf. Parallel Processing, vol. II, pp. 251{258, Aug 1994.4. D. G. Feitelson, \Packing schemes for gang scheduling". In Job Scheduling Strate-gies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 89{110,Springer-Verlag, 1996. Lecture Notes in Computer Science Vol. 1162.5. D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems.Research Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.6. D. G. Feitelson and B. Nitzberg, \Job characteristics of a production parallel sci-enti�c workload on the NASA Ames iPSC/860". In Job Scheduling Strategies forParallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337{360, Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.7. D. G. Feitelson and L. Rudolph, \Distributed hierarchical control for parallel pro-cessing". Computer 23(5), pp. 65{77, May 1990.8. D. G. Feitelson and L. Rudolph, \Evaluation of design choices for gang schedulingusing distributed hierarchical control". J. Parallel & Distributed Comput. 35(1),pp. 18{34, May 1996.

9. D. G. Feitelson and L. Rudolph, \Gang scheduling performance bene�ts for �ne-grain synchronization". J. Parallel & Distributed Comput. 16(4), pp. 306{318,Dec 1992.10. D. G. Feitelson and L. Rudolph, \Parallel job scheduling: issues and approaches".In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph(eds.), pp. 1{18, Springer-Verlag, 1995. Lecture Notes in Computer ScienceVol. 949.11. D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong, \The-ory and practice in parallel job scheduling". In Job Scheduling Strategies for Par-allel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer Verlag, 1997.Lecture Notes in Computer Science (this volume).12. B. Gorda and R. Wolski, \Time sharing massively parallel machines". In Intl.Conf. Parallel Processing, vol. II, pp. 214{217, Aug 1995.13. B. C. Gorda and E. D. Brooks III, Gang Scheduling a Parallel Machine. TechnicalReport UCRL-JC-107020, Lawrence Livermore National Laboratory, Dec 1991.14. R. L. Henderson, \Job scheduling under the portable batch system". In JobScheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),pp. 279{294, Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.15. S. Hotovy, \Workload evolution on the Cornell Theory Center IBM SP2". In JobScheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),pp. 27{40, Springer-Verlag, 1996. Lecture Notes in Computer Science Vol. 1162.16. Intel Corp., iPSC/860 Multi-User Accounting, Control, and Scheduling UtilitiesManual. Order number 312261-002, May 1992.17. M. Jette, D. Storch, and E. Yim, \Timesharing the Cray T3D". In Cray UserGroup, pp. 247{252, Mar 1996.18. K. Li and K-H. Cheng, \A two-dimensional buddy system for dynamic resourceallocation in a partitionable mesh connected system". J. Parallel & DistributedComput. 12(1), pp. 79{83, May 1991.19. D. Lifka, \The ANL/IBM SP scheduling system". In Job Scheduling Strategies forParallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295{303, Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.20. C. McCann, R. Vaswani, and J. Zahorjan, \A dynamic processor allocation pol-icy for multiprogrammed shared-memory multiprocessors". ACM Trans. Comput.Syst. 11(2), pp. 146{178, May 1993.21. C. McCann and J. Zahorjan, \Scheduling memory constrained jobs on distributedmemory parallel computers". In SIGMETRICS Conf. Measurement & Modelingof Comput. Syst., pp. 208{219, May 1995.22. J. K. Ousterhout, \Scheduling techniques for concurrent systems". In 3rd Intl.Conf. Distributed Comput. Syst., pp. 22{30, Oct 1982.23. E. W. Parsons and K. C. Sevcik, \Multiprocessor scheduling for high-variabilityservice time distributions". In Job Scheduling Strategies for Parallel Processing,D. G. Feitelson and L. Rudolph (eds.), pp. 127{145, Springer-Verlag, 1995. LectureNotes in Computer Science Vol. 949.24. R. C. Regis, \Multiserver queueing models of multiprocessing systems". IEEETrans. Comput. C-22(8), pp. 736{745, Aug 1973.25. E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson, \Robust par-titioning schemes of multiprocessor systems". Performance Evaluation 19(2-3),pp. 141{165, Mar 1994.26. E. Rosti, E. Smirni, G. Serazzi, and L. W. Dowdy, \Analysis of non-work-conserving processor partitioning policies". In Job Scheduling Strategies for Parallel

Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 165{181, Springer-Verlag,1995. Lecture Notes in Computer Science Vol. 949.27. B. Schnor, \Dynamic scheduling of parallel applications". In Parallel ComputingTechnologies, V. Malyshkin (ed.), pp. 109{116, Springer-Verlag, Sep 1995. LectureNotes in Computer Science vol. 964.28. K. C. Sevcik, \Application scheduling and processor allocation in multipro-grammed parallel processing systems". Performance Evaluation 19(2-3), pp. 107{140, Mar 1994.29. K. C. Sevcik, \Characterization of parallelism in applications and their use inscheduling". In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.,pp. 171{180, May 1989.30. A. Tucker and A. Gupta, \Process control and scheduling issues for multipro-grammed shared-memory multiprocessors". In 12th Symp. Operating SystemsPrinciples, pp. 159{166, Dec 1989.31. M. Wan, R. Moore, G. Kremenek, and K. Steube, \A batch scheduler for the IntelParagon with a non-contiguous node allocation algorithm". In Job SchedulingStrategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 48{64, Springer-Verlag, 1996. Lecture Notes in Computer Science Vol. 1162.32. K. Windisch, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg, \A comparison ofworkload traces from two production parallel machines". In 6th Symp. FrontiersMassively Parallel Comput., pp. 319{326, Oct 1996.33. Q. Yang and H. Wang, \A new graph approach to minimizing processor fragmen-tation in hypercube multiprocessors". IEEE Trans. Parallel & Distributed Syst.4(10), pp. 1165{1171, Oct 1993.

