
Workload Modeling for Performane EvaluationDror G. FeitelsonShool of Computer Siene and EngineeringThe Hebrew University, 91904 Jerusalem, Israelfeit�s.huji.a.ilhttp://www.s.huji.a.il/~feitAbstrat. The performane of a omputer system depends on the har-ateristis of the workload it must serve: for example, if work is evenlydistributed performane will be better than if it omes in unpreditablebursts that lead to ongestion. Thus performane evaluations require theuse of representative workloads in order to produe dependable results.This an be ahieved by olleting data about real workloads, and re-ating statistial models that apture their salient features. This surveyovers methodologies for doing so. Emphasis is plaed on problemati is-sues suh as dealing with orrelations between workload parameters anddealing with heavy-tailed distributions and rare events. These onsider-ations lead to the notion of strutural modeling, in whih the generalstatistial model of the workload is replaed by a model of the proessgenerating the workload.1 IntrodutionThe goal of performane evaluation is often to ompare di�erent system designsor implementations. The evaluation is expeted to bring out performane di�er-enes that will allow for an eduated deision regarding what design to employor what system to buy. Thus it is impliitly assumed that observed performanedi�erenes indeed reet important di�erenes between the systems being stud-ied.However, performane di�erenes may also be an artifat of the evaluationmethodology. The performane of a system is not only a funtion of the systemdesign and implementation. It may also be a�eted by the workload to whihthe system is subjeted. For example, ommuniation networks have often beenanalyzed using Poisson-related models of traÆ, whih indiated that the vari-ane in load should smooth out over time and when multiple data soures areombined. But in 1994 Leland and o-workers showed, based on extensive obser-vations and measurements, that this does not happen in pratie [52℄. Instead,they proposed a self-similar traÆ model that aptures the burstiness of networktraÆ and leads to more realisti evaluations of required bu�er spae and otherparameters [24℄.Analyzing network traÆ was easy, in a sense, beause all pakets are of equalsize and the only harateristi that required measurement and modeling was



2the arrival proess. But if we onsider a omplete omputer system, the problembeomes more omplex [13, 11℄. For example, a omputer program may require aertain amount of CPU time, memory, and I/O, and these resoure requirementsmay be interleaved in various ways during its exeution. In addition there areseveral levels at whih we might model the system: we an study the funtionalunits used by a stream of instrutions, the subsystems used by a job during itsexeution, or the requirements of jobs submitted to the system over time. Eahof these sales is relevant for the design and evaluation of di�erent parts of thesystem: the CPU, the hardware on�guration, or the operating system.The main domain used as a soure of examples in this survey is that of paral-lel job sheduling. Workloads in this �eld are interesting due to the ombinationof being relatively small and at the same time relatively omplex. The size oftypial workloads is tens of thousands of jobs, as opposed to millions of paketsin ommuniation workloads. These workloads are haraterized by a large num-ber of fators, inluding the job sizes, runtimes, runtime estimates, and arrivalpatterns. The omplexity derives not only from the multiple fators themselves,but from various orrelations between them. Researh on these issues is faili-tated by the availability of data and models in the Parallel Workloads Arhive[60℄. In addition, there are several doumented ases of how workload parametersinuene the outomes of performane evaluation studies [53, 57, 25℄.2 Data SouresThe suggestion that workload modeling should be based on measurements isnot new [32, 4℄. However, for a long time relatively few models based on atualmeasurements were published. As a result, many performane studies did notuse experimental workload models at all (and don't to this day).It is true that real-world data is not always available, or may be hard toobtain. But not using real data may lead to awed evaluations [26℄. This real-ization has led to a new wave of workload analyses in various �elds of systemdesign in reent years. Maybe the most prominent are the study of Internet traf-� patterns [52, 62, 75℄ and world-wide web traÆ patterns, with the intent ofusing the knowledge to evaluate server performane and ahing shemes [5, 18,6℄. Other examples inlude studies of proess arrivals and runtimes [12, 37℄, �lesystems [36℄, and video streams [48℄. In the area of parallel systems, desrip-tive studies of workloads have only started to appear in reent years [29, 76, 58,27, 14℄. There are also some attempts at modeling [10, 28, 21, 41, 23, 54, 15℄ andon-line haraterization [34℄.But where does the data ome from? There are two main options: use datathat is available anyway, or ollet data spei�ally for the workload model.The latter an be done in two ways: ative or passive instrumentation. Impor-tantly, olleted data an and should be made publily available for use by otherresearhers [60, 33℄.



32.1 Using Aounting and Ativity LogsThe most readily available soure of data is aounting or ativity logs. Suhlogs are kept by the system for auditing, and reord seleted attributes of allativities. For example, many omputer systems keep a log of all exeuted jobs.In large sale parallel systems, these logs an be quite detailed and are a rihsoure of information for workload studies [60℄. Another example is web servers,that are often on�gured to log all requests.A good example is provided by the analysis of three months of ativity onthe 128-node NASA Ames iPSC/860 hyperube superomputer. This analysisprovided the following data [29℄:{ The distribution of job sizes (in number of nodes) for system jobs, and foruser jobs lassi�ed aording to when they ran: during the day, at night, oron the weekend.{ The distribution of total resoure onsumption (node seonds), for the samejob lassi�ations.{ The same two distributions, but lassifying jobs aording to their type:those that were submitted diretly, bath jobs, and Unix utilities.{ The hanges in system utilization throughout the day, for weekdays andweekends.{ The distribution of multiprogramming level seen during the day, at night,and on weekends. This also inluded the measured down time (a speial aseof 0 multiprogramming).{ The distribution of runtimes for system jobs, sequential jobs, and paralleljobs, and for jobs with di�erent degrees of parallelism. This inluded a on-netion between ommon runtimes and the queue time limits of the bathsheduling system.{ The orrelation between resoure usage and job size, for jobs that ran duringthe day, at night, and over the weekend.{ The arrival pattern of jobs during the day, on weekdays and weekends, andthe distribution of interarrival times.{ The orrelation between the time of day a job is submitted and its resoureonsumption.{ The ativity of di�erent users, in terms of number of jobs submitted, andhow many of them were di�erent.{ Pro�les of appliation usage, inluding repeated runs by the same user andby di�erent users, on the same or on di�erent numbers of nodes.{ The dispersion of runtimes when the same appliation is exeuted manytimes.Note, however, that aounting logs do not always exist at the desired levelof detail. For example, even if all ommuniation on a web server is logged,this is at the request level, not at the paket level. To obtain paket-level data,speialized instrumentation is needed.



42.2 Passive and Ative InstrumentationIf data is not readily available, it should be olleted. This is done by instrument-ing the system with speial failities that reord its ativity. A major problemwith this is being unobtrusive, and not modifying the behavior of the systemwhile we measure it.Passive instrumentation refers to designs in whih the system itself is notmodi�ed. The instrumentation is done by adding external omponents to thesystem, that monitor system ativity but do not interfere with it. This approahis ommonly used is studies of ommuniation, where it is relatively easy to adda node to a system that only listens to the traÆ on the ommuniation network[52, 73, 35℄. A more extreme example is a proposal to add a shadow parallelmahine to a prodution parallel mahine, with eah shadow node monitoringthe orresponding prodution node, and all of them ooperating to �lter andsummarize the data [66℄.Ative instrumentation refers to the modi�ation of the system so that it willollet data about its ativity. This an be integrated with the original systemdesign, as was done for example in the RP3 [43℄. However, it is more ommonlydone after the fat, when a need to ollet data about a spei� system arises.A good example is the Charisma projet, whih set out to haraterize the I/Opatterns on parallel mahines [59℄. This was done by instrumenting the I/Olibrary and requesting users to re-link their appliations; when running with theinstrumented library, all I/O ativity was reorded for subsequent analysis.Obviously, instrumenting a system to ollet data at runtime an a�et thesystems behavior and performane. This may not be very troublesome in thease of I/O ativity, whih su�ers from high overhead anyway, but may be veryproblemati for the study of �ne grain events related to ommuniation, synhro-nization, and memory usage. One possible solution to this problem is to modelthe e�et of the instrumentation, thereby enabling it to be fatored out of themeasurement results [55℄. This leads to results that reet real system behavior(that is, una�eted by the instrumentation), but leaves the problem of perfor-mane degradation while the measurements are being taken. An alternative isto seletively ativate only those parts of the instrumentation that are neededat eah instant, rather than olleting data about the whole system all the time.Remarkably, this an be done eÆiently by modifying the system's objet odeas it runs [38℄.2.3 Data SanitationBefore data an be used to reate a workload model, it has to be leaned up.This has several aspets.One important aspet is the handling of outliers. Workload logs sometimesinlude unommon events that \don't make sense". Examples inlude{ In the two-year log of jobs run on the LANL CM-5 parallel mahine, thereis a 10-day streth in whih a single user ran about 5000 instanes of a jobthat exeuted in 1{2 seonds on 128 nodes.



5{ In the two-year log of jobs run on the SDSC Paragon parallel mahine, thereis a large onentration of short jobs that arrive at 3:30 AM on di�erentdays. This is probably due to periodi invoation of administrative sripts.{ In the two-year log of jobs run on the SDSC SP2 parallel mahine, there isa single hour in whih a single user submitted some 580 similar jobs.Of ourse, the deision that something is \unommon" is subjetive. The puristapproah would be to leave everything in, beause in fat it did happen in areal system. But on the other hand, while strange things may happen, it isdiÆult to argue for a spei� one; if we leave it in the workload that is used toanalyze systems, we run the risk of promoting systems that spei�ally ater fora singular unusual ondition that is unlikely to ever our again.A proedure that was advoated by Cirne and Berman is to use lustering asa means to distinguish between \normal" and \abnormal" data [15℄. Spei�ally,they haraterize days in a workload log by an n-valued vetor, and luster thesevetors into two lusters in Rn. If the lustering proedure distinguishes a singleday and puts it in a luster by itself, this day is removed and the proedure isrepeated with the data that is left. Note, however, that this has its risks: �rst,abnormal behavior may span more than a single day, as the above examples show;moreover, removing days may taint other data, e.g. when interarrival times areonsidered.Another aspet of workload sanitation involves errors. Workload logs mayontain data about ativities that failed to omplete suessfully, e.g. jobs thatwere submitted and either failed or were killed by the user. Should these jobs beinluded or deleted from the data? On one hand, they represent work that thesystem had to handle, even if nothing ame of it. On the other hand, they do notrepresent useful work, and may have been submitted again later. An interestingompromise is to keep suh data, and expliitly inlude it in the workload model[15℄. This will enable the study of how failed work a�ets system utilization andthe performane of \good" work.Finally, an important issue is determining the degree to whih data is gener-ally representative. One problem is that data may be a�eted by loal proeduresand onstraints where it was olleted. For example, data on programs run ona mahine equipped with only 32MB memory will show that programs do nothave larger resident sets, but this is probably an artifat of this limit, and not areal harateristi of general workloads. A more striking example is provided bythe NASA iPSC log mentioned above. In this log a full 57% of the jobs are in-voations of the Unix pwd ommand on various nodes, whih was the tehniqueused by system personnel to verify that the system was working [29℄. Anotherproblem is that workloads may evolve with time [39℄, espeially on large andunique installations suh as parallel superomputers. It is therefore importantto apture data from a mature system, and not a new (or old) one.



63 Workload ModelingThere are two ommon ways to use a measured workload to analyze or evaluatea system design [32℄: (1) use the traed workload diretly to drive a simulation,or (2) reate a model from the trae and use the model for either analysis orsimulation. For example, trae-driven simulations based on large address traesare often used to evaluate ahe designs [45, 42℄. But models of how appliationstraverse their address spae have also been proposed, and provide interestinginsights into program behavior [71, 72℄.3.1 Why ModelThe advantage of using a trae diretly is that it is the most \real" test of thesystem; the workload reets a real workload preisely, with all its omplexities,even if they are not known to the person performing the analysis.The drawbak is that the trae reets a spei� workload, and there is al-ways the question of whether the results generalize to other systems or loadonditions. In partiular, there are ases where the workload depends on thesystem on�guration, and therefore a given workload is not neessarily represen-tative of workloads on systems with other on�gurations. Obviously, this makesthe omparison of di�erent on�gurations problemati. In addition, traes are of-ten misleading if we have inomplete information about the irumstanes whenthey were olleted. For example, workload traes often ontain intervals whenthe mahine was down or part of it was dediated to a spei� projet, but thisinformation may not be available.Workload models have a number of advantages over traes [70℄.{ It is possible to hange model parameters one at a time, in order to inves-tigate the inuene of eah one, while keeping other parameters onstant.This allows for diret measurement of system sensitivity to the di�erent pa-rameters. It is also possible to selet model parameters that are expeted tomath the spei� workload at a given site.In general it is not possible to manipulate traes in this way, and even whenit is possible, it an be problemati. For example, it is ommon pratie toinrease the modeled load on a system by reduing the average interarrivaltime. But this pratie has the undesirable onsequene of shrinking thedaily load yle as well. With a workload model, we an ontrol the loadindependent of the daily yle.{ Using a model, it is possible to repeat experiments under statistially similaronditions that are nevertheless not idential. For example, a simulation anbe run several times with di�erent seeds for the random number generator.This is needed in order to ompute on�dene intervals.{ Logs may not represent the real workload due to various problems: a limitof 4 hours may fore users to break long jobs into multiple short jobs, jobskilled by the system may be repeated, et. If taken at fae value this maybe misleading, but the problem is that often we do not know about suhproblems.



7Conversely, a modeler has full knowledge of model workload harateristis.For example, it is easy to know whih workload parameters are orrelatedwith eah other beause this information is part of the model.{ Finally, modeling inreases our understanding, and an lead to new designsbased on this understanding. For example, identifying the repetitive natureof job submittal an be used for learning about job requirements from history.One an design a resoure management poliy that is parameterized by aworkload model, and use measured values for the loal workload to tune thepoliy.The main problem with models, as with traes, is that of representativeness.That is, to what degree does the model represent the workload that the systemwill enounter in pratie? The answer depends in part on the degree of detailthat is inluded. As noted above, eah job is omposed of proedures that arebuilt of instrutions, and these interat with the omputer at di�erent levels.One option is to model these levels expliitly, reating a hierarhy of interlokedmodels for the di�erent levels [13, 10, 64℄. This has the obvious advantage ofonveying a full and detailed piture of the struture of the workload. In fat,it is possible to reate a whole spetrum of models spanning the range fromondensed rudimentary models to diret use of a detailed trae.For example, the sizes of a sequene of jobs need not be modeled indepen-dently. Rather, they an be derived from a lower-level model of the jobs' stru-tures [30℄. Hene the ombined model will be useful both for evaluating systemsin whih jobs are exeuted on prede�ned partitions, and for evaluating systemsin whih the partition size is de�ned at runtime to reet the urrent load andthe spei� requirements of jobs.The drawbak of this approah is that as more detailed levels are added, theomplexity of the model inreases. This is detrimental for three reasons. First,more detailed traes are needed in order to reate the lower levels of the model.Seond, it is ommonly the ase that there is wider diversity at lower levels.For example, there may be many jobs that use 32 nodes, but at a �ner detail,some of them are oded as data parallel with serial and parallel phases, whereasothers are written with MPI in an SPMD style. Creating a representative modelthat aptures this diversity is hard, and possibly arbitrary deisions regardingthe relative weight of the various options have to be made. Third, it is harderto handle suh omplex models. While this onsideration an be mitigated byautomation [70, 44℄, it leaves the problem of having to hek the importane andimpat of very many di�erent parameters.3.2 How to ModelThe most ommon approah used in workload modeling is to reate a statistialsummary of an observed workload. This is applied to all the workload attributes,e.g. omputation, memory usage, I/O behavior, ommuniation, et. [46℄. It istypially assumed that the longer the observation period, the better. Thus wean summarize a whole year's workload by analyzing a reord of all the jobs



8that ran on a given system during this year. A syntheti workload an thenbe generated aording to the model, by sampling from the distributions thatonstitute the model.The question of what exatly to model, and at what degree of detail, is ahard one. On one hand, we want to fully haraterize all important workloadattributes. On the other hand a parsimonious model is more manageable, asthere are less parameters whose values need to be assessed and whose inueneneeds to be studied. Also, there is a danger of over-�tting a partiular workloadat the expense of generality.Fitting Distributions The goal of a model is to be able to reate a syn-theti workload that mimis the original (possibly with ertain modi�ations,aording to the e�ets we wish to study). The statistial summary is thereforea distribution, or olletion of distributions for various workload attributes. Bysampling from these distributions we then reate the model workload [49℄.
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Fig. 1. Distributions of runtimes for di�erent ranges of job sizes, in two workload logsand two models of parallel jobs.One way to selet suitable distributions is based on moments, and espeiallythe mean and the variane of the sample data [23℄. For example, these statistisindiate that the distribution of job runtimes has a wide dispersion, leading toa preferene for a hyper-exponential model over an exponential one. Jann et al.



9have used hyper-Erlang distributions to reate models that math the �rst 3moments of a distribution [41℄. However, suh summaries may be misleading,beause they may not represent the shape of the distribution orretly. Spei�-ally, in the Jann models, the distributions beome distintly bimodal, whereasthe original data is muh more ontinuous (Figure 1). The Feitelson model,whih uses a three-stage hyper-exponential distribution, more losely resemblesthe original data in this respet.The use of distributions with the right shape is not just an estheti is-sue. Some 25 years ago Lazowska showed that using models based on a hyper-exponential distribution with mathing moments to evaluate a simple queueingsystem leads to inaurate results [50℄, and advoated the use of distributionswith mathing perentiles instead. He also noted that a hyper-exponential distri-bution has three parameters, whereas the mean and standard deviation of dataonly de�ne two, so many di�erent hyper-exponential distributions that maththe �rst two moments are possible | and lead to di�erent results.Re's omitted statisti (% hange)(% of total) mean [se℄ CV median [se℄0 (0%) 9371 3.1 5525 (0.01%) 9177 (-2.1%) 2.2 (-29%) 551 (-0.2%)10 (0.02%) 9094 (-3.0%) 2.0 (-35%) 551 (-0.2%)20 (0.04%) 9023 (-3.7%) 1.9 (-39%) 551 (-0.2%)40 (0.08%) 8941 (-4.6%) 1.9 (-39%) 550 (-0.4%)80 (0.16%) 8834 (-5.7%) 1.8 (-42%) 549 (-0.5%)160 (0.31%) 8704 (-7.1%) 1.8 (-42%) 546 (-1.1%)Table 1. Sensitivity of statistis to the largest data points. Data regarding runtimeson the CTC SP2 mahine from [23℄ ourtesy of Allen Downey.Another problem with using statistis based on high moments of the data isthat they are very sensitive to rare large samples [23℄. Table 1 shows data basedon the runtimes of 50866 parallel jobs from the CTC SP2 mahine. Removing justthe top 5 values auses the mean to drop by 2%, and the oeÆient of variation(the standard deviation divided by the mean) to drop by 29%. The median, asa representative of order statistis, only hanges by 0.2%. As the extreme valuesobserved in a sample are not neessarily representative, this implies that themodel may be largely governed by a small number of unrepresentative samples.Finding a distribution that mathes given moments is relatively easy, be-ause it an be done based on inverting equations that relate a distribution'sparameters to its moments. Finding a distribution that �ts a given shape is typ-ially harder [54℄. One possibility is to use a maximum likelihood method, whih�nds the parameters that most likely gave rise to the observed data. Anotheroption is to use an iterative method, in whih the goodness of �t at eah stageis quanti�ed using the Chi-square test, the Kolmogorov-Smirnov test, or the



10Anderson-Darling test (whih is like the Kolmogorov-Smirnov test but plaesmore emphasis on the tail of the distribution).Correlations Modeling the distribution of eah workload attribute in isola-tion is not enough. An important issue that has to be onsidered is possibleorrelations between di�erent attributes.Correlations are important beause they an have a dramati impat onsystem behavior. Consider the sheduling of parallel jobs on a massively parallelmahine as an example. Suh sheduling is akin to 2D bin paking: eah job isrepresented by a retangle in proessors�time spae, and these retangles haveto be paked as tightly as possible. Assuming that when eah job is submittedwe know how many proessors it needs, but do not know for how long it will run,it is natural to do the paking aording to size. Spei�ally, paking the biggerjobs �rst may be expeted to lead to better performane [16℄. But what if thereis a orrelation between size and running time? If this is an inverse orrelation,we �nd a win-win situation: the larger jobs are also shorter, so paking them�rst is statistially similar to using SJF (shortest job �rst) [47℄. But if size andruntime are orrelated, and large jobs run longer, sheduling them �rst mayause signi�ant delays for subsequent smaller jobs, leading to dismal averageperformane [53℄. System CorrelationCTC SP2 �0:029KTH SP2 0.011SDSC SP2 0.145LANL CM-5 0.211SDSC Paragon 0.305Table 2. Correlation oeÆient of runtime and size for di�erent parallel superomputerworkloads.Establishing whether or not a orrelation exists is not always easy. The om-monly used orrelation oeÆient only yields high values if a strong linear rela-tionship exists between the variables. In the example of the size and runtime ofparallel jobs, the orrelation oeÆient is typially rather small (Table 2), and asatter plot shows no signi�ant orrelation either (Figure 2). However, these twoattributes are atually orrelated with eah other, as seen from the distributionsfor the CTC and SDSC logs in Figure 1. In both of these, the distribution ofruntimes for ranges of larger job-sizes distintly favors longer runtimes, whereassmaller jobs sizes favor short runtimes1.A oarse way to model orrelation, whih avoids this problem altogether, is torepresent the workload as a set of points in a multidimensional spae, and apply1 The only exeption is the serial jobs on the CTC mahine, whih have very longruntimes; but this anomaly is unique to the CTC workload.



11

Fig. 2. The orrelation between job sizes and runtimes on parallel superomputers.The satter-plot data is from the SDSC Paragon parallel mahine.lustering [13℄. For example, eah job an be represented by a tuple inluding itsruntime, its size, its memory usage, and so on. By lustering we an then seleta small number of representative jobs, as use them as the basis of our workloadmodel; eah suh job omes with a ertain (representative) ombination of valuesfor the di�erent attributes. However, many workloads do not luster niely |rather, attribute values ome from ontinuous distributions, and many di�erentombinations are all possible.The diret way to model a orrelation between two attributes is to use thejoint distribution of the two attributes. This su�ers from two problems. One isthat it may be expeted to be hard to �nd an analytial distribution funtionthat mathes the data. The other is that for a large part of the range, the datamay be very sparse. For example, most parallel jobs are small and run for ashort time, so we have a lot of data about small short jobs. But we may nothave enough data about large long jobs to say anything meaningful about thedistribution | we just have a small set of unrelated samples.The typial solution is therefore to divide the range of one attribute intosub-ranges, and model the distribution of the other attribute for eah suh sub-range. For example, the Jann model of superomputer workloads divides the jobsize sale aording to powers of two, and reates an independent model of theruntimes for eah range of sizes [41℄. As an be seen in Figure 1, these modelsare ompletely di�erent from eah other. An alternative is to use the same modelfor all subranges, and de�ne a funtional dependeny of the model parameterson the subrange. For example, the Feitelson model �rst selets the size of eahjob aording to the distribution of job sizes, and then selets a runtime from adistribution of runtimes that is onditioned on the seleted size [28℄. Spei�ally,the runtime is seleted from a two-stage hyperexponential distribution, and theprobability for using the exponential with the higher mean is linearly dependenton the size: p(n) = 0:95� 0:2(n=N)



12Thus, for small jobs (the job size n is small relative to the mahine size N) theprobability of using the exponential with the smaller mean is 0.95, and for largejobs this drops to 0.75.Stationarity A speial type of orrelation is orrelation with time. This meansthat the workload hanges with time: it is not stationary.On short time sales, the most ommonly enountered non-stationary phe-nomenon is the daily work yle. In many systems, the workload at night isquite di�erent from the workload during the day. Many workload models ignorethis and fous on the daytime workload, assuming that it is stationary. How-ever, when the workload inludes items whose duration is on the sale of hours(suh as parallel jobs), the daily yle annot be ignored. There are two typialways for dealing with it. One is to divide the day into a number of ranges, andmodel eah one separately assuming that it is stationary [14℄. The other is touse parameterized distributions, and model the daily yle by showing how theparameters hange with time of day [54℄.Over long ranges, a non-stationary workload an be the result of hangingusage patterns as users get to know the system better. It an also result fromhanging missions, e.g. when one projet ends and another takes its plae. Suhe�ets are typially not inluded in workload models, but they ould a�et thedata on whih models are based. We return to this issue in Setion 5.Assumptions An important point that is often overlooked in workload model-ing is that everything has to be modeled. It is not good to model one attributewith great preision, but use unbased assumptions for the others.The problem is that assumptions an be very tempting and reasonable, butstill be totally untrue. For example, it is reasonable to assume that parallel jobsare used for speedup, that is, to omplete the omputation faster. After all, thisis the basis for Amdahl's Law. But other possibilities also exist | for example,parallelism an be used to solve the same problem with greater preision ratherthan faster. The problem is that assuming speedup is the goal leads to a modelin whih parallelism is inversely orrelated with runtime, and this has an e�eton sheduling [53, 26℄. Observations of real workloads indiate that this is notthe ase, as shown above.Another reasonable assumption is that users will provide the system withaurate estimates of job runtimes when asked to. At least on large sale parallelsystems, users indeed spend signi�ant e�ort tuning their appliations, and maybe expeted to have this information. Also, bak�lling shedulers reward lowestimates but penalize underestimates, leading to a onvergene towards aurateestimates. Nevertheless, studies of user estimates reveal that they are often highlyinaurate, and often represent an overestimate by a full order of magnitude [57℄.Surprisingly, this an sway results omparing shedulers that use the estimatesto deide whether to bak�ll jobs (that is, to use them to �ll holes in an existingshedule) [25℄.



134 Heavy Tails, Self Similarity, and BurstinessA major problem with applying the tehniques desribed in the previous setionours when the data is \bad" [3℄. This is best explained by an example. If thedata �ts, say, an exponential distribution, then a running average of growingnumbers of data samples quikly onverges to the mean of the distribution. Butbad data is ill-behaved: it does not onverge when averaged, but rather ontinuesto grow and utuate. Suh e�ets have reeived onsiderable attention lately, asmany di�erent data sets were found to display them. For more tehnial detailon this topi, see [62, 61℄.4.1 Distributions with Heavy TailsA very ommon situation is that distributions have many small elements, andfew large elements. For example, there are many small �les and few large �les;many short proesses and few long proesses. The question is how dominant arethe large elements relative to the small ones. In heavy-tailed distributions, therare large elements (from the tail of the distribution) dominate.In general, the relative importane of the tail an be lassi�ed into one ofthree ases [62℄. Consider trying to estimate the length of a proess, given thatwe know that it has already run for a ertain time, and that the mean of thedistribution of proess lengths is m.{ If the distribution of proess lengths has a short tail, than the more we havewaited already, the less additional time we expet to wait. The mean of thetail is smaller than m. For example, this would be the ase if the distributionwas uniform over a ertain range.{ If the distribution is memoryless, the expeted additional time we need towait for the proess to terminate is independent of how long we have waitedalready. The mean length of the tail is always the same as the mean lengthof the whole distribution. This is the ase for the exponential distribution.{ But if the distribution is heavy tailed, the additional time we may expet towait till the proess terminates grows with the time we have already waited.The mean of the tail is larger than m, the mean of the whole distribution.An example of this type is the Pareto distribution.An important onsequene of heavy tailed distributions is the mass disparity phe-nomenon: a small number of samples aount for the majority of mass, whereasall small samples aount for negligible mass [17℄. Conversely, a typial sampleis small, but a typial unit of mass omes from a large sample. Using onreteexamples from omputers, a typial proess is short, but a typial seond ofCPU ativity is part of a long proess; a typial �le is small, but a typial byteof storage belongs to a large �le (Figure 3). This disparity is sometimes referredto as the \mie and elephants" phenomenon. But this metaphor may onjurethe image of a bimodal distribution2, whih ould be misleading: in most ases,the distribution is ontinuous.2 A typial mouse weighs about 28 grams, whereas an elephant weighs 3 to 6 tons,depending on whether it is Indian or Afrian. Cats, dogs, and zebras, whih fall in
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16 ertain threshold. Measurements show the power to be lose to 1.Pr[T > t℄ = t�k model tail k[51℄ ('86) > 3s 1.05{1.25[37℄ ('96) > 1s 0.78{1.29{ File sizes on a general purpose system (Figure 3), again limited to the tailof the distribution. There has been some disussion on whether this is bestmodeled by a Pareto or a lognormal distribution, but at least some data setsseem to �t a Pareto model better, and in any ase they are highly skewed[22℄.{ Various aspets of Internet traÆ, spei�ally [62, 69℄� Flow sizes� FTP data transfer sizes� TELNET paket interarrival times{ Various aspets of web server load, spei�ally [18, 6℄� The tail of the distribution of �le sizes on a server� The distribution of request sizes� The popularity of the di�erent �les (this is a Zipf distribution | seebelow)� The distribution of o� times (between requests)� The distribution of the number of embedded referenes in a web page{ The popularity of items (e.g. pages on the web) is often found to follow Zipf'sLaw [77℄, whih is also a power law [7℄. Assume a set of items are orderedaording to their popularity ounts, i.e. aording to how many times eahwas seleted. Zipf's Law is that the ount y is inversely proportional to therank r aording to y � r�b b � 1 (3)This means that there are r items with ount larger than y, orPr[Y > y℄ = r=N (4)where N is the total number of items. We an express r as a funtion of yby inverting the original expression (3), leading to r � y�1=b; substitutingthis into (4) gives a power-law tailPr[Y > y℄ = C � y�amoreover, b � 1 implies a � 1 [2℄.The problem with proedures suh as plotting log �F (x) as a funtion of logxand measuring the slope of the line is that data regarding the tail is sparse byde�nition. When applying an automati lassi�ation proedure, a single largesample may sway the deision is favor of \heavy". But is this the orret general-ization? The question is one of identifying the nature of the underlying distribu-tion, without having adequate data. Claiming a truly heavy tailed distribution isalmost always unfounded, beause suh a laim means that unbounded samples



17should be expeted as more and more samples are generated. In all real ases,samples must be bounded by some number (a proess annot run for longer thanthe uptime of the omputer; a �le annot be larger than the total available diskspae).One simple option is to postulate a ertain upper bound on the distribution,but this does not really solve the problem beause the question of where toplae the bound remains unanswered. Another option is to try �tting alternativedistributions for whih all moments onverge. For example, there have beensuessful attempts to model �le sizes using a lognormal distribution rather thana Pareto distribution [22℄. This has the additional bene�t of �tting the wholedistribution rather than just the tail.A more general approah is to use phase-type distributions, whih employa mixture of exponentials. Consider a simple example, in whih N samples aredrawn from an exponential distribution, and one additional sample is a far out-lier. This an be modeled as a hyperexponential distribution, with probabilityN=(N + 1) to sample from the main exponential, and probability 1=(N + 1) tosample from a seond exponential distribution with a mean equal to the outliervalue. In general, it is possible to onstrut mixtures of exponentials to �t anyobserved distribution [9℄. This is espeially important for analytial modeling, asdistributions with in�nite moments ause severe problems for suh analysis. Forsimulation the exat de�nition is somewhat less important, as long as signi�antmass is onentrated in the tail.4.2 The Phenomena of Self SimilaritySelf similarity refers to situations in whih a phenomenon has the same generalharateristis at di�erent sales [56, 67℄. In partiular, parts of the whole maybe saled-down opies of the whole, as in well known fratals suh as the Cantorset and the Sierpi�nski triangle. In natural phenomena we annot expet perfetopies of the whole, but we an expet the same statistial properties. A wellknown natural fratal is the oast of Britain [56℄. Workloads often also displaysuh behavior.The �rst demonstrations of self similarity in omputer workloads were forInternet traÆ, and used a striking visual demonstration. A time series rep-resenting the number of pakets transmitted during suessive time units wasreorded. At a �ne granularity, i.e. when using small time unites, this was seento be bursty. But the same bursty behavior persisted also when the time serieswas aggregated over several orders of magnitude, by using larger and larger timeunits. This ontradited the ommon Poisson model of paket arrivals, whihpredited that the traÆ should average out when aggregated.Similar demonstrations have sine been done for other types of workloads.Figure 5 gives an example from jobs arriving at a parallel superomputer. Selfsimilarity has also been shown in �le systems [36℄ and in web usage [18℄.The mathematial desription of self similarity is based on the notion of long-range orrelations. Atually, there are orrelations at many di�erent time sales:self similarity implies that the workload at a ertain instant is similar to the
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19and the e�et of eah step deays to zero very quikly.But if a step is orrelated with previous steps with polynomially dereasingweights, meaning that the weight of the step taken k steps bak is proportionalto k�a, strethes of steps in the same diretion beome muh longer. And theexpeted distane from the origin is found to behave like nH , with 0:5 < H < 1.H is alled the Hurst parameter [63℄. The loser it is to 1, the more self-similarthe walk.One way of heking whether a proess is self similar is diretly based on theabove: measure the range overed after n steps, and hek the exponent thatrelates it to n. Assume you start with a time series x1; x2; : : :. The proedure isas follows [63℄:1. Normalize it subtrating the mean �x from eah sample, giving zi = xi � �x.The mean of the new series is obviously 0.2. Calulate the distane overed after j steps:yj = jXi=1 zi3. The range overed after n steps is the maximum distane that has ourred:Rn = maxj=1:::n yj � minj=1:::n yj4. Resale this by dividing by the standard deviation of the original data.5. The model is that the resaled range, R=s, should grow like nH . To hekthis take the log leading tolog�Rs �n = log +H lognIf the proess is indeed self similar, we expet to see a straight line, and theslope of the line gives H .If a long time series is given, the alulation for small values of n is repeatedfor non-overlapping sub-series of length n eah, and the average is used. Anexample of the results of doing so is given in Figure 6, based on the data showngraphially in Figure 5.Other ways of heking for self similarity are based on the rate in whih thevariane deays as observations are aggregated, or on the deay of the spetraldensity, possibly using wavelet analysis [1℄. Results of the Variane-time methodare also shown in Figure 6. This is based on aggregating the original time series(that is, replaing eah m onseutive values by their average) and alulatingthe variane of the new series. This deays polynomially with a rate of ��,leading to a straight line with this slope in log-log axes. The Hurst parameter isthen given by H = 1� (�=2)
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21be heavy tailed (as the time to serve a �le is proportional to its size). During thetime a �le is served, data is transmitted at a onstant rate. This is orrelatedwith later transmittals aording to the heavy-tailed distribution of sizes andtransmission times, leading to long range orrelation and self similarity [18℄.5 Workload Dynamis and Strutural ModelingThe on-o� proess used for modeling self-similar workloads has another veryimportant bene�t. It provides a mehanism for introduing loality into theworkload, so that not only the statistis will be modeled, but also the dynamis.5.1 User BehaviorThe proedure for workload modeling outlined in Setion 3.2 was to analyze realworkloads, reover distributions that haraterize them, and then sample fromthese distributions. The main problem with this proedure is that is loses allstrutural information.A real workload is not a random sampling from a distribution. For example,the load on a server used by students at a university hanges from week to week,depending on the assignments that are due eah time. In eah week, everybodyis working on the same task, so the workload is omposed of many jobs that arestatistially similar. The next week all the jobs are similar to eah other again,but they are all di�erent from the jobs of the previous week. Over the whole yearwe indeed observe a wide distribution with many job types, but at any giventime we do not see a representative sampling of this distribution. Instead, weonly see samples onentrated in a small part of the distribution (Figure 7). Theworkload displays a \loality of sampling"3.The ommon way to model workload dynamis is with a user behavior graph[31℄. This is a graph whose nodes represent states. In eah state, the user exe-utes a ertain job with harateristis drawn from a ertain distribution. Thears denote the probability of moving from state to state. The graph thereforeenodes a Markovian model of the workload dynamis. A random walk on thegraph, subjet to the model's transition probabilities, reates a random workloadsequene suh that the probability of eah job mathes the limiting probabilityof that job's state, but it also abides by the model of whih jobs ome after eahother, and how many times a job may be repeated (using self-looping ars in thegraph) [64℄. However, this needs to be adjusted in order to reate heavy taileddistributions.In a university it may be plausible to argue that all students should bemodeled using the same user behavior graph. But in a prodution environmentone would expet di�erent users, with di�erent levels of ativity and di�erentbehaviors. In addition, the ative population hanges with time (Figure 7) [23℄.3 The existene of suh loal repetitiveness in workloads was suggested to me by LarryRudolph over ten years ago.
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Fig. 7. The dynamis of workloads. Left: the ative set of users grows with the obser-vation window. Right: so does the diversity of the workload, in this ase representedby the number of di�erent job sizes observed. Note that the x sale is not linear.Thus what we atually need is not one user behavior graph, but a model of theuser population as a whole: how the population of users hanges, and what userbehavior graph eah one should have. Using suh a model has two importantadvantages. First, it has built-in support for generating self-similar workloads(assuming users have long-tailed on and o� ativity times). Seond, it provides agood way to ontrol load without modifying the underlying distributions: simplyhange the number of users [6℄.Another aspet of user behavior, whih is not aptured by the user behav-ior graph, is the feedbak from the system performane to the generation ofnew work. Real users are not oblivious to the system's behavior: They typiallysubmit additional work only when existing work is �nished. Thus, if the userpopulation is bounded, the system's urrent performane modulates the o�eredload, automatially reduing it when ongestion ours, and spreading the loadmore evenly over time. But adding this integrates the workload model with thesystem, and prevents the use of an independent workload model.5.2 Internal StrutureUser modeling implants a struture on the workload. But it does not by itselfde�ne the basi building bloks of the workload | the jobs that are submittedto the system.One approah is to use a desriptive model. For example, modeling of parallelappliations requires a funtional relationship between the number of proessorsand the runtimes | in short, a speedup funtion of the appliation. A modelof speedups based on the average parallelism and its variane was proposed byDowney [21℄. Another model, based on the parallel and sequential parts of theappliation and on the overheads of parallelization, was proposed by Sevik [68℄.An alternative is to model the appliation's internal struture. It is om-mon pratie to measure systems using parameterized syntheti appliations [8℄.



23Suh appliations typially involve several nested loops that mimi the behaviorof iterative appliations, and perform di�erent amounts of omputations, I/Ooperations, and memory aesses. The number of iterations, types of operations,and spread of addresses are all parameters, thus allowing a single simple andgeneri benhmark to mimi many di�erent appliations.A similar approah an be used to generate a syntheti workload: use aparameterized program, seleting the parameters from suitable distributions inorder to reate the desired mix of behaviors. For example, Rudolph and Feitelsonhave proposed a model of parallel appliations with relatively few parameters,inluding the total work done, the average size of work units and its variability,the way in whih these work units are partitioned into threads, and the numberof barriers by whih they are synhronized [30℄.The question is what distributions to use. While there has been some workdone on haraterizing spei� appliations [20, 74, 65℄, there has been little ifany work on haraterizing the mix of appliation harateristis in a typialworkload. A rather singular example is the Charisma projet, in whih a wholeworkload was measured [59℄. Interestingly, this requires the same statistial teh-niques desribed in Setion 3.2, just applied to a di�erent level. Indeed, suh hier-arhial struturing of workloads has been reognized as an important workloadstruturing tool [64℄.Naturally, all this applies to pratially all types of workloads, and not onlyto jobs on (parallel) mahines. For example, web workloads an be viewed assessions that eah inlude a sequene of requests for pages that eah have severalembedded omponents; database workloads inlude transations that ontain anumber of embedded database operations, and so on.6 ConlusionsPerformane evaluation depends on workload modeling. We have outlined theoneptual framework of suh modeling, starting with simple statistial hara-terization, ontinuing with the handling of self similarity, and ending with theneed to also model user behavior. But all this is useless without real measureddata from whih distributions and parameters an be learned. One of the mostimportant tasks is to ollet large amounts of high resolution data about thebehavior of workloads, and to share this data to failitate the reation of betterworkload models.Apart from olleting data, there are also many methodologial issues thatbeg for additional work. These inlude tehniques to analyze and haraterizeworkloads, evaluations of the relative importane of di�erent workload parame-ters, and demonstrations of how workloads a�et system performane. In all ofthese, emphasis should be plaed on the dynamis of workloads. And as with theworkload data, it is important to share the programs that perform the analysisand implement the models | both to failitate the dissemination and use of newtehniques, and to help ensure that researhers use ompatible methodologies.
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