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This study makes an attempt to supply such measurements. It is based onaccounting traces that were maintained by the system administrators of the 128-node iPSC/860 hypercube located at NASA Ames. All the jobs run on the systemduring the fourth quarter of 1993 are included. The trace includes two types ofrecords: job records and special records. Job records include a pseudo user ID (toprotect privacy), a pseudo command name representing the executable �le name,the number of nodes used, the runtime (in seconds), and the start time and date.NQS jobs have similar records, except for the command name that is just a serialnumber. System commands are identi�ed explicitly (this includes cat, cp, grep,ls, nsh, ps, pwd, rcp, and rm; nsh is a remote shell used most often to look atCFS �les). Special records include a code identifying the event (dedicated time,scheduled or unscheduled downtime, hardware or software failures, or other), theduration, and start time and date.The next section describes the scheduling mechanisms used on the tracedsystem. Subsequent sections present the results relating to distribution of jobsizes and types, the system utilization and multiprogramming level, the distri-bution of runtimes and the distinction between interactive and batch jobs, thejob submission rate, and user activity and application usage.2 System BackgroundThe iPSC/860 is the third in a series of hypercube computers from Intel, and wasrecently superseded by the Paragon. In total, a few hundreds of iPSC machineswere sold, and some of them are still in use. This study used the 128-nodemachine at NASA Ames that was the main production machine there at thetime. It has since been decommissioned to save maintenance costs.
Fig. 1. Example of partitioning a 4-cube into a 3-cube and a pair of 2-cubes.Multiprogramming is achieved by using space-slicing (also known as spacesharing), that is partitioning the machine into subcubes and running a di�erent



job on each (see Fig. 1). The partition sizes are always powers of two. Theoperating system will always allocate a subcube of 2i nodes starting with a nodewhose number is a multiple of 2i. First consecutive node allocations are tried (0to 2i-1, 2i to 2�2i-1, etc.). If this fails, other combinations are tried, e.g. nodes0{15 and 64{79 can be used to satisfy a request for a subcube with 32 nodes.However, due to the restriction on the starting point, not all possible subcubesare recognized. For example, if a request for 32 nodes is received when onlynodes 16{31 and 48{63 are free, the request will be rejected even though thesenodes constitute a 32-node subcube. The system has a limit of 10 simultaneouspartitions. One of these is used by the Concurrent File System (CFS), so themaximal multiprogramming level supported is 9.time number of nodeslimit 16 32 64 12820 minutes q16s q32s q64s q128s1 hour q16m q32m q64m q128m3 hours q16l q32l q64l q128lTable 1. NQS queues used on the traced machine.Jobs can be submitted directly or through the NQS batch queueing facility.NQS is integrated with MACS (Multi-user Accounting, Control, and Schedulingutilities), which is part of the system software on the iPSC/860 [13]. To use NQS,system administrators de�ne multiple queues with di�erent resource limits. Thecombinations used on the iPSC/860 at NASA Ames are shown in Table 1: thereare 4 possible values for the subcube size, and 3 for the runtime. NQS also allowsdi�erent priorities and limits on �le sizes, but these features are not used. TheMACS job-mix scheduler uses a complex algorithm to prioritize the jobs in theNQS queues, and to schedule them on the machine's batch partition (64 nodeson weekdays, 128 nodes at nights and weekends). In certain circumstances, itmay even kill direct (interactive) jobs that exceed their resource limits [13].Only queues q16s, q16m, q32s, and q32m are enabled during prime time (from6 AM to 8 PM), e�ectively limiting NQS jobs to 32 nodes and 1 hour. Anylarger jobs that are submitted are queued until the other queues become activeat night. The four 20-minute queues are enabled during the day on weekends.These policies are sometimes modi�ed to accommodate user needs. The machinecan be dedicated to a certain user, e�ectively making it unaccessible to others.This is done manually by the system support sta�.The support sta� also (manually) register downtime, so the special tracerecords about such events are only as accurate as manual system monitoringallows. In order to help the support sta� notice system problems, a pwd commandis executed automatically at short intervals. If it fails or hangs, the support sta�is noti�ed.



3 General Job MixDegrees of parallelismA total of 42050 jobs appeared in the traces (disregarding those that ran onthe service node and those that ran for 0 seconds, i.e. failed immediately). thebreakup into di�erent degrees of parallelism is shown in Fig. 2. A distinction ismade between user jobs that ran in the day, night, or over the weekend, and jobsrun by the system support sta�.The results are that a whopping 28894 jobs (68.7%) ran on a single node, andonly 13156 (31.3%) ran on 2 or more nodes. However, 24921 of the sequentialjobs (59.3% of the total) were run by the system support sta�, and 25561 of them(60.8% of the total) were Unix commands. Both these numbers are dominatedby the periodic pwd commands that are used to check if the system is up: therewere 24013 such jobs (57.1% of the total). It should be noted that the systemsupport sta� also executed a signi�cant number of parallel jobs, mostly to checksystem functionality.
job sizenumberofjobs 1 2 4 8 16 32 64 1280100020003000400029000 daynightweekendsystem

Fig. 2. Histogram of jobs with di�erent degrees of parallelism, classi�ed by period.If only the 14794 user jobs are considered, 26.9% were sequential and 73.1%were parallel. Among the parallel jobs, there was a more-or-less uniform distribu-tion across the possible parallel job sizes, which are powers of two (correspondingto subcubes of the iPSC). However, there is a noticeably high count of 32-nodejobs. This is not related to the fact that 32 is the maximal size that can be runby NQS during the day, as shown by Fig. 4. There is also a very low count of128-node jobs, possibly because such jobs can only run if the machine is oth-erwise idle. Indeed, a relatively large fraction of the 128-node jobs ran at night



job sizetotalresourceuse(�106 ) 1 2 4 8 16 32 64 1280326496
128160 daynightweekendsystem

Fig. 3. Total resource use (in node-seconds) by jobs with di�erent degrees of paral-lelism.or over the weekend. For the other sizes, the vast majority of jobs ran duringthe day. When counting all user jobs, 80.4% ran during the day, 8.5% at night,and 11.1% during the weekend. These results contradict the often-postulatedbimodal distribution, where jobs are expected to require either a single node orall the nodes.Fig. 2 presents a histogram of the number of jobs of each size that weretraced. Fig. 3 shows a histogram of the total resources consumed by jobs of eachsize, where resources are measured in node-seconds. It turns out that all thesequential jobs together used only 0.28% of the node-seconds. The large paralleljobs, with 32, 64, and 128 nodes, used 92.5%, in roughly equal portions. Ofthe resources consumed by user jobs, 36.6% were used during the day, 39.6%during the night, and 23.8% on weekends. These �gures should be comparedto the 41.7%, 29.8%, and 28.6% of total time that fall into these three timebrackets, respectively (disregarding downtime). System support jobs used 1.7%of the resources.It is noteworthy that 32-node jobs consumed resources mostly during theday, and even 64-node jobs used about a quarter their resources during the day.This is in contrast with 128-node jobs that consumed resources mostly duringthe night. It was possible because the 32 and 64-node jobs can run within the64-node batch partition that is de�ned during prime time. This leaves enoughof the machine free for all the small interactive jobs. In fact, interactive usersare encouraged to use the clrcube command to kill large batch jobs that get intheir way [13]. More on the resource use of interactive vs. batch is given below.



job sizenumberofjobs 1 2 4 8 16 32 64 1280100020003000400029000 directNQSUnix
Fig. 4. Histogram of di�erent type jobs.

job sizetotalresourceuse(�106 ) 1 2 4 8 16 32 64 1280326496
128160 directNQSUnix
Fig. 5. Resource usage (in node-seconds) by di�erent types of jobs.



Job typeThe jobs in the system can be classi�ed into three types: Unix commands, directuser jobs, and NQS jobs. The breakdown in terms of number of jobs is shown inFig. 4, and their resource requirements are shown in Fig. 5. These include bothjobs submitted by users and jobs submitted by the system support sta�.Obviously, the vast majority of jobs were Unix jobs, mainly due to the peri-odic pwd commands. Disregarding these, we �nd that most jobs were submitteddirectly: this was 93.8% of the non-Unix jobs, whereas NQS accounted only for6.2%. There were no NQS jobs with less than 16 nodes. Surprisingly, there weresome cases in which Unix commands were run on multiple nodes, and even onecase where pwd was run on all 128 nodes. The division of resources is quite dif-ferent from the job count. Nearly all the resources used by 128-node jobs, andlarge chunks of the resources used by 32 and 64-node jobs, were consumed byjobs submitted through NQS. In total, NQS jobs accounted for 50.5% of theresource usage, direct jobs for 49.3%, and Unix jobs for 0.2%.4 System UtilizationFig. 6 shows the system utilization as a function of time of day. Two domainsare easily distinguishable. During the workday, the utilization approximatelyfollows the submission rate (see Fig. 12), as the load is primarily composed ofsmall jobs. During the night, the utilization is signi�cantly higher than during theday. This is the result of running fewer jobs, where each one has a higher degree
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of parallelism and runs longer on average. There is a sharp rise in utilizationat 8 PM, due to the NQS night shift. The transition from night to day is moregradual, as NQS gradually stops scheduling new jobs that are not expected tocomplete before the night shift is over. This daily cycle should be contrastedwith the cycle observed on interactive workstations, which displays very lowutilization at night [16].After accounting for downtime, the overall average utilization according tothe traces was 52.4% on weekdays, 42.1% on weekends, and 50.0% overall. Thisis considerably lower than the 80% utilization reported for the Touchstone Delta,also accounting for downtime [22]. However, it is in line with the results of [17],which are speci�c to subcube allocation. It is much higher than the 9% averageutilization measured for workstations [16].The reason for the di�erence from the Delta is that in general there are notenough small jobs to �ll in the gaps left by large ones. In hypercube machines,jobs require partitions that are subcubes. Thus if a 4-node job is running, a128-node job is blocked. If a 2-node job and a 64-node job are running, another64-node job cannot run. On a mesh like the Delta, jobs can usually run ondi�erent mesh sizes with di�erent proportions, and with less restrictions. Thus ifa 128-node partition is not available, 124 nodes can be used instead. If 64 nodesare not available, a partition of 60 can still be used.In principle, the utilization of hypercubes can be boosted if time-slicing isused [8]. However, this requires gang scheduling to be implemented, and increasesthe requirement for memory at each node, because multiple applications have tobe memory-resident at the same time.Multiprogramming levelOn uniprocessors, multiprogramming is used to improve system utilization byoverlapping the execution of jobs with complementary requirements. The iPSCcan be multiprogrammed by partitioning it into subcubes, and letting di�erentjobs run on di�erent subcubes. A histogram of the multiprogramming level isshown in Fig. 7, with a distinction between di�erent periods. Dedicated time isdistinguished from general availability. A multiprogramming level of zero indi-cates idle time.The machine was idle for 16.0% of the time, and down for another 7.5% of thetime (it is possible that some of the idle time was actually down time, becausedown time was registered manually when the system operators noticed it). Themachine ran a single job for 32.0% of the time. Of this, 13.4% was spent runningthe 128-node jobs, which cannot be multiprogrammed with another job. Thiswas the dominant level of multiprogramming at night and on weekends, but onweekends the machine was also idle a signi�cant amount of time. During work-days, the most likely multiprogramming level was 3 jobs, by a small margin. Themaximum observed was a multiprogramming level of 9 concurrent jobs, whichmatches the system limit. Dedicated time was mostly wasted, but it is possiblethat some of the time dedicated to Intel personnel was actually downtime.



multiprogramming levelcumulativetime[105 sec] down0 1 2 3 4 5 6 7 8 9051015
2025 daynightweekenddedicated

Fig. 7. Cumulative time spent in each multiprogramming level.It should be noted that a package for inter-partition communication has beendeveloped at NASA Ames, and is used on this system. This package allows dis-tinct jobs, running concurrently on disjoint subcubes, to communicate with eachother [3]. Use of this package obviously boosts the measured multiprogramminglevel, because sets of jobs that are actually part of the same application aremeasured as independent jobs.DowntimeAs noted above, the system was down for 7.5% of the time during the threemonths that were traced, and it is possible that some idle time and dedicatedtime were actually downtime. It is also possible that the system was actually upand being checked for some of the time registered as downtime. A large part ofthe downtime (6.4%) was attributed to the scheduled six-day annual shutdownfrom December 24 to 29 (the normal shutdown is about one day, mainly forair conditioning maintenance. In 1993, chiller problems required an extendedshutdown). Other downtime was attributed to 69 software failures, 7 hardwarefailures, and one case of tripping over the power line. Thus the average uptimewas just over one day. The longest period of continuous availability was 4.8 days.5 Runtime Distribution and Resource UseFig. 8 shows the average resource usage (i.e. the average number of node-secondsconsumed) for user jobs of di�erent sizes, using a logarithmic scale. Generallyspeaking, the average resource usage grows with the number of nodes used by



the job. Night-time jobs require up to an order of magnitude more resourcesthan daytime jobs with the same degree of parallelism. The \all" graph is anaverage over all jobs at all times, including system support. This is the reasonfor the rather low value for single-node jobs.
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Fig. 8. Average resource use by jobs with di�erent degrees of parallelism.The evidence from Fig. 8 suggests that di�erent job sizes have approximatelythe same mean execution time. However, closer inspection shows some interest-ing deviations. Fig. 9 shows the distribution of the runtimes of all traced jobs,and also di�erentiates between sequential and parallel jobs. It is important todistinguish between user sequential jobs and system support jobs, which are alsomostly sequential. The system jobs have two very large peaks at about 2 secondsand about 12 seconds. User sequential jobs have a much wider distribution, withthe peak at about 12 seconds. User jobs in general lack weight in the region oflow runtimes. In fact, very few user jobs ran for less than 10 seconds. The peakof the distribution for parallel user jobs is around 150 seconds or so, and it hasa rather long tail.The distributions for jobs with di�erent degrees of parallelism are shown inFig. 10. The di�erences are not very clear, but there is some tendency for largerjobs to run longer. This is easier to see in the cumulative distribution plot: Theplots for jobs using 2, 4, 8, and 16 nodes are to the left and above those for jobsusing 32, 64, and 128 nodes. A similar classi�cation is seen when precise valuesfor the average runtimes are computed, as shown in Table 2.Three small peaks appear to the right of the main peak in Fig. 10. Thesecorrespond to the runtime limitations of di�erent NQS queues (20 minutes, 1
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Fig. 9. Pointwise and cumulative distribution of runtimes.hour, and 3 hours). The 1 and 3 hour peaks probably include jobs that were killedby NQS when their time ran out. The 20 minute peak is actually unrelated toNQS, as shown in Fig. 11.Table 2 shows the mean, standard deviation, and coe�cient of variation3 ofthe measured runtimes. As can be expected from the relatively wide distribu-tions, the standard deviations have high values. Consequently, the coe�cient of3 The coe�cient of variation is the ratio of the standard deviation to the mean. In theexponential distribution, it has a value of 1.
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job average standard coe�cientsize runtime deviation of variation1 140.6 736.0 5.22 714.2 2422.3 3.44 1116.7 4171.5 3.78 705.2 2344.3 3.316 569.3 1970.9 3.532 1305.3 3311.6 2.564 2350.8 4155.8 1.8128 3280.1 4408.1 1.3system 44.1 438.0 9.9Table 2. Runtime statistics for jobs with di�erent degrees of parallelism.increased available parallelism. Three models have been proposed [27, 25]:{ Fixed work. This assumes that the work done by a job is �xed, and parallelismis used to solve the same problems faster. Therefore the runtime is assumedto be inversely proportional to the degree of parallelism. This model is thebasis for Amdahl's law [2].{ Fixed time [10, 11]. Here it is assumed that parallelism is used to solveincreasingly larger problems, under the constraint that the total runtimestays �xed. In this case, the runtime distribution is independent of the degreeof parallelism.{ Memory bound [26]. If the problem size is increased to �ll the availablememory on the larger machine, the amount of productive work typicallygrows at least linearly with the parallelism. The overheads associated withparallelism always grow superlinearly. Thus the total execution time actuallyincreases with added parallelism.The �rst two models are typically used in studies of multiprocessor scheduling[21, 19, 17, 6]. However, these models are inconsistent with our results. Thememory bound model is consistent in terms of its runtime predictions, but wedo not have any data on memory usage by the applications. An independentstudy of 23 CFD applications (which is the typical application domain for thestudied system) also found that large jobs tend to run longer, despite the factthat they use more processors [23].Interactive vs. batchThe distribution of runtimes also allows one to distinguish between interactiveand batch jobs. For example, jobs taking less than 10 seconds could be calledinteractive, and those taking more time called batch. Table 3 shows the percent-age of jobs of each type, and their aggregate resource use, for di�erent thresholdvalues. The results are that for reasonable thresholds, in the range of tens ofseconds, up to half the jobs are interactive, but they use less than 0.7% of the



resources. This is because so many of the short jobs use only one node, whereasmost of the long jobs have high degrees of parallelism. If, however, we decidethat a job taking around 15 minutes is still considered interactive, the resultsare that nearly 90% of the jobs are interactive, and they consume somewhat lessthan 10% of the resources. jobsthreshold below resource[sec] threshold use1 0.2% 0.0002%3 1.1% 0.001%10 5.9% 0.007%31 26.9% 0.12%100 49.6% 0.69%316 72.8% 3.73%1000 85.0% 8.30%3162 92.2% 19.47%Table 3. Division of resources between interactive and batch jobs (user jobs only).
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check this dichotomy, we plot the runtime distribution for the two types in Fig.11. The results are that the bulk of direct jobs indeed have runtimes of between20 and 200 seconds, whereas NQS jobs had two peaks at 1 and 3 hours (corre-sponding to the queue limits). However, the total number of NQS jobs was small,so the number of long running direct jobs was larger than the number of NQSjobs. In addition, direct jobs were not limited to 3 hours, so the longest runningjobs were direct jobs. It is interesting to note that was no noticeable NQS peakat 20 minutes, indicating that the 20 minute queues were either underutilized,or used for really short jobs that did not reach their time limit. Thus NQS wasalso used for short (interactive?) jobs.6 Job Submission RateThe traced system was in production use by a number of users. This includedboth interactive use, and the execution of relatively long jobs. Jobs were sub-mitted directly or through NQS. In this section we study the rate at which jobswere presented to the system for execution; for NQS jobs, this is the rate atwhich NQS executes them, not the rate at which users submit to NQS.
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Fig. 12. Job submission rate as function of time of day.Fig. 12 shows the submission rate of new jobs, as a function of time of day.Only user jobs are included (i.e. system support jobs are not). On weekdays, adaily cycle is obvious, with a high submission rate during the working day and alow rate at night. The peak is in the late morning, with a noticeable drop duringlunch. This pattern is similar to known results from uniprocessor interactive



systems [4]. The peak value is about one job every 2.6 minutes, on average.The implication is that the load on the system does not change too often, soscheduling schemes can a�ord to optimize the way resources are shared.The gradual rise in activity before 8 AM is attributed to users from the EastCoast (three time zones away), rather than to early risers in the West Coast. Onweekends the submission rate during the day is much lower than on work days,but still higher than during the night. It should be noted that the graph onlyshows user activity. When system support activity is included, the periodic pwdcommands cause a signi�cant increase in the job submission rate. However, thenumbers of these commands are not completely deterministic. There are manymore of them between 4 AM and 4 PM (average 15.5 per hour) than between4 PM and 4 AM (average 7.9 per hour). Their e�ect is therefore especiallynoticeable between 4 and 8 AM, when system activity is otherwise rather low.
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78 applications, which where executed a total of 652 times. In general, many usersran the same application many times. Note that we only have such statistics forjobs that were submitted directly, as the application was not recorded for NQSjobs.
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101 of them were only executed once. The distribution of the rest is rather wide.The most popular job was executed a total of 1082 times. The distribution forsharing is much narrower. 333 jobs were only executed by a single user. Themost widely shared application was executed by 7 di�erent users. Naturally,Unix commands were shared by larger numbers of users (not plotted).
number of di�erent sizesnumberofapplications 1 2 3 4 5 6 7 8050100150200250 all runssame user

Fig. 17. Histogram of applications executed on di�erent subcube sizes.Applications are often coded in a style that allows them to be executed onpartitions of di�erent sizes. The traces show extensive use of this option (Fig.17). Of the 257 applications that were executed more than once, 147 (57.2%)were executed on 2 or more di�erent partition sizes. Three applications wereeven executed on all 8 possible partition sizes. In most cases, this was not aresult of di�erent users running the same application on di�erent size subcubes;rather, the same user would run on di�erent sizes. The bars for executions bythe same user appear higher than those for all runs because applications thatwere shared by multiple users are counted separately for each one.The main interest in the repeated execution of the same job stems from thepossibility of using statistics relating to previous runs to estimate the resourcerequirements of additional runs. As a simple check of this idea, the coe�cientof variation of the runtimes of jobs that were executed more than once wastabulated. In cases where the same job was executed by multiple users or ondi�erent subcube sizes, each one was considered separately. The results are shownin Fig. 18. The majority of cases had a coe�cient of variation smaller than 1,which is promising. The predictive power can be improved by using a moresophisticated model of job behavior, rather than just using the mean of previousruns [7].
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Another aspect of repeated execution is the run length: how many times isthe same job executed consecutively on the same size subcube by the same user.The histogram of run lengths is shown in Fig. 19 (note that a logarithmic scaleis used due to the large dynamic range). A runlength of 1 (i.e. not repeatedimmediately) occurred 5376 times. The longest run length recorded was 162consecutive executions. This data gives further evidence that the arrival processis not random.8 ConclusionsAs parallel machines come into production use, it becomes possible to tracetheir workloads. In many cases, this is done anyway as part of the accountingprocedures. Analyzing such traces can provide a wealth of information aboutusage patterns, which is invaluable for the design of new and improved systems.The analysis is straightforward, and the traces are small relative to those usedin other �elds. For example, our whole trace is only 2.15 MB, in ASCII format.Our results show that there is a roughly uniform distribution of user jobs ofdi�erent sizes, with the big ones consuming most of the resources. This impliesthat the big jobs must be matched together for good utilization, as there areinsu�cient small jobs to �ll the gaps. NQS goes a long way in �lling this need,but it is used mainly during the night to prevent interference with interactivework. It is expected that achieving high utilization would be less of a problemin multistage or mesh-connected machines, where partitioning is more exiblethan in a hypercube. Also, time-slicing may actually improve utilization, despiteits increased overhead.The distribution of runtimes of di�erent jobs indicates that jobs with a higherdegree of parallelism tend to run longer. This favors the memory-bound modelof application scaling. Both job runtimes and interarrival times have a high coef-�cient of variation, indicating that a hyperexponential distribution may providean appropriate model. When multiple executions of the same application on thesame number of nodes are considered, the coe�cient of variation tends to beless than 1. This indicates that historical information can be used to gauge theresource requirements of applications.Trace AvailabilityThe trace used in this study is available upon request from Bill Nitzberg, atnitzberg@nas.nasa.gov.AcknowledgementsThis study was initiated using the CHARISMA traces, collected by David Kotzand Nils Nieuwejaar of Dartmouth College to study I/O behavior of applications[14]. These traces were later replaced by an accounting trace collected at NASA
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