
Heuristics for Resource Matching

in Intel’s Compute Farm

Ohad Shai12, Edi Shmueli1, and Dror G. Feitelson3

1 Intel Corporation
MATAM Industrial Park, Haifa, ISRAEL
{ohad.shai,edi.shmueli}@intel.com

2 Blavatnik School of Computer Science
Tel-Aviv University, Ramat Aviv, ISRAEL

3 School of Computer Science and Engineering
The Hebrew University, Jerusalem, ISRAEL

feit@cs.huji.ac.il

Abstract. In this paper we investigate the issue of resource match-
ing between jobs and machines in Intel’s compute farm. We show that
common heuristics such as Best-Fit and Worse-Fit may fail to properly
utilize the available resources when applied to either cores or memory in
isolation. In an attempt to overcome the problem we propose Mix-Fit,
a heuristic which attempts to balance usage between resources. While
this indeed usually improves upon the single-resource heuristics, it too
fails to be optimal in all cases. As a solution we default to Max-Jobs,
a meta-heuristic that employs all the other heuristics as sub-routines,
and selects the one which matches the highest number of jobs. Extensive
simulations that are based on real workload traces from four different
Intel sites demonstrate that Max-Jobs is indeed the most robust heuris-
tic for diverse workloads and system configurations, and provides up to
22% reduction in the average wait time of jobs.

Keywords: NetBatch, Job Scheduling, Resource Matching, Simulation,
Best-Fit, Worse-Fit, First-Fit

1 Introduction

Intel owns an Internet-scale distributed compute farm that is used for running
its massive chip-simulation workloads [2, 3, p. 78]. The farm is composed of
tens of thousands of servers that are located in multiple data centers that are
geographically spread around the globe. It is capable of running hundreds of
thousands of simulation jobs and tests simultaneously, and handles a rate of
thousands of newly incoming jobs every second.

This huge compute capacity is managed by an in-house developed highly-
scalable two-tier resource management and scheduling system called NetBatch.
At the lower level NetBatch groups the servers into autonomous clusters that are
referred to in NetBatch terminology as Physical Pools. Each such pool contains

up to thousands of servers and is managed by a single NetBatch entity that is
called the Physical Pool Manager or PPM. The role of the PPM is to accept
jobs from the upper level, and to schedule them on underlying servers efficiently
and with minimal waste.

At the upper level NetBatch deploys a second set of pools that are called
Virtual Pools. Just like in the lower level, each virtual pool is managed by a single
NetBatch component that is called the Virtual Pool Manager or VPM. The role
of the VPMs is to cooperatively accept jobs from the users and distribute them
to the different PPMs in order to spread the load across the farm. Together,
these two layers, VPMs at the top and PPMs at the bottom, strive to utilize
every compute resource across the farm. This paper focuses on the work done
at the PPM level.

A basic requirement in NetBatch is the enforcement of fair-share scheduling
among the various projects and business units within Intel that share the farm.
Fair-share begins at the planning phase where different projects purchase dif-
ferent amounts of servers to be used for their jobs. These purchases eventually
reflect their share of the combined resources. Once the shares are calculated, they
are propagated to the PPMs where they are physically enforced. (The calculation
and propagation mechanisms are beyond the scope of this paper.)

To enforce fair-share the PPM constantly monitors which jobs from which
projects are currently running and the amount of resources they use. The PPM
then selects from its wait queue the first job from the most eligible project (the
project whose ratio of currently used resources to its share of the resources is
the smallest) and tries to match a machine to that job. If the matching succeeds,
the job is scheduled for execution on that machine. Otherwise, a reservation is
made for the job, and the process is repeated while making sure not to violate
previously made reservations. Such reservations enable jobs from projects that
are lagging behind to obtain the required resources as soon as possible.

Matching machines to jobs is done using any of a set of heuristics. For exam-
ple, one may sort the list of candidate machines according to some pre-defined
criteria — e.g. increasing number of free cores or decreasing amount of free mem-
ory — and then traverse the sorted list and select the first machine on which
the job fits. This leads to variants of Best-Fit and Worse-Fit schemes. Good
sorting criteria reduce fragmentation thus allowing more jobs to be executed,
and are critical for the overall utilization of the pool. Alternatively one may opt
to reduce overhead and use a First-Fit heuristic.

The sorting criteria are programmable configuration parameters in NetBatch.
This allows one to implement various matching heuristics and apply them on dif-
ferent resources to best suit the workload characteristics and needs. NetBatch
also allows individual jobs to specify different heuristics, while the pool admin-
istrator can set a default policy to be used for all jobs.

In this paper we argue that no heuristic applied to a single resource in isola-
tion can yield optimal performance under all scenarios and cases. To demonstrate
our point we use both simple test cases and workload traces that were collected
at four large Intel sites. Using the traces, we simulate the PPM behavior when

applying the different heuristics to schedule the jobs. We show that depending on
the workload different heuristics may be capable of scheduling a higher number
of jobs.

In an attempt to overcome the problem we develop “Mix-Fit” — a combined
heuristic that tries to balance the use of cores and memory. Intuitively this
should reduce fragmentation at the pool. However, while generally better than
the previous heuristics, Mix-Fit too fails to yield optimal assignments in some
cases.

As an alternative, we propose a meta-heuristic we call “Max-Jobs”. Max-
Jobs is not tailored towards specific workloads or configurations. Instead, it uses
the aforementioned heuristics as sub-routines and chooses, in every scheduling
cycle, the one that yields the highest number of matched jobs. This overcomes
corner cases that hinder specific heuristics from being optimal in all cases, and
conforms well to the NetBatch philosophy of maximizing resource utilization
in every step. We demonstrate, through simulation, that Max-Jobs yields lower
wait times by up to 22% for all jobs in average under high loads.

The rest of this paper is organized as follows. Section 2 provides more details
on the problem of matching machines to jobs, and explores the performance
of commonly used heuristics. Section 3 then describes the Mix-Fit heuristic,
followed by the Max-Jobs meta-heuristic in Section 4, and simulation results in
Section 5. Section 6 briefly presents related work, and Section 7 concludes the
paper.

2 Matching Machines to Jobs

As described above, matching machines to jobs at the PPM is done by choosing
the most eligible job from the wait queue, sorting the list of candidate machines
according to some pre-defined criterion, traversing the sorted list, and selecting
the first machine on which the job fits1. This is repeated again and again until
either the wait queue or the list of machines are exhausted. At this point the
PPM launches the chosen job(s) on the selected machine(s) and waits for the
next scheduling cycle.

A job may be multithreaded, but we assume that each job can fit on a single
(multicore) machine. In principle NetBatch also supports parallel jobs (called
“MPI jobs”) that span multiple machines, but in practice their numbers at the
present time are small. The only added difficulty in supporting such jobs is the
need to allocate multiple machines at once instead of one at a time.

There are many criteria by which the machines can be sorted. In this paper
we focus on the number of free cores and amount of free memory, as this suits
well the workload in Intel which is characterized by compute-intensive memory-
demanding jobs. Though I/O is definitely a factor, and some jobs do perform
large file operations, there are some in-house solutions that are beyond the scope
of this paper that greatly reduce the I/O burden on the machines.

1 This is done for practical reasons since trying all combinations is time consuming.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
J
o
b
s

Cores

Pool A

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
J
o
b
s

Cores

Pool B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
J
o
b
s

Cores

Pool C

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
J
o
b
s

Cores

Pool D

Fig. 1. Jobs’ cores requirements: the vast majority of the jobs are serial and require a
single CPU core in order to execute.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0 4 8 12 16 20 24 28 32

F
ra

c
ti
o
n
 o

f
J
o
b
s

Memory (GB)

Pool A

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0 4 8 12 16 20 24 28 32

F
ra

c
ti
o
n
 o

f
J
o
b
s

Memory (GB)

Pool B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 4 8 12 16 20 24 28 32

F
ra

c
ti
o
n

 o
f
J
o
b
s

Memory (GB)

Pool C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 4 8 12 16 20 24 28 32

F
ra

c
ti
o
n

 o
f
J
o
b
s

Memory (GB)

Pool D

Fig. 2. Jobs’ memory requirements: demands are mostly 8 GB and below, but there
are jobs that require 16 GB, 32 GB or even more memory in order to execute.

Figures 1 and 2 show the distribution of the jobs’ cores and memory require-
ments in four large pools at different locations across the Intel farm2. The data
comes from traces that were collected at the PPM level during a one-month
period, and which contain up to 13 million jobs each. As can be seen in the
figures, the vast majority of the jobs are serial (single-thread jobs, requiring a
single CPU core in order to execute). Memory requirements are mostly 8 GB
and below, but there are jobs that require 16 GB, 32 GB, or even more memory
(not shown) in order to execute. These observations are consistent across the
pools.

The two ways to sort the machines by available cores or memory are in in-
creasing or decreasing order. Sorting them by increasing amount of free cores or
memory and selecting the first machine on which the job fits effectively imple-
ments the Best-Fit heuristic. Best-Fit is known to result in a better packing of
jobs, while maintaining unbalanced cores (or memory) usage across the machines
in anticipation for future jobs with high resource requirements. Sorting the ma-
chines by decreasing amount of free cores or memory implements the Worse-Fit
heuristic. Worse-Fit’s advantage is in keeping resource usage balanced across
machines, which is particularly useful for mostly-homogeneous workloads. For
completeness we also mention First-Fit. First-Fit’s advantage is in its simplicity,
as it does not require the sorting of the machines. Our tests, however, revealed
that it performs poorly in our environment, so we do not refer to it further in
this paper.

We argue that no single heuristic, when applied to a single resource in iso-
lation, can yield optimal performance under all workload scenarios. To demon-
strate our point we begin by providing simple synthetic examples showing how
different heuristics match different number of jobs under different workload con-
ditions. We then put theory to the test by running simulations on the aforemen-
tioned traces, demonstrating the effectiveness of the different heuristics under
different workloads.

2.1 Synthetic Examples of Heuristics Failures

In our examples we consider two machines, A and B, each having four cores and
32 GB of memory. Assume that 8 jobs are queued at the PPM in the following
priority order: two jobs of one core and 16 GB of memory, and then 6 jobs of
one core and 4 GB of memory. As can be seen in Figure 3(a), Best-Fit matches
the first two jobs with machine A, totally exhausting its memory, and the next
four jobs with machine B, thereby exhausting its cores. The end result is two
unutilized cores on machine A, half the memory unutilized on machine B, and
two jobs that remain pending at the PPM. Worse-Fit on the other hand matches
the first two jobs on different machines, which leaves enough free space (cores
and memory) for all the remaining 6 jobs to be matched. This is illustrated in
Figure 3(b).

2 The requirements are specified as part of the job profile at submit time.

��
��
��
������
��
��
��
����
��
��
������
��
��
��
����
��
��
������

��
��
��
��������

��
��
��
����
��
��
��

Cores

Machine A

M
e

m
o

ry

M
e

m
o

ry

Machine B

Cores

(a) Best-Fit

���
���
���
���������
���
���
���
������
���
���
�������

��
��
��
����
��
��
������

��
��
��
������

���
���
���
�����

��
��
������

��
��
��
�����
���
���
���

��
��
��
��

���
���
���
���

����

��
��
��
������
��
��
��
����
��
��
��

Cores

Machine A

M
e

m
o

ry

M
e

m
o

ry

Machine B

Cores

(b) Worse-Fit

Fig. 3. Scenario for which Worse-Fit (right) is better than Best-Fit (left). Memory is
depicted in 4 GB blocks. Shading indicates mapping of a job to a certain core and
certain blocks of memory. Note that both cores and memory are mapped exclusively
to distinct jobs.

Another example is illustrated in Figure 4. The priority order here is 3 jobs
of one core and 8 GB, followed by one job of one core and 32 GB of memory. As
can be seen, Worse-Fit spreads the first three jobs on different machines, which
doesn’t leaves enough memory for the 32 GB job to be matched. Best-Fit on the
other hand matches the first three jobs on machines A, which allows the 32 GB
to be matched with machine B.

����
��
��
��
��

����
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
������

���
���
���
���

��
��
��
��

��
��
��
������
��
��
��
��

���
���
���
���

����

����
���
���
���
���

����
��
��
��
����
��
��
������
��
��
��
����
��
��
������
��
��
��
��

���
���
���
������
���
���
���

Cores

Machine A

M
e

m
o

ry

Cores

Machine B

M
e

m
o

ry

(a) Best-Fit

������
���
���
���
���

����
��
��
��
��

���
���
���
�����

��
��
��

��
��
��
��

��
��
��
������
��
��
��
����
��
��
��

����
��
��
��
��

����
��
��
��
����
��
��
����������
��
��
��
����
��
��
������
��
��
��
��

��
��
��
��

����

����

Cores

Machine A

M
e

m
o

ry

Cores

Machine B

M
e

m
o

ry

(b) Worse-Fit

Fig. 4. Scenario for which Best-Fit (left) is better than Worse-Fit (right).

2.2 Observations from the Workloads

Machines currently available on the market typically have multi-core CPUs and
large amounts of memory. Therefore, we may expect to see situations similar
to the ones described above. In addition, jobs comes with core and memory
requirement, and in most cases jobs are allocated one per core. This may waste
cycles due to wait states and I/O, but makes things much more predictable.

To characterize the use of cores and memory in each of the pools, we used the
traces mentioned above, and partitioned them into buckets of 1000 jobs each.

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8 10 12

A
v
g
.
J
o
b
 C

o
re

s

Bucket number (K)

Pool A

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8 10 12

A
v
g
.
J
o
b
 C

o
re

s

Bucket number (K)

Pool B

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8 10 12

A
v
g
.
J
o
b
 C

o
re

s

Bucket number (K)

Pool C

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8

A
v
g
.
J
o
b
 C

o
re

s
Bucket number (K)

Pool D

Fig. 5. Bursts in jobs cores requirements: pool A is the burstiest. Pool B’s bursts are
sparse, while pool C’s have only a small amplitude. In pool D there are virtually no
bursts of jobs requiring more than one core.

This resulted in 13K buckets for pools A, B, and C, and 10K buckets for pool
D. Such small buckets allow us to observe bursts of activity that deviate from
the average.

Figures 5 and 6 show the jobs’ average cores and memory requirements in
each of the buckets, for each of the four pools, respectively. As can be seen,
different pools exhibit different magnitudes of bursts of jobs with high core or
memory demands. Pool A is the most bursty in both dimensions; it is the only
pool that had a bucket in which the average job core requirement is higher than
2, and multiple buckets in which the average memory requirement is larger than
20 GB.

Pool B exhibits sparse bursts of jobs with high core demands, but intense
bursts of high memory requirements. Pool C exhibits continuous moderate core
demands, and also relatively steady memory bursts. Finally, pool D has virtually
no bursts of jobs requiring more than one core, but it does exhibit bursts of high
memory demands, along with periods of particularly low memory requirements.

 0

 5

 10

 15

 20

0 2 4 6 8 10 12

A
v
g
.
J
o
b
 M

e
m

o
ry

 (
G

B
)

Bucket number (K)

Pool A

 0

 5

 10

 15

 20

0 2 4 6 8 10 12

A
v
g
.
J
o
b
 M

e
m

o
ry

 (
G

B
)

Bucket number (K)

Pool B

 0

 5

 10

 15

 20

0 2 4 6 8 10 12

A
v
g
.
J
o
b
 M

e
m

o
ry

 (
G

B
)

Bucket number (K)

Pool C

 0

 5

 10

 15

 20

0 2 4 6 8

A
v
g
.
J
o
b
 M

e
m

o
ry

 (
G

B
)

Bucket number (K)

Pool D

Fig. 6. Bursts in jobs memory requirements: pools A and B are the most bursty; A
in particular has bursts that exceed 20 GB on average. Pool C is somewhat steadier,
while pool D exhibits periods of particularly low memory demands between the bursts.

2.3 Comparing Heuristics

To demonstrate the effectiveness of the different heuristics under different work-
loads we performed the following experiment. We used the buckets described
above, assigned all jobs in each bucket a submit time of 0, and gave each heuris-
tic an opportunity to try and match, in simulation, as many jobs as possible from
each bucket on a small synthetic pool of empty machines (total of 512 cores);
jobs that could not be matched were simply skipped. For each bucket we then
counted the number of jobs matched by each heuristic, and gave the winning
heuristic(s) (the one(s) who matched the highest number of jobs) a point.

The results are shown in Figure 7. As can be seen, Worse-Fit-Cores sig-
nificantly outperforms all other heuristics (collecting the highest percentage of
wins) in pool A. It is also the best heuristic in pools B, C, and D, but the
differences there are smaller. There is little difference among Best-Fit-Memory,
Worse-Fit-Memory, and Best-Fit-Cores, although Worse-Fit-Memory is consis-
tently slightly better than the other two. Notably, for pool D where there is
virtually no core fragmentation as indicated in Figure 5 there seems to be little
difference between the performance of the different heuristics.

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f
w

in
s

Pool A

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f
w

in
s

Pool B

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f
w

in
s

Pool C

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f
w

in
s

Pool D

Fig. 7. Percentage of wins by each heuristic: Worse-Fit-Cores significantly outperforms
the other heuristics in pool A. The differences in pools B, C, and D are smaller.

An important observation is that though Worse-Fit-Cores appears to be the
preferred heuristic, it did not win in all cases. This is shown by the gap between
the Worse-Fit-Cores bars and the 100% mark, indicating that in 6–37% of the
experiments other heuristics performed better. These gaps are the motivation
for the Mix-Fit heuristic proposed next.

3 Mix-Fit

As demonstrated in the previous section, none of the one-dimensional heuristics
is capable of maximizing the number of matched jobs under all workload scenar-
ios. In this section we propose a new heuristic, Mix-Fit, that takes into account
both cores and memory in an attempt to overcome the problem.

3.1 Balanced Resource Usage

The basic idea behind Mix-Fit is to try and reach balanced resource utilization
across both cores and memory. This is achieved by considering the configured

ratio of cores to memory on each machine, and matching the job with the machine
on which the ratio of used cores to memory, together with this job, is closest to
the configured ratio.

To see how this is done, envision a grid representing possible resource com-
binations (as was done in Figures 3 and 4). Each column represents a CPU core,

and each row a block of memory (the sizes of such blocks are not really important
as long as they are used consistently; they should correspond to the smallest unit
being allocated). Assuming that cores and memory blocks are assigned exclu-
sively to jobs, an allocation may be portrayed as a sequence of shaded squares
on this grid, where each job is represented by a sequence of memory-squares in
a specific core-column.

The configured ratio is represented by the diagonal of this grid, and the used
ratio by the line connecting the top-right point of the grid with the top-right
point of the last job. Mix-Fit defines a parameter, α, that denotes the angle
between these two lines. Note that the used ratio is calculated after allocating
the job being considered, so machines on which this job does not fit are excluded
from the discussion. Mix-Fit then matches the job with the machine with the
minimal α value. In case of a tie, the first machine with the minimal value is
used.

Two important notes. First, The grid is drawn such that memory and cores
are normalized to the same scale in each machine separately, thereby creating
a square. This prevents the scale from affecting the angle. Second, the angle is
based on lines emanating from the top right corner. It is also possible to have a
similar definition based on the origin (i.e. the bottom-left corner). Choosing the
top-right corner leads to higher sensitivity when the machine is loaded, which
facilitates better precision in balancing the resources in such cases.

Let’s see an example. Three machines are available, each with 4 cores and 32
GB of memory. Machine A already has one job with 24 GB, Machine B has 2 jobs
with 8 GB each, and Machine C has one job with 2 cores and 4 GB memory and
another job with 1 core and 4 GB memory. The next job that arrives requires one
core and 8 GB of memory. The various α values of all three machines including
the newly arrived job are demonstrated in Figure 8. The machine selected by
Mix-Fit in this case is B where α = 0.

������
������

��
��
��
����
��
��
��

������
����
����

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
����
��
��
��

������
������
������
������������
���
���
���
������
���
���
������
���
���
������
���
���
���

������
������

������
������
���
���
���
������
���
���
���

������
������

������������
������

����

��
��
��
����
��
��
����

��
��
����
��
��
��

����

Cores

Machine A

M
e
m

o
ry

M
e
m

o
ry

Cores

Machine B Machine C

M
e
m

o
ry

Cores

Fig. 8. Example of various α angles calculated by Mix-Fit. The selected machine in
this case is B where α = 0.

To demonstrate why this may be expected to improve over the previous
heuristics we will use the same examples we used above. Consider Figure 3,
where Worse-Fit yielded the best match. After matching the first 16 GB job
with machine A, Mix-Fit will match the second 16 GB job with machine B, as

this will lead to a smaller α value as can be seen in Figure 9(a). It will then
match the remaining 4 GB jobs with both machines until all cores get utilized.
As can be seen in Figure 9(b) the end result is identical to Worse-Fit.

��
��
��
����
��
��
��

��
��
��
����
��
��
����
��
��
����

��
��
��

��
��
��
����
��
��
��

��
��
��
����
��
��
����
��
��
����
��
��
��
��
��
��
����
��
��
����
��
��
����
��
��
������

��
��
��
����
��
��
����

��
��
����
��
��
����
��
��
����
��
��
����
��
��
������

��
��
��
��
��
��
��
����
��
��
��

Cores

Machine A

M
e

m
o

ry

M
e

m
o

ry

Cores

Machine B

(a) Options for placing the 2’nd job.
The angle on machine B is smaller.

������
������
���
���
���
���������

����
��
��
��
������
����

����
����
���
���
���
�������

����
��
��
��
�������� ����

���
���
���
���

����

����
����
��
��
��
������

Cores

Machine A

M
e

m
o

ry

M
e

m
o

ry

Machine B

Cores

(b) Final allocation by Mix-Fit.

Fig. 9. Mix-Fit behavior for the example in Figure 3. The end result is identical to
Worse-Fit.

Next, lets re-examine Figure 4 where Best-Fit yielded the best results. In this
scenario Mix-Fit will match the first three 8 GB jobs with machine A, and then
the 32 GB job with machine B, replicating the behavior of Best-Fit. Note that
α would have been the same for the second 8 GB, whether it would have been
matched on machine A or B. But as noted above, in such cases the First-Fit
heuristics is used as a tie breaker and hence the job is matched with machine A.
As can be seen in Figure 10 the end result is identical to Best-Fit.

��
��
��
������

��
��
��
������

����
������

������

����
��
��
��
��
������

������

������
���
���
���
���������

������

���
���
���
���

���
���
���
���������

���
���
���
���������
������
���
���
���
���������
������
���
���
���
���������

������
������

Cores

Machine A

M
e

m
o

ry

Cores

Machine B

M
e

m
o

ry

Fig. 10. Jobs allocated by Mix-Fit for the Example in Figure 4. The result is identical
to Best-Fit.

3.2 Mix-Fit’s Results

To check the performance of Mix-Fit we repeated the buckets experiment from
Section 2.3, but this time including Mix-Fit in the set of competing heuristics.
The results are shown in Figure 11. As can be seen, Mix-Fit wins by only a small

margin in pool A, performs similarly to Worse-Fit-Cores in pools B and D, and
is slightly outperformed by Worse-Fit-Cores in pool C.

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f
w

in
s

Pool A

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f
w

in
s

Pool B

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f
w

in
s

Pool C

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit
%

 o
f

w
in

s

Pool D

Fig. 11. Percentage of wins by each heuristic: Mix-Fit wins by only a small margin
in pool A, performs similarly to Worse-Fit-Cores in pools B and D, and is slightly
outperformed by Worse-Fit-Cores in pool C.

These results are counterintuitive, since in a two-dimensional environment of
cores and memory, where both resources are subject to sudden deflation by bursts
of jobs with high demands, a reasonable strategy would be to try and balance the
usage between the resources, in order to secure a safety margin against bursts of
any kind. This strategy, however, which Mix-Fit employs, seems to yield some
improvement only under the most bursty situations (pool A). This leads us to
default to a meta-heuristic, Max-Jobs, which is described next.

4 The Max-Jobs Meta-Heuristic

The experiment described above indicates that counterintuitively, Mix-Fit does
not yield the best performance in all pools. As an alternative, we therefore
suggest the use of the Max-Jobs meta-heuristic.

A meta-heuristic is an algorithm that employs other heuristics as subroutines.
In our case, Max-Jobs uses all of the heuristics described before: Best-Fit-Cores,
Best-Fit-Memory, Worse-Fit-Cores, Worse-Fit-Memory, and Mix-Fit. At each
scheduling cycle, Max-Jobs picks the best schedule produced by any of these

heuristics for this cycle. In other words, the meta-algorithm runs all the available
heuristics as black-boxes and selects the one with the best result for the currently
queued jobs. The target function defining “best” is maximizing the number of
jobs assigned to machines in this cycle. Importantly, additional heuristics can
be added later and the system will take advantage of them in those cases that
they perform the best.

Pseudo-code for the Max-Jobs meta-heuristic is given in Figure 12.

L – list of heuristics
S – list of proposed schedules (mapping jobs to hosts)

foreach heuristic H in L
S[H] = H.Schedule(waitingQueue)

maxJobsSchedule = MaxJobsSchedule(S)
Dispatch(maxJobsSchedule)

Fig. 12. The Max-Jobs meta-heuristic.

5 Simulation Results

To experiment with Max-Jobs, Mix-Fit and the rest of the heuristics, we devel-
oped a Java-based event-driven simulator [8] that mimics the matching behavior
at the PPM. The simulator accepts as input a jobs trace file, a machines config-
uration file, and a parameter defining which matching heuristic to apply. It first
loads the two files into memory, building an event queue of job arrival events
sorted according to the timestamps from the trace (hence preserving the original
arrival order and inter-arrival times of the jobs), and a list of machine objects
according to the configuration.

The scheduling function is invoked by the scheduler at regular intervals, as
is commonly done in many large-scale systems. In our simulations we used an
interval of 30 seconds. This allows the scheduling overhead to be amortized over
multiple jobs that are handled at once, and may also facilitate better assignments
of jobs to machines, because the scheduler can optimize across a large number
of jobs rather than treating them individually.

In each scheduling cycle, the scheduler begins by picking the first arrival
event from the queue and trying to match a machine to the arriving job using
the selected heuristic3. If the matching succeeds the job is marked as “running”
on the selected machine, and a completion event is scheduled in the event queue
at a timestamp corresponding to the current time plus the job’s duration from
the trace. Otherwise a reservation is made for the job. Specifically the machine

3 For simplicity we skipped the fair-share calculation.

with the highest available memory is reserved for the job for its future execution,
thus preventing other jobs from being scheduled to that machine during the rest
of the scheduling cycle.

For the workload we used the traces that were described in Section 2, and
which contains 9–13 million jobs each. The parameters we used from the traces
are the jobs’ arrival times, runtime duration, and the number of cores and amount
of memory each job requires in order to execute (see Figures 1 and 2 for the
distributions). For the machines we used a special NetBatch command to query
the present machine configurations from each of the pools on which the traces
were collected.

Our initial simulations revealed that the original load in the traces is too low
for the wait queue in the simulated PPM to accumulate a meaningful number
of jobs. This may stem from fact that the load in the month in which the traces
were collected was particularly low, or that the configuration has changed by the
time we ran the machines query (a few months later). In any case the results
were that all heuristics performed the same.

To overcome this problem we increased the load by multiplying the jobs
arrival time by a factor, β, that is less than or equal to one. The smaller the
value of β, the smaller the inter-arrival times become between the jobs, which
increases the rate of incoming jobs and the load on the simulated pool. We ran
high-load simulations with β values ranging between 0.58–0.95. In the figures
below, we translate the β values into an actual load percentage for each pool.

Metrics that were measured are the average wait time of jobs, the average
slowdown, and the average length of the waiting queue during the simulation.
The results are shown in Figures 13 to 15, for each metric, respectively. Since
the metrics are dependent and the results are similar between the metrics, we
will only discuss the differences between the heuristics and pools.

In correlation with the buckets experiment in Figure 11, Mix-Fit showed
marked improvement over the other heuristics in pool A, and was able to reduce
the waiting time by 22%, slowdown by 23%, and queue length by 22% under the
highest loads simulated.

The second-best heuristic on pool A, Best-Fit-Memory, appears to slightly
outperform Mix-Fit in pool B, especially in the mid-range load, as opposed to
the buckets experiment. This may be caused by the fact that pool B had the
most intense bursts of high memory demands and the largest fraction of 4 GB
jobs, making the conservation of memory resources of prime importance. At the
same time, Best-Fit-Memory performs relatively poorly on pool D.

Similarly, Worse-Fit-Cores that was the best heuristic in the buckets exper-
iment (except for Mix-Fit) appears to perform poorly in the load simulation in
both pools A and B. This may stem from the fact that the buckets experiments
were conducted in a highly artificial setting where all jobs were presented in
advance, and were matched to empty clusters of machines. In such a scenario
Worse-Fit-Cores — which is similar to round-robin allocation — performed well,
but when confronted with a continuous on-line scenario, where machines typ-
ically already have some of their resources taken, it did not. This is another

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 79 80 81 82 83 84 85 86

w
a
it
 t
im

e
 (

m
in

u
te

s
)

load

Pool A
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 64 66 68 70 72 74 76 78

w
a
it
 t
im

e
 (

m
in

u
te

s
)

load

Pool B
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 76 77 78 79 80 81 82 83 84 85 86

w
a
it
 t
im

e
 (

m
in

u
te

s
)

load

Pool C
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 85 86 87 88 89 90 91 92 93

w
a
it
 t
im

e
 (

m
in

u
te

s
)

load

Pool D
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

Fig. 13. Average wait time of jobs. System load is expressed as percent of capacity.

 0

 100

 200

 300

 400

 500

 600

 700

 79 80 81 82 83 84 85 86

s
lo

w
d
o
w

n

load

Pool A
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 64 66 68 70 72 74 76 78

s
lo

w
d
o
w

n

load

Pool B
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 50

 100

 150

 200

 250

 300

 76 77 78 79 80 81 82 83 84 85 86

s
lo

w
d
o
w

n

load

Pool C
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 50

 100

 150

 200

 250

 300

 85 86 87 88 89 90 91 92 93

s
lo

w
d
o
w

n

load

Pool D
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

Fig. 14. Average slowdown of jobs.

 0

 5

 10

 15

 20

 25

 30

 35

 79 80 81 82 83 84 85 86

w
a
it
in

g
 j
o
b
s
 (

th
o
u
s
a
n
d
s
)

load

Pool A
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 5

 10

 15

 20

 25

 30

 64 66 68 70 72 74 76 78

w
a
it
in

g
 j
o
b
s
 (

th
o
u
s
a
n
d
s
)

load

Pool B
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 5

 10

 15

 20

 25

 76 77 78 79 80 81 82 83 84 85 86

w
a
it
in

g
 j
o
b
s
 (

th
o
u
s
a
n
d
s
)

load

Pool C
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 85 86 87 88 89 90 91 92 93

w
a
it
in

g
 j
o
b
s
 (

th
o
u
s
a
n
d
s
)

load

Pool D
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

Fig. 15. Average wait-queue length.

indication that challenges faced by on-line schedulers are different from those
faced by batch (or off-line) schedulers, and that it is important to match the
simulation type to the system type. In our case this means that the dynamic
simulations described here are more relevant than the bucket experiments used
above.

In pool C all the heuristics achieved essentially the same performance. This
reflects an unchallenging workload that can be handled by any heuristic.

Finally, in pool D Mix-Fit had similar results to the second best heuristic,
Worse-Fit-Cores. It looks like the non-bursty nature of that pool gives an ad-
vantage to balancing heuristics such as Worse-Fit-Cores.

Figure 16 shows the fraction of times each heuristic was selected by Max-Jobs.
As can be seen, Mix-Fit is dominant, even more than in the above buckets exper-
iment, but still getting as low as 73% in pool A. Best-Fit-Memory is markedly
better than Worse-Fit-Cores especially in pools A and D.

As expected, the Max-Jobs meta-heuristic is the best scheme all around, and
seems to be largely robust against workload and configuration variations. This is
due to the fact that it uses the best heuristic at each scheduling cycle. However,
its final result (in terms of average performance across all the jobs in the trace)
is not necessarily identical to that of the best heuristic that it employs. On one
hand, Max-Jobs can be better than each individual heuristic, as happens for
example in pool B. This is probably because it can mix them as needed, and use

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f
w

in
s

Pool A

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f
w

in
s

Pool B

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f
w

in
s

Pool C

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f
w

in
s

Pool D

Fig. 16. Selected heuristics by Max-Jobs. Sum is more than 100% because in many
cases several heuristics produced the same result.

a different heuristic for different situations as they occur. On the other hand,
Max-Jobs is sometimes slightly inferior to the best individual heuristic, as seen
for example in pool A. This is probably due to situations in which packing jobs
very densely leads to reduced performance in a successive scheduling round.

6 Related Work

There are very few externally available publications that relate to NetBatch.
Zhang et al. investigated the use of dynamic rescheduling of NetBatch jobs be-
tween pools which improves utilization at the farm level [15]. Our work in effect
complements theirs by focusing on utilization improvements within the individ-
ual pools.

The question of assigning machines to jobs has received some attention in
the literature. Xiao et al. studied a problem similar to ours and also concluded
that one-dimensional strategies yields sub-optimal performance [14]. In their
work, however, cores are considered shared resources, and thus the investigation
focused on the interference between the jobs. Amir et al. proposed a load bal-
ancing scheme where the targets for process migration are selected so as to avoid
saturation of any single resource [1]. This is similar to avoiding high α values in
our terminology.

The idea of symbiotic scheduling is also related to our work. Symbiotic
scheduling attempts to find sets of jobs that complement each other and together

use the system resources effectively. This was initiated in the context of hyper-
threading (or simultaneous multithreading) processors [11, 4], and extended also
to the domain of clusters [13].

Meta-schedulers like the Max-Jobs approach have also been used before. For
example, Talby used such a meta-scheduler to select among different versions
of backfilling in scheduling large-scale parallel machines [12]. However, this was
done by simulating recent work in the background and then switching to the
version that looks best. Such an approach depends on an assumption of locality,
meaning that the future workload will also benefit from this version. In our work
we actually run all the contending variants on the jobs in the queue, and select
the one that indeed achieves more assignments.

It should be noted that due to the assumption that cores and memory are
allocated exclusively to jobs, our problem is not directly related to the well-
known 2D bin-packing problem. In particular, it is not allowed to pack multiple
jobs with limited memory requirements onto the same core [6]. It does, however,
correspond the problem of allocating virtual machines to physical servers which
has gained much attention in resent years. This has been called the vector bin-

packing problem, since the allocation can be depicted as the vector-sum of vectors
representing the resource requirements of individual virtual machines [7]. This
directly corresponds to our depiction of rectangles that connect at their corners
in Figures 3, 4, etc.

The ideas suggested for vector bin-packing are all very similar to our Mix-
Fit algorithm. For example, they are also based on normalizing the resources
and creating a square (or multi-dimensional cube, if there are more resources
than 2). The available resources are then represented by a diagonal vector, the
consumption by other vectors, and the basic idea is to try to make these vectors
close to each other. However, the details may differ.

Mishra and Sahoo [6] describe the SandPiper algorithms used in Xen, and
the VectorDot algorithm [10]. They show that both suffer from failures similar
to the ones we demonstrated in Section 2. For example, the VectorDot algorithm
uses the dot product of the consumed resources vector and the request vector
to identify requests that are orthogonal to the current usage, and thus may be
expected to complement it. However, this is subject to artifacts because the
lengths of the vectors also affect the result. They then suggest a rather complex
approach for identifying complementary vectors based on a discretization of the
space called the “planar resource hexagon”. They did not, however, evaluate its
performance compared to existing heuristics.

Panigrahy et al. study a wide range of First-Fit-Decreasing-based algorithms
[7]. The idea is to combine the requirements for different resources in some way
into a single number, and then pack in a decreasing order. However, this approach
loses the important geometrical structure of the problem. They therefore also
consider heuristics based on the dot product or the maximal required resource.
The evaluations are based on presumed synthetic distributions.

Compared with these previous works, our approach of using just the angle be-
tween two vectors is among the simplest. Basing the comparison at the top-right

corner for improved discrimination seems to be novel. It would be interesting to
evaluate the effect of these details, but our results so far indicate that they may
not have much impact for real workloads.

Lee et al. investigated the problem of virtual machines allocation taking into
consideration the consolidation of virtual machines onto the same physical plat-
form, and the possible resulting resource contention [5]. In principle such consid-
erations are also applicable to our work. However, we note that the configuration
of NetBatch pools is such that I/O and bandwidth are seldom a bottleneck.

Finally, it is important to remember that since the PPM considers the jobs
one at a time there is a limit on the optimizations that can be applied. Looking
further into the queue and considering more than one job may yield significant
improvements [9].

7 Conclusions

Matching jobs with resources is an NP-hard problem. The common practice is
therefore to rely on heuristics to do the matching. In this paper we investigated
the problem of resource matching in Intel’s compute farm, and showed that
none of the well-known heuristics such as Best-Fit or Worse-Fit yield optimal
performance in all workload scenarios and cases. This stems from two reasons.
First, these heuristics focus on a single resource, either cores or memory, whereas
in reality the contention may apply to the other resource. To address this problem
we implemented a specialized heuristic, Mix-Fit, that takes both resources into
account and tries to create an assignment that leads to a balanced use of the
resources. In principle this can be extended to more than two resources. While
this too failed to be optimal in all cases, it did show some improvement under
certain conditions.

Second, the nature of dynamically changing demands prevent a specific use-
case-tailored algorithm to be optimal for all cases. For that, we proposed a
meta-heuristic called Max-Jobs, that is not tailored to a specific workload or
scenario. Rather, it uses the other heuristics as black-boxes, and chooses, in every
scheduling cycle, the one that yields the maximal number of matched jobs. We
have demonstrated through simulations that max-jobs is highly competitive with
all the individual heuristics, and as such is robust against changes in workload
or configuration.

References

1. Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren. An opportunity
cost approach for job assignment in a scalable computing cluster. IEEE Trans.

Parallel and Distributed Systems, 11(7):760–768, Jul 2000.
2. B. Bentley. Validating the Intel R© Pentium R© 4 microprocessor. In 38th Design

Automation Conf., pages 244–248, Jun 2001.
3. N. D. Evans. Business Inovation and Disruptive Technology: Harnessing the Power

of Breakthrough Technoloy ...for Competitive Advantage. Financial Times Prentice
Hall, 2003.

4. S. Eyerman and L. Eeckhout. Probabilistic job symbiosis modeling for SMT proces-
sor scheduling. In 15th Intl. Conf. Architect. Support for Prog. Lang. & Operating

Syst., pages 91–102, Mar 2010.
5. S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar, L. Uyeda,

and U. Wieder. Validating heuristics for virtual machines consolidation. Technical
Report MSR-TR-2011-9, Microsoft Research, Jan 2011.

6. M. Mishra and A. Sahoo. On theory of VM placement: Anomalies in existing
methodologies and their mitigation using a novel vector based approach. In IEEE

Intl. Conf. Cloud Computing, pages 275–282, 2011.
7. R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder. Heuristics for vector bin

packing. Technical report, Microsoft Research, 2011.
8. O. Shai. Batch simulator (simba). Open source project hosted at:

http://code.google.com/p/batch-simulator, 2012.
9. E. Shmueli and D. G. Feitelson. Backfilling with lookahead to optimize the packing

of parallel jobs. Journal of parallel and distributed computing, 65:1090–1107, 2005.
10. A. Singh, M. Korupolu, and D. Mohapatra. Server-storage virtualization: Integra-

tion and load balancing in data centers. In SC 2008: High Performance Computing,

Networking, Storage and Analysis, pages 1–12, 2008.
11. A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous mul-

tithreading processor. In 9th Intl. Conf. Architect. Support for Prog. Lang. &

Operating Syst., pages 234–244, Nov 2000.
12. D. Talby and D. G. Feitelson. Improving and stabilizing parallel computer perfor-

mance using adaptive backfilling. In 19th Intl. Parallel & Distributed Processing

Symp., Apr 2005.
13. J. Weinberg and A. Snavely. Symbiotic space-sharing on SDSC’s DataStar system.

In E. Frachtenberg and U. Schwiegelshohn, editors, Job Scheduling Strategies for

Parallel Processing, pages 192–209. Springer Verlag, 2006. Lect. Notes Comput.
Sci. vol. 4376.

14. L. Xiao, S. Chen, and X. Zhang. Dynamic cluster resource allocations for jobs
with known and unknown memory demands. IEEE Trans. Parallel and Distributed

Systems, 13(3):223–240, Mar 2002.
15. Z. Zhang, L. T. X. Phan, G. Tan, S. Jain, H. Duong, B. T. Loo, and I. Lee. On the

feasibility of dynamic rescheduling on the intel distributed computing platform.
In Proc. 11th Intl. Middleware Conference Industrial track, pages 4–10, New York,
NY, USA, 2010. ACM.

