
Using Students as Experimental Subjects in Software

Engineering Research — A Review and Discussion of

the Evidence

Dror G. Feitelson

School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract

Should students be used as experimental subjects in software engineering? Given that stu-

dents are in many cases readily available and cheap it is no surprise that the vast majority of

controlled experiments in software engineering use them. But they can be argued to constitute

a convenience sample that may not represent the target population (typically “real” develop-

ers), especially in terms of experience and proficiency. This causes many researchers (and

reviewers) to have reservations about the external validity of student-based experiments, and

claim that students should not be used. Based on an extensive review of published works that

have compared students to professionals, we find that picking on “students” is counterproduc-

tive for two main reasons. First, classifying experimental subjects by their status is merely a

proxy for more important and meaningful classifications, such as classifying them according to

their abilities, and effort should be invested in defining and using these more meaningful clas-

sifications. Second, in many cases using students is perfectly reasonable, and student subjects

can be used to obtain reliable results and further the research goals. In particular, this appears

to be the case when the study involves basic programming and comprehension skills, when

tools or methodologies that do not require an extensive learning curve are being compared,

and in the initial formative stages of large industrial research initiatives — in other words, in

many of the cases that are suitable for controlled experiments of limited scope.

keywords: Controlled experiment; Experimental subjects; Students; Experimental methodol-

ogy.

1 Introduction

Experimentation, and especially experiments involving human subjects, are not widely used in

computer science [180, 80]. But two sub-fields are an exception: human-computer interaction

and software engineering. In these disciplines the recognition that humans are inherently “in the

1



loop” has led to significant experimental work involving humans. In particular, in software en-

gineering controlled experiments in the lab are used to learn about the effectiveness of different

methodologies, procedures, and tools [16, 18].

However, experimenting with humans is difficult. One of the salient problems is finding sub-

jects who are representative of the target population. While a specific target population is often

left undefined, in software engineering it is typically understood to be the community of software

developers, and especially those who do it for a living. But recruiting professional developers

for experiments is hard, because they need to be paid a competitive fee [14], and there may be

additional constraints such as not interfering with normal production work [69].

An intriguing alternative is to use computer science or software engineering students, who are

naturally much more accessible in an academic setting, and in addition may be argued to constitute

the next generation of software professionals [109, 179]. Experiments can sometimes even be done

as part of class requirements (e.g. [102, 40, 7, 185]). And indeed, a literature study of the period

1993–2002 found that in 87% of the experiments reported students were used as subjects [170].

But this leads to the question of whether the results of student-based experiments have external

validity and generalize to real-life settings. A similar situation occurs in psychology, where a

majority of studies are based on students who are WEIRD (Western, Educated, Industrialized,

Rich, and Democratic) and may not reflect general human behavior [92].

The problem of what experimental subjects to use has been recognized long ago. In one of the

first papers to report on a controlled experiment in software engineering, Myers writes concerning

“the question of whether one can extrapolate, to a typical industrial environment, experimental

results obtained from trainee programmers or programmers with only a few years of experience”

[136]. Some time later, Curtis provocatively entitled a review of empirical software engineering

“By the way, did anyone study any real programmers?” [61]. More recently, Di Penta et al. write

in the context of advising on experimental procedures that “a subject group made up entirely of

students might not adequately represent the intended user population” [68], and Ko et al., in the

context of discussing experimentation for evaluating software engineering tools, write that “under-

graduates, and many graduate students, are typically too inexperienced to be representative of a

tool’s intended user” [112]. Jedlitschka and Pfahl, in suggested reporting guidelines for empirical

research, use “Generalization of results is limited due to the fact that undergraduate students par-

ticipated in the study” as an example of a “limitations” clause that should be included in structured

abstracts [98]. Finally, in a literature survey focused on confounding factors in program compre-

hension studies, the subjects’ level of experience was the most often cited factor [163]. This has

led some researchers to actually hire professional programmers to participate in extended exper-

imental evaluations of various techniques and tools (e.g. [168, 8, 73, 30, 171, 191]). But is this

expenditure really necessary? And under what conditions?

Conversely, the obsession with “students” being a problem can be criticized as reflecting a

simplistic belief that graduation is a pivotal event of great significance. A more reasonable view is

that there exists a wide range of capabilities in both students and professionals, with large overlap,

but perhaps also focused improvements due to on-the-job training. Tichy, for example, in a list of

suggestions to potential reviewers of empirical software engineering research, writes that “don’t

dismiss a paper merely for using students as subjects” [179]. Among the reasons he cites are the

2



observation that even if this is not the optimal setting much can still be learned from student studies,

and that students are in fact quite close to the target population of developers [109]. Likewise,

Soh et al. discuss the classification of experimental subjects based on professional status (students

vs. professionals) as opposed to a classification based on expertise, and conclude that expertise

does not necessarily correlate with professional status [172]. Consequently excluding students

just because they are students would be detrimental both to research and to staffing decisions.

And a literature study from 2000–2010 found that large numbers of professional developers are in

fact not needed for effective user evaluations, and moderate numbers of students can also be used

[45]. More generally, Hannay and Jørgensen explain how absolute realism is not always the best

approach in experimental research, and that artificial constructs may be preferable in certain cases

[90]. Finally, one should note that the goal of software engineering experiments using human

subjects is usually the evaluation of tools, procedures, or methodologies. Such evaluations are

typically relative, trying to assess whether one approach is better than another. Therefore the

requirement that subjects be representative may be an overstatement: it is actually enough that the

relative results be representative.

Our goal in this review is to discuss the basic question:

Should students be used as experimental subjects in software

engineering research, and if so, under what conditions?

To do so we organize and present the cumulative experience with issues related to using students

in software engineering research, as it is reflected in the scientific literature. This is structured

according to the following sub-questions:

• Why are students perceived to be a problem? Section 2 presents a list of the potential prob-

lems that may arise when using students as subjects, such as the differences between students

and professionals in tool use and experience.

• What is the evidence? Section 3 reviews studies that contrast students and professionals

head-on. It reports evidence which shows both that the distinction is not important, so stu-

dents can indeed be used in lieu of professionals, but also evidence that experience actually

does matter, and thus that student novices and professional veterans may have widely differ-

ent skills and require (or at least benefit from) different tools and procedures.

• What does it all mean? Given the wide diversity of results in the literature, Section 4 provides

a discussion of their implications, couching it in the more general treatment of experience

and expertise. The main conclusion is that the focus on the dichotomy between students

and professionals is a dangerous over-simplification. First, this is the wrong distinction, and

it is much more important to classify experimental subjects according to their abilities and

suitability to the specific study at hand. At the same time, one must realize that there is an

extremely wide spectrum of software developers, so there is no single “right” way to select

experimental subjects who will be generally representative.

• How should students be used? Finally, Section 5 lists some recommendations concerning

the use of students in empirical studies, in case you decide to do so.

3



students professionals

toy problem academic experiment industrial experiment

real problem project/internship real-life situation

Figure 1: Differences between controlled studies and real-life situations.

There have been many papers that purport to address the question of using students, but in the end

this is always done in the context of a single experimental setup. This review attempts to pool all

these previous studies, which are reviewed in detail in Section 3.

It should be noted that experimental subjects (and in particular, using students) are not the

only potential problem with controlled experiments in software engineering. Actually, there are

two main contentious dimensions in such experiments: the experimental subjects and the tasks

being tackled by these subjects (Figure 1) [42, 169, 175, 52]. In many cases the tasks are just toy

problems in order to make running the experiments manageable. Such toy problems cannot coax

out deep knowledge on how real experts approach complex situations. Moreover, the environment

is also important. Perry et al. point out that professional programmers spend only about half of

their time coding, so studies of various methodologies and tools conducted under sterile laboratory

conditions may not represent what happens in real life situations [138]. It therefore seems that

there are significant issues that are simply out of the reach of controlled laboratory experiments.

While this is mentioned in the discussion, most of the review focuses on the issue of subjects in

controlled experiments, as it is already wide enough.

We note too that using students is but one aspect of potential threats to external validity. And

the whole issue of the relative importance of external validity as opposed to internal validity is

also hotly debated [164]. Of course, if one believes that internal validity trumps external validity

the concerns about using students are moot. But given that many researchers believe that external

validity is more important, to the point of expressing complete disbelief in academic studies based

on students, a review of this topic is believed to be useful.

The methodology followed is a classical literature review. This is not a “systematic review”

[107] as the goal is not to amass evidence for or against a certain effect. Rather, the goal is to collect

all the differing considerations and opinions that have been expressed on this topic. To do this we

started with several sources, including keyword searches such as “students” and “experimental

subjects” and snowballing (following the references in papers that had already been read). This

enabled the identification of other important publications across more venues and years than would

be possible to scan systematically, as well as the inclusion of literature from related fields, such as

general studies of experts vs. novices. The price paid is that others who perform a similar review

might end up with a somewhat different list of papers. The following sections present what we

learned from the papers that were found.

4



2 Problems with Students

The main concern regarding using students as experimental subjects is that they may not represent

professionals faithfully. Thus if we are interested in software engineering as it is practiced by

professionals in the field, data obtained from student experiments may be misleading.

There are several reasons why professional experience is important. One is that experience

can be expected to hone the knowledge acquired during studies, making it more directly usable in

performing software engineering tasks and eradicating misconceptions. Another is that experience

leads to both improved and new capabilities, even changing the way professionals approach a

task and not only the proficiency with which they attack it [124, 155]. In addition, students (and

experiments based on students) may also suffer from the characteristics of the academic setting. In

this section we review studies that have demonstrated and discussed such effects.

2.1 Learning Misconceptions

As noted above the concern about using students in empirical software engineering research is that

they “lack experience”. One aspect of this is that they may not have ingested all that they have

learned, or worse, have not learned something at all or have learned it wrong [88].

A major issue that has been identified in the literature is that novice programmers may hold

invalid or inappropriate mental models of what programming constructs actually mean. For exam-

ple, Bayman and Mayer studied how well 30 undergraduate college students understood nine basic

BASIC statements after a 6-hour self-study course widely used in the microcomputer lab [21].

The results showed that between 3% and 80% (median 27%) achieved a fully correct conceptual

model of the statements, with up to 56% having incomplete models and up to 60% having incorrect

models. Importantly, all subjects successfully completed the course, indicating that the used tests

of how well students master the material were ineffective in discerning these problems. Ebrahimi

conducted a similar study, classifying language construct misunderstanding by novice program-

mers learning Pascal, C, Fortran, and Lisp [74]. In addition, he also noted errors in composing

these constructs into problem solution plans. And Kaczmarczyk et al. found basic misconceptions

regarding the relationship between language elements and underlying memory use, how while

loops operate, and the object concept [104].

Similar results have been obtained also when studying more advanced concepts. For example,

Kahney performed a study of how novice programmers differ from experienced ones in their un-

derstanding of recursion [105]. The results from 30 novice students and 9 more experienced ones

(TAs) was that over half of the novices appear to have thought of recursion as a loop, and only 3

really understood it, as opposed to 8 of the more experienced ones.

More recently, Ma et al. looked at how students understood reference assignment in Java at the

end of their first year [127]. They found that only 17% had a consistently viable model of what is

going on. The remaining 83% were divided evenly between those who were consistently wrong

and those who were inconsistent, both groups displaying a wide variety of inappropriate models.

In this case a strong correlation was found between the viability of the model held by the students

and their performance in the final exam. Nevertheless, many students with non-viable models

5



also managed to perform well in the finals, and some even held non-viable models of the simpler

value assignment statement. Likewise, Madison and Gifford found that two students managed to

construct correct programs and answer questions despite having a misconceived notion of how

parameters are passed to functions [128].

At a more general level, novice students may not internalize correctly what they have learned.

As a result they may misapply it. For example, Jeffries et al. report on students who used large

arrays instead of linked lists to store page numbers of an index, and one who decided to store the

text to be indexed in a binary tree, thus losing all its structural information, instead of storing the

desired index terms in a tree [99].

The conclusion from studies such as these can be summarized as follows:

Novice programmers, especially beginning undergraduate students, may be ill-equipped for

participation in empirical software engineering studies in fields such as program comprehen-

sion or design. At the very least, more advanced students (e.g. from the third year of study

or beyond) should be preferred.

2.2 Differences in Technology Use

Another difference between students and more experienced developers is how they use available

technology and tools. Several studies have documented such effects, and interestingly, they work

in both directions.

Inexperienced users may not use available technology that could help them to perform a task,

either because they don’t know about the tools or they do not feel sure enough to use them. As

an example, inexperienced students faced with the task of comprehending Java code that had been

obfuscated by identifier renaming did not use renaming facilities to change the obfuscated names

back to meaningful names once they figured out what they represented; instead they continued to

work with the original obfuscated code [55]. Thus they did not use an available tool that could

help them.

On the other hand, students also stand to gain more from using tools, because such tools can

make up for the shortcomings in their experience. For example, Ricca et al. demonstrated that

inexperienced students benefited more from using web-application-related annotations on UML

diagrams than more experienced subjects [144]: the experienced ones could understand the di-

agrams to a large degree even without the added annotations, but for inexperienced students the

added annotations proved invaluable. In other words, the tool — in this case, the added annotations

on the UML diagrams — helped the inexperienced users to close the gap between them and the

more experienced users.

But this can also work the other way around. Tool usage takes training, and the learning

curve itself may depend on previous knowledge. Thus advanced tools may be accessible only

to advanced users, and by using them the advanced users widen the gap between them and the

inexperienced users. An example is provided by Abrahão et al. [1]. The context was again the

use of UML diagrams, in this case sequence diagrams used to portray and understand system

dynamics. Experiments showed that using these diagrams helped experienced and proficient users

6



comprehend the modeled functional requirements, but had no significant effect for inexperienced

users. Conversely, students may actually be better trained in tool usage than professionals who

have not been formally taught the basics [7].

Briand et al. found that adding formal OCL (Object Constraint Language) annotations to UML

diagrams helped students perform comprehension and maintenance tasks, but only provided ample

training was provided first [40]. Such training was also needed for the effective use of a graphical

representation of requirements [157]. Another example was described by Basili et al. [17]. In re-

viewing five replications of experiments on the effectiveness of defect-based code reading (DBR)

as a means to uncover faults, three studies based on undergraduates showed no evidence for in-

creased effectiveness, while two based on graduate students and practitioners showed evidence for

a positive effect. This was attributed to the fact that DBR is based on expressing requirements in a

state-machine notation, which may be too sophisticated for undergraduates.

An especially interesting experiment shows that differences in tool usage may represent dif-

ferences in strategy. Bednarik and Tukiainen used eye tracking to see how study participants

performed program comprehension tasks, based on code reading and animations of the program

execution using the Jeliot 3 visualization tool [24]. The result was that some participants first read

the code to form a hypothesis of what it does, and then used one or a few animations to verify

this. These participants turned out to be the more experienced ones, with 73.5 ± 69.9 months of

programming experience. Other participants, on the other hand, approached the comprehension

task by running animations to see what the programs do. It turned out that these participants could

easily be characterized as less experienced, having only 18.0± 19.4 months of experience.

The conclusion from these examples is

Study subjects should be selected to fit the task. Studies involving sophisticated tasks, which

require mastery of specific tools or methodologies, should not employ student subjects who

do not have the necessary skills. At the very least, appropriate training should be provided,

and the level of proficiency should be assessed.

We note in passing that experience may not only affect tool usage, but may also inform tool de-

sign. In a series of studies LaToza and Myers have surveyed professional developers, and recorded

the most vexing problems that troubled them during their work [118, 117]. They then used this to

design tools that specifically target these problems. Importantly, the uncovered issues were hard to

anticipate, as they reflected problems and work practices of professionals in a real-life setting. For

example, the developers often faced problems such as understanding why a certain piece of code

was implemented in a certain way, what code does under certain conditions, why it was changed,

and so on. Students typically do not face such questions, and can not be expected to identify them

as important.

2.3 Lack of Experience

Students who are new to the field by definition lack experience, meaning that they have not done

much yet. The interactions of experience with tool usage cited above are not the only effect of

7



experience. Experience has been shown to have an effect on myriad other software engineering

activities as well.

At a rather basic level, experience may affect how one performs even a simple task. For ex-

ample, Burkhardt et al. used a documentation task to track the mental models of expert and novice

programmers [44]. One of the findings was that experts put three times as many comments in

header (.h) files as in code (.cc) files; for novices it was exactly the other way around. Moreover,

within code files experts emphasized comments on functions as opposed to inline comments (51%

vs. 29%, respectively), whereas for novices the inline comments outnumbered the function com-

ments by a 2:1 ratio. It can be conjectured that such behavioral differences stem from experience

in trying to understand others’ code, and the realization that general explanations and interfaces

are more important than code minutiae. In a related vein, several studies have found that students

place more emphasis on comments than professionals do [130, 154].

Several additional recent experiments have demonstrated situations in which experience has a

considerable effect on outcome. Binkley et al. conducted a few studies of the effect of multi-word

identifier styles (that is, using camelCase or under scores) on their correct and speedy recognition.

Initially they found that in general it took longer to identify camelCase and it was faster to identify

under scores [33]. However, computer science training led to a reduction in the difference: more

training led to reduced time with camelCase and more time for under scores. All the subjects were

undergraduate students, and the level of training reflected years of studying computer science;

importantly, they also included non-computer-science majors as a control group.

These results were largely replicated by Sharif and Maletic [159], using eye-tracking equipment

and subjects trained mainly in the under score style. The subjects were both undergraduate and

graduate students and two faculty members. In another experiment, this time measuring the ability

to recall identifiers, beginners did badly when the identifiers had under scores [32]. Thus the

experts did better than beginners with under scores, and beginners did better with camelCase than

with under scores. But these studies also showed many other effects, that in some cases were much

more significant than the effect of experience.

Considering more complicated tasks, a study of 5 professional developers by Adelson and

Soloway showed that experienced developers may use different approaches depending on whether

they have previous domain experience that is specifically relevant to the problem at hand [4].

Novices don’t have such resources available to them, and need to build up their knowledge of the

domain from scratch. But gaining experience may be quick. Falkner et al. document how students

change their software development strategies from their first year to the end of their degree [78].

It is not surprising that experienced developers perform better than novice programmers on

various programming-related tasks. But what is the root cause of this advantage? Soloway and

Ehrlich suggested that expert advantage stems from two reasons: they know solution patterns, and

they follow and exploit programming conventions [173]. Experiments to demonstrate this were

conducted with 145 students, with a 2:1 ratio of novices to advanced ones (in their case, students

with at least 3 programming courses under their belt), using tasks that were meant to specifically

depend on these two traits. The results were that indeed the advanced students performed better.

But when program fragments did not conform to the patterns and conventions, the performance

8



of the advanced programmers was reduced to near that of novices. More results on the internal

representations used by novices and experts are described below in Section 3.

In summary, the above results support and extend those of the previous section:

Experience may certainly contribute to capability and change how problems are tackled.

Therefore experimental subjects should have a suitable level of experience to undertake the

tasks being asked of them.

2.4 Academic Overqualification

As mentioned already one of the justifications for using students in empirical software engineering

research is the perception that they are representative of the next generation of software engineers

[109, 179]. his notion is challenged by the Stackoverflow 2015 Developer Survey1. Slightly more

than 20,000 developers worldwide answered the survey. Among them, 37.7% had a BSc in com-

puter science or a related field, 18.4% had an MSc, and only 2.2% had a PhD. These numbers are

rather similar to those reported in a survey of developers using Microsoft technology reported in

VisualStudio Magazine in 20132; The numbers there were 33.9% who graduated from a 4-year col-

lege, 28.0% with an MSc, and 3.0% with a PhD. However, an additional 10.6% graduated from a

2-year college, and an additional 8.1% took some post-graduate studies without obtaining a degree.

Returning to the Stackoverflow survey, 48% reported that they did not have a university degree

in computer science, and 33% reported that they did not attend even one university computer

science course. In fact, 41.8% claimed to be self taught. Thus computer science students (and

the university education they receive) represent at best about half of developers in the field, and

graduate students are especially non-representative. In other words, the notion that students are at

least representative of the next generation of software engineers (if not of the current generation)

may be optimistic.

A different view on this issue is presented by Lethbridge, who conducted a survey of computer

science and software engineering graduates in 1998 [120]. He found that respondents generally

considered their education to be moderately relevant to their work as software developers, but with

a wide range of opinions, including some who thought it was completely irrelevant. More specif-

ically, of those who studied computer science or software engineering 70% considered their edu-

cation relevant, but of those who had studied computer or electrical engineering only 30% found

it relevant. More interestingly, respondents reported having learned significantly more mathemat-

ics than software, but software outranked mathematics by about the same margin for usefulness,

current knowledge, and desire to learn more. This implies that academic studies are not perfectly

aligned with the needs of industry professionals. Thus,

A little-appreciated problem with students is that their perspective is academically oriented,

and perhaps not aligned with industry practice.

1http://stackoverflow.com/research/developer-survey-2015, visited 29 Jul 2015.
2https://visualstudiomagazine.com/articles/salary-surveys/salary-survey.aspx, visited 29 Jul 2015.

9



2.5 Contextual Effects

The previous sections dealt with technical aspects of how students may perform in software engi-

neering experiments, and how this may differ from the performance of professionals. But there are

also concerns that stem from the fact that students are just students and that the experiments are

taking place in an academic setting.

One possible problem is uniformity and lack of perspective. In an academic setting, it is highly

probable that all the student subjects had learned the relevant material from the same professor at

the same time. Furthermore, they most probably did not accrue any on-job experience that could

challenge what they had learned and confront it with day-to-day situations. Thus their collective

perspective on the issue being studied may be limited.

Concern has also been expressed about the effect of the relationship between students and

(faculty) experimenters [112]. This may take either of two forms: the students may anticipate

the desired outcome and unconsciously favor it, or they may sense their professor’s intent and

unconsciously try to support it. While such effects have apparently not been reported in the context

of software engineering, they are known from other domains. Another potential danger occurs

when students are required to participate in an experiment and are not allowed to withdraw at

will. In such a situation there is a risk of contaminating results by disgruntled subjects [167]. But

this is not necessarily limited to students, and may also happen when professionals are drafted to

participate in a study by their boss.

Another concern is that students may be less committed than professionals [95, 27]. This may

be especially significant if the experiments are done as part of a class, as in this setting students (at

least the smart ones) may be expected to invest effort only to the degree that it contributes to their

grades. Volunteer students or those participating in a project may therefore make better experi-

mental subjects. But on the other hand, it is not clear that professional participants are necessarily

more committed, especially if they are not paid specifically to participate in the experiment. For

example, one study describes a situation where over 100 employees in a firm agreed to participate

in a study, only 60 eventually submitted their results, and of those only 33 were really usable [54].

Another study also noted lack of cooperation as a problem, and specifically cited the inclination of

industry participants not to follow experimental guidelines, sometimes voiding the results simply

because they did not actually use the prescribed methodology that was being examined [183].

Conducting experiments in an academic setting may be suspect. However, there are no

specific reports of such problems in software engineering research, and it is not clear that

an industrial setting is better.

3 Direct Comparisons of Students and Professionals

Many of the experiments described in the previous section considered experience as a confounding

factor and not as a main effect. But because of concerns about using students as subjects, some

papers have also addressed the issue of comparing students to professionals explicitly. Such papers

are listed in Table 1, and those that have not been mentioned yet are discussed further next. In this

10



we expand the discussion to include not only studies pitting students against professionals, but

more generally, any study concerned with programmers with different levels of expertise. This can

include comparing the performance of novice students with more advanced ones (e.g. [55, 144, 1]),

or novice professionals with more experienced ones. It can also involve a sort of meta-study, where

a study with one group of subjects is later followed by another study using another group, and the

results are compared (e.g. [41, 54, 55]).

3.1 Studies of Cognitive Processes

In the 1980s there was some interest in the field of psychology in understanding the differences

between expert and novice programmers. These studies were focused on cognitive processes and

internal representations. The common theme was that experts employ deeper knowledge and se-

mantics, while novices tend to use surface attributes and syntax [160]. For example, Weiser and

Shertz asked programming novices and experts (undergraduates and graduate students) to classify

27 problems. The novices tended to do so based on application area, whereas the experts tended to

classify based on the algorithm that would be used to solve the problem [187].

McKeithen et al. demonstrated that expert programmers are better able to recall semantically

meaningful program code, and that their programming knowledge is better organized to reflect

programming concepts [133]. To quantify this they asked subjects to recall 21 ALGOL keywords,

each time prompting them to start with a different one and continue with others “that go with it”.

They then analyzed subsequences that tended to appear in the same order. Wiedenbeck showed

that experts are both faster and more accurate on simple programming related tasks (e.g. to identify

syntactically incorrect lines), implying that experience leads to automation that replaces conscious

cognitive effort [188]. These results hark back to the work of Simon on chess masters, who were

shown to possess a large “vocabulary” of chess positions [166].

Adelson compared novice programmers with more advanced ones (graduates of an introduc-

tory programming course and TAs in that course), using materials and questions at two different

cognitive levels [3]. The abstract level represented a program using a flow-chart with high-level

blocks, and the corresponding questions were also at this level (e.g. what is the shape of a matrix

being used). The concrete level represented the program using a detailed flow-chart of individual

operations, and the questions were about details (e.g. which border of the matrix is handled first).

The results were that novices tend to operate at the concrete level and experts at the abstract level —

so much so, that in certain cases presenting a concrete question regarding an abstractly-represented

program caused experts difficulties, and allowed novices to out-perform them.

In a related vein, Burkhardt et al. studied the internal representations of novices and experts for

object-oriented programs [43]. The experts were 30 professional programmers, and the novices

were 21 advanced students who were relatively new to object technology. Using documentation

and code reuse tasks, they found that the experts had a better mental model of the objects that

constitute the program and the relationships between them. However, novices could improve their

representation if the task demanded it [44].

11



Table 1: Papers comparing experimental subjects with different levels of education or

experience. L1, L2, and L3 are the levels used in the experiments. Numbers in paren-

theses are the number of subjects at each level. “stud.” is students of unspecified degree,

and ↑ indicates students near the end of their degree. “ind.” or “prof.” means profession-

als from industry. If degrees and affiliation are not mentioned assignment was made by

some assessment of proficiency and classification as “beginner”, “novice”, “intermedi-

ate”, “advanced”, “experienced”, etc.

Subjects

Ref. L1 L2 L3 Study Results

Sackman

[151]

1968

trainee

(9)

exp.

(12)

– verify the effect of an

interactive environment

on debugging

for both groups the

interactive setting was

beneficial, and for both

individual differences

were high

Jeffries

[99] 1981

nov.

BSc

(5)

exp.

(4)

– compare solution

strategies to book

indexing problem

all subjects used the same

decomposition strategy,

but novices were less

effective in looking for

subproblem solutions and

knowledge representation

McKeithen

[133]

1981

nov.

stud.

(29)

int.

stud.

(29)

exp.

(8)

identify how

programming knowledge

is organized depending on

skill

more advanced subjects’

knowledge was better

organized to reflect

programming concepts

Weiser

[187]

1983

nov.

(6)

exp.

(9)

mgr.

(4)

classify problems by

domains, algorithms, or

data structures

novices tended to classify

by domain, experts by

algorithm, and managers

were different from both

Adelson

[3] 1984

nov.

stud.

(42)

TAs

(42)

– identifying the cognitive

level at which novices and

experts work

novices use concrete

representations and

experts use abstract

representations

Soloway

[173]

1984

nov.

stud.

(94)

adv.

stud.

(45)

ind.

(41)

characterizing the

knowledge of advanced

programmers

advanced programmers

know and use design

patterns and programming

conventions

Wiedenbeck

[188]

1985

nov.

(20)

exp.

(20)

– test performance on trivial

programming-related

tasks

experts are faster and

more accurate, implying

automation

(Continued on next page)

12



Table 1: Continued.

Subjects

Ref. L1 L2 L3 Study Results

Gugerty

[87] 1986

nov.

(10)

exp.

(10)

– finding a bug in a program skilled programmers are

faster and better

Basili

[15] 1987

stud.

(42)

ind.

(32)

– compare software testing

and inspections

code reading worked

better for professionals

Porter

[140,

139]

1998

grad.

(48)

ind.

(18)

– systematic strategies for

requirements inspections

comparisons of

approaches gave the same

results despite differences

in absolute performance

Schenk

[155]

1998

nov.

(7)

exp.

low

(9)

exp.

high

(9)

detailed study of how

system analysts do

requirements analysis

experts approach

requirements analysis

differently from novices

Höst [95]

2000

MSc↑

(25)

ind.

(17)

– subjective assessment of

project delay factors

similar results for both

groups

Briand

[41] 2001

stud. ind. – use defect data to evaluate

OO quality metrics

results from student

projects largely confirmed

by industrial followup

Crosby

[59] 2002

nov.

(9)

adv.

(10)

– how experts and novices

work to comprehend code

experts focus more on the

complex parts

Burkhardt

[43, 44]

2002

stud.

(21)

ind.

(30)

– mental models of

object-oriented programs

complex interactions

between factors, including

some effect of expertise

Runeson

[150]

2003

BSc↓

(31)

grad.

(131)

– improvement due to PSP

training

freshmen and graduate

students showed similar

improvement, but

graduates were faster

Berander

[27] 2004

MSc↑

(20)

PhD

(15)

proj.

(16)

ind.

– requirements

prioritization

classroom students divide

requirements more evenly

between priorities; those

in industrial projects make

most requirements high

priority

Arisholm

[9] 2004

stud.

jun.

(90)

int.

sen.

(68)

– maintenance of either a

(bad) centralized or

(better) delegated OO

design

inexperienced subjects

had a hard time with the

delegated style, students

did better on the

centralized design

(Continued on next page)

13



Table 1: Continued.

Subjects

Ref. L1 L2 L3 Study Results

Bednarik

[23] 2005

nov.

(8)

int.

(8)

– gaze analysis when using

animations for

comprehension

advanced participants

exhibited same behavior

but were faster

Lange

[116]

2006

stud.

(111)

ind.

(48)

– effect of defects in UML

diagrams on their use

similar effect on both

students and professionals

Arisholm

[8] 2007

jun.

(81)

int.

(102)

sen.

(112)

compare individual

programming with pair

programming

pairs of novices got better

results on a complex

system; experienced pairs

were slightly faster on a

simple system

Bishop

[34] 2008

stud.

(34)

ind.

(13)

– debugging spreadsheets experts were more

methodical and found

more bugs

Bannerman

[11]

2002–

2008

stud. ind. – metastudy about test-first

vs. test-last development

with students test-first was

typically faster but with

no quality effect, with

professionals it was

slower and improved

quality

McMeekin

[134]

2009

BSc↑

(36)

ind.

(26)

– defect finding using 3

inspection techniques

same relative performance

of techniques; different

speed depending on

experience

Mäntylä

[130]

2009

stud.

(87)

ind. – defect types found in code

reviews

similar high-level

distribution of defect

types were found

Ricca

[144]

2010

BSc grad. RA effect of using web

application annotations on

UML diagrams

added annotations were

helpful for inexperienced

students

Bergersen

[30] 2012

stud.3

(266)

ind.

(65)

– debugging iterative vs.

recursive code

low-skill subjects did

better on the recursive

version, skilled ones did

the same on both

(Continued on next page)

3Cited previous work.

14



Table 1: Continued.

Subjects

Ref. L1 L2 L3 Study Results

Soh [172]

2012

stud.

(12)

nov.

(9)

ind.

(9)

exp.

(12)

– understanding and

maintaining UML

diagrams

practitioners were more

accurate, but for a given

accuracy students were

faster

Čaušević

[54] 2013

MSc

(14)

ind.

(33)

– test cases in test-driven

development

similar behavior in both

groups

Abrahão

[1] 2013

low high – effect of UML sequence

diagrams on

comprehension

sequence diagrams helped

high-ability participants

Jung

[100]

2013

PhD

(7)

ind.

(11)

– compare 2 safety analysis

tools

replication in industry

gave essentially same

result of no difference

between tools

Ceccato

[55] 2014

BSc

(13)

MSc

(39)

PhD

(22)

the effect of code

obfuscation on

comprehension

more advanced

programmers are better

but affected in a similar

way

Salviulo

[154]

2014

BSc↑

(18)

prof.↓

(12)

– the use of comments and

variable names for

comprehension and

maintenance

students used comments

more, all agreed that good

identifier names are

important

Daun

[65] 2015

BSc

(125)

MSc

(21)

– review specifications of an

avionics system in either

of two ways

graduate students were

more effective leading to

larger effect size, but

results for undergrads

were also significant

Salman

[153]

2015

grad.

(17)

ind.

(24)

– effect of using TDD on

code quality

both groups produced

code of similar quality

when using TDD for the

first time

Busjahn

[46] 2015

nov.

(14)

ind.

(6)

– use eye tracking to study

the order of code reading

code reading is less linear

than story reading, and

experts are less linear than

novices

At an even higher level, Jeffries et al. compared five undergraduate students to four experts

(an EE professor, two experienced graduate students, and a professional) on how they actually

designed a program to create an index for a book. All subjects used the same general strategy

15



of decomposing the problem into subproblems. However, the experts were much more effective.

Thus the novices tended to make do with the first solution they found for a problem and did not

consider alternatives, they missed or decided to ignore subtle end cases, and they did not rely on

using known algorithmic solutions.

Putting all of this together,

It appears that expert programmers think differently from novices. This may hinder the use

of students, especially at the start of their studies, for tasks that are conceptual or presented

at a high level of abstraction.

3.2 Studies Showing Similarity of Students and Professionals

Quite a few studies have compared the performance of students and professionals on concrete

programming-related tasks. An especially interesting experiment was conducted by McMeekin et

al. [134]. The goal was to compare three software inspection techniques: checklist-based reading

(CBR), which was developed in the context of procedural programming, and use-case reading

(UCR) and usage-based reading (UBR), which were developed for object-oriented inspection. The

reported results were that there was no significant difference between the inspection techniques, but

there was indeed a significant difference between the 36 students and 26 professional developers

applying them.

However, the paper also included a relatively detailed rendition of the raw results, in the form

of box plots of the distributions of number of defects found by students or industry professionals

using each of the 3 methods. Except for the scale (professionals found about twice as many defects)

these two graphs are extraordinarily similar, including details such as the following:

• The distribution for CBR is the least disperse, and for UBR the most disperse.

• The distribution for UBR subsumes the distribution for CBR: the plotted percentiles above

the median were higher for UBR, and those below the median were lower for UBR.

• The distribution for UCR seems to be shifted slightly toward lower values relative to the

other two.

• For CBR the median is closer to the 25th percentile, and for UCR it is closer to the 75th

percentile.

Thus a reinterpretation of the results is that the experiment with students actually provides an ex-

cellent approximation of the results obtained with professionals, as far as the comparison between

the three techniques is concerned.

Several other studies also found that the behavior of subjects with different levels of experi-

ence was very similar in everything but speed. The earliest is the study by Sackman et al. from

1968 regarding interactive debugging, which showed that both trainees and experienced profes-

sionals benefited from using an interactive setting [151]. Moreover, both groups also exhibited

similar individual differences between the group members, which was somewhat surprising for

the trainees which were expected to be more similar to each other. Bednarik et al. looked at the

16



gaze behavior of novice and intermediate programmers when using code and animations during

program comprehension [23]. The only difference was that the more advanced participants did

everything faster, except for the control functions (clicking on buttons to control the animation)

where the speed was the same. This exception may actually lend credence to the results, by sug-

gesting that the difference between the subjects was limited to programming experience, and did

not extend to button-clicking dexterity. As another example, Porter and Votta studied system-

atic strategies for requirements inspections, first using graduate students and then with industrial

professionals [140, 139]. Again the numbers were different, but the statistical tests comparing

different approaches told the same story.

Mäntylä and Lassenius used both students in a course and professionals in actual work to study

the types of defects which are found during code inspections [130]. For both groups, the vast

majority (77% and 71% respectively) were found to be evolvability defects, and only a minority

(13% and 21%) were functional; the remainder were false positives. However, there were some

differences in the details. For example, professionals noted more defects concerned with structure

and naming, while students noted more defects in code comments.

Similar correspondence between students and professionals was found by Čaušević et al., who

initially conducted a study on test-driven development using 14 students. This found that two thirds

of the test cases that they produced were positive, but around 60% of the defects were found by the

third of the test cases that were negative. This gap was then confirmed in an industrial followup

with 33 developers, where only 29% of test cases were negative but they were responsible for

finding 71% of the defects [54]. Briand et al. used a similar methodology, where results from

student projects were subsequently largely confirmed by an industrial followup [41]. The context

was using defect data to evaluate object-oriented quality metrics. Another such replication was

done by Jung et al., in which two security analysis tools were shown to support essentially the

same level of performance [100].

In the same vein, Svahnberg et al. report on a study conducted in the context of a require-

ments engineering course, where students were seen to be able to anticipate the values of industrial

practitioners [177]. Specifically, the students correctly thought that practitioners will value the

business perspective significantly more than the system perspective, despite not making this dis-

tinction themselves. Daun et al. also used students in requirements engineering courses [65]. They

found that while graduate students were more efficient (faster) and better at identifying stakeholder

intention, undergrads produced the same qualitative results. Lange and Chaudron found that stu-

dents and professionals were affected in a similar manner when they needed to work with defective

UML diagrams [116].

A rather different type of study was conducted by Höst et al. [95]. They used 25 students (last

year software engineering MSc) and 17 professionals (with an average of 11 years experience).

But the task was not a conventional development or maintenance task, but rather a subjective

assessment of the relative importance of 10 factors which may affect the time needed to complete

a project. It turned out that the assessments of the students and the professional were quite similar,

leading to the conclusion that students may be used in lieu of professionals in this case. This is

especially interesting because the task involved judgment and not technical skill.

Similarity between students at different levels was also found in how they benefited from novel

17



training procedures. Runeson checked the improvement of freshmen students and graduate stu-

dents who received PSP (Personal Software Process) training, and also compared this with profes-

sionals who underwent similar training [150]. The results were that all groups exhibited similar

improvements in 7 factors that were quantified. The only exceptions were that freshmen improved

much more than the others in estimation accuracy and productivity, perhaps because they started

at a much lower level. In a related vein, a study of the code quality produced by graduate students

and professionals when using a new technique, in this case test-driven development, found that

the quality was similar for both groups, despite being different when using traditional methods for

which they had experience [153].

The similarity of professionals and students also has an ironic twist. In a study about obfusca-

tion, identifier renaming to obfuscate meaningful names was hard for everyone (both experienced

and inexperienced subjects) in similar degrees. This indicated that “implicit documentation” as

reflected in meaningful names has a stronger effect on comprehension than experience [55].

To summarize,

In many studies students were shown to produce the same relative results as professionals,

allowing for correct ranking of alternative treatments. However, professionals were typically

faster or more effective.

As noted, in practically all the studies cited here the practitioners were found to be faster

than the students, sometimes by a wide margin. But the opposite is in principle also possible.

For example, Schenk et al. found that expert information systems analysts took more time and

verbalized way more considerations than novices when performing a system analysis task [155].

Likewise, Atman et al. found that professional engineers take more time than students to solve a

given problem, because they spend more time on problem scoping and on information gathering

[10] (albeit this was in the context of designing a playground, not software). Such results are

representative of studies which found differences between students and professionals.

3.3 Studies Showing Meaningful Differences

We already saw some examples of studies that demonstrated meaningful differences between stu-

dents and professionals in Section 2. Here we review a few more which identify specific elements

of expertise which may be missing in students.

A relatively early study was conducted by Basili and Selby to compare the relative effective-

ness of code inspections and testing schemes [15]. Their results show that code reading leads to

better results for professionals, but not for students. An especially noteworthy aspect of this study

is that they also classified their subjects according to their level of expertise based on academic

performance and years of experience; for professional subjects their manager’s opinion was also

taken into account. Among the students, 29 were thus classified as “junior” and 13 as “intermedi-

ate”. Among the professionals, 13 were “junior”, 11 were “intermediate”, and 8 were “advanced”.

But the results were that performance differences between professionals and students (irrespective

of experience) were more consistent than performance differences between subjects with different

expertise levels. This is somewhat tempered by the fact that differences between expertise levels

18



were rather noisy, possibly because the assignment into expertise levels was not based on a direct

evaluation.

Comparable results were obtained by Soh et al., in a study where the understanding and mainte-

nance of UML diagrams was used as the experimental task [172]. This study involved 12 students

and 9 practitioners. But in addition to comparing them based on status, they were also compared

based on their years of experience, and the result in this case was that years of experience was

the more important factor. However, this result is somewhat tainted by the relatively small num-

ber of subjects and by the large overlap between the classifications: 8 of the 9 practitioners were

considered experienced, and 8 of the 12 students were novices.

Berander reports on student behavior that deviates from the observed behavior in industry in

the context of requirements prioritization [27]. This was done by conducting a prioritization game,

where clients set priorities, developers provide time estimates, and together they draw a schedule of

how the planned features will be distributed across product releases. Observations from industry,

and also from students working on a large-scale project with industry partners, shows that there is

a clear tendency to pile the vast majority of the requirements into the “most important” category.

But when students played the role of clients in a classroom study, they overwhelmingly tended to

divide the requirements evenly between the different priorities. This simplifies the scheduling but

is unrealistic.

A possible generalization of behavior is that experts are more methodical [99]. In a non-

software example, professional engineers took more time than students to design a playground, and

the extra time was spent mainly on problem scoping and information gathering [10]. In debugging

a spreadsheet, professionals covered more of the cells more consistently [34]. But the professional

outlook can also be a disadvantage: in the debugging tasks, professionals were found to be more

tuned to logic and concepts, so they tended to miss superficial issues like a typo in a constant.

Lui and Chan give a striking example where the level of expertise may confound the experimen-

tal results [125]. Their study was concerned with the effectiveness of pair programming. Many

studies have been conducted on this topic, with mixed results. The novelty of Lui and Chan’s

work was in controlling for the level of the participants. They conclude that pairs of novices, or

in general pairs of programmers confronted with new and challenging problems, stand to benefit

considerably from pair programming. But for pairs of experts, or generally pairs confronted with

problems they have handled before, this is a waste of effort. The experiment showing this was

based on repeat-programming: the subjects were asked to solve the same problem time after time,

and the benefit of working in pairs was seen to drop with iteration number.

Arisholm and Sjøberg designed an experiment showing how mixing people with different levels

of competence can lead to problems in the field [9]. Specifically, they used two different design

styles to solve the problem of implementing a simple coffee machine: one in which the front

panel object is in control and just uses other object to perform simple tasks, and the other in

which the front panel merely initiates activities and delegates the actual execution to other objects

which encapsulate the details. The delegated style was considered the better object-oriented design.

In the experiment, undergraduate students and junior consultants were found to have problems

maintaining the delegated style, whereas graduate students and senior consultants performed better

19



with this style. Thus if senior designers are employed and use the preferred style to design a

product, there is a danger that more junior maintainers will be ill-equipped to maintain it.

In followup work with additional colleagues, Arisholm et al. compared the above results (but

excluding the students) with the work of pairs of professional developers [8]. The results were

that working in pairs was in general not beneficial, as the strongest effect was an 84% increase in

total effort (because two people were involved and it took approximately the same time). However,

they did observe an interaction with problem complexity: pairs of junior and intermediate consul-

tants achieved significantly better results than individuals on the complex (delegated) problem, and

pairs of intermediate or senior consultants took somewhat less time than individuals on the simple

(centralized) version.

It is hard to generalize the above results. But we can state that

Many factors affect the performance of software engineering tasks, and experience or ex-

pertise sometimes figure among them. However, this often interacts with other factors, and

pinpointing the precise effect is difficult. Many more experiments on diverse aspects of this

issue are desirable.

4 Discussion

As shown in the previous sections, there is a wide range of studies which have considered — or

grappled with — the confounding effects of experience on software engineering performance. But

can this be limited to a discussion of using student subjects as opposed to professionals? And what

other considerations should be applied? In the following we discuss these and related questions

based on the evidence reviewed above and additional literature from other fields concerning topics

like experience and expertise.

4.1 The Semantics of “Student” and “Professional”

The basic complaint against using students as experimental subjects is that they are perceived as

not representative of professional developers in a “real” industrial setting. But real life may be

more complicated, leading to situations where this distinction does not correspond with the intent.

First, it should be noted that “students” come in many varieties. Undergraduate students are

not the same as graduate students. Within the set of undergraduates, freshmen (first year students)

are different from second or third year students. Likewise, within the set of graduate students,

a distinction can be made between masters students and doctoral students. In fact, many studies

compare undergraduate students to advanced graduate students when they want to assess the effect

of experience, or else use students from different levels to control for the effect of experience [1].

In addition, there may be differences between students studying in different degree programs (e.g.

software engineering vs. computer science) and at different institutions (e.g. a community college

vs. a technical university).

Second, the dichotomy assumes that students lack professional experience. This is not always

the case. Many youngsters nowadays learn to program in their teens, and can accumulate quite

20



a lot of experience in hacking or contributions to open source projects before they graduate from

high school. Some may even establish their own startup companies. In Israel, for example, many

students come with experience from their army service [156]. In some study programs intern-

ships in industry are incorporated into the program, thereby giving the students some professional

experience as they learn. Students may also work in parallel to their studies in order to support

themselves; thus study participants identified as coming from industry may actually also be stu-

dents, and even undergraduates (e.g. [129]). In all these cases, the students can therefore actually

have significant industrial experience.

And third, the term “professional” is also not well-defined. Different terms are sometimes used,

such as “developers”, “practitioners”, or “engineers”, and it is not clear exactly what they mean and

whether they are indeed different [69]. Their training is also not necessarily the same; For example,

Arisholm and Sjøberg report a case where senior consultants in general held higher degrees than

junior and intermediate consultants [9]. Moreover, a professional can be new on the job or have

the benefit of many years of experience, just like students [26]. And finally, their jobs may actually

be quite different too. For example, are professional developers and testers the same? Are those

assigned to develop new functionality the same as those assigned to perform maintenance tasks

[38]? And what about having experience in different methodologies and approaches? While it

stands to reason that experience in a specific relevant domain may be beneficial to experimental

subjects (e.g. [4]), one can also argue for more general capabilities that come with experience

[173, 175].

The terms “student” and “professional” are ill-defined, and not necessarily exclusive. Using

them to label experimental subjects may be misleading.

4.2 Novices and Experts

Beyond the labeling of students and professionals, the more meaningful objection is that students

are novices, and therefore do not represent the work practices of professionals who are experts. So

it is worth our time to consider these terms as well.

Experience is acquired over time by receiving feedback in real-world situations. Expertise is

the result of internalizing this experience to create an understanding of concepts and decision-

making procedures, together with an appreciation for potential biases and problems [155] (as also

reflected in the Confucian saying “I do and I understand”). Novices by definition lack such exper-

tise, and are therefore prone to making errors in complex decision-making situations.

The distinction between novices and experts is very important in any field, and also in software

development. Experts know more and do things better, using different approaches than novices.

Specifically, experts rely on deep domain knowledge to get to the crux of the problem. Novices

are typically limited to relying on superficial cues. In addition, it has been observed that novices

treat complex systems mainly at the structural level, whereas experts understand the behavior and

function of the system elements [20, 94, 93]. This distinction may be expected to be particu-

larly relevant to software too. Select attributes of the differences between novices and experts, as

reviewed by Lord and Maher, are listed in Table 2.

21



Table 2: Characteristics of novices and experts, based on [124, 94].

Feature Novice Expert

Search simplified heuristics until

satisfactory alternative found

automatic homing in on best

alternatives

Selection based on superficial features based on meaning

Information modest amount used extensive and highly organized

Focus system structure behavior and function of system

elements

Process typically serial often parallel

In the field of technical education more levels are identified. An influential report on this issue

was written by Dreyfus and Dreyfus [71]. The main levels they identified, and the characteristics

of each level, are

1. Novice: knows to apply learned rules to basic situations

2. Competent: recognizes and uses recurring patterns based on experience

3. Proficient: prioritizes based on holistic view of the situation

4. Expert: experienced enough to do the above intuitively and automatically

Thus the effect of experience is to enable the practitioner to break away from prescribed rules and

apply a wider perspective, eventually doing this without conscious effort. A fifth level, that of a

master, has been suggested to reflect the ability to innovate and develop new tools and methods to

cope with new situations.

While the difference between novices and experts may be quite significant, the question of

whether it is important in the context of software engineering experiments is debatable. One view

is that expertise is not really important, for any of the following reasons:

• In many cases the tasks being performed by experimental subjects are not challenging enough,

and do not require a holistic view or innovative solutions. Thus the differences between

novices and experts come into play only during extended work on large-scale and difficult

problems, and not in experiments.

• Alternatively, when experiments involve technology or methods that are new to everybody,

then skill or previous experience does not necessarily impart an advantage.

• Finally, even if advanced professionals may do everything faster, and maybe even differently,

still the qualitative experimental evaluation could well be the same as with students or other

inexperienced subjects.

The other view is that the differences come into play even in simple situations, as experts have

a significant advantage in grasping the situation and understanding the interactions between the

22



code and the context. For example, Gugerty and Olson compared novices to skilled programmers

in a debugging task, and found that the skilled ones were faster, found the bug more often, and

hardly ever introduced new bugs while hunting for the existing one [87]. This was attributed to the

ease with which they were able to dissect and encode the program, and thereby to comprehend the

code and come up with hypotheses about what was wrong.

Moreover, hardened professionals may acquire various practices with time and experience that

affect their approach, and cause them to deviate from what may be expected and what students

are taught. For example, Roehm et al. conducted an observational study of how professionals

comprehend software when they need to perform a maintenance task [149]. A surprising result

was that they may actually try to avoid comprehending the code, using various shortcuts instead.

For example, one participant identified which functions are relevant by first commenting out all the

applicable code, and returning the functions one by one until there were no more compiler error

messages. As another example, Marasoiu et al. observed professional software developers who

used an environment’s code completion feature as a debugging aid — if the code completion did

not work, they took it as an indication that something was wrong [135]. So experts can leverage

existing technology to their advantage in unorthodox ways.

There are real differences between novice and expert software developers. Being able to

place experimental subjects on this spectrum is generally desirable, if only to see whether

there exists an interaction between performance on the experimental task and expertise.

4.3 The Making of an Expert

Using a title to describe experimental subjects (namely, labeling them as “students” or “profession-

als”) is often a stand-in for asserting their level of expertise. A possibly better alternative is to quote

their experience (that is, years of doing software development), and indeed many studies report that

experienced developers perform better (e.g. [75, 56]). For example, Robilard et al. studied how five

developers approached maintenance tasks on an open-source project (specifically, changes to au-

tosave functionality in jEdit) [146]. They found that experience makes a big difference in success

rates and reflects real differences in approach. Crosby et al. show that advanced programmers are

somehow better able to focus on the complex parts of the code [59], and Busjahn et al. show that

advanced programmers read code differently from novices [46]. But in fact experience in years is

also just an easy-to-measure proxy for different levels of proficiency or capability.

Moreover, experience is not the whole story. Another consideration is that there is evidence for

very significant variability among programmers. Perhaps the first study to show this was the one

by Sackman et al. from 1968. The goal of this study was to compare online and offline approaches

to debugging. But one of its main findings was that the biggest differences in performance were

due to personal variability between experimental subjects, which in one case reached a ratio of

28:1 [151]. Large individual differences were also cited in various other studies, e.g. [136, 60,

63, 111, 75, 141, 142]. Personnel/team capability figures prominently on the cover of Boehm’s

famous book Software Engineering Economics as the cost driver with the highest range of possible

23



values, much more than any other factor4 [36]. McConnell recounts an anecdote where a single

programmer was called in to replace a team of 80 (!) when a critical project was in risk of missing

a deadline [132]. In the specific context of empirical research, such variability could swamp out

the effects being studied [62].

Evidence for inherent differences in proficiency can also come from computer science educa-

tion. In particular, a bimodal distribution of grades in CS 101 courses is sometimes observed, and

has led to discussions of the mechanisms that create it. One of the options is possession of a “geek

gene”, namely that some people are predisposed to computer programming and therefore have an

edge on others [5]. More precisely, various concrete characteristics have been cited, such as being

able to clearly articulate a problem-solving strategy [165] and holding valid mental models of value

and reference assignments [127]. However, it is important to note that one of the more famous re-

ports suggesting that good programmers can be identified in advance based on having consistent

mental models of program behavior was later retracted when more experimental data was collected

[37] and a replication also failed [126]. And other explanations have also been proposed, e.g. that

a fluke success early in the course can set a student on the better learning path [147].

Based on the above, proficiency may be thought of as representing the cumulative influence of

three separate factors:

• Natural talent. Personal differences between different people are most probably very impor-

tant. Jackson has a wonderful short story equating “brilliance” with the talent to make things

appear simple [96, p. 20]. Sex has also been shown to have some impact [158].

• Formal training and deliberate practice. It may be expected (or at least hoped) that a univer-

sity or college education improves one’s proficiency, and that advanced degrees have some

added benefit over that obtained from a first degree. The same goes for vocational training.

And copious amounts of deliberate practice have been claimed to be the real factor leading

to world-class performance [76, 77, 58].

• Experience on the job. This is easy to measure, at least superficially (that is, length of

experience as opposed to quality of experience), but is at best only one of several factors that

affect proficiency.

The conclusion is that

Experimental studies should try to assess the actual proficiency of their subjects, and not just

tag them as “students” or count their years of experience.

4.4 Experience and Proficiency

Even if experience is only one factor contributing to proficiency, it could still be that they are

highly correlated. It is not at all clear that experience is necessarily correlated with proficiency in

4The graphic on the cover (Figure 33-1 from the book) shows the range to be 1 to 4.18, more than double the range

of 1 to 2.36 for product complexity which is the next factor. But a factor of 4.18 is actually less than twice a factor of

2.36.

24



all cases: developers with many years of experience may still be mediocre, while relative novices

may be very proficient. Thus years of experience, while easy to measure, may turn out to be a poor

predictive attribute [28]. Also, even if more skilled developers may be more efficient in term of

time, their work may not necessarily be of higher quality [83].

It is also important to note that “experience” is by definition limited to those domains and

methodologies in which an individual has worked. Thus it was found that professionals did not

produce higher-quality code than students when the experiment involved using a methodology with

which they did not have any prior experience, in this case test-driven development [153]. Likewise,

advanced students did not have an edge over novices when confronted with obfuscated code, which

was beyond the scope of their previous experiences [55]. But strange counter examples also exist:

Carver et al. have found that inspectors with non-computer-science degrees found more require-

ments defects than those with computer science degrees [53]. Another interesting and complicated

interaction was discovered by Basili and Selby [15]. They found that for professional develop-

ers code reading was more effective than either black-box testing or statement coverage. With

students, however, they did not find such clear results, and in one experiment all three methods

were indistinguishable. This result is especially noteworthy given that the professional developers’

main prior experience had been with functional testing, not with code reading. In other words,

the advantage delivered by code reading depended in some indirect way on the experience of the

professional developers.

Sonnentag et al. provide a deep discussion of the differences between experienced develop-

ers and highly-performing developers [175]. For example they claim that experienced developers

tend to spend more time than inexperienced ones on program comprehension and on clarifying

requirements, perhaps due to having experienced situations where this was a problem (a similar

trait has been observed for engineers in general [10]). Highly performing developers, on the other

hand, tend to spend less time on program comprehension, possibly because they “get it” faster. An

earlier study on high performers identified several differences between them and more mediocre

performers, but emphatically years of experience was not one of them [174]. However, it should

be noted that these results pertain to the comparison of professionals who were all experienced,

and not to the comparison of experienced professionals to novice students.

An interesting observation is that the effect of experience is not linear. Sackman et al. ran an

early experiment of debugging time in online vs. offline settings. This included an initial assess-

ment of aptitude before taking part in the experiment itself. The result was that the aptitude test

had a good correlation with the experiment results for trainees, but not so for professionals with an

average of 7 years experience. In discussing this they speculated “that general programming skill

may dominate early training and initial on-the-job experience, but that such skill is progressively

transformed and displaced by more specialized skills with increasing experience” [151]. Thirty

years later Sonnentag also showed that years of experience were not correlated with differences in

performance for professionals, while citing results claiming that experience is indeed important for

students [174]. This can be interpreted as suggesting that students are still acquiring knowledge,

whereas seasoned professionals have already reached a plateau in their capabilities. Similar ob-

servations were reported by Bergersen et al. [28]. These results agree with the “laws of practice”,

which state that initially, when one lacks experience, every additional bit of experience makes a

25



significant contribution, but when one is already experienced, the marginal benefit from additional

experience is much reduced [137, 91].

While experience may certainly contribute to capability and change how problems are tack-

led, it seems that using years of experience or employment are an overly simplistic metric

for qualifications. In particular, beyond several years of experience individual differences

probably become more important than differences in experience.

At the very highest levels of performance, experience is not enough. For example, the seminal

work of Simon on chess masters indicated that the most highly skilled needed to have invested a

significant time in obtaining experience, but not that anyone who invests such time automatically

becomes a master [166]. Similar findings have been uncovered in many other fields as well [76].

Rather, deliberate practice is needed, meaning extensive repeated practice directed specifically at

those areas in which you are not yet proficient, and directed by a mentor who provides candid

feedback [77, 57, 58]. While investing time is also required (ten years and 10,000 hours is often

cited as a minimum), it is how this time is used that is really important. But in an ironic twist of

affairs, this also explains why such top-notch expert performance is largely irrelevant in normal

contexts: deliberate practice is not fun [76, 58], so most people do not engage in it. In the specific

context of software engineering experiments, we are more often interested in studying “normal”

practitioners than those who have the exceptional capacity to push themselves to the limit.

4.5 Assessing the Level of Proficiency

Assessing the proficiency of experimental subjects is important for several reasons [110, 136]:

• First, it may enable us to claim that the results are relevant to a general setting, based on an

evaluation showing that the subjects possess a representative level of proficiency.

• Second, in the context of designing the experiment, we can verify that groups of subjects

using different treatments are not biased in terms of ability. We may even use this to screen

candidates so as to reduce the variance in capabilities, and avoid mixing subjects with differ-

ent performance levels. Such mixing — which occurs naturally due to the large variability

in individual capabilities — increases the dispersion of results for each treatment, and may

mask the underlying differences due to the different treatments. This is especially problem-

atic with small numbers of subjects.

• Third, by quantifying the proficiency of different subjects, we can assess whether there exists

an interaction between the experimental treatment and the level of proficiency [30]. For ex-

ample, this will tell us whether using a certain method or tool is more beneficial for proficient

developers, for mediocre ones, or for novices.

• Moreover, identifying the specific strengths and weaknesses of individual subjects [2] may

uncover additional interactions and help avoid construct validity issues.

26



A Major issue is of course how to design tests with good discrimination power, which will

effectively identify and rank the students (or other experimental subjects) on a scale from the most

proficient to the less so. Moreover, software design tasks are typically ill-defined, meaning that

the problem specification is incomplete and discovered as part of the solution process [175]. As

a result there is no single correct solution. Therefore evaluations of programming and develop-

ment proficiency must contend with the need to evaluate the quality of the results. Tests therefore

sometimes focus on small well-defined tasks rather than the general development process.

In the 1960s IBM devised the programmer aptitude test, which was designed to aid in the

evaluation of job candidates5. This is actually more of a standard IQ test, with questions about

completing series of numbers, series of shapes, and high-school arithmetic word problems; it has

nothing to do directly with programming. Nevertheless, this and some other tests became used

by a large percentage of the industry, and led to the formation of the ACM special interest group

on Computer Personnel Research (SIGCPR) [131]. However, the tests’ ability to predict on-job

programming performance was debated.

Some ideas about assessing programming ability have been gleaned based on analyses of the

Advanced Placement Computer Science A tests administered in the United States by the College

Board, a private company tasked with developing and administrating various standardized tests.

This is a large-scale test offered to high-school students, meant to be commensurate with the level

achieved following a first-semester college course in Java.

The first analysis of such test results was performed by Reges, who analyzed the 1988 test

results [143]. Interestingly, he found that five specific questions had non-trivial correlations with all

the rest, and therefore provide a good indication for overall success. (The question with the highest

correlation was “If b is a Boolean variable, then the statement b := (b = false) has what effect?”,

and made it to the title of Reges’s paper.) It was speculated that these questions thus capture some

core elements of computer science understanding. The same data was later re-analyzed by Lam

et al., who concluded that questions with legal code snippets in them were those that had the best

correlation with other questions (and hence with overall score) [115]. However, this is tainted by

the fact that nearly two thirds of the questions were in this category. They also identified questions

about arrays, linked lists, compilers, and recursion as having relatively high correlations. Questions

about invariants or including type definitions had relatively strong negative correlations.

A more detailed analysis was conducted by Lewis et al. using the results of the 2004 and 2008

tests [121]. Note that the tests had of course changed since 1988. For example, the programming

language used was switched to Java. More importantly, more questions included code in them,

and by 2009 this applied to fully 95% of the test. Therefore having code could not be considered

a discriminatory characteristic of different questions. This study failed to recognize any specific

common features in questions that are better at discriminating among test participants, even though

such questions were indeed identified.

In a related vein, Ma et al. studied the results of first year students learning to program in

Java. They claim that a strong correlation exists between final grades and holding valid mental

5J. L. Hughes and W. J. McNamara, IBM Programmer Aptitude Test (Revised), Form Number 120-6762-2. A scan

is available at URL http://ed-thelen.org/comp-hist/IBM-ProgApti-120-6762-2.html.

27



models of value and reference assignments [127]. Likewise, Simon et al. claim that the ability

to clearly articulate a problem-solving strategy is a good predictor of success in competence tests

[165]. These examples imply that the tests indeed measure deeper understanding and not only

superficial technical competence. But Bayman and Mayer report a contrary finding, where many

novice programmers had misconceptions about what various BASIC statements do despite being

able to pass tests [21]. Also, the old study by Sackman et al. found little correlation between grades

in tests and no-job performance [151].

In the context of empirical software engineering research, the idea is to use a separate common

pretest task which is done by all subjects to form a baseline for comparison [9]. Then different

subjects do different treatments, and their results are compared with their performance on the com-

mon initial task. This has the additional beneficial attribute that the pretest measures performance

directly, and avoids all the confounding factors related to experience, education, and motivation.

Pretesting has been used in several studies, but surprisingly there has been very little work on

devising the tests. A specific test to measure programming skill has recently been proposed and

validated by Bergersen et al. [31]. This involves 12 Java programming tasks, and takes several

hours, so it is suitable for only large experiments. Importantly, it combines scores for quality of

the solution with the time needed to achieve this solution [29].

It has also been suggested that the pretest can focus on specific relevant aspects of proficiency

and knowledge [51, 112, 2]. But one should be aware of a dangerous loop. In many cases, pro-

ficiency is included as one of the independent variables that may affect and explain performance

differences. But if the test used to assess proficiency is similar in any way to the experimental

procedure being investigated, this may lead to a meaningless finding that those who are better at

performing the test are also better at performing the related experiment. For example, Bateson et al.

set out to show that experienced programmers (students who had taken more than 3 programming

courses) have better memory and problem solving skills than novices (students who had taken up

to 3 programming courses), by using tasks and questions similar to those used in final exams of

programming courses [19]. While they found that the experienced subjects did better, this pro-

vides little information beyond the observation that students retain at least some of what they had

learned. It is therefore necessary to devise general proficiency tests which are independent of the

issues being studied [42].

Siegmund et al. studied the use of background questions for assessing programming-related

proficiency. To do this they considered the correlation between answers to various potential ques-

tions and performance in 10 program comprehension tasks, based on the assumption that more

capable subjects should be able to perform better [162]. The result was that the highest correlation

was obtained for the question “On a scale from 1 to 10, how do you estimate your programming

experience?” (Spearman correlation coefficient of ρ = 0.539), and the second highest was for the

question “How do you estimate your programming experience compared to your class mates?”

(ρ = 0.403). The question about years of programming experience led to a somewhat lower yet

statistically significant correlation (ρ = 0.359). Questions about level of education (e.g. number of

courses) led to much lower and statistically insignificant correlation.

Kleinschmager and Hanenberg likewise compared the use of pre-experiment tests, grades in

university courses, and self-assessment by the subjects themselves, in two separate experiments

28



involving 20 and 21 students. In both cases the self-estimates allowed them to divide the students

into three groups, such that the performance of the top and bottom groups were significantly dif-

ferent [110]. Course grades and pre-testing did not lead to such results; for example, in one of

the experiments students with lower grades in programming courses actually performed better in

the experiment. Thus in their admittedly limited sample using grades or tests were not better than

relying on the self assessment of the subjects. This may be explained by students studying together

having a better notion of how they really compare with each other. But it is not clear that such self

assessment would work equally well in a more general setting.

A third related study, by Aranda et al., found that self assessment of expertise was not correlated

with effectiveness (ρ between −0.01 and −0.05), and might suffer from over-estimation bias [6].

In this case experience fared slightly better, but again the sample size was small.

The bottom line of this discussion is that

It is hard to devise a good proficiency test, and more work on this is issue is required. For

the time being, self-assessment appears to be a reasonably good option.

4.6 Limitations of Controlled Experiments

In the preceding sections we discussed the meaning of being a student and the need for tests

which differentiate experimental subjects according to their abilities. Here we consider another

dimension of the problem altogether: what controlled experiments can be used for. The idea is

that if controlled experiments are in general of limited scope, then maybe it is acceptable for the

experimental subjects to be limited too.

We have already noted above that controlled experiments in software engineering are often

chastised for using toy problems (e.g. Figure 1 and the related discussion). The reason for using

tasks with very limited scope is to keep the experiments tractable, allowing subjects to complete

them in a relatively short time, and enabling the collection of results from multiple subjects in

the interest of statistical power. But it is plausible that there are issues which simply cannot be

investigated using such controlled experiments, because they cannot be condensed into a suitably

limited framework.

One example for this is the effect and possible benefits of test-first development. Test-first de-

velopment is a component of agile methodology, and in particular of Extreme Programming (XP)

[22]. A meta-study conducted by Bannerman and Martin showed that half of the 6 controlled ex-

periments investigating this issue using students found that test-first led to faster progress, and a

solid majority found that it had no effect on quality [11]. Conversely, of 11 studies using profes-

sionals, which were predominantly case studies, 4 found that test first was slower, and 8 found that

it led to higher quality. Thus the results interacted not only with the experimental subjects, but also

with the study type, and perhaps the different results were not due to using students but due to us-

ing controlled experiments. In a related vein, di Bella et al. argue that studying pair programming

— a basic component of XP — should be done by observing industrial developers in action over a

prolonged period rather than using small test cases in controlled experiments [67].

More generally, it seems to be agreed that controlled experiments are ill-suited to answer the

“big questions”, such as the benefits of object-oriented programming and agile development, the

29



patterns of software evolution, and so on. These issues encompass an extremely wide and compli-

cated set of factors and interactions, and really come into play mostly over extended periods and

large projects. This realization has led to the growth of the whole field of mining software reposi-

tories as part of performing case study research, often augmented by surveys of professionals, and

leading to theory building.

Furthermore, controlled experiments can also not be used when studying professional work

practices and the dynamics of large-scale software development, e.g. the communication between

different teams taking part in a project [64]. Thus

Assuming we accept that controlled experiments are limited to relatively small, focused, and

well-defined tasks, the expertise of experimental subjects may be of limited importance and

students may be suitable.

4.7 Other Issues and Confounding Factors

The obsession with the question of using students as experimental subjects may mask other impor-

tant factors. First, as we have discussed extensively, it may actually be the wrong question, because

what we are really interested in is probably proficiency. Second, there are other potentially impor-

tant factors that receive much less attention, such as sex, personality, and mood [89, 86].

In describing empirical studies one often includes demographic data such as the number of male

and female subjects, but most often this is not used as an independent variable when analyzing the

results. One exception is the work on program reading patterns by Sharafi et al., in the context of

a study on different identifier styles. Specifically, they write that “male and female subjects follow

different comprehension strategies: female subjects seem to carefully weight all options and spend

more time to rule out wrong answers while male subjects seem to quickly set their minds on some

answers, possibly the wrong ones” [158].

Unlike age and sex, the personality of experimental subjects is typically not assessed in the

context of controlled experiments. This does not mean that it is not important. Personality can be

characterized in various ways. One of them is the Myers-Briggs personality type notation, which

consists of a combination of 4 letters [66]:

E/I denotes being and extrovert or introvert. Extroverts thrive on human interaction, whereas

introverts tend to be loners.

S/N denotes relying on the senses to obtain information, or alternatively relying more on intuition.

T/F denotes the way decisions are reached: either thinking it out logically, or based on feelings

and the opinions of others.

J/P denotes using judgment to plan everything in advance, as opposed to using perception and

being more spontaneous and flexible.

Such classifications have been used to classify programmers and check whether their personality

affects their performance. For example, Capretz studied a sample of 100 software engineers and

found that a full 24% of them were of ISTJ type, more than double the rate in the general population

30



[47]. The most significant dimension was T/F, with 81% being thinking to only 19% feeling. Fol-

lowup work suggested that different personality types are suitable for different roles and different

stages in the software lifecycle [48]. Conversely, Turley and Bieman found that among exceptional

software engineers (albeit a small sample) half were INTJ, that is, using intuition rather than sens-

ing information, and 85% overall were thinking types [181]. Bishop-Clark and Wheeler conducted

a study showing that sensing (S) students performed better than intuitive (N) students, and judging

(J) students were better than perceptive (P) students, but only on programming tasks and not in

final grades [35]. Similar studies have implicated personality types in the success of pair program-

ming [25, 186, 152] and in code reviews [66]. Finally, Turley and Bieman claim that when trying

to classify software engineers into exceptional and nonexceptional ones, general personality traits

such as “helps others” and “willing to confront others” were among the dominant discriminant

factors [181].

Personality and sex are attributes of experimental subjects which may be just as important as

expertise.

The subjects being used are an important attribute of controlled experiments, but there are oth-

ers [72]. According to Votta and Porter, empirical research in software engineering must contend

with 3 dimensions [184]:

• Individuals vs. groups

• Students vs. professionals

• Lab conditions vs. real life

We have focused on the second of these, and extended the discussion to also include different

levels of proficiency. But this may not be the most important dimension. Controlled experiments

nearly always use subjects working individually, and in laboratory conditions, namely tackling

well-defined problems of modest size. This may be cause for significant threats to external validity.

Working in groups may be different. First there is the issue of division of labor, where each

developer needs to focus on only part of the problem. This also facilitates a measure of special-

ization, allowing different developers to become experts in their individual areas of responsibility.

Second, group dynamics and interactions facilitate cross fertilization and the exchange of ideas,

ideally leading to a situation where the whole group performs better than the sum of its individual

participants. Thus the social context has an effect on how people work [145]. Conversely, per-

sonality clashes may come into effect in groups and disrupt their progress, an effect that would

not occur when developers work individually. To account for such effects, Basili and Zelkowitz

suggest to perform a series of experiments progressing from individual programmers to groups,

and from students to industrial professionals [18].

Likewise, there are possible interactions with problem size. The toy systems used in experi-

ments may be unrepresentative of real problems encountered in professional work. In particular,

it has been observed that real complex problems are needed to bring out the advantage of exper-

tise [155]. Putting these two aspects together, Damian et al. report on research showing that team

31



members with different roles and different domain knowledge hold the key to effective functional

communication in a project [64]. This study naturally relied on observations, interviews, and sur-

veys of professional practitioners involved in multi-team projects, and could not be done with

students in a lab.

However, one should also not exaggerate the importance of working in groups or on large and

complex problems. The importance of these factors may depend on the study. When studying code

comprehension, for example, individuals and limited code may well suffice. When studying tool

usage individuals again may suffice, but the amount of code needed may be larger in order to bring

out the benefits of using the tool. Then there is the question of whether we are seeking relative

results (a comparison of two methodologies to see which is better) or more precise absolute ones.

The study context, e.g. working in a group or in real-life conditions, may perhaps be more

important than attributes of experimental subjects.

4.8 Compensation by Experimental Procedures

The main perceived problem with using students, as articulated in many of the works cited above,

is that they are inexperienced and therefore not representative. Another problem is the danger

that there will be a very wide range of results, and that this variability would swamp out the

experimental effects [62]. Therefore such variability needs to be controlled or at least factored out,

by using appropriate experimental methodology.

An interesting approach to reduce the adverse effects of conducting experiments with inex-

perienced students was suggested by Carver et al. [50]. The concern was that when evaluating a

new technology the students are too low on the learning curve, so their achievements will not be

representative of professionals who spend more time to learn the new approach. The suggested

solution was to divide the students into pairs, and conduct the study twice: first one performs the

task and the other observes, and then they switch roles and do it again. The measurement is done

only on the second time. The first is used only to accelerate the learning by providing hands-on

experience.

Another interesting alternative for assessing the effect of experience is to do so in reverse.

Bednarik and Tukiainen identified two strategies of performing comprehension tasks in their eye-

tracking study [24]. So they retroactively divided the study participants according to the strategy

(in particular, how many program animation runs they used), and analyzed the background data on

the two groups that were produced. The results were that participants in one group had significantly

more previous programming experience than participants in the other group, and also included the

two professional programmers that had participated in the study.

Regarding the effect of the large variability of results, using students may actually reduce the

variability because they all have about the same level of education, leading to better statistical

characteristics [17, 112]. Nevertheless, one should always apply an independent test of general

proficiency and filter outliers to reduce variability. Alternatively, it may be possible to create teams

with the same mix of proficiencies, e.g. by identifying the top-performing students and distributing

them among the teams [13].

32



Brooks suggests the use of within-subject experimental designs to compensate for differences

in ability [42]. Variance is reduced and the analysis is indeed improved by analyzing the distri-

bution of within-subject differences between the treatments, rather than trying to first characterize

the performance for each treatment individually [119, chap. 11]. Within subject designs are a spe-

cial case of block designs, where levels of the uninteresting factor (in our case, the experience or

proficiency of experimental subjects) are randomly balanced across experimental treatments. This

and other approaches to statistical analysis are discussed at length by Juristo and Moreno [101].

A problem with such analyses is that traditionally the analysis was based on assumptions relating

to the normality of the data. However, robust alternatives that apply to any distribution are also

available [189, 190].

The advantage of within-subject designs stems from the fact that each subject is exposed to

all the different levels of the treatment. Thus, if a certain subject’s abilities are either above or

below the norm, this will apply to all the treatments in the same way. However, if the task being

performed is the same, there is a significant risk of a learning effect [108]. In the first instance

the subject needs to contend both with a new task and with the specific treatment being used, but

in the second instance the task is already known, so only effects of the treatment remain. Using

different tasks eliminates the learning effect, but introduces the task as a new (and possibly no

better) confounding factor.

It is desirable to focus on within-subject differences when mixed populations of subjects are

used, provided learning effects can be ruled out.

Finally, an important experimental tool is replication. In particular, external replication (that

is, replication by other researchers) is considered an especially effective technique to increase

confidence in a result. This increase in confidence is contingent on the unavoidable variations

between the original and the replication, which show that the observed effect is indeed robust. In

the context of software engineering experiments, a major element of this variability is the use of

different experimental subjects [161, 103, 81]. And in particular, replications using professionals

can increase the confidence in student-based results.

4.9 Students Explicitly Desired

Nearing the end of this discussion, we consider a special case of software engineering experimen-

tation which explicitly targets novices, e.g. to see how certain tools may help them to perform

certain tasks despite lack of prior knowledge or experience [109]. In such situations is may actu-

ally be appropriate to focus on undergraduate students and exclude more mature students in order

to reduce the variability in the subjects’ level of experience.

For example, Liu et al. describe a tool called InsRefactor which is designed to help novice

programmers refactor their code and resolve code smells [123]. The idea is to proactively alert

them to code smells as they are created, rather than leaving it up to them to request information

about code smells retroactively. To investigate the effectiveness of this tool a controlled experiment

with two groups of students was used. Similarly, Fernandez et al. used students to test a usability

33



inspection tool integrated into a web development process, and explicitly justify this by citing “the

intention ... to provide a Web usability evaluation method which enables inexperienced evaluators

to perform their own usability evaluations” [82]. A third example is the work of van Heesch et al.,

who studied the degree to which documentation helps junior designers [182]. And Busjahn et al.

use novice students specifically as a contrast to experienced professionals, to show how experience

affects code reading patterns [46].

Briand et al. conducted a study of how quality guidelines affect maintainability, using students

as subjects [39, 38]. In particular, they identify the cognitive complexity of object-oriented designs

as a potential problem. While they frankly note that this causes a threat to external validity as it is

not clear that the results generalize beyond inexperienced students, they argue that inexperienced

programmers are often assigned to maintenance tasks, and therefore student subjects are actually

appropriate in this case.

Another situation where students are explicitly needed is in the evaluation of educational tools

and procedures. One example is the study by Runeson concerning the effectiveness of PSP (Per-

sonal Software Process) training [150]. He found that the improvements from PSP level 0 to PSP

level 2 was similar for freshmen and for graduate students. Another example is described by Janzen

et al. [97]. This is a study of an educational platform called WebIDE which was used to teach in-

troductory Java and Android programming. A controlled experiment was used to compare a group

of students who used this platform with another group who used a more conventional lab setting.

A third example is a study on the effect of internship on on-job performance [70]. In this case

two groups of interns were assessed for five months as they used agile methods on projects in the

telecom industry.

Finally, Kuzniarz et al. suggest that the worst-case experiment for a new methodology or tool

is when subjects know about the (established) experimental alternative but not about the new treat-

ment [113]. Under this scenario a positive effect regarding the experimental treatment is especially

convincing. And students are especially suitable for such experiments, as their lack of experience

increases the chance that they do not know of the new treatment.

5 Recommendations Regarding Using Students

As expanded in Section 6 below, our main conclusion is that the issue of using students as experi-

mental subjects should not be the factor which determines whether an empirical study is considered

worthwhile. Students may be used beneficially in controlled experiments in many cases, and as far

as their availability leads to conducting more such experiments their use may catalyze significant

contributions to software engineering research. But there are indeed cases where students would

be inappropriate.

The main consideration regarding the use of students is that their level should be matched to

the requirements of the study being performed. This leads to the following more specific recom-

mendations:

1. Studies of problems in beginning to program, programming education, or non-programmer

34



end-user assessment can use novice students (in their first year, after one programming

course).

2. Studies that do not require an extensive learning curve can use intermediate students (toward

the end of their BSc, but with no industrial experience). In effect such students can be

expected to have similar capabilities as beginning professional developers, leading to valid

relative results when comparing straightforward tools or methodologies.

3. More precise quantitative studies or those requiring more experience may use advanced stu-

dents (graduate students in a programming-related program and/or with industrial experi-

ence). However, it is always advisable to assess them individually and not count on their

schooling and experience alone — and this applies also to non-student subjects. Training

should be provided as appropriate.

Students should generally not be used in studies that depend on specific expertise which requires

significant experience and a long learning curve to achieve, or in studies of professional practices.

Such studies are best performed by observing and interviewing professionals, not by controlled

experiments.

All the above is from the scientific and experimental point of view. But using students also

has ethical aspects. Ethical concerns usually relate to avoiding inflicting any harm on the experi-

mental subject or on society at large, and on informed and voluntary consent to participate in the

experiment. This is regulated by Institutional Review Boards (IRBs) [106].

In the context of student participation in software engineering experiments there is no real dan-

ger of causing actual harm to the students, but some have voiced concern regarding harm to their

academic progress. Therefore, especially when experiments are carried out as part of compulsory

classes, they should have educational goals [49, 27]. Examples include the opportunity to learn or

exercise some technique or methodology, being exposed to cutting-edge ideas and procedures, cre-

ating awareness of difficulties and trade-offs, providing industrial-like experience, and first-hand

learning about empirical methods. Evidence that participation in experiments indeed contributes

to students’ education has been provided by Staron [176].

Still, using students in experiments should be done subject to ethical considerations [167, 49,

52]. For example, could the students have learned the same things more efficiently in some other

way? Is it fair and reasonable to grade them on their performance in an experiment, especially

if they were divided into groups that used different treatments? Is it reasonable to give academic

credit for participation in experiments? Some of these concerns can be mitigated by giving stu-

dents feedback after the experiment is completed, so they see how their participation added to the

knowledge in the field.

The issue of informed consent is also problematic in a classroom setting, as students may

refrain from opposing suggestions or requests from their professors [167]. Thus at a minimum one

needs to uphold anonymity, and allow the option to opt out, thereby negating the fear of influence

on grades. Thus the ethical point of view in this matter coincides with the methodological view

that coercion to participate in an experiment may lead to unreliable results — a problem that can

occur also in an industrial setting, and is not unique to academia. Indeed, it is in general necessary

35



not to mix experimental observations with evaluations of performance. Gathered data should not

be used to evaluate subjects outside of the study context.

6 Conclusions

Using students in software engineering experiments is often cited as a problem, because students

constitute a convenience sample: they are selected for the study because they are easily available

to the researcher, and because they are cheap, regardless of whether they are representative of the

target population in general. This is a far cry from the ideal of using random sampling, where study

participants can be argued to truly represent the target population. As a result many researchers

(and reviewers) have reservations about the external validity of student-based experiments, claim-

ing there is no reason to believe that the results generalize beyond the original study population.

Conversely, it has been claimed that in many contexts using student subjects is actually valid.

While the students are not a valid representative statistical sample of software professionals, they

can be viewed as the next generation of professionals [109, 179]. So students are perfectly suitable

when the study does not require a steep learning curve for using new technology [17, 153]. More-

over, using industry professionals or web-based volunteers is usually not any better, because these

techniques too cannot guarantee a valid random sample of the general software practitioner popu-

lation. And in any case there are also wide differences in background, experience, and capabilities

among practitioners.

The main conclusions of this review are summarized in Table 3. Taken together, the overar-

ching message is that “can students be used as experimental subjects?” is not the right question.

First and foremost, the goal should be that the observed effect be representative of the real effect,

rather than that the experimental subjects be representative of real developers. But even this is an

over-simplification, because it assumes that there is a single real effect. As a research community,

we need to embrace variability and collect much more data from diverse conditions.

Reviewing the literature on the subject indicates that “students vs. professionals” is actually a

misrepresentation of the confounding effect of proficiency, and in fact differences in performance

are much more important than differences in status [175, 172]. It is reasonable to assume that there

indeed exists a big difference between complete novices and graduating students, but after three

or four semesters students are already reasonable experimental subjects for general studies. It is

possible that upon starting employment there is another large increase in capabilities, but this may

be more focused on the specific technologies used in the individual place of work. Indeed, a major

problem in experimental software engineering is the differences between individual experimental

subjects. Such differences suggest the need for a basic proficiency test as part of the experimental

setup [79, 163]. But it is not easy to come up with a simple and discriminating test.

Given the difficulty in measuring proficiency, experience is often used as a proxy, under the

assumption that more experience is equivalent to higher proficiency. This may be true for relative

beginners (students and new professionals), but more senior professionals may reach a plateau

where additional experience does not lead to significant additional improvements [174]. Still, it is

important to acknowledge that expertise (typically emanating from experience) does in fact lead

36



Table 3: Summary of main observations and recommendations.

1. The level of the experimental subjects (students or otherwise) should be commensurate

with the tasks they are expected to perform

2. Graduate students and even students at the end of their BSc have similar proficiency to

industrial professionals for general programming tasks

3. In many cases experiments with student subjects lead to the correct relative results,

even if they are generally slower or less proficient than professionals

4. Students are naturally suitable when studying novices

5. Subjects with experience with the tools or techniques being studied are required when

there is a long learning curve to use them effectively; in some cases adequate training

sessions should be provided

6. Studies of how experts tackle complex problems require real experts, but also real

problems; performing them is especially difficult, and alternatives such as case studies

should be considered

7. When the effect of proficiency is the focus of study, subjects should be assessed indi-

vidually rather than being assigned by degree or affiliation

8. Academic studies with students can be profitably used in initial steps of larger industrial

collaboration research efforts

9. One can compensate for different levels of proficiency by using within-subject experi-

mental designs, provided there is no danger of learning effects

10. Subjects should want to participate in the experiment. Students or professionals who

are told to participate may be problematic.

11. Experience is just one factor that may affect proficiency, and it may be important to

consider others as well (e.g. sex or personality)

12. When using students as experimental subjects,

• Student subjects should not be identified and their performance in the experiment

should not affect their grades

• Participation in experiments should not be compulsory for students unless the

experiment has clear educational benefits

37



to different behaviors in some cases. Thus professionals (or experienced developers) are needed

when maturity such as in tool usage is potentially part of the setup. Inexperienced students don’t

use tools as much, even if they could benefit from them more [55].

Special care should be taken when claims about interactions with experience or proficiency are

made. One possible problem is confounding proficiency-based filtering with the results, such that

subjects identified as less proficient will necessarily perform worse. Another is that claimed results

about the effect of experience, e.g. that a tool helps inexperienced developers more, may not be

convincing because not enough experienced developers were available to compare with, and it may

be the case that the tool helps for everyone [148].

The alternative to using students is to recruit industrial professionals. This may be hard to do:

one either has to pay them a competitive fee, or at least schedule experiments so as not to interfere

with their normal work schedule [168, 69, 183]. Therefore it is important to make the best use of

this scarce resource. One repeated suggestion is to conduct a pilot study first, based on students,

and only then move to the “real” study with professionals [169, 49, 85, 18]. Using students first

allows to both test and debug the experimental procedure, and to justify the extra effort of using

professionals [17, 52, 179].

Another issue is where the experiment is run: maybe conducting it in an industrial setting is

even more important than using professionals [168, 72, 69]. But companies are often reluctant

to support this for lack of immediate tangible benefits. This is short sighted, as industry can also

benefit from participating in studies [49]. Specifically, by allowing employees to participate in

academic experiments they obtain early evidence to confirm or refute hypotheses about method-

ologies and technologies; they learn about new ones; they obtain knowledge of the procedures,

costs, and benefits of empirical software engineering; and they learn about their own process and

people (in observational/survey studies). One can also view experiments as training [114] or tech-

nology transfer [122, 12, 18, 85], and possibly use internship in the company as a vehicle [54],

which may later aid in recruitment.

It is important to note that the issue of using students is but one aspect of empirical software

engineering studies. There are many other methodological issues that are no less important. One

issue that is often problematic is using appropriate statistical tools. This starts with the most basic,

for example the need to show full data distributions, or at least box plots, and not make do with

averages of widely dispersed data points with skewed or bimodal distributions. It continues with

using modern and non-parametric techniques that are not compromised by data which does not fit

model assumptions like normality [189, 190].

There is also significant need for more experimentation in general [180, 178]. A literature

study of the period 1993–2002 found that controlled experiments papers represent only 1.9% of

all 4543 papers that were examined [170]. Indeed, too many results in the literature, which are

then accepted as “facts”, are actually based on a single experiment in a specific setting with few

subjects conducted many years ago. A selection of interesting examples is provided by Glass [84],

including the often-quoted 28:1 ratio in performance between the best and worse programmers,

which is actually based on a study of debugging performance from 1968 using a grand total of 21

subjects [151].

Discussions and arguments for external validity of individual studies cannot replace actual

38



experimental evidence. In particular, it is ludicrous to expect any single study to reveal the full

picture or even a significant part of the picture of a research topic. Rather, each individual study

should be regarded as a pixel. Moreover, at least some of them should be targeted at basic science

issues with no immediate practical relevance. The full picture can then emerge when we have

enough replications of enough diverse studies — orders of magnitude more than we have now —

to step back and observe the underlying currents and revealed patterns.

To obtain the required evidence many more replications are needed, as opposed to branching

into innovative uncharted territory. Moreover, different levels of replications should be employed

[81, 103, 161]. This includes variations in the experimental artifacts and the approach in addition

to using different experimental subjects. Experimental validity can only be obtained by using all

of these in tandem.

And finally returning to the issue of students as experimental subjects, our understanding of

using different experimental subjects will improve with more empirical work on the effects of

experience and expertise, and specifically on what makes highly-performing developers different

and how expertise develops or can be promoted [76, 175, 71, 155]. This line of work is more

meaningful than comparing students to professionals.

Acknowledgments

This research was supported by the ISRAEL SCIENCE FOUNDATION (grant no. 407/13). Many

thanks to Lutz Prechelt for his very useful comments on an earlier draft of this paper, and to

anonymous reviewers of another draft.

References

[1] S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora, “Assessing the effective-

ness of sequence diagrams in the comprehension of functional requirements: Results from

a family of five experiments”. IEEE Trans. Softw. Eng. 39(3), pp. 327–342, Mar 2013, DOI:

10.1109/TSE.2012.27.

[2] S. T. Acuña, N. Juristo, and A. M. Moreno, “Emphasizing human capabilities in software

development”. IEEE Softw. 23(2), pp. 94–101, Mar-Apr 2006, DOI: 10.1109/MS.2006.47.

[3] B. Adelson, “When novices surpass experts: The difficulty of a task may increase with

expertise”. J. Exp. Psych.: Learning, Memory, and Cognition 10(3), pp. 483–495, Jul 1984,

DOI: 10.1037/0278-7393.10.3.483.

[4] B. Adelson and E. Soloway, “The role of domain experience in software design”. IEEE

Trans. Softw. Eng. SE-11(11), pp. 1351–1360, Nov 1985, DOI: 10.1109/TSE.1985.231883.

[5] A. Ahadi and R. Lister, “Geek genes, prior knowledge, stumbling points and learning edge

momentum: Parts of one elephant?” In 9th Intl. Computing Education Research, pp. 123–

128, Aug 2013, DOI: 10.1145/2493394.2493416.

39



[6] A. Aranda, O. Dieste, and N. Juristo, “Evidence of the presence of bias in subjective metrics:

Analysis within a family of experiments”. In 18th Intl. Conf. Evaluation & Assessment in

Softw. Eng., art. no. 24, May 2014, DOI: 10.1145/2601248.2601291.

[7] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact of UML documentation

on software maintenance: An experimental evaluation”. IEEE Trans. Softw. Eng. 32(6), pp.

365–381, Jun 2006, DOI: 10.1109/TSE.2006.59.

[8] E. Arisholm, H. Gallis, T. Dybå, and D. I. K. Sjøberg, “Evaluating pair programming with

respect to system complexity and programmer expertise”. IEEE Trans. Softw. Eng. 33(2),

pp. 65–86, Feb 2007, DOI: 10.1109/TSE.2007.17.

[9] E. Arisholm and D. I. K. Sjøberg, “Evaluating the effect of a delegated versus centralized

control style on the maintainability of object-oriented software”. IEEE Trans. Softw. Eng.

30(8), pp. 521–534, Aug 2004, DOI: 10.1109/TSE.2004.43.

[10] C. J. Atman, R. S. Adams, M. E. Cardella, J. Turns, S. Mosborg, and J. Saleem, “Engi-

neering design processes: A comparison of students and expert practitioners”. J. Eng. Educ.

96(4), pp. 359–379, Oct 2007, DOI: 10.1002/j.2168-9830.2007.tb00945.x.

[11] S. Bannerman and A. Martin, “A multiple comparative study of test-with development prod-

uct changes and their effects on team speed and product quality”. Empirical Softw. Eng.

16(2), pp. 177–210, Apr 2011, DOI: 10.1007/s10664-010-9137-5.

[12] V. R. Basili, “The experimental paradigm in software engineering”. In Experimental Soft-

ware Engineering Issues: Critical Assessment and Future Directions, pp. 3–12, Springer-

Verlag, 1993, DOI: 10.1007/3-540-57092-6 91. Lect. Notes Comput. Sci. vol. 706.

[13] V. R. Basili, L. C. Briand, and W. L. Melo, “How reuse influences productiv-

ity in object-oriented systems”. Comm. ACM 39(10), pp. 104–116, Oct 1996, DOI:

10.1145/236156.236184.

[14] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sørumgård, and M. V.

Zelkowitz, “The empirical investigation of perspective-based reading”. Empirical Softw.

Eng. 1(2), pp. 133–164, Jan 1996, DOI: 10.1007/BF00368702.

[15] V. R. Basili and R. W. Selby, “Comparing the effectiveness of software testing

strategies”. IEEE Trans. Softw. Eng. SE-13(12), pp. 1278–1296, Dec 1987, DOI:

10.1109/TSE.1987.232881.

[16] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in software

engineering”. IEEE Trans. Softw. Eng. SE-12(7), pp. 733–743, Jul 1986, DOI:

10.1109/TSE.1986.6312975.

[17] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge through families of

experiments”. IEEE Trans. Softw. Eng. 25(4), pp. 456–473, Jul/Aug 1999, DOI:

10.1109/32.799939.

[18] V. R. Basili and M. V. Zelkowitz, “Empirical studies to build a science of computer science”.

Comm. ACM 50(11), pp. 33–37, Nov 2007, DOI: 10.1145/1297797.1297819.

40



[19] A. G. Bateson, R. A. Alexander, and M. D. Murphy, “Cognitive processing differences

between novice and expert computer programmers”. Intl. J. Man-Machine Studies 26(6),

pp. 649–660, Jun 1987, DOI: 10.1016/S0020-7373(87)80058-5.

[20] D. Batra and J. G. Davis, “Conceptual data modelling in database design: Similarities and

differences between expert and novice designers”. Intl. J. Man-Machine Studies 37(1), pp.

83–101, Jul 1992, DOI: 10.1016/0020-7373(92)90092-Y.

[21] P. Bayman and R. E. Mayer, “A diagnosis of beginning programmers’ misconceptions

of BASIC programming statements”. Comm. ACM 26(9), pp. 677–679, Sep 1983, DOI:

10.1145/358172.358408.

[22] K. Beck, “Embracing change with extreme programming”. Computer 32(10), pp. 70–77,

Oct 1999, DOI: 10.1109/2.796139.

[23] R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen, “Effects of experience on gaze behav-

ior during program animation”. In 17th Workshop of Psychology of Programming Interest

Group, pp. 49–61, Jun 2005.

[24] R. Bednarik and M. Tukiainen, “An eye-tracking methodology for characterizing porgram

comprehension processes”. In 4th Symp. Eye Tracking Res. & App., pp. 125–132, Mar 2006,

DOI: 10.1145/1117309.1117356.

[25] A. Begel and N. Nagappan, “Pair programming: What’s in it for me?” In 2nd

Intl. Symp. Empirical Softw. Eng. & Measurement, pp. 120–128, Oct 2008, DOI:

10.1145/1414004.1414026.

[26] A. Begel and B. Simon, “Novice professionals: Recent graduates in a first software engi-

neering job”. In Making Software, A. Oram and G. Wilson (eds.), chap. 26, pp. 495–516,

O’Reilly, 2011.

[27] P. Berander, “Using students as subjects in requirements prioritization”. In Intl. Symp. Em-

pirical Softw. Eng., pp. 167–176, Aug 2004, DOI: 10.1109/ISESE.2004.1334904.

[28] G. R. Bergersen and J.-E. Gustafsson, “Programming skill, knowledge, and working mem-

ory among professional software developers from an investment theory perspective”. J. In-

dividual Differences 32(4), pp. 201–209, Nov 2011, DOI: 10.1027/1614-0001/a000052.

[29] G. R. Bergersen, J. E. Hannay, D. I. K. Sjøberg, T. Dybå, and A. Karahasanović, “In-

ferring skill from tests of programming performance: Combining time and quality”. In

5th Intl. Symp. Empirical Softw. Eng. & Measurement, pp. 305–314, Sep 2011, DOI:

10.1109/ESEM.2011.39.

[30] G. R. Bergersen and D. I. K. Sjøberg, “Evaluating methods and technologies in software

engineering with respect to developer’s skill level”. In 16th Intl. Conf. Evaluation & As-

sessment in Softw. Eng., pp. 101–110, May 2012, DOI: 10.1049/ic.2012.0013.

[31] G. R. Bergersen, D. I. K. Sjøberg, and T. Dybå, “Construction and validation of an instru-

ment for measuring programming skill”. IEEE Trans. Softw. Eng. 40(12), pp. 1163–1184,

Dec 2014, DOI: 10.1109/TSE.2014.2348997.

41



[32] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif, “The impact of

identifier style on effort and comprehension”. Empirical Softw. Eng. 18(2), pp. 219–276,

Apr 2013, DOI: 10.1007/s10664-012-9201-4.

[33] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To CamelCase or under score”.

In 17th Intl. Conf. Program Comprehension, pp. 158–167, May 2009, DOI:

10.1109/ICPC.2009.5090039.

[34] B. Bishop and K. McDaid, “Spreadsheet debugging behaviour of expert and novice end-

users”. In 4th Intl. Workshop End-User Software Engineering, pp. 56–60, May 2008, DOI:

10.1145/1370847.1370860.

[35] C. Bishop-Clark and D. D. Wheeler, “The Myers-Briggs personality type and its relationship

to computer programming”. J. Res. Computing in Education 26(3), pp. 358–370, Spring

1994, DOI: 10.1080/08886504.1994.10782096.

[36] B. W. Boehm, Software Engineering Economics. Prentice-Hall, 1981.

[37] R. Bornat, S. Dehnadi, and Simon, “Mental models, consistency and programming apti-

tude”. In 10th Australasian Comput. Education Conf., pp. 53–61, Jan 2008.

[38] L. C. Briand, C. Bunse, and J. W. Daly, “A controlled experiment for evaluating quality

guidelines on the maintainability of object-oriented designs”. IEEE Trans. Softw. Eng. 27(6),

pp. 513–530, Jun 2001, DOI: 10.1109/32.926174.

[39] L. C. Briand, C. Bunse, J. W. Daly, and C. Differding, “An experimental comparison of the

maintainability of object-oriented and structured design documents”. Empirical Softw. Eng.

2(3), pp. 291–312, Sep 1997, DOI: 10.1023/A:1009720117601.

[40] L. C. Briand, Y. Labiche, M. Di Penta, and H. D. Yan-Bondoc, “An experimental inves-

tigation of formality in UML-based development”. IEEE Trans. Softw. Eng. 31(10), pp.

833–849, Oct 2005, DOI: 10.1109/TSE.2005.105.

[41] L. C. Briand, J. Wüst, and H. Lounis, “Replicated case studies for investigating quality

factors in object-oriented designs”. Empirical Softw. Eng. 6(1), pp. 11–58, Mar 2001, DOI:

10.1023/A:1009815306478.

[42] R. E. Brooks, “Studying programmer behavior experimentally: The problems of proper

methodology”. Comm. ACM 23(4), pp. 207–213, Apr 1980, DOI: 10.1145/358841.358847.

[43] J.-M. Burkhardt, F. Détienne, and S. Wiedenbeck, “Mental representations constructed by

experts and novices in object-oriented program comprehension”. In Human-Computer In-

teraction, pp. 339–346, Jul 1997, DOI: 10.1007/978-0-387-35175-9 55.

[44] J.-M. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-oriented program comprehen-

sion: Effect of expertise, task and phase”. Empirical Softw. Eng. 7(2), pp. 115–156, Jun

2002, DOI: 10.1023/A:1015297914742.

[45] R. P. L. Buse, C. Sadowsky, and W. Weimer, “Benefits and barriers of user evaluation in

software engineering research”. In Object-Oriented Prog. Syst., Lang., & Appl. Conf. Proc.,

pp. 643–656, Oct 2011, DOI: 10.1145/2076021.2048117.

42



[46] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif, and

S. Tamm, “Eye movements in code reading: Relaxing the linear order”. In 23rd Intl. Conf.

Program Comprehension, May 2015.

[47] L. F. Capretz, “Personality types in software engineering”. Intl. J. Human-Comput.

58(2), pp. 207–214, Feb 2003, DOI: 10.1016/S1071-5819(02)00137-4.

[48] L. F. Capretz and F. Ahmed, “Making sense of software development and personality types”.

IT Professional 12(1), pp. 6–13, Jan-Feb 2010, DOI: 10.1109/MITP.2010.33.

[49] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using students in empirical studies

in software engineering education”. In 9th Softw. Metrics Symp., pp. 239–249, Sep 2003,

DOI: 10.1109/METRIC.2003.1232471.

[50] J. Carver, F. Shull, and V. Basili, “Observational studies to accelerate process experience

in classroom studies: An evaluation”. In Intl. Symp. Empirical Softw. Eng., pp. 72–79, Sep

2003, DOI: 10.1109/ISESE.2003.1237966.

[51] J. Carver, J. VanVoorhis, and V. Basili, “Understanding the impact of assumptions on ex-

perimental validity”. In Intl. Symp. Empirical Softw. Eng., pp. 251–260, Aug 2004, DOI:

10.1109/ISESE.2004.1334912.

[52] J. C. Carver, L. Jaccheri, S. Morasca, and F. Shull, “A checklist for integrating student

empirical studies with research and teaching goals”. Empirical Softw. Eng. 15(1), pp. 35–

59, Feb 2010, DOI: 10.1007/s10664-009-9109-9.

[53] J. C. Carver, N. Nagappan, and A. Page, “The impact of educational background on the

effectiveness of requirements inspections: An empirical study”. IEEE Trans. Softw. Eng.

34(6), pp. 800–812, Nov/Dec 2008, DOI: 10.1109/TSE.2008.49.

[54] A. Čaušević, R. Shukla, and S. Punnekkat, “Industrial study on test driven development:

Challenges and experience”. In 1st Intl. Workshop Conducting Empirical Studies in Indus-

try, pp. 15–20, May 2013, DOI: 10.1109/CESI.2013.6618464.

[55] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and P. Tonella, “A family

of experiments to assess the effectiveness and efficiency of source code obfuscation tech-

niques”. Empirical Softw. Eng. 19(4), pp. 1040–1074, Aug 2014, DOI: 10.1007/s10664-

013-9248-x.

[56] P. H. Cheney, “Effects of individual characteristics, organizational factors and task charac-

teristics on computer programmer productivity and job satisfaction”. Inf. & Management

7(4), pp. 209–214, Aug 1984, DOI: 10.1016/0378-7206(84)90020-X.

[57] G. Colvin, “What it takes to be great”. Fortune 154(9), 30 Oct 2006.

[58] G. Colvin, Talent Is Overrated: What Really Separates World-Class Performers from Ev-

erybody Else. Portfolio, 2008.

[59] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons play in comprehension for

novice and expert programmers”. In 14th Workshop Psychology of Programming Interest

Group, pp. 58–73, Jun 2002.

43



[60] B. Curtis, “Substantiating programmer variability”. Proc. IEEE 69(7), p. 846, Jul 1981,

DOI: 10.1109/PROC.1981.12088.

[61] B. Curtis, “By the way, did anyone study any real programmers?” In 1st Workshop Empiri-

cal Studies of Programmers, pp. 256–262, 1986.

[62] B. Curtis, “A career spent wading through industry’s empirical ooze”. In 2nd Intl.

Workshop Conducting Empirical Studies in Industry, pp. 1–2, Jun 2014, DOI:

10.1145/2593690.2593699.

[63] B. Curtis, S. B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D. A. Boehm-Davis, “Experi-

mental evaluation of software documentation formats”. J. Syst. & Softw. 9(2), pp. 167–207,

Feb 1989, DOI: 10.1016/0164-1212(89)90019-8.

[64] D. Damian, R. Helms, I. Kwan, S. Marczak, and B. Koelewijn, “The role of domain knowl-

edge and cross-functional communication in socio-technical coordination”. In 35th Intl.

Conf. Softw. Eng., pp. 442–451, May 2013, DOI: 10.1109/ICSE.2013.6606590.

[65] M. Daun, A. Salmon, T. Weyer, and K. Pohl, “The impact of students’ skills and experiences

on empirical results: A controlled experiment with undergraduate and graduate students”.

In 19th Intl. Conf. Evaluation & Assessment in Softw. Eng., art. no. 29, Apr 2015, DOI:

10.1145/2745802.2745829.

[66] A. Devito Da Cunha and D. Greathead, “Does personality matter? an analy-

sis of code-review ability”. Comm. ACM 50(5), pp. 109–112, May 2007, DOI:

10.1145/1230819.1241672.

[67] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and J. Vlasenko, “Pair program-

ming and software defects—a large, industrial case study”. IEEE Trans. Softw. Eng. 39(7),

pp. 930–953, Jul 2013, DOI: 10.1109/TSE.2012.68.

[68] M. Di Penta, R. E. K. Stirewalt, and E. Kraemer, “Designing your next empirical study on

program comprehension”. In 15th Intl. Conf. Program Comprehension, pp. 281–285, Jun

2007, DOI: 10.1109/ICPC.2007.17.

[69] O. Dieste, N. Juristo, and M. D. Martı́nez, “Software industry experiments: A systematic

literature review”. In 1st Intl. Workshop Conducting Empirical Studies in Industry, pp. 2–8,

May 2013, DOI: 10.1109/CESI.2013.6618462.

[70] S. C. dos Santos and F. S. Soares, “Authentic assessment in software engineering education

based on PBL principles”. In 35th Intl. Conf. Softw. Eng., pp. 1055–1062, May 2013, DOI:

10.1109/ICSE.2013.6606655.

[71] S. E. Dreyfus and H. L. Dreyfus, A Five-Stage Model of the Mental Activities Involved in

Directed Skill Acquisition. Tech. Rep. ORC-80-2, Operations Research Center, University

of California, Berkeley, Feb 1980.

[72] T. Dybå, D. I. K. Sjøberg, and D. S. Cruzes, “What works for whome, where, when, and

why? on the role of context in empirical software engineering”. In Intl. Symp. Empirical

Softw. Eng. & Measurement, pp. 19–28, Sep 2012, DOI: 10.1145/2372251.2372256.

44



[73] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical evaluation of the costs

and benefits of UML in software maintenance”. IEEE Trans. Softw. Eng. 34(3), pp. 407–

432, May/Jun 2008, DOI: 10.1109/TSE.2008.15.

[74] A. Ebrahimi, “Novice programmer errors: Language constructs and plan composition”. Intl.

J. Human-Computer Studies 41(4), pp. 457–480, Oct 1994, DOI: 10.1006/ijhc.1994.1069.

[75] D. E. Egan, “Individual differences in human-computer interaction”. In Handbook of

Human-Computer Interaction, M. Helander (ed.), chap. 24, pp. 543–568, Elsevier Science

Publishers B. V. (North-Holland), 1988.

[76] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer, “The role of deliberate practice in the

acquisition of expert performance”. Psychological Rev. 100(3), pp. 363–406, Jul 1993, DOI:

10.1037/0033-295X.100.3.363.

[77] K. A. Ericsson, M. J. Prietula, and E. T. Cokely, “The making of an expert”. Harvard

Business Rev. Jul-Aug 2007.

[78] K. Falkner, C. Szabo, R. Vivian, and N. Falkner, “Evolution of software develop-

ment strategies”. In 37th Intl. Conf. Softw. Eng., pp. 243–252, May 2015, DOI:

10.1109/ICSE.2015.153.

[79] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Measuring program-

ming experience”. In 20th Intl. Conf. Program Comprehension, pp. 73–82, Jun 2012, DOI:

10.1109/ICPC.2012.6240511.

[80] D. G. Feitelson, “Experimental computer science: The need for a cultural change”. URL

http://www.cs.huji.ac.il/˜feit/papers/exp05.pdf, 2005.

[81] D. G. Feitelson, “From repeatability to reproducibility and corroboration”. Operating Syst.

Rev. 49(1), pp. 3–11, Jan 2015, DOI: 10.1145/2723872.2723875.

[82] A. Fernandez, S. Abrahão, and E. Insfran, “Empirical validation of a usability inspection

method for model-driven web development”. J. Syst. & Softw. 86(1), pp. 161–186, Jan 2013,

DOI: 10.1016/j.jss.2012.07.043.

[83] D. Fucci, B. Turhan, and M. Oivo, “On the effects of programming and testing skills

on external quality and productivity in a test-driven development context”. In 19th

Intl. Conf. Evaluation & Assessment in Softw. Eng., art. no. 25, Apr 2015, DOI:

10.1145/2745802.2745826.

[84] R. L. Glass, Facts and Fallacies of Software Engineering. Addison-Wesley, 2003.

[85] T. Gorschek, C. Wohlin, P. Garre, and S. Larsson, “A model for technology transfer in

practice”. IEEE Softw. 23(6), pp. 88–95, Nov/Dec 2006, DOI: 10.1109/MS.2006.147.

[86] D. Graziotin, X. Wang, and P. Abrahamsson, “Happy software developers solve problems

better: Psychological measurements in empirical software engineering”. PeerJ 2, art. no.

e289, Mar 2014, DOI: 10.7717/peerj.289.

45



[87] L. Gugerty and G. M. Olson, “Comprehension differences in debugging by skilled and

novice programmers”. In 1st Workshop Empirical Studies of Programmers, pp. 13–27, 1986.

[88] M. Guzdial, “Why is it so hard to learn to program?” In Making Software, A. Oram and

G. Wilson (eds.), pp. 111–124, O’Reilly Media Inc., 2011.

[89] J. E. Hannay, “Personality, intelligence, and expertise: Impacts on software development”.

In Making Software, A. Oram and G. Wilson (eds.), pp. 79–110, O’Reilly Media Inc., 2011.

[90] J. E. Hannay and M. Jørgensen, “The role of deliberate artificial design elements in software

engineering experiments”. IEEE Trans. Softw. Eng. 34(2), pp. 242–259, Mar/Apr 2008, DOI:

10.1109/TSE.2008.13.

[91] A. Heathcote, S. Brown, and D. J. K. Mewhort, “The power law repealed: The case for an

exponential law of practice”. Psychonomic Bulletin & Review 7(2), pp. 185–207, Jun 2000,

DOI: 10.3758/BF03212979.

[92] J. Henrich, S. J. Heine, and A. Norenzayan, “The weirdest people in the world?” Behavioral

and Brain Sciences 33(2-3), pp. 61–83, Jun 2010, DOI: 10.1017/S0140525X0999152X.

[93] C. E. Hmelo-Silver, S. Marathe, and L. Liu, “Fish swim, rocks sit, and lungs breathe:

Expert–novice understanding of complex systems”. J. Learning Sci. 16(3), pp. 307–331,

2007, DOI: 10.1080/10508400701413401.

[94] C. E. Hmelo-Silver and M. G. Pfeffer, “Comparing expert and novice understanding of a

complex system from the perspective of structures, behaviors, and functions”. Cognitive

Sci. 28(1), pp. 127–138, Jan-Feb 2004, DOI: 10.1016/S0364-0213(03)00065-X.

[95] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—a comparative study of

students and professionals in lead-time impact assessment”. Empirical Softw. Eng. 5(3), pp.

201–214, Nov 2000, DOI: 10.1023/A:1026586415054.

[96] M. Jackson, Software Requirements & Specifications: A Lexicon of Practice, Principles and

Prejudices. ACM Press and Addison-Wesley, 1995.

[97] D. S. Janzen, J. Clements, and M. Hilton, “An evaluation of interactive test-driven labs

with WebIDE in CS0”. In 35th Intl. Conf. Softw. Eng., pp. 1090–1098, May 2013, DOI:

10.1109/ICSE.2013.6606659.

[98] A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled experiments in soft-

ware engineering”. In Intl. Symp. Empirical Softw. Eng., pp. 95–104, Nov 2005, DOI:

10.1109/ISESE.2005.1541818.

[99] R. Jeffries, A. A. Turner, P. G. Polson, and M. E. Atwood, “The processes involved in

designing software”. In Cognitive Skills and Their Acquisition, J. R. Anderson (ed.), pp.

255–283, Lawrence Erlbaum Assoc., 1981.

[100] J. Jung, K. Hoefig, D. Domis, A. Jedlitschka, and M. Hiller, “Experimental comparison of

two safety analysis methods and its replication”. In Intl. Symp. Empirical Softw. Eng. &

Measurement, pp. 223–232, Oct 2013, DOI: 10.1109/ESEM.2013.59.

46



[101] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimentation. Kluwer,

2001.

[102] N. Juristo and S. Vegas, “Functional testing, structural testing and code reading: What fault

type do they each detect?” In Empirical Methods and Studies in Software Engineering:

Experiences from ESERNET, R. Conradi and A. I. Wang (eds.), pp. 208–232, Springer-

Verlag, 2003, DOI: 10.1007/978-3-540-45143-3 12. Lect. Notes Comput. Sci. vol. 2765.

[103] N. Juristo and S. Vegas, “The role of non-exact replications in software engineering exper-

iments”. Empirical Softw. Eng. 16(3), pp. 295–324, Jun 2011, DOI: 10.1007/s10664-010-

9141-9.

[104] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman, “Identifying student mis-

conceptions of programming”. In 41st SIGCSE Tech. Symp. Comput. Sci. Ed., pp. 107–111,

Mar 2010, DOI: 10.1145/1734263.1734299.

[105] H. Kahney, “What do novice programmers know about recursion”. In SIGCHI Conf. Human

Factors in Comput. Syst., pp. 235–239, Dec 1983, DOI: 10.1145/800045.801618.

[106] J. L. King, “Humans in computing: Growing responsibilities for researchers”. Comm. ACM

58(3), pp. 31–33, Mar 2015, DOI: 10.1145/2723675.

[107] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Sys-

tematic literature reviews in software engineering — a systematic literature review”. Inf. &

Softw. Tech. 51(1), pp. 7–15, Jan 2009, DOI: 10.1016/j.infsof.2008.09.009.

[108] B. Kitchenham, J. Fry, and S. Linkman, “The case against cross-over design in software

engineering”. In 11th Softw. Technology & Engineering Practice, pp. 65–67, Sep 2003,

DOI: 10.1109/STEP.2003.32.

[109] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam,

and J. Rosenberg, “Preliminary guidelines for empirical research in software engineering”.

IEEE Trans. Softw. Eng. 28(8), pp. 721–734, Aug 2002, DOI: 10.1109/TSE.2002.1027796.

[110] S. Kleinschmager and S. Hanenberg, “How to rate programming skills in programming

experiments? a preliminary, exploratory study based on university marks, pretests, and self-

estimation”. In 3rd Workshop Evaluation & Usability of Prog. Lang. & Tools, pp. 15–24,

Oct 2011, DOI: 10.1145/2089155.2089161.

[111] M. Klerer, “Experimental study of a two-dimensional language vs Fortran for first-

course programmers”. Int. J. Man-Machine Stud. 20(5), pp. 445–467, May 1984, DOI:

10.1016/S0020-7373(84)80021-8.

[112] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to controlled experiments

of software engineering tools with human participants”. Empirical Softw. Eng. 20(1), pp.

110–141, Feb 2015, DOI: 10.1007/s10664-013-9279-3.

[113] L. Kuzniarz, M. Staron, and C. Wohlin, “Students as study subjects in software engineering

experimentation”. In 3rd Conf. Softw. Eng. Res. & Pract. Sweden, pp. 19–24, 2003.

47



[114] O. Laitenberger and J.-M. DeBaud, “Perspective-based reading of code documents at Robert

Bosch GmbH”. Inf. & Softw. Tech. 39(11), pp. 781–791, 1997, DOI: 10.1016/S0950-

5849(97)00030-X.

[115] A. J. Lam, C. M. Lewis, C. L. Lu, I. B. Ornstein, and D. Wang, “Classifying problems to

explain patterns of correlation on the 1988 advanced placement computer science exam”. J.

Computing Sciences in Colleges 27(4), pp. 112–119, Apr 2012.

[116] C. F. J. Lange and M. R. V. Chaudron, “Effects of defects in UML models – an exper-

imental investigation”. In 28th Intl. Conf. Softw. Eng., pp. 401–411, May 2006, DOI:

10.1145/1134285.1134341.

[117] T. D. LaToza and B. A. Myers, “Developers ask reachability questions”. In 32nd Intl. Conf.

Softw. Eng., vol. 1, pp. 185–194, May 2010, DOI: 10.1145/1806799.1806829.

[118] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code”. In Evaluation &

Usability of Prog. Lang. & Tools, art. no. 8, Oct 2010, DOI: 10.1145/1937117.1937125.

[119] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis. McGraw-Hill, 3rd ed.,

2000.

[120] T. C. Lethbridge, “A survey of the relevance of computer science and software engi-

neering education”. In 11th Conf. Softw. Eng. Education, pp. 56–66, Feb 1998, DOI:

10.1109/CSEE.1998.658300.

[121] C. M. Lewis, H. Khayrallah, and A. Tsai, “Mining data from the AP CS A exam: Patterns,

non-patterns, and replication failure”. In 9th Intl. Computer Education Research Conf., pp.

115–122, Aug 2013, DOI: 10.1145/2493394.2493415.

[122] S. Linkman and H. D. Rombach, “Experimentation as a vehicle for software technology

transfer–a family of software reading techniques”. Inf. & Softw. Tech. 39(11), pp. 777–780,

1997, DOI: 10.1016/S0950-5849(97)00029-3.

[123] H. Liu, X. Guo, and W. Shao, “Monitor-based instant software refactoring”. IEEE Trans.

Softw. Eng. 39(8), pp. 1112–1126, Aug 2013, DOI: 10.1109/TSE.2013.4.

[124] R. G. Lord and K. J. Maher, “Alternative information-processing models and their implica-

tions for theory, research, and practice”. Acad. Mgmt. Rev. 15(1), pp. 9–28, Jan 1990, DOI:

10.5465/AMR.1990.4308219.

[125] K. M. Lui and K. C. C. Chan, “Pair programming productivity: Novice-novice vs.

expert-expert”. Intl. J. Human-Computer Studies 64(9), pp. 915–925, Sep 2006, DOI:

10.1016/j.ijhcs.2006.04.010.

[126] J. Lung, J. Aranda, S. Easterbrook, and G. Wilson, “On the difficulty of replicating human

subjects studies in software engineering”. In 30th Intl. Conf. Softw. Eng., pp. 191–200, May

2008, DOI: 10.1145/1368088.1368115.

[127] L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating the viability of mental models

held by novice programmers”. In 38th SIGCSE Symp. Comput. Sci. Education, pp. 499–503,

Mar 2007, DOI: 10.1145/1227504.1227481.

48



[128] S. Madison and J. Gifford, “Modular programming: Novice misconceptions”. J. Res. Tech.

Ed. 34(3), pp. 217–229, 2002, DOI: 10.1080/15391523.2002.10782346.

[129] M. d. A. Maia and R. F. Lafetá, “On the impact of trace-based feature location in the per-

formance of software maintainers”. J. Syst. & Softw. 86(4), pp. 1023–1037, Apr 2013, DOI:

10.1016/j.jss.2012.12.032.

[130] M. V. Mäntylä and C. Lassenius, “What types of defects are really discovered in

code reviews?” IEEE Trans. Softw. Eng. 35(3), pp. 430–448, May-Jun 2009, DOI:

10.1109/TSE.2008.71.

[131] D. B. Mayer and A. W. Stalnaker, “Selection and evaluation of computer personnel – the

research history of SIG/CPR”. In 23rd ACM Natl. Conf., pp. 657–670, Aug 1968, DOI:

10.1145/800186.810630.

[132] S. McConnell, “What does 10x mean? measuring variations in programmer productivity”.

In Making Software, A. Oram and G. Wilson (eds.), pp. 567–573, O’Reilly Media Inc.,

2011.

[133] K. B. McKeithen, J. S. Reitman, H. H. Reuter, and S. C. Hirtle, “Knowledge organization

and skill differences in computer programmers”. Cognitive Pshchol. 13(3), pp. 307–325,

Jul 1981, DOI: 10.1016/0010-0285(81)90012-8.

[134] D. A. McMeekin, B. R. von Konsky, M. Robey, and D. J. A. Cooper, “The significance

of participant experience when evaluating software inspection techniques”. In Australian

Softw. Eng. Conf., pp. 200–209, Apr 2009, DOI: 10.1109/ASWEC.2009.13.

[135] M. Mărăşoiu, L. Church, and A. Blackwell, “An empirical investigation of code completion

usage by professional software developers”. In 26th Workshop Psycology of Programming

Interest Group, pp. 71–82, Jul 2015.

[136] G. J. Myers, “A controlled experiment in program testing and code walk-

throughs/inspections”. Comm. ACM 21(9), pp. 760–768, Sep 1978, DOI:

10.1145/359588.359602.

[137] A. Newell and P. S. Rosenbloom, “Mechanisms of skill acquisition and the law of practice”.

In Cognitive Skills and Their Acquisition, J. R. Anderson (ed.), pp. 1–55, Lawrence Erlbaum

Assoc., 1981.

[138] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People, organizations, and process

improvement”. IEEE Softw. 11(4), pp. 36–45, Jul 1994, DOI: 10.1109/52.300082.

[139] A. Porter and L. Votta, “Comparing detection methods for software requirements inspec-

tions: A replication using professional subjects”. Empirical Softw. Eng. 3(4), pp. 355–379,

Dec 1998, DOI: 10.1023/A:1009776104355.

[140] A. A. Porter, L. G. Votta, Jr., and V. R. Basili, “Comparing detection methods for software

requirements inspections: A replicated experiment”. IEEE Trans. Softw. Eng. 21(6), pp.

563–575, Jun 1995, DOI: 10.1109/32.391380.

49



[141] L. Prechelt, “Comparing Java vs. C/C++ efficiency differences to interpersonal differences”.

Comm. ACM 42(10), pp. 109–112, Oct 1999, DOI: 10.1145/317665.317683.

[142] L. Prechelt and B. Unger, “An experiment measuring the effects of Personal Software

Process (PSP) training”. IEEE Trans. Softw. Eng. 27(5), pp. 465–472, May 2001, DOI:

10.1109/32.922716.

[143] S. Reges, “The mystery of “b := (b = false)””. In 39th SIGCSE Tech. Symp. Computer

Science Education, pp. 21–25, Mar 2008, DOI: 10.1145/1352322.1352147.

[144] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato, “How developers’ experi-

ence and ability influence web application comprehension tasks supported by UML stereo-

types: A series of four experiments”. IEEE Trans. Softw. Eng. 36(1), pp. 96–118, Jan/Feb

2010, DOI: 10.1109/TSE.2009.69.

[145] T. R. Riedl, J. S. Weitzenfeld, J. T. Freeman, G. A. Klein, and J. Musa, “What we have

learned about software engineering expertise”. In Software Engineering Education, J. E.

Tomayko (ed.), pp. 261–270, Springer-Verlag, 1991, DOI: 10.1007/BFb0024298. Lect.

Notes Comput. Sci. vol. 536.

[146] M. P. Robilard, W. Coelho, and G. C. Murphy, “How effective developers investigate source

code: An exploratory study”. IEEE Trans. Softw. Eng. 30(12), pp. 889–903, Dec 2004, DOI:

10.1109/TSE.2004.101.

[147] A. Robins, “Learning edge momentum: A new account of outcomes in CS1”. Comput. Sci.

Education 20(1), pp. 37–71, Mar 2010, DOI: 10.1080/08993401003612167.

[148] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej, “Monitoring user interac-

tions for supporting failure reproduction”. In 21st Intl. Conf. Program Comprehension, pp.

73–82, May 2013, DOI: 10.1109/ICPC.2013.6613835.

[149] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers

comprehend software?” In 34th Intl. Conf. Softw. Eng., pp. 255–265, Jun 2012, DOI:

10.1109/ICSE.2012.6227188.

[150] P. Runeson, “Using students as experiment subjects – an analysis on graduate and freshmen

student data”. In 7th Intl. Conf. Empirical Assessment in Softw. Eng., pp. 95–102, Apr 2003.

[151] H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory experimental studies comparing

online and offline programming performance”. Comm. ACM 11(1), pp. 3–11, Jan 1968,

DOI: 10.1145/362851.362858.

[152] N. Salleh, E. Mendes, J. Grundy, and G. S. J. Burch, “An empirical study of the effects of

personality in pair programming using the five-factor model”. In 2nd Intl. Symp. Empirical

Softw. Eng. & Measurement, pp. 214–225, Oct 2009, DOI: 10.1109/ESEM.2009.5315997.

[153] I. Salman, A. Tosun Misirli, and N. Juristo, “Are students representative of professionals

in software engineering experiments?” In 37th Intl. Conf. Softw. Eng., pp. 666–676, May

2015, DOI: 10.1109/ICSE.2015.82.

50



[154] F. Salviulo and G. Scanniello, “Dealing with identifiers and comments in source code com-

prehension and maintenance: Results from an ethnographically-informed study with stu-

dents and professionals”. In 18th Intl. Conf. Evaluation & Assessment in Softw. Eng., art.

no. 48, May 2014, DOI: 10.1145/2601248.2601251.

[155] K. D. Schenk, N. P. Vitalari, and K. S. Davis, “Differences between novice and expert

systems analysts: What do we know and what do we do?” J. Mgmt. Inf. Syst. 15(1), pp.

9–50, Summer 1998.

[156] D. Senor and S. Singer, Start-Up Nation. Twelve, 2009.

[157] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y.-G. Guéhéneuc, “An empirical

study on the efficiency of graphical vs. textual representations in requirements compre-

hension”. In 21st Intl. Conf. Program Comprehension, pp. 33–42, May 2013, DOI:

10.1109/ICPC.2013.6613831.

[158] Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, and G. Antoniol, “Women and men — different but

equal: On the impact of identifier style on source code reading”. In 20th Intl. Conf. Program

Comprehension, pp. 27–36, Jun 2012, DOI: 10.1109/ICPC.2012.6240505.

[159] B. Sharif and J. I. Maletic, “An eye tracking study on camelCase and under score iden-

tifier styles”. In 18th Intl. Conf. Program Comprehension, pp. 196–205, Jun 2010, DOI:

10.1109/ICPC.2010.41.

[160] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in programmer behavior: A

model and experimental results”. Intl. J. Comput. & Inf. Syst. 8(3), pp. 219–238, Jun 1979,

DOI: 10.1007/BF00977789.

[161] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of replications in empir-

ical software engineering”. Empirical Softw. Eng. 13(2), pp. 211–218, Apr 2008, DOI:

10.1007/s10664-008-9060-1.

[162] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Measuring and modeling

programming experience”. Empirical Softw. Eng. 19(5), pp. 1299–1334, Oct 2014, DOI:

10.1007/s10664-013-9286-4.

[163] J. Siegmund and J. Schumann, “Confounding parameters on program comprehension:

A literature survey”. Empirical Softw. Eng. 20(4), pp. 1159–1192, Aug 2015, DOI:

10.1007/s10664-014-9318-8.

[164] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external validity in em-

pirical software engineering”. In 37th Intl. Conf. Softw. Eng., pp. 9–19, May 2015, DOI:

10.1109/ICSE.2015.24.

[165] Simon et al., “The ability to articulate strategy as a predictor of programming skill”. In 8th

Australasian Comput. Education Conf., pp. 181–188, Jan 2006.

[166] H. A. Simon and W. G. Chase, “Skill in chess”. American Scientist 61(4), pp. 394–403,

Jul-Aug 1973.

51



[167] J. Singer and N. G. Vinson, “Ethical issues in empirical studies of software en-

gineering”. IEEE Trans. Softw. Eng. 28(12), pp. 1171–1180, Dec 2002, DOI:

10.1109/TSE.2002.1158289.

[168] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanovic, E. F.

Koren, and M. Vokác, “Conducting realistic experiments in software engineering”. In Intl.

Symp. Empirical Softw. Eng., pp. 17–26, Oct 2002, DOI: 10.1109/ISESE.2002.1166921.

[169] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanović, and

M. Vokáč, “Challenges and recommendations when increasing the realism of controlled

software engineering experiments”. In Empirical Methods and Studies in Software En-

gineering: Experiences from ESERNET, R. Conradi and A. I. Wang (eds.), pp. 24–38,

Springer-Verlag, 2003, DOI: 10.1007/978-3-540-45143-3 3. Lect. Notes Comput. Sci. vol.

2765.

[170] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanović, N.-K. Liborg,

and A. C. Rekdal, “A survey of controlled experiments in software engineering”. IEEE

Trans. Softw. Eng. 31(9), pp. 733–753, Sep 2005, DOI: 10.1109/TSE.2005.97.

[171] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå, “Quantifying the

effect of code smells on maintenance effort”. IEEE Trans. Softw. Eng. 39(8), pp. 1144–1156,

Aug 2013, DOI: 10.1109/TSE.2012.89.

[172] Z. Soh, Z. Sharafi, B. Van den Plas, G. Cepeda Porras, Y.-G. Guéhéneuc, and G. Anto-

niol, “Professional status and expertise for UML class diagram comprehension: An em-

pirical study”. In 20th Intl. Conf. Program Comprehension, pp. 163–172, Jun 2012, DOI:

10.1109/ICPC.2012.6240484.

[173] E. Soloway and K. Ehrlich, “Empirical studies of programming knowledge”. IEEE Trans.

Softw. Eng. SE-10(5), pp. 595–609, Sep 1984, DOI: 10.1109/TSE.1984.5010283.

[174] S. Sonnentag, “Expertise in professional software design: A process study”. J. App. Psychol.

83(5), pp. 703–715, Oct 1998, DOI: 10.1037/0021-9010.83.5.703.

[175] S. Sonnentag, C. Niessen, and J. Volmer, “Expertise in software design”. In The Cambridge

Handbook of Expertise and Expert Performance, K. A. Ericsson, N. Charness, P. J. Fel-

tovich, and R. R. Hoffman (eds.), pp. 373–387, Cambridge University Press, 2006.

[176] M. Staron, “Using students as subjects in experiments – a quantitative analysis of the influ-

ence of experimentation on students’ learning process”. In 20th Conf. Softw. Eng. Education

& Training, pp. 221–228, Jul 2007, DOI: 10.1109/CSEET.2007.56.

[177] M. Svahnberg, A. Aurum, and C. Wohlin, “Using students as subjects — an empirical eval-

uation”. In 2nd Intl. Symp. Empirical Softw. Eng. & Measurement, pp. 288–290, Oct 2008,

DOI: 10.1145/1414004.1414055.

[178] W. F. Tichy, “Should computer scientists experiment more?” Computer 31(5), pp. 32–40,

May 1998.

52



[179] W. F. Tichy, “Hints for reviewing empirical work in software engineering”. Empirical Softw.

Eng. 5(4), pp. 309–312, Dec 2000, DOI: 10.1023/A:1009844119158.

[180] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz, “Experimental evaluation in com-

puter science: A quantitative study”. J. Syst. & Softw. 28(1), pp. 9–18, Jan 1995, DOI:

10.1016/0164-1212(94)00111-Y.

[181] R. T. Turley and J. M. Bieman, “Competencies of exceptional and nonexceptional soft-

ware engineers”. J. Syst. & Softw. 28(1), pp. 19–38, Jan 1995, DOI: 10.1016/0164-

1212(94)00078-2.

[182] U. van Heesch, P. Avgeriou, and A. Tang, “Does decision documentation help junior design-

ers rationalize their decisions? a comparative multiple-case study”. J. Syst. & Softw. 86(6),

pp. 1545–1565, Jun 2013, DOI: 10.1016/j.jss.2013.01.057.

[183] S. Vegas, O. Dieste, and N. Juristo, “Difficulties in running experiments in the software in-

dustry: Experiences from the trenches”. In 3rd Intl. Workshop Conducting Empirical Studies

in Industry, pp. 3–9, May 2015, DOI: 10.1109/CESI.2015.8.

[184] L. G. Votta and A. Porter, “Experimental software engineering: A report on the state of the

art”. In 17th Intl. Conf. Softw. Eng., pp. 277–279, Apr 1995, DOI: 10.1145/225014.225040.

[185] G. S. Walia and J. C. Carver, “Using error abstraction and classification to improve require-

ments quality: Conclusions from a family of four empirical studies”. Empirical Softw. Eng.

18(4), pp. 625–658, Aug 2013, DOI: 10.1007/s10664-012-9202-3.

[186] T. Walle and J. E. Hannay, “Personality and the nature of collaboration in pair program-

ming”. In 3rd Intl. Symp. Empirical Softw. Eng. & Measurement, pp. 203–213, Oct 2009,

DOI: 10.1109/ESEM.2009.5315996.

[187] M. Weiser and J. Shertz, “Programming problem representation in novice and expert

programmers”. Intl. J. Man-Machine Studies 19(4), pp. 391–398, Oct 1983, DOI:

10.1016/S0020-7373(83)80061-3.

[188] S. Wiedenbeck, “Novice/expert differences in programming skills”. Intl. J. Man-Machine

Studies 23(4), pp. 383–390, Oct 1985, DOI: 10.1016/S0020-7373(85)80041-9.

[189] R. Wilcox, Introduction to Robust Estimation & Hypothesis Testing. Academic Press, 3rd

ed., 2012.

[190] R. R. Wilcox, Fundamentals of Modern Statistical Methods: Substantially Improving Power

and Accuracy. Springer, 2nd ed., 2010.

[191] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell relations on software

maintainability: An empirical study”. In 35th Intl. Conf. Softw. Eng., pp. 682–691, May

2013, DOI: 10.1109/ICSE.2013.6606614.

53


