
The Vesta Parallel File SystemPeter F. Corbett Dror G. Feitelson�IBM T. J. Watson Researh CenterP. O. Box 218Yorktown Heights, NY 10598July 4, 2001AbstratThe Vesta parallel �le system is designed to provide parallel �le aess to appliationprograms running on multiomputers with parallel I/O subsystems. Vesta uses a newabstration of �les: a �le is not a sequene of bytes, but rather it an be partitioned intomultiple disjoint sequenes that are aessed in parallel. The partitioning | whih analso be hanged dynamially | redues the need for synhronization and oordinationduring the aess. Some ontrol over the layout of data is also provided, so the layoutan be mathed with the antiipated aess patterns.The system is fully implemented, and forms the basis for the AIX Parallel I/OFile System on the IBM SP2. The implementation does not ompromise salability orparallelism. In fat, all data aesses are done diretly to the I/O node that ontains therequested data, without any indiretion or aess to shared metadata. Disk mappingand ahing funtions are on�ned to eah I/O node, so there is no need to keepdata oherent aross nodes. Performane measurements show good salability withinreased resoures. Moreover, di�erent aess patterns are shown to ahieve similarperformane.1 IntrodutionThe ontinued improvements in miroproessors and memory systems have exposed I/Oas a major bottlenek [35, 22℄. This is true in both uniproessor and parallel systems.But I/O in parallel systems is more hallenging, owing to the inherent interations amongmultiple proesses in the same job that all perform I/O operations. The Vesta parallel �lesystem projet has foused on designing interfaes and abstrations to make suh interationsmanageable, while ahieving high eÆieny on parallel I/O hardware.I/O may be done for several purposes, inluding I/O to a swap devie used to implementvirtual memory, I/O to speial graphi devies, and I/O to on-line and o�-line persistentParts of this researh have appeared in [7, 18℄.�Current address: Institute of Computer Siene, The Hebrew University, 91904 Jerusalem, Israel.1



node
compute

node
compute

node
compute

node
compute

node
compute

node
compute

node
compute

node
compute

in
te

rc
on

ne
ct

io
n 

ne
tw

or
k

I/O node

I/O node

I/O node

I/O node

Figure 1: Generi multiomputer arhiteture with parallel I/O.storage, typially disks and tapes. Vesta deals exlusively with persistent on-line storage of�les. It is best suited for short and medium-term on-line storage of frequently used �les,partiularly those that must be aessed by parallel appliations.The I/O subsystem arhitetures of most parallel superomputers are remarkably similar[16℄. A generi on�guration is shown in Fig. 1. The nodes of the mahine are divided intotwo sets: ompute nodes and I/O nodes. Compute nodes are used to run user jobs. I/O nodesontain disks for on-line storage, and run the parallel �le system. These nodes onstitutea shared resoure that is aessible by all the di�erent jobs running on the ompute nodes.Examples of parallel mahines that use this design inlude the Connetion Mahine CM-5,the Intel iPSC and Paragon, and the nCUBE. Other systems, suh as the Meiko CS-2 andIBM SP2, have both dediated I/O nodes and optional additional I/O devies onneted tothe ompute nodes. These additional devies are typially used for swapping, srath spae,and storing operating system �les rather than for persistent storage of appliation data.The analogy between dediated I/O nodes and �le servers on a LAN is obvious. However,there are important di�erenes. LAN �le servers usually operate in a Unix environment andprovide the Unix �le system interfae, but typially with weaker onurreny semantis thanprovided by the base Unix �le system [28℄. This is perfetly adequate for supporting a set ofworkstations with a onventional Unix workload, but it is unsuitable for supporting parallelappliations. The problem is that parallel appliations involve multiple proesses operatingin onert, whereas Unix was originally designed as an environment for single-proess jobs.As a result, most distributed �le systems have little or no provision for oordinating shared�le aess by multiple ooperating proesses. In fat, the semantis of onurrent aess aresometimes left unde�ned. For example, NFS [41℄ may produe inonsistent results when a�le is write-shared by a number of proesses. Those �le systems that do provide Unix write-write and read-write sharing semantis among onurrently exeuting proesses on di�erentnodes implement this sharing through a ostly ahe oherene protool [33℄.The inadequay of urrent distributed �le systems for parallel systems has led to the2



design of various parallel �le systems [37, 12, 30℄. In this paper, we desribe the VestaParallel File System, �rst introdued in [6℄. Vesta introdues a new abstration of parallel�les, by whih appliation programmers an express the required partitioning of �le dataamong the proesses of a parallel appliation. This redues the need for synhronization andonurreny ontrol, and allows for a more streamlined implementation. In addition, Vestaprovides expliit ontrol over the way data is distributed aross the I/O nodes, and allowsthe distribution to be tailored for the expeted aess patterns.The next setion expands on the motivation and guidelines for the Vesta design. The�le abstration and the Vesta interfae are desribed in Setion 3. Setion 4 then explainshow the �le system was implemented on an IBM SP1 platform. Performane measurementsof this system are presented in Setion 5. Finally, the onlusions of the study are drawn insetion 6.2 Motivation and Design GuidelinesAn appliation's interfae to a system's I/O failities is most often through a �le system.Multiomputer �le systems make use of the parallel I/O subsystem by delustering �les,meaning that the bloks of eah �le are distributed aross distint I/O nodes. For example,this is done in Intel's Conurrent File System (CFS) [37℄ and Thinking Mahines' SalableFile System (sfs) [30℄. However, this feature is hidden from the users. The user interfaeemploys the traditional notion of a �le being a linear sequene of bytes (or reords), andthe mapping to multiple disks is done beneath the overs. Thus users are prevented fromtailoring their I/O patterns to math the available disks. Users may not even know whereblok boundaries are, so a small aess might require data residing on two di�erent I/Onodes.In ontrast, the Vesta �le system exposes the inherent parallel struture of �les at theuser interfae [6, 10℄. While users do not have full ontrol over the mapping of data todisks, they are able to reate �les that are distributed so as to math their appliations.For example, in a matrix-multiply appliation eah ompute node only needs to aess aband of rows or olumns from eah matrix. Vesta allows the �les ontaining the matriesto be partitioned into suh bands. Furthermore, it is possible to have eah band stored ona distint I/O node. Then eah proessor only aesses one I/O node, reduing interfereneamong proessors and fragmentation of the data. Vesta also allows parallel �le aess usingmany di�erent deompositions of the �le data: for example, a �le that was stored as a set ofrows an also be aessed by olumn. This does not require any rearrangement of the dataon the disks.The overriding goal of the Vesta �le system is to provide high performane for I/Ointensive sienti� appliations on massively parallel multiomputers. The Vesta design wasguided by the following priniples:� Parallelism. The primary vehile for ahieving high performane is parallelism. TheVesta design onserves the parallelism from the appliation interfae down to the disks.This is done by providing a new parallel interfae that allows programmers to expressthe partitioning of �le data among the di�erent proesses. This eliminates the need3



to serialize aesses. In partiular, it is easy to reate situations in whih multipleompute nodes aess multiple I/O nodes at the same time, independently of eahother, and over separate ommuniation hannels.� Salability. Vesta was originally started as part of the Vulan projet, a system thatwas designed to sale up to 32K nodes, a large fration of whih were to be dediatedI/O nodes. While we later shifted our fous to more modest sizes, the design stillpreludes any serial bottleneks or entralized lookups in �le aesses. Eah aess isaddressed diretly to the I/O node where the required data or metadata resides, withno node-to-node indiretion. 1� Layering. Vesta is a middle layer between appliations and disks. As suh, it relies onservies provided by lower layers, and adds well-de�ned funtionality in the interfae itprovides to higher layers. Spei�ally, Vesta assumes that lower layers provide reliablemessage passing among nodes, and reliable storage on eah I/O node. This an beaomplished by using RAID devies in eah I/O node independently of other nodes,thus saving network traÆ [20℄. Upon this base, Vesta adds a layer that provides thenotion of parallel �les as outlined above. Vesta, in turn, an serve as the basis for higherlevel libraries that will add additional servies, suh as olletive I/O operations.In addition, Vesta provides ommonly expeted servies, suh as a Unix-like hierarhialstruture of diretories, permission bits for eah �le's owner, group, and others, and enfore-ment of quotas. It also provides some less ommon features, inluding support for �les largerthan 2GB, asynhronous I/O operations, and �le hekpointing. However, full ompatibil-ity with existing systems was intentionally sari�ed whenever their features ontradit thenotion of a parallel interfae.3 Abstrations and InterfaeThe main innovation in Vesta is the fat that �les have a 2-dimensional struture, ratherthan the onventional 1-dimensional sequential model. The added dimension allows parallelaess to be expressed expliitly in terms of �le partitions. These ideas are explained indetail in the �rst two subsetions of this setion. Then an example of using this abstrationto implement a parallel sorting algorithm is given. Finally, we ompare this approah toother systems.3.1 The 2-dimensional Struture of Vesta FilesThe system software on parallel superomputers typially exploits parallel I/O devies bystriping �le data aross the I/O nodes. Assuming that the number of I/O nodes is N , bloki of the �le is loated on I/O node i mod N . Suh striping is transparent at the �le systeminterfae. It ahieves the goal of parallel aess to disks, but hides the details of the striping1While we do not demonstrate this degree of salability in the performane analysis in this paper, PIOFS,whih is based on Vesta, has proven to be salable to omputers with hundreds of nodes [9℄.4
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Figure 2: A simple way to get a parallel view of a delustered �le.from the appliation. A simple way to provide a parallel view of suh a striped �le is toonsider the bloks on eah I/O node as a separate sequene (Fig. 2), e�etively dividing the�le into sub�les aessible in parallel by di�erent proesses of a parallel appliation.Vesta goes two steps beyond this simple approah. First, it abstrats away from a diretdependeny on the number of I/O nodes. Seond, it allows a variety of partitioned viewsof the data, in addition to partitioning aording to the physial distribution of data to theI/O nodes. All these parallel views partition the �le into disjoint sub�les, that are typiallyaessed by di�erent proesses of a parallel appliation. This guarantees that the aessesby the di�erent proesses are non-overlapping at the byte level, and therefore the �le systemdesign an be optimized to avoid the e�ets of false sharing of data at the blok level,while maintaining onsisteny of the data. Moreover, it simpli�es the programming e�ortby allowing eah proess to aess its data diretly, without requiring ompliated indexingshemes so as to skip parts of the data that belong to other proesses.Abstrating away from I/O nodes is done by introduing the notion of ells2. It is bestto think of ells as ontainers where data an be deposited, or alternatively, as virtual I/Onodes that are then mapped to the available physial I/O nodes. When a �le is reated, thenumber of ells it will use is given as a parameter. If the number of ells is no more than thenumber of I/O nodes, then eah ell will reside on a di�erent I/O node. If there are moreells than I/O nodes, the ells will be distributed to the I/O nodes in round-robin manner.The number of ells therefore sets the maximal degree of parallelism in aess to the �le. Itis expeted that the best performane will be obtained by having the same number of ellson eah I/O node, but this is not a requirement. Thus it is possible to use a di�erent numberof ells if it is more onvenient in terms of program struture or portability.Beause of the ell abstration, Vesta �les have a two-dimensional struture. One di-mension is the ell dimension, whih spei�es the parallelism in aessing the data (the\horizontal" dimension). The other dimension is data within the ells (the \vertial" di-mension). In most ases, all ells will have the about same amount of data in them, butthis is not a requirement. The data in eah ell is viewed as a sequene of basi stripingunits (BSUs). These are used as the basi building bloks for the partitioning sheme, asexplained below. The BSU size an be an arbitrary number of bytes, and should be hosento reet the minimal unit of data aess.2The terminology used here is di�erent from that used in the original Vesta papers [6, 10℄, as manypeople found the original terminology onfusing. Thus \physial partitions" are now alled \ells", \logialpartitions" are now alled \sub�les", and \reords" are now \BSUs".5



The number of ells and the BSU size are the two parameters that de�ne the strutureof a Vesta �le. They are de�ned when the �le is reated, and annot be hanged thereafter.These parameters are instrumental in alulating the loation of data, and therefore mustbe known before data an be aessed. As a onsequene, appliations must obtain theparameter values before they an aess the �le. To do so, Vesta introdues a new allnamed attah. Every proess in the appliation must attah every �le it uses before it anopen the �le. The attahment stays valid throughout the exeution of the parallel programor until the �le is detahed, even if the �le is losed.3.2 Partitioning Files for Parallel AessThe data in ells is viewed as a byte sequene divided into groups of basi striping units(BSUs). For �les that have more than one ell, we have in e�et a 2-dimensional matrixof suh BSUs. Vesta allows this matrix to be partitioned in muh the same way that 2-dimensional arrays are partitioned in High-Performane Fortran (HPF) [29℄: partitions anorrespond to olumns (i.e. ells), to rows (e.g. the �rst BSU from eah ell), or to bloks(e.g. the �rst 5 BSUs from the �rst 3 ells). Suh partitions are alled sub�les. The openall inludes parameters that de�ne a partitioning sheme, and returns a �le desriptor thatallows aess to a single sub�le, not to the whole �le.Two speial ases of partitioning orrespond to the simple views desribed in Fig. 2. Itis possible to reate a single sub�le that spans the whole �le, where data is striped aross allthe ells in units of one or more BSUs. This is the preferred approah to reating �les thatare also aessed from external �le systems, or that are the targets of existing appliations.Likewise, it is possible to reate a parallel view with sub�les that orrespond to ells. If thenumber of ells is equal to the number of I/O nodes, this essentially provides an interfaewith diret mapping to the underlying hardware.In general, a Vesta partitioning sheme is de�ned by four parameters, V bs, V n, Hbs,and Hn, that partition the �le into disjoint sub�les, with a �fth parameter speifying whihsub�le is being opened. The two parameters V bs and Hbs de�ne the size of a blok of BSUsthat serves as the basi building blok of the partitioning sheme. V bs, whih stands for\vertial blok size", spei�es how many onseutive BSUs are taken from eah ell, andHbs,whih stands for \horizontal blok size", spei�es how many onseutive ells are spanned.The other two parameters speify how many suh bloks there are in di�erent sub�les. V nspei�es how many sub�les are interleaved in the vertial dimension (within eah ell), andHn spei�es how many are interleaved in the horizontal dimension (aross ells). Theseonepts are illustrated in Fig. 3.To put things on a more solid basis, here are a set of equations that desribe how parti-tioning is done. Let  be the smallest multiple of Hbs�Hn that is larger than or equal tothe number of ells, that is  = &num of ellsHbs�Hn '�Hbs�HnThen BSU number j in ell number i (where numbering is zero-based) belongs to sub�les+ t�Hn, where 6
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Figure 3: The Vesta �le partitioning parameters. Sub�les are identi�ed by di�erent shadesof gray. s = $ i mod (Hbs�Hn)Hbs % t = $j mod (V bs� V n)V bs %s and t are simply the x and y oordinates on the sub�le's blok in the Hn by V n template.Within that sub�le, it is BSU number�� jV bs� V n�� Hbs�Hn + � iHbs�Hn���V bs�Hbs+(i mod Hbs)�V bs+ j mod V bsThe square brakets are the number of full bloks (eah with V bs�Hbs BSUs) before it inthe sub�le. This is the sum of two terms: jV bs�V n full bands of bloks aross all the ells,eah with Hbs�Hn bloks, and then a few more in the same band as the BSU in question.The terms after the square brakets aount for the BSU's position within its blok.We note in passing, for the bene�t of readers familiar with the HPF data deompositionsheme, that the four parameters used by Vesta have the same roles as parameters used byHPF. In HPF, the deomposition is done in two stages. First, a 2-dimensional template isreated with the PROCESSORS diretive. This is analogous to de�ning the template of Vestasub�les, whih is done by the V n and Hn parameters. In terms of HPF diretives, this isexpressed as!HPF$ PROCESSORS P(Vn,Hn) 7



The seond stage is de�ning the blok size used to distribute the data. This is done bya DISTRIBUTE diretive, whih also spei�es the template upon whih the data is beingdistributed. In terms of Vesta parameters, this is done by V bs and Hbs as in!HPF$ DISTRIBUTE D(CYCLIC(Vbs),CYCLIC(Hbs)) ONTO PHandling awkward asesThe desription so far has foused on the regular and simple ases. These probably inludeall of the useful and understandable variations. It is also possible to de�ne patterns that arehighly irregular, but that must be handled onsistently. This subsetion explains what Vestadoes in suh peuliar ases, even if we do not expet them to be very useful or ommon inpratie.First, note that  may be larger than the atual number of ells in the �le, but theequation for numbering BSUs in sub�les assumes  ells. Hene if  is indeed larger than thenumber of ells, some extra ells are implied. The extra ells that are added to make thetotal a multiple of Hbs�Hn are alled ghost ells. Naturally, the ghost ells do not ontaindata. Attempting to write to an o�set in the sub�le that falls in a ghost ell will not produeany e�et: Vesta silently opies the data nowhere. Likewise, attempting to read from ano�set in a ghost ell does not ause any hange in the bu�er used to reeive the data.The reason for this behavior is that it is onvenient for single program, mulitple data(SPMD) programs, where eah proess aesses a di�erent sub�le. In suh an environment,Vesta allows all the proesses to use idential ode, and perform I/O operations that suppos-edly aess the same amount of data. However, the returned ount of how muh data wasatually moved will only inlude real data. Data read from or written to ghost ells (beyondthe bounds of the array, as it were) is not ounted.It is believed that most appliations will reate and manipulate Vesta �les with ells thathave equal lengths. However, this is not a prerequisite for using Vesta. It is ertainly possibleto reate �les with ells that have di�erent lengths, by writing more data into some sub�les.In addition, it is possible to seek ahead and write some data in some remote loation, leavinga hole in the middle of a ell.Partitioning �les with irregular strutures follows the same priniple as partitioning �leswhere Hbs�Hn does not divide the number of ells. In general, sub�les may have holes inthem when they inlude data from both short and long ells. To distinguish between ghostsand holes: ghosts result from missing ells in a partitioning, holes result from missing dataat the end of a ell (ompared to other ells in the same sub�le). Writing to a hole ausesit to be �lled with valid data. Reading from a hole an either return a zero-�lled bu�er, orelse it will have no e�et. A zero-�lled bu�er will be returned if there is some valid data ata further o�set in the ell. No e�et will be experiened if the read is from an o�set beyondthe end of the ell. In this ase, the returned ount will indiate that data was not moved.The main onsequene of allowing holes and ghosts is that it is hard to �nd the end ofa sub�le. For example, if a sub�le has a hole in it that results from the sub�le ontainingdata from both long and short ells, reading a small hunk from a hole will return a ount ofzero, indiating that no data was atually read. If the sub�le is known not to have holes, areturned ount of zero indiates the end of the sub�le. But if it does have holes, a returned8
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Figure 4: Options for byte ordering within a sub�le.ount of zero only indiates that this read did not enounter any valid data. This ould bebeause there is no more valid data (i.e. the end of the sub�le was reahed), or beause thisis a hole. Thus if you want to read the whole sub�le and you do not know how muh datait ontains in advane, you need to all the Vesta stat funtion to �nd how muh data isontained in the whole �le. This is an upper bound on the size of any partiular sub�le.Data orderingThe most striking onsequene of partitioning �les is that the data in a �le no longer has aunique sequene. This makes it hard to interfae Vesta with other, traditional �le systems.For example, if Vesta is mounted on a Unix �le system, what byte order should sequentialUnix appliations see? Obviously, the software used to implement the mounting an desig-nate a anonial order, e.g. round-robin striping of BSUs aross all the ells. But if datawas written into the �le in parallel using some other partitioning sheme, this order mightbe meaningless.Not only does data not have a single sequential order, but there are also a number ofpossibilities for ordering bytes within a given sub�le. An obvious hoie would be olumn-major ordering, as in Fortran 2-dimensional arrays. In Vesta, olumn-major would meanthat all the bytes in the �rst ell spanned by the sub�le ome �rst, then all those in theseond ell, and so on. However, this is impratial beause ells have unbounded depth, asopposed to olumns in a 2-dimensional array that have prede�ned depth. If the amount ofdata in one ell hanges beause additional data is written, the o�sets of bytes in subsequentells hange. Also, ells an have di�erent depths, so �nding a ertain o�set into the sub�lewould require the urrent lengths of all ells to be known. The Vesta implementation ofolumn-major order is therefore quali�ed by the o�set into the sub�le and the amount ofdata aessed. Essentially, these parameters are used to identify the data being aessed,using the default Vesta ordering desribed below, then this data is re-ordered in olumn-major. The example in Fig. 4 is for aess to 24 BSUs, starting from the beginning of thesub�le.The other obvious hoie is row-major, with round-robin interleaving of BSUs among theells spanned by the sub�le. In this ase adding data to one ell does not ause hanges to theo�sets in another, so diret aess is possible. However, the opportunity for large sequential9



aesses to disk is redued, beause striping aross I/O nodes is done with a smaller stripingunit.The default ordering for Vesta is a ompromise: it is olumn-major within bloks of thepartitioning sheme, but row-major among bloks. This is the ordering desribed by theequations given above. The obvious drawbak of this ordering is that it does not orrespondto the normal orders in 2-dimensional deompositions. Using row-major order instead willonly result in redued performane in aesses that are smaller than the amount of datain a band of bloks aross all the ells used by the sub�le (12 BSUs in Fig. 4). Usingolumn-major may be onfusing unless the o�sets and ounts are multiples of this size.3.3 Example: FastMeshSortThere are many possible appliations of logial partitioning of �les [34, 44℄. One interestingappliation whih demonstrates the power of dynami repartitioning of �les is parallel sorting.We shall use the FastMeshSort algorithm [11℄, whih is based on Bather's Bitoni Sortingalgorithm [1℄. The implementation using Vesta �le partitioning operations is given in Fig. 5.FastMeshSort iteratively sorts short bitoni sequenes into suessively longer bitonisequenes. The implementation desribed here works on a two-dimensional mesh of reordsmapped onto a Vesta �le with 2n ells. The ells are of arbitrary but equal lengths. Thealgorithm employs 2n ompute proesses, preferably running on distint ompute nodes. niterations are performed. In eah iteration, the proesses eah open a sub�le of the �le thatorresponds to the ell with the same serial number as the ompute proess (numbered from0 to 2n�1 within the appliation), and then a sub�le that inludes reords that span multipleells of the �le. The number of ells spanned doubles with eah iteration.The algorithm uses the subroutine Window Sort( sfd, dir, wndw siz ), whih sortsreords in a sub�le. The reords are sorted within windows of length wndw siz, and reordsare not moved between windows. If wndw siz is given as 0, the entire sub�le is sorted frombeginning to end. The reords are sorted in the spei�ed diretion, with DOWN moving thelargest reords toward the end of the window, and UP toward the beginning. For exam-ple, if sub�le i initially ontained reords in sequene (3; 4; 1; 6; 2; 5; 8; 7) then the result ofalling Window Sort( i, DOWN, 4 ) would be (1; 3; 4; 6; 2; 5; 7; 8) and the result of allingWindow Sort( i, UP, 0 ) would be (8; 7; 6; 5; 4; 3; 2; 1).In two dimensions, FastMeshSort works by alternately sorting data along olumns (withinells), and then along rows (aross ells). When the algorithm ompletes, the sorted �le anbe read out by onatenating the ells. The ode in Fig. 5 uses atual Vesta system alls, butdoes not inlude ode for the subroutine Window Sort, whih an use any external sortingalgorithm. Note that the same �le an be opened simultaneously by the same proesswith di�erent logial partitionings. Proper synhronization of the proesses is neessaryto properly exeute the algorithm. This synhronization is performed by a Barrier Synfuntion whih oordinates the ompute proesses. This is not a Vesta funtion; we assumethat it is provided by a parallel ommuniation library.Fig. 6 shows a simple example of the algorithm with 4 ells of length 8. The main point ofthis example is not to demonstrate parallel sorting, but to show how the parallel �le systeminterfae an greatly simplify writing parallel programs that use �le I/O. The single node10



Sort File() fint sfd ol, sfd span;int i, Vbs, Vn, Hbs, Hn, tnum;/* Identify proess number */tnum = whih proess am i();/* Attah the �le for read and write aess */Vesta Attah( "datafile", READjWRITE );/* Open the �le into sub�les that orrespond to the ells */Vbs=1; Vn=1; Hbs=1; Hn=2n;Vesta Open( "datafile", &sfd ol, Vbs, Vn, Hbs, Hn, tnum );/* Now sort the olumns and then merge the olumns in eah iteration */for ( i=0 ; i<n ; i++ ) f/* Sort the olumns up or down */if (tnum & 2i == 0)Window Sort( sfd ol, DOWN, 0 );elseWindow Sort( sfd ol, UP, 0 );Barrier Syn();/*Now window sort aross the olumns with a window size equal to thenumber of olumns spanned. At eah iteration, the �le is openedwith sub�les that span suessively larger groups of olumns */Vbs=1; Vn=2i+1; Hbs=2i+1; Hn=2n�1�i;Vesta Open( "datafile", &sfd span, Vbs, Vn, Hbs, Hn, tnum );Window Sort ( sfd span, DOWN, 2i+1 );Vesta Close( sfd span );Barrier Syn();g/* Finally sort all the olumns down */Window Sort( sfd ol, DOWN, 0 );Vesta Close( sfd ol );Vesta Detah( "datafile" );g Figure 5: Implementation of FastMeshSort using logial partitioning.ode of this fairly omplex parallel algorithm is very ompat. The burden of alulatingindies and o�sets into one large �le to try to ahieve some parallel disk ativity is removedfrom the user. This is the primary di�erene in the user's interfae between a parallel �lesystem, and a onventional �le system.A more optimal version of this algorithm has been implemented on Vesta, using theasynhronous I/O faility provided by Vesta. Performane measurements are given in Setion5.6. 11
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Vbs = 1Vn = 1Hbs = 1Hn = 4Figure 6: Example of using sub�les to implement FastMeshSort on a �le with four ells andeight reords in eah.3.4 Comparison with Other SystemsThe role of a �le system is to reate the abstration of �les (named persistent data sets)and to implement this abstration using available storage devies. In a parallel system,the features that distinguish one system from another are the form of the abstration, theinterfae used to aess it, and how it is laid out on the parallel hardware.As for layout, most �le systems designed for parallel mahines stripe data transparentlyaross the available I/O devies. Examples inlude the Bridge �le system [14℄, Intel's CFSon the iPSC [37℄ and PFS on the Paragon [21℄, the sfs �le system on the CM-5 [30℄, thenCUBE system software [12℄, and the Meiko parallel �lesystem. Unlike Vesta, these systemsdo not expose the underlying parallelism expliitly in their interfaes, and thereby preludeany optimization of the aess patterns from di�erent proesses. Vesta is the only system12



to date that provides a measure of support for expliit mapping of data to the hardware.PIOFS, the parallel �le system of the IBM SP-2 omputer, is based on Vesta, and presentsmost of the same features as Vesta in its interfae (however, the performane and designdisussion in this paper should not be inferred by the reader to neessarily apply to PIOFS)[9℄. It is possible to implement muh of the unique funtion of Vesta in a library, and not inthe �le system. However, this leads to large ineÆienies when implemented over standard�le system interfaes suh as POSIX. Individual read and write alls made to a Vesta-likelibrary ould turn into tens or hundreds of individual I/O operations, inurring the systemoverhead of proessing I/O alls eah time. However, it is possible to extend the standard�le system interfae to enable it to support Vesta-like �le partitioning through an interfaethat allows multiple strided �le regions to be aessed with one all. Suh operations areintrinsi to the internals of Vesta, and we did eventually expose these operations throughnew API alls. There are advantages in having �le partitioning and hekpointing integratedinto the �le system, as they are in Vesta. For example, maintenane of �le o�sets and �lesizes is onsistent aross the system.Vesta is also unique in terms of the abstration it provides | the 2-dimensional strutureof BSUs within ells. Partitioning is also an innovative feature. The only other systemsthat have similar funtionality are those that support I/O operations on distributed arrays,inluding the nCUBE system software [12℄ and a ouple of experimental libraries [4, 2℄.However, in these systems the partitioning is limited to the ontext of a olletive operationthat aesses a whole array. Other systems use �le modes to de�ne the semantis of parallelaess [17℄. Some of the modes atually reate an impliit partitioning, as when di�erentproesses aess a sequene of data items in the �le in the order of their proess IDs. Forexample, this feature is available in the Express Cubix model [40℄ and in Intel's CFS and PFS.In Vesta, the partitioning is de�ned in advane, and then proesses an perform independentaesses to any part of their partition (sub�le). The proposed MPI-IO standard is similar toVesta in this respet, although the mehanism for expressing partitioning is quite di�erent[5℄.4 ImplementationFile systems are part of the system software, and must be mathed to arhitetural featuresin order to obtain optimal performane. In the ase of parallel I/O, the main options areattahing disks to the proessing nodes, or reating dediated I/O nodes that are a sharedresoure and are not used to run appliations. Vesta assumes the latter approah [16℄. It istherefore implemented in two sub-units: a lient library that is linked with appliation oderunning on the ompute nodes, and a server that runs on the I/O nodes.The apability to perform diret aess from a ompute node to the I/O node ontainingthe required data, without referening any entralized metadata, is a key feature of the Vestadesign. This is ahieved by a ombination of means. First, �le metadata is distributed amongall the I/O nodes, and is found by hashing omplete �le and Xref (diretory) pathnames.The �le metadata obtained by the lient is small, and need be aessed by the lient onlyone when the �le is �rst attahed to the appliation. Thereafter, ompute nodes an identify13



63 48 32 16 8 0node entry uniq level| {z }hashed from objet nameFigure 7: Struture of the 64-bit internal ID of Vesta objets.the I/O nodes that ontain aessed data using a ombination of the metadata they haveobtained, parameters of the parallel view of the �le that they are using, and the o�set (withinthe sub�le) and ount of data to aess. Blok lists for the �le are maintained on eah I/Onode independently for the ells stored on that node. Vesta stripes bloks aross multipledisks at eah I/O node transparently to the lient. Data is not ahed on ompute nodes.This is possible due to the relatively low lateny of the multiomputer's interonnetionnetwork, espeially when ompared to disk aess times.4.1 Aess to MetadataVesta objets inlude �les, ells, and Xrefs (ross-referene lists). These are not objets inthe sense of objet-oriented programming, but are simply logial items stored in Vesta. Xrefsserve in plae of Unix diretories, as desribed below. Eah I/O node maintains the Vestaobjets residing on itself in a memory-mapped table. The I/O nodes themselves are logiallynumbered in a ontiguous integer sequene.Objet IDsVesta does not use a name server to loate �les, in ontrast with systems like Intel's CFS[37℄. Rather, the full pathname of the �le is hashed into a 48-bit value. These 48 bits formthe basis for a 64-bit internal ID (Fig. 7). 16 of these 48 bits are further hashed to identifythe I/O node that serves as a master node for this �le. This is more diret than the two-stage mapping used in VAXlusters, where objet names are hashed to a diretory node thatmay not be the master node [27℄. The master node is the lous of the �le objet, but notneessarily of any part of the �le data. Another 16-bit �eld of the original 48 bits is furtherhashed to �nd the �le in the objet table on the master node.Eah entry in the table ontains information suh as the 64-bit system-wide unique ID, the�le name, its owner ID, group, and aess permissions, reation, aess, and last modi�ationtimes, the number of ells, the BSU size, the base and highest numbered I/O nodes used,and the urrent �le status. The ells themselves are alloated in round-robin manner to I/Onodes starting with the base node, and wrapping around to the lowest numbered I/O nodewhenever the maximum node is reahed (the base node an be spei�ed by the user whenthe �le is reated, or else it is pseudo-randomly hosen by the system). The urrent statusindiates whether the �le is attahed for read-only aess or read-write aess, to whihparallel program(s), and the urrent aess key(s). Note that the �le objet does not inludeany blok list or any diret referene to the data itself. In this respet it di�ers from thetraditional Unix inode. Cells and Xrefs also have entries in the objet table, with slightlydi�erent data. 14



If two �les or Xrefs with di�erent names happen to hash to the same 48-bit value, thiswill be deteted by the master I/O node that is ommon to both when the seond one isreated. The master node then uses the uniqui�er �eld in the ID to distinguish betweenthe two. This �eld has 7 bits, so up to 128 objets that hash to the same 48-bit patternan be tolerated. The hashing algorithm was designed to give a psuedorandom jump toa di�erent point in the 48-bit spae for eah small hange in the input, with an averagejump length of 24-bits. It was also designed to have a minimum yle length that, for anyinput sequene, is muh longer than the maximum �le path length. Psuedo-randomness wasveri�ed by measuring the statistis of a large �le system for a uniform distribution over the48-bit spae, with no frequently ouring patterns. We have heked a �le system with over150000 names and found no ollisions, and a uniform distribution of hash values, with notendeny to any partiular bit patterns.Another single-bit �eld of the 64-bit ID is used to distinguish �les from Xrefs. The last8 bits are used to number ells of a �le on a given I/O node, starting from 1 (ells share theother 56 bits of their ID with the �le to whih they belong). This �eld, alled the level, isset to 0 in the �le objet itself and in all Xref objets. Thus eah �le an have up to 255ells on eah I/O node.File and Xref names are stored in a separate string table, indexed by a �eld within theobjet desriptor. This is done to save disk spae in the �le system metadata.Attahing and openingIn order to aess �le data, the Vesta lient linked with an appliation proess must knowon what I/O node(s) the data resides. This is alulated based on ertain �elds in themetadata, notably the base and maximal I/O nodes, the number of ells, and the BSU size.This information has to be obtained before the �le an be aessed.Opening a Vesta �le is divided into two phases. First, the �le is attahed to the appli-ation. In this phase, the metadata is aessed and the required parameters are obtained.This an be done by eah appliation proess individually, or else it is possible to onstrutdistribution trees suh that only the roots attah the �le, and then the obtained data ispropagated to other nodes. The latter approah helps to ensure the ultimate salability ofthe �le system, and is espeially suitable for the implementation of a higher level librarywith a olletive attah operation.The seond phase is to open a sub�le. Opening is a loal operation that does not involveany ommuniation, unless the sub�le is being opened with a shared o�set pointer. The mainfuntion of the open all is to set the partitioning parameters that de�ne whih sub�le is beingaessed. Vesta does not enfore all the proesses of a parallel program to open a �le withthe same partitioning parameters. The issue of guaranteeing a onsistent sheme is left tothe disretion of the user, or to a higher level olletive I/O library. At the Vesta interfae,users have full exibility inluding the option to simultaneously use di�erent partitioningshemes for di�erent proesses, even with overlapping sub�les.
15



Diretory strutureAs noted above, Vesta �les are aessed diretly by hashing their pathnames. This is inontrast with the namei funtion used to parse pathnames in Unix systems. Due to thehashing, Vesta does not need to maintain diretories to �nd �les. However, a hierarhialstruture of diretories is emulated using Xrefs so as to enable users to organize their �lesand list subsets of �les. Xrefs simply ontain lists of internal IDs of �les and other Xrefs.When a new �le is reated, it is listed in the Xref that has the same name exept for thelast /-separated omponent. If suh an Xref does not exist, the �le reation fails.Hashing pathnames is intended to redue onits in aess to the top levels in thediretory hierarhy, helping to ensure the salability of the �le system. This enables veryeÆient attahing with only one �le-system request per �le attahed, even in very largesystems. However, the use of hashing has the following onsequenes:� There is no ontrol over aess using diretory permission bits, beause aess does notgo through the diretories.� There are no hard links: �les and Xrefs an only have one name. Soft links ould beprovided easily, but we did not implement them.� Renaming a diretory is a lot of work, beause the pathnames (and hashing) of all �lesand diretories below it in the hierarhy hange, requiring reloation of most of theirmetadata. The ells of �les that are renamed are not moved, even if the �le metadatais moved.� If the on�guration hanges (i.e. if I/O nodes are added or deleted permanently, asopposed to transient failures) all objets have to be reloated.One alternative is to use a separate name server module, possibly with a distributed imple-mentation, and normal parsing of the path to look up �le IDs given the full pathname of a�le.Another problem with this design is the handling of multi-phase operations (e.g. reatinga �le, whih involves reating a loked �le objet, listing it in the appropriate Xref, and thenunloking it). In the urrent Vesta implementation, suh operations are handled by the lientode, and eah phase is a separate request diretly to the a�eted I/O node. This simpli�esthe design of the server ode, so that I/O nodes are relatively independent and oblivious ofeah other. However, it risks leaving the system in an inonsistent state if the lient noderashes in the middle of a multi-phase operation. We orret these infrequently ouringproblems with an fsk utility that is designed to reover the metadata to a onsistent statewithout disarding valid �le data.4.2 Aess to File DataOne a �le is attahed and opened, a ompute node has all the information required inorder to aess data. Aess is done by providing a byte o�set and a byte ount, just as intraditional �le systems. The di�erene is that the o�set is interpreted in the ontext of aertain spei�ed sub�le, rather than relative to the whole �le.16
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Figure 8: The di�erent stages of a �le aess. Steps j1 and j4 are optional.The steps performed in data aess are desribed in Fig. 8. First, the o�set into thesub�le is obtained if it is shared j1 . (if not, it is available in the aessing node's �le table).Then the o�set and ount relative to the sub�le are translated into o�sets and ounts relativeto one or more ells, based on the partitioning parameters given when the �le was opened j2 .Next, messages are sent to the I/O nodes responsible for the relevant ells, with requests toaess the data in those ells j3 . If onurreny ontrol is required, the I/O nodes oordinatethe sheduling of I/O operations j4 . Finally, the data is aessed j5 .It should be noted that all the omputations relating to the pattern in whih data isinterleaved in and among ells are done at the ompute nodes that perform the aess. TheI/O nodes only reeive requests to aess ells that reside on them. Thus the servie providedby I/O nodes is similar to that in traditional �le systems. The main addition is that thedata aessed from eah ell may be a strided vetor, rather than being ontiguous, due tobeing interleaved with other sub�les. All the data in suh vetors is ompated and sent inone message. Thus the total number of messages per aessed ell is 2 for a read (requestfrom ompute node to I/O node, and then data plus aknowledgment oming bak), and 3for a write (request followed by data one way, and aknowledgment the other way).A separate request omponent is generated for eah ell aessed, even if multiple ells17



reside on the same I/O node. It would be possible to ombine the request omponents, aswell as the data transfers, resulting in message passing overhead that is proportional to thenumber of I/O nodes aessed, rather than to the number of ells aessed. However, sinethe number of ells per I/O node is typially lose to 1, we deided that this additionalomplexity was not warranted.Vesta does not have a separate seek funtion. Instead, seek is inorporated into theread and write funtions. The reason for this approah is that when an o�set is shared bymultiple proesses, the interleaving of independent seek and aess operations may lead tounexpeted results. A pure seek an still be performed by a read of zero bytes. In orderto de�ne the semantis of asynhronous operations, Vesta updates the system's �le pointerwhen an I/O operation is initiated, rather than waiting for it to omplete. This risks endingup with an inorret value if the aess does not omplete suessfully, but it allows multipleoperations (even from di�erent proesses) to proeed in parallel in the normal ase. It isnot possible to seek to EOF, beause information regarding sub�les' EOF is not maintained.Maintaining suh information would require extensive ommuniation whenever any sub�lein the �le is enlarged.An important di�erene between Vesta and most distributed �le systems is that �ledata is not ahed on ompute nodes. As a result there are no problems of keeping aheddata onsistent when some data is repliated in a number of ahes, and write aessesare performed. Also, there is no problem of false sharing at the blok level, whih is aommon ourrene in parallel I/O work loads [25, 38℄. Cahing on ompute nodes an stillbe done by a higher-level library built above Vesta, based on knowledge that the data is notwrite-shared.The prie of giving up bu�ering on the ompute nodes is that all aesses must traversethe multiomputer's network to be servied by the appropriate I/O node. Given the tightly-oupled arhitetures of multiomputers, this is not suh a high prie. The lateny of thenetwork is three orders of magnitude less than typial disk latenies. The extra networklateny an be more than o�set if data sharing among ompute proesses results in a higher�le bu�er ahe hit rate at the I/O node [25℄. This is espeially true if the I/O nodes areon�gured with relatively large amounts of memory. In ontrast to Vesta, distributed �lesystems must ahe data at the lient nodes beause aessing the servers for every aesswould result in intolerable latenies. This is an aeptable solution for distributed �le systemsbeause of the low amount of �le sharing among onurrently exeuting serial appliations.Vesta provides three mehanisms for reduing the detrimental e�ets of aess lateny,inluding both network and disk lateny. The �rst is the use of bu�er ahes on the I/Onodes, as mentioned above. In addition, Vesta provides two speial servies at the userinterfae. One is asynhronous I/O operations, whih allow the appliation to post an I/Ooperation, and poll or wait for its ompletion at some later time. The other is expliitprefeth and ush operations. This allows required data to be preloaded or marked forreplaement in the bu�er ahes at the I/O nodes.
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4.3 SharingFile systems are often onsidered to be a medium that enables sharing of data among applia-tions. In parallel systems, sharing an also our among the proesses of a single appliation.Vesta supports sharing in two main ways. One is by partitioning the �le into disjoint sub�les,that an be aessed with no synhronization among the sharing proesses. The other is bysharing a sub�le.When a sub�le is shared by multiple proesses, the sub�le pointer an be maintained intwo ways. Eah proess an have an independent �le pointer into the shared sub�le, or elsethey an share a single pointer. Any ombination of shared and private �le pointers into thesame sub�le is allowed.When an appliation proess opens a sub�le for the �rst time, it gets a loal, privatepointer. This pointer an subsequently be shared with other proesses. When a pointer isshared for the �rst time, a random I/O node is hosen, and the pointer is moved to that I/Onode. The identity of this node and the pointer's ID on that node are passed to all proessesthat share its use. When a data aess based on a shared pointer is performed, the aessingnode �rst ommuniates with the I/O node holding the pointer (step j1 in Fig. 8). In thisommuniation, the urrent pointer value is returned to the aessing node, and the pointerstored at the I/O node is inremented by the amount of data to be aessed. Note that thepointer is inremented before the aess is atually performed, so as not to serialize aessesfrom di�erent proesses. If a read hits EOF, or a write runs out of disk spae, this an leadto the pointer pointing to an o�set that is beyond the end of the sub�le.Conurreny ontrolConurreny ontrol is required in order to ensure proper semantis if an appliation's pro-esses write data to a shared sub�le or to overlapping sub�les using independent o�sets. Itis also required if an appliation interleaves �le metadata operations that also a�et the �ledata, suh as resize or delete, with data aess requests, or if one appliation writes a �lewhile others read it. Vesta uses a fast token-passing mehanism among the I/O nodes toguarantee onurreny atomiity of requests that span multiple I/O nodes, and to providesequential onsisteny and linearizability among requests (step j4 in Fig. 8). Conurrenyatomiity implies that data aess requests and metadata operations are sequened in thesame order on all a�eted ells. It does not imply rollbak semantis in ase of failure. TheVesta algorithm is felt to be superior to systems like OSF/1 AD, whih ahieves the sameresult by passing a token among the lient nodes, serializing the serviing of the requests[39℄, and also superior to the lok-based onurreny ontrol in PIOUS, whih requires moremessages and is suseptible to deadlok unless deadlok avoidane measures are taken [32℄.Aess to data in a �le either a�ets all the �le's ells, or a subset (not neessarily on-tiguously numbered) of them. Metadata operations, suh as delete, resize, and hekpoint,always a�et all the ells of the �le. In general, requests to the same �le do not neessarilyover the same subset of ells, and so may also over a di�erent subset of the I/O nodes.We refer to the part of a data aess request that is direted to one ell, as well as the partof a metadata operation that a�ets one ell, as a omponent of that request. A omponentis onsidered to be sheduled one it is known at the I/O node in what order it should be19



performed relative to other omponents a�eting the same �le. For eah omponent, it isonly neessary to know if there are any outstanding omponents that must be performedbefore it. Components a�eting di�erent �les an be performed in any relative order withoutany risk of inonsisteny.It is neessary to ensure two properties to guarantee sequential onsisteny, linearity, andonurreny atomiity of aess requests and metadata operations. First, ontrol must notbe returned to the user appliation until it is known at the lient node that all omponents ofthe request have been sheduled. This ensures that one or more lients annot issue multipleasynhronous requests that are improperly interleaved at the I/O nodes. Note that thisenfores a stronger ordering of asynhronous I/O requests than is enfored by many Unixsystems, whih do not guarantee that asynhronous requests are performed in the orderissued. Seond, the omponents of eah pair of requests to a �le must be sheduled in thesame relative order at eah I/O node. Consider two requests, Ra and Rb, to the same �le.On eah I/O node, the omponents of Ra (if there are more than one) an be sheduled inany order relative to eah other, but all of them must be sheduled either before or after allomponents of Rb. In addition, whatever order is established between Ra and Rb must bepreserved between any omponents of these requests on all the I/O nodes a�eted by bothrequests. In pratie, Vesta �rst shedules all requests, and then eah server independentlyheks for onits before issuing the requests to the bu�er ahe I/O module in a greedyfashion, enforing the sheduled order only where onits exist.The mehanism to determine a shedule is based on tokens that arry sequene numbers.For eah aess, a token is passed one from the lowest numbered I/O node aessed (wherenumbering is relative to the �le's base node) through all intermediate nodes (even if notaessed) to the highest numbered node aessed. When the token reahes the last I/Onode, it sends an aknowledgment to the requesting ompute node. Control an then bereturned to the appliation program in the ompute node's appliation thread.Eah I/O node maintains a set of 64 token bukets, eah with an in ounter and an outounter. Eah �le is assigned to one buket of the set. This is done onsistently aross all I/Onodes by hashing the �le ID. At eah I/O node, eah token sent is given the urrent valueof the out ounter of the buket that �le is assigned to. This ounter is then inremented.When a node reeives a token, it �rst tries to math the token's value with the value of thebuket's in ounter. Tokens that do not math are delayed until other tokens that shouldbe proessed before them arrive, and inrement the in ounter. This mehanism is onlyneessary for networks that may reorder messages between a pair of nodes. Mathing andrelaying tokens is done independently for eah buket, to redue false dependenies amongaesses to di�erent �les.If the node ontains data that is being aessed (as identi�ed by a bitmap generatedin the lient, and propagated in the token), the aess represented by the token an besheduled one the token mathes the buket's in ounter. This is done by mathing thetoken with inoming request omponent messages, and entering these request omponentsinto the sheduled request queue. Request omponents in this queue are exeuted as soonas there are no oniting requests preeding them in the sheduled request queue. If thenode does not ontain suh data, the token is just forwarded to the next node.Metadata operations are initiated by a token only, with no inoming message from the20



63 24 16 064-bit o�set0 0 0 0 0 0 0 0 6 E 8 B 9 A 3 3| {z }branhing in tree pppppppppblokin node pppppppppo�setin blok ptrsto blks0 toFF��-0 ��������������91 �����������)2 ����	5 ?6ZZZZZ~7PPPPPPPPPPPqEXXXXXXXXXXXXXXzFptrsto blks100 to1FF ptrsto blks200 to2FF q q q ptrsto blks500 to5FF ptrsto blks600 to6FF ptrsto blks700 to7FF q q q ptrsto blksE00 toEFF ptrsto blksF00 toFFF��������0 



�1 BBBBNEQQQQQQsFptrsto blks6000 to60FF ptrsto blks6100 to61FF q q q 0027A30C6?8B ptrsto blks6F00 to6FFFFigure 9: Example of loating a data byte from its 64-bit o�set. It turns out to be at o�set9A33 into logial blok 0027A30C.lient node to math. These operations are sheduled loally as soon as the token ountermathes the appropriate in ounter. They are exeuted one the sheduled request queueontains no oniting aesses to the a�eted �le. This ensures proper interleaving of dataaess requests and �le metadata operations that a�et the �le data.At the appliation's disretion, it is possible to turn the onurreny ontrol o� for dataaesses, thus eliminating the token-passing overhead. This is alled the rekless aessmode, as opposed to the autious aess mode that uses onurreny ontrol. Rekless modeis useful if the data is atually not shared, if it is only read but not written, or if all writes tothe data are known to be disjoint, and are otherwise oordinated with reads and metadataoperations performed by the appliation. In pratie, the overhead for autious mode is small.Vesta will automatially turn on onurreny ontrol in ases where di�erent appliationsare sharing a �le, even when one of those appliations has requested that onurreny ontrolbe turned o�.4.4 Strutures for Storing DataAs noted above, data is not ahed on ompute nodes. As a result, the ompute nodes haveno knowledge whatsoever about the mapping of data bloks to atual disks. Bloklists forells are maintained exlusively at the I/O nodes. All I/O node metadata, inluding theblok lists, are pinned into memory. For the urrent Vesta on�guration, allowing up to 16Kobjets (ells, �les, or Xrefs) per I/O node, this requires less than 2MB of physial memory.This is a small fration of the total memory expeted to be available on typial I/O nodes.Eah Vesta data blok is 64KB large. The disk spae on an I/O node is organized by21



striping suh 64KB bloks aross all the available disks, and regarding them as a singlelogial disk indexed by 32-bit logial blok numbers. Thus, the urrent implementation ofVesta allows byte addressing of up to 232+16 = 256 TB at eah I/O node. The blok numbersare stored in blok lists, one per ell, indexed by the high-order 48 bits of the 64 bit �leo�sets.In the urrent Vesta implementation, the blok list of eah ell is organized as a 16-arytree. This tree is balaned rather than skewed, as opposed to Unix �le inode blok lists.Eah node of the blok list tree ontains 256 logial blok addresses and 16 hild pointers.The blok list nodes are stored in a �xed size table, and are alloated and dealloated to andfrom ells as needed. Logial blok addresses are translated into a physial devie numberand a physial blok address by modulo arithmeti. An example of how a 64-bit ell o�setis translated into a blok index and o�set is given in Fig. 9. As an be seen, the blok listtree an be traversed by doing simple shifts and masks of the ell o�set.Note that this level of mapping just maps ells to a single sequene of bloks in a logialdevie, that is itself mapped to the atual devies available on the I/O node. This lower-level mapping, as well as the disk sheduling, are left to lower layers of the system. In fat,there are two Vesta implementations: the �rst used onventional AIX �les as disks, andounted on AIX to perform all disk aess and to maintain the bu�er ahe. The seondimplementation inludes bu�er ahe management within Vesta (as desribed below), anduses the AIX logial volume layer to perform the atual disk mapping and aess.4.5 Bu�er Cahe ManagementBloks that are aessed are kept in a 32 MB bu�er ahe on eah I/O node (the size isa system on�guration parameter). An aess ounter is maintained for eah blok. Thisounter reords the number of bytes that have been read from or written to the blok, modulothe blok size3. Two queues are maintained to determine the replaement priority of bloksin the bu�er ahe. Whenever the ounter of bytes read or written is less than the blok size,the blok is plaed on a hold queue. Bloks being held have low priority for replaement.Bloks that have been entirely read or written are plaed on the replae queue. These blokshave a higher priority for replaement. When the ounter indiates that the whole blokwas written, it is written asynhronously to disk. This is known as the WriteFull poliy[24℄. The blok will remain in the ahe until its ahe slot is needed by the replaementalgorithm. Bloks may move from the replae queue to the hold queue if they are againfrationally read or written after they have been ompletely read or written. This poliy is agood heuristi to apply in the parallel environment, where bloks are not neessarily read orwritten sequentially, but they are often ompletely read or written within a short time in theaggregate by several proesses of a parallel appliation. Dirty bloks are also written to diskif a low-water-mark of free bu�er slots is reahed, or if load on the node is low, regardless ofwhether or not they have been ompletely overwritten.The Vesta servers also implement a prefething mehanism for sequentially aessed data.This is appliable both for reading and for writing in units smaller than the blok size,3Bytes that are written twie will be ounted twie, resulting in false assumptions that the blok hasbeen fully written, but this sort of behavior hardly ours in pratie.22



beause then the bloks must be read into the bu�er ahe before they an be modi�ed.The sequential aess patterns are reognized based on a trae of the last 32 distint bloksthat were aessed. When a ell blok B is aessed, this trae is sanned for ell bloksB � 1, B � 2, and so on down to B � 8. The prefeth size is then de�ned to be the largestn suh that bloks B � 1 through B � n were found in the trae. This auses bloks B + 1through B + n to be prefethed. This mehanism inreases the prefething size up to amaximum of 512 KB depending on the length of the previously aessed ontiguous data.All the spei� values here are parameters of the �le system, and an be modi�ed to tune fora partiular environment. This sheme automatially redues the prefething size if multipleindependent �les are being aessed, leading to onits in the bu�er ahe. Therefore,it is a self-regulating prefeth sheme that heuristially reognizes the aggregate sequentialpatterns typial of a parallel I/O workload.4.6 Additional ServiesChekpointingOne of the unique features of Vesta is the ability to hekpoint �les. Suh hekpointingis a omponent of hekpointing appliation state, beause when an appliation is rolledbak to a previous state its open �les should also be rolled bak to the orresponding state.Chekpointing is supported by maintaining two versions of eah Vesta �le: the ative versionand the hekpoint version. Write operations an only a�et the ative version, whereas readoperations an be direted at either the ative or the hekpoint version. Thus it is possibleto take a hekpoint and then opy it to another �le in the bakground, while ontinuing toupdate the ative version.Chekpoints are implemented by keeping double blok lists for every ell in the �le.Thus the blok lists in the tree desribed above atually ontain two pointers for eah blok.Taking a hekpoint onsists of simply opying the ative list to the hekpoint list (naturally,are must be taken to release bloks from a previous hekpoint that is overwritten, andthat outstanding reads against any overwritten hekpoint blok are ompleted before thehekpoint is allowed to omplete). No data is opied, so this is a very fast operation. Afterthe hekpoint is taken, the ative version may diverge from the hekpoint version whenevernew data is written, using a opy-on-write mehanism. This uses the minimal disk spaeneeded, beause all those bloks that are not hanged are shared by both versions of the �le.Rollbak is implemented by opying the hekpoint list onto the ative list.Import and ExportThe unique semantis of Vesta �les (2-dimensional struture with unspei�ed linear order)imply that they annot be aessed diretly through a onventional �le system interfae. Inpartiular, Vesta is not mountable as a Unix virtual �le system. Therefore some mehanismis needed to transfer �les between Vesta and other �le systems, network interfaes, or storagedevies.The model for import and export is that there are ertain gateway nodes that have aessboth to Vesta and to the external �le system (these ould be normal ompute nodes). These23



nodes run a parallel import/export daemon that an opy data from one �le system to theother [9℄. The partitioning parameters used by the daemons to open the Vesta �les determinewhat part of the data is a�eted, and in what serial order the data will appear.5 PerformaneThis setion desribes performane experiments designed to test Vesta and the degree towhih it utilizes the underlying hardware.5.1 Experimental SettingVesta is implemented on an IBM SP1 platform. This is a distributed-memory MIMD ma-hine. Eah node is funtionally equivalent to an IBM RS/6000 model 370 workstation,rated at 125 MFlops peak. The nodes are onneted by a multistage network with 40 MB/sduplex links [42℄. The network adapters use programmed I/O rather than DMA, so heavymessage passing ativity omes at the expense of proessing power. The adapters also havelimited bandwidth, substantially lower than the network itself (this has been orreted inthe newer SP2 model).The installation we used for the experiments is a 16-node mahine. Eah node has 128MB loal memory and a 1GB disk. In the experiments, we load the test program onto onesubset of nodes, whih assume the role of ompute nodes. The Vesta server ode is loadedonto the other nodes, whih assume the role of I/O nodes. The instantaneous transferrate of the disks is 3.0 MB/s, but when various software and hardware overheads are takeninto aount (inluding opying data, setor and trak overhead for ECC, bad setors, SCSIommand exeution, et.) this drops to about 2.26 MB/s for reads and 1.52 MB/s for writes.These numbers were measured using a test program that aessed an AIX logial volumeusing the same asynhronous I/O alls used by Vesta.The system software onsists of a full AIX running on eah node. Message passing arossthe high-performane swith is provided by the EUI-H pakage (also known as the AIXMessage Passing Library prototype/6000). Loading and exeuting appliations, inludingsetting up the onnetion between the test program and the Vesta server, is done by theMPX pakage, whih we also developed at IBM Researh. This allows multiple parallel lientpartitions to onnet to the same parallel server.The results shown are the best measurements we obtained, typially on an unloadedsystem. The number of measurements done for eah data point ranged from 2-3 up toabout 20, with higher numbers being used mainly in the ase of large aess sizes that wereexpeted to drive the hardware to its limits. In many ases there was only a small (<10%)variane among the di�erent measurements, but in some ases the variane was signi�ant.In these ases there was typially a luster of measurements that gave near-peak results,while the other measurements were spread relatively widely down to as low as 15{20%of peak performane. The reason for suh low performane was interferene from otherjobs and system ativity beyond our ontrol. A harateristi of the SP-1 was that AIXdaemons were run unsynhronized on the multiple di�erent nodes of the omputer; hene,if the AIX sheduler for one of the servers involved in a performane run deided to run a24
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Figure 10: Bandwidth as a funtion of data size, for message passing and Vesta.daemon proess during the run, the performane of that experiment was adversely a�eted,often dramatially. Detailed analysis of suh phenomena, and indeed of system performaneunder load onditions, depends on the spei� harateristis of the interfering workload.Suh analysis is beyond the sope of this paper. Complete statistis of all of the hundredsof experiments are available from the authors.5.2 Message-Passing PerformaneThe purpose of this experiment is to haraterize the message-passing performane of Vesta,and the additional overhead above that to atually ship the data aross the network. This isdone by a set of measurements involving one ompute node and one I/O node. The followingdesription mathes the order of the graphs in Fig. 10 from top-left to bottom-right4.� piped mp | unidiretional pipelined message passing using EUI-H.� rd mp and wr mp | message passing patterns that emulate Vesta read and writeativity, without running any of the atual Vesta ode. For reads, there is a smallonstant-size request message, and then the data omes bak with an aknowledgmentin the same message (so the atual transfer is slightly larger than just the data). Forwrites, there is a small onstant-size request message, then the data is sent in a seondmessage, and �nally an aknowledgment omes bak. These patterns are exhangedbetween the two nodes, using the orret sizes for the requests and the aknowledgment,and the same data sizes as those used above. Note the added lateny for the bak-and-forth patterns relative to the pipelined unidiretional messages shown before.4When measuring rates, MB/s stands for one Million Bytes per seond. When measuring �le and aesssizes, powers of two are used. Thus a 1 K blok is 1024 Bytes.25



operation C Bpiped mp 0.067 0.000115rd mp 0.143 0.000115wr mp 0.143 0.000116rd mp+p 0.139 0.000129wr mp+p 0.143 0.000129rd small 0.353 0.0001441st wr small 0.489 0.000141rd big -1.04 0.0004891st wr big -0.02 0.000658Table 1: Parameters in ost of operations, in ms.� mp+p | Vesta message passing is further haraterized by use of I/O vetors with2-dimensional elements. This allows multiple data elements that are not ontiguous ineither the ells or the sub�le to be sent in a single message, but requires an additionalopy and degrades the ahieved bandwidth for large data sizes.� small | the full Vesta ode path when reading and writing small �les (16MB) that�t into the bu�er ahe memory. 1st wr is writing to a new �le, 2nd wr is overwritingexisting data, whih hits the bu�er ahe, and rd is reading, again from the bu�er ahe.Both lateny and bandwidth are degraded, partly due to another opy operation.� big | Vesta on big �les (128MB) that do not �t in the bu�er ahe. Here bandwidthis limited by the disk. Writes ahieve a bandwidth of about 1.5 MB/s, and reads abandwidth of about 2.2 MB/s, both of whih are the same as the bandwidths ahievedby AIX-JFS. It is very notieable that the seond write of bloks smaller than 64 KBahieves only about half the bandwidth of the �rst write. This is beause the Vestablok size is 64 KB, and writing less than a blok requires it to be read o� the diskbefore being modi�ed.The results indiate a linear relation between the time of an I/O operation and theamount of data being aessed, i.e. T = C + B � n, where C is a onstant overhead peroperation and B is a ost-per-byte. A least-squares �t leads to the values for C and B thatare shown in Table 15.5.3 Bu�er Cahe and Disk SynhronizationOne of the e�ets of the bu�er ahe is that data an be stored in memory on the I/O nodes,without any aess to the disks. This inreases the e�etive bandwidth to that of memorytransfer, as shown in the previous setion. This is espeially relevant for write operations,beause write-behind is always used, whereas reads must go to disk if the data is not alreadyin the bu�er ahe. We therefore onentrate on write operations in this setion.5The negative values for C are artifat of doing a least-squares �t of a line with a large slope and somedata points with very large values: a far-out data point whih is a bit above the line pushes the intersetionwith the y axis down. 26
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Figure 11: Write bandwidth as a funtion of dataset size.Even when the total amount of data written is larger than the bu�er ahe, part of itmay be left in memory while the rest is transferred to disk. The observed bandwidth willtherefore be a weighted average of the memory and disk bandwidths. The model is that ifthe dataset size is less than or equal to the bu�er ahe size, it stays in memory. Only whenthe dataset size is larger, then we need to wait for part of it to be opied to disk to makeroom for the rest. Atually, writebak begins immediately, so the smallest �le size wherewe begin to have to wait for the disk to omplete I/O is somewhat larger than the bu�erahe. Denote by t the time to write the data. Assuming a memory transfer bandwidth of6.7 MB/s, a disk bandwidth of 1.5 MB/s, and a bu�er ahe of 32 MB, the amount of datatransferred out of the ompute node is t � 6:7, and the amount stored in the I/O node is32 + t� 1:5. By equating the two we get t = 6:15 seonds, and the threshold dataset size ist�6:7 = 41:23 MB. Denoting the dataset size by DS, the model for the observed bandwidthis therefore BW = 8>>>><>>>>: 6:7 if DS � 41:23MBDS6:15 + DS�41:231:5 otherwiseThis approahes the disk bandwidth of 1.5 MB/s for large datasets. As shown in Fig. 11, itis in exellent agreement with the measurements (using writes of 64 KB eah).To avoid measuring the e�et of deferred write-behind, all subsequent measurementsinlude a all to the Vesta syn funtion, so that all data is atually transferred to disk.Suh alls were also used in the disk aess measurements in the previous setion, but notin the bu�er ahe aess measurements.
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5.4 Parallel Aess and SalabilityThe purpose of this experiment is to demonstrate and quantify the performane impat ofparallel I/O. This is done by aessing di�erent numbers of I/O nodes, and measuring theresulting bandwidth.In order to allow parallel use of all the I/O nodes, a separate bu�er is used to aesseah one, and the I/O operations are done asynhronously. The �le size is also inreased inproportion to the number of I/O nodes. The results are shown in Fig. 12. It is apparent thatthe bandwidth sales with the number of I/O nodes used, up to the limit set by the omputenode's network adapter. For writes, an inversion is observed for small aess sizes. The auseof this inversion is unknown. In the seond write, aess sizes smaller than 64 KB ahieveabout 0.9 MB/s per I/O node aessed, beause the data has to be read o� disk beforebeing modi�ed. Above 64 KB, writes ahieve about 1.5 MB/s per I/O node aessed. Readsahieve about 2.1 MB/s per I/O node aessed. It is interesting to note that, given enoughI/O nodes, writes atually ahieve a higher bandwidth than reads. This might be beausethe ompute node's network port is used more eÆiently when data is being transmitted,beause then the ompute node has the initiative. When data is being reeived, messagesfrom the di�erent I/O nodes onit in the ommuniations network when they onverge onthe ompute node [3, 43℄.A drawbak of this experiment is the limited bandwidth of the network adapter of thesingle ompute node. This prevents heking salability beyond about 6 I/O nodes. Toaddress this issue, we onduted another experiment where the whole system was saled.Based on the results in Fig. 12, we hose a ratio of 3 I/O nodes for eah ompute node.With this ratio, the adapter bandwidth is suÆient for both reads and writes. The results ofthis experiment are shown in Fig. 13, where an aess size of 64 KB is used. The aggregatebandwidth of the system sales linearly with system size.5.5 Orthogonal Logial ViewsA major feature of Vesta is the ability to partition �le data and aess it in various ways.Two experiments were designed for the purpose of omparing the performane of di�erentaess patterns. The �rst is based on a single ompute node that stripes data aross ellsin di�erent ways. The seond ompares the performane of parallel aess to sub�les thatorrespond to ells with the performane of aess to sub�les that span multiple ells.In the �rst experiment, one ompute node and four I/O nodes are used. A �le withone 128MB ell on eah I/O node is reated. The basi striping unit (BSU) is set to onefourth of the aess size in eah measurement, whih ranges from 256 bytes to 1 MB. Threeaess patterns are ompared: using a striping unit of one BSU (so eah aess overs allfour I/O nodes), using a striping unit of 4 BSUs (eah aess is ontained in a single ell,but suessive aesses hit all ells in a yli pattern), and using a striping unit of 128 MB(so eah ell is ompletely aessed before the next one).The results are shown in Fig. 14. The urves for writing are for the �rst write, to avoidthe update e�et for small sizes. When the ells are aessed sequentially, the bandwidth isessentially that of a single disk (write bandwidth is higher than 1.5 MB/s beause we only28
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I/O provided by Vesta is useless; on the ontrary, the results show that doubling the numberof I/O nodes used provides a larger bene�t than doubling the blok size. Furthermore, itis not always possible to modify the ompute-to-I/O ratio of an appliation, as it is donehere by hanging the blok size. Parallel I/O an only improve the performane of the I/Oomponent of an appliation. If this omponent is small, parallel I/O will not help, as aresult of Amdahl's law. But if the I/O omponent is large, as it is for the 512-element bloksin FastMeshSort, then parallel I/O provides very signi�ant bene�ts.6 ConlusionsThe Vesta parallel �le system has introdued a new approah to parallel I/O that embodiesa signi�ant departure from previous systems. At the basis of this approah is the expliitreognition of the 2-dimensional struture of Vesta �les, where one dimension represents theparallelism and the other represents sequential data as in onventional systems. On top ofthis struture, Vesta introdues the notion of partitioning the data in various ways to mapthe appliation's aess pattern to the layout of the data on the parallel I/O hardware.The system ontains 67 funtions for metadata aess and manipulation, �le aess, dataaess, Xref operations, import from and export to external systems, and system adminis-tration [8℄. All but two (prefeth and ush) are fully implemented on an IBM SP1 multi-omputer, using the EUI-H message passing library and the MPX job ontrol faility. Thesystem provides the base tehnology for the AIX Parallel I/O File System reently releasedfor use with the IBM SP2 and future generations [9℄.Lessons learnedOur experiene in designing and implementing Vesta, and in trying to establish support forits ideas, has taught us many important lessons. Here are some ideas about what we mightdo di�erently if we were to design another parallel �le system.A major problem in the Vesta design was the deision to sari�e Unix ompatibility.While this opened the door to innovative ideas relating to abstrations and interfae design,it redued the system's appeal to real users who were more interested in getting real workdone. Indeed, a signi�ant part of the e�ort in reating the AIX Parallel I/O File Systemprodut was devoted to oupling the Vesta implementation with a Unix �le system interfae,to allow the system to be part of a onventional Unix �le system [9℄. This allows users toaess �les as if they were normal sequential �les, using a set of default layout parameters.Only users who atually want to invest the e�ort need know about the option to partition�les and ontrol the layout. In retrospet, we feel that the deision was the orret one inthe ontext of a researh projet, but that we ould have demonstrated many of the oneptsof parallel I/O under an extended Unix interfae. Taking this approah would have led toan easier e�ort to produe a produt �le system.At a more detailed tehnial level, there are a number of things that might be donedi�erently. One is the use of a name server rather than the hashing sheme used in Vesta.Given that the largest omputers Vesta will ever be run on have several hundreds of nodes,and that most of these omputers have only tens of nodes, a entralized name server would34



suÆe. Suh a design would break the Vesta server into two more manageable and largelyindependent modules.Another possible hange would be to add olletive I/O operations at the low-level userinterfae. In Vesta, we deided to make the lowest level funtions independent, meaning thateah proess ould all the funtions with no implied oordination or temporal alignment withother proesses. Colletive operations, where a set of proesses partiipate and synhronizewith eah other, were left for higher level libraries. The problem with this approah is thatif aesses from the di�erent proesses are interleaved at the I/O nodes, important semantiinformation (that ould be used to optimize the disk aesses) is lost. The system an makeup for this to some degree by using appropriate prefething and write-behind with the bu�erahe, as done in Vesta. However, optimizations based on expliit information about howaesses from the di�erent nodes interat should also be onsidered [23, 36℄.In Vesta, �le data is only ahed at the I/O nodes, to obviate the issue of maintainingoherene of a distributed ahe. A reent study of appliation I/O behavior shows thatthis may be an overly restritive solution. Spei�ally, limited lient-side ahing an behighly bene�ial for aess patterns involving many small operations, and does not requireany measures for oherene if the data is only being read [25℄. In Vesta, this an be extendedto writing as well, if the proesses are writing to disjoint sub�les. The sub�ling interfae ofVesta provides important information to the �le system that will allow it to make deisionsabout ahing of data at the lients.Vesta is vulnerable to lient failures when multi-phase operations are performed, beauseit trusts the lient to omplete all phases of the operation. A better design would be to spawno� a server thread that will take are of all the phases, and limit the interation with thelient to a single bak-and-forth message pattern. This was not done in Vesta beause theenvironment we worked in did not support threads, and the alternative would have resultedin greatly inreased omplexity of the server ode.Finally, a major problem has been understanding the behavior of the system. Pratiallynone of the performane experiments worked as expeted the �rst time around. Understand-ing the system's behavior would have been easier if we had plaed more monitoring hooks inthe ode, and if we had an environment that supported onvenient debugging and observa-tion of parallel programs. A small step in this diretion was our use of the Vulan terminalI/O faility [15℄, whih was available as part of the virtual-vulan uniproessor environmentwhen we started the implementation.AknowledgmentsThe authors would like to aknowledge the ontributions of Jean-Pierre Prost, Sandra John-son Baylor, Yarsun Hsu, Mar Snir, Tony Bolmarih, and Julian Satran to the total e�ortrelated to the Vesta projet at IBM Researh.
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