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Abstract

The conventional performance evaluation methodology for parallel system schedulers uses an open
model to generate the workloads used in simulations. In many cases recorded workload traces are
simply played back, assuming that they are reliable representatives of real workloads, and leading to
the expectation that the simulation results actually predict the scheduler’s true performance. We show
that the lack of feedback in these workloads results in performance prediction errors, which may reach
hundreds of percents. We also show that load scaling, as currently performed, further ruins the repre-
sentativeness of the workload, by generating conditions which cannot exist in a real environment. As
an alternative, we suggest a novel site-level modeling evaluation methodology, in which we model not
only the actions of the scheduler but also the activity of users who generate the workload dynamically.
This advances the simulation in a manner that reliably mimics feedback effects found in real sites. In
particular, saturation is avoided because the generation of additional work is throttled when the system
is overloaded. While our experiments were conducted in the context of parallel scheduling, the idea of
site-level simulation is applicable to many other types of systems.

1. Introduction

In the conventional performance evaluation methodology for parallel systems schedulers, a model of
the scheduler is exercised in a simulation using a workload made of a stream of incoming job submission
requests. The source for that stream is usually a trace that was recorded on a real system. At the end of
the simulation, performance metrics collected for the scheduler model are used to predict the scheduler’s
performance in a real environment.

To generate the workload from the trace, the conventional methodology uses an open model, where
the trace is simply replayed according to the timestamps of the submission requests, and there is no
feedback between the completion of jobs and the submission of subsequent jobs. To evaluate the sched-
uler’s performance under different load conditions, the timestamps in the trace are modified before the
simulation begins; inter-submission times are reduced or expanded to increase or decrease the load,
respectively.

Whether the load is modified or not, an underlying premise is that the generated workloads are reliable
representatives of workloads that would be observed by the scheduler in a real environment. We argue
that this is not the case because these workloads lack the feedback effects that naturally exist between
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users and the scheduler, and show this lack of feedback may result in inaccurate performance predictions
of hundreds of percents. We also argue that load scaling as currently performed further ruins the repre-
sentativeness of the workload, by violating precedence relations that existed in the real environment.

To get accurate performance predictions and allow for safe load scaling, we suggest a novelsite-
level modeling evaluation methodology, in which the workload for the simulation isnot generated by
replaying a trace, but dynamically, in a manner that reliably mimics feedback effects found in reality. A
site-level model includes not only the scheduler but also the users who generate the workload. When the
users wait for their jobs to complete, they infuse feedback to the workload generation process, because
the completion of jobs depends on the load in the system and onthe scheduler’s ability to cope with that
load.

To study these feedback effects, we analyzed recorded system traces in an attempt to understand the
way users submit jobs to the scheduler. To our best knowledge, this is the first attempt to extract such
information from traces.

We found that usersjob submission behavior can be modeled usingbatches: groups of jobs submitted
asynchronously, i.e. without waiting for one job to complete before submitting the next, and with short
inter-submission times between them. Furthermore, the jobsubmission model is independent of the
characteristics of the jobs themselves. The latter can be derived using a separate model we named the
workpool model. Together, the two models dynamically generate the stream of jobs to be scheduled.

We implemented all this in theSiteSim framework for site-level simulations. SiteSim enables the
easy development of new job submission and workpool models,combining them in various ways to
change the characteristics of the generated workload, and evaluating different scheduler models using
these workloads in a reliable manner. It also generates a trace of each simulation, which can be used for
conventional simulations. We use these traces to demonstrate the differences between the conventional
and site-level approaches.

This paper is organized as follows: Section 2 describes the conventional performance evaluation
methodology, motivates a new methodology, and describes our novel site-level modeling evaluation
methodology in detail. Sections 3 and 4 describe the job submission behavior and workpool models.
SiteSim is discussed in Section 5. Section 6 describes the experiments we performed to demonstrate
the effect of feedback on evaluations. Section 7 outlines related work, and Section 8 concludes and
discusses future work.

2. Site-Level Modeling

2.1. Background: The Conventional Methodology

Scheduling policies for parallel systems have been the subject of intensive research for many years.
This research is often based on simulations, due to the impracticality of performing evaluations on real
production systems, and the reduced level of detail possible with mathematical analysis. In a simulation,
a model of the scheduler is exercised using a workload made ofa stream of incoming job submission
requests. Such a stream is often generated byreplaying a trace containing a list of submission request
records, that is, records of jobs that were actually submitted to and executed on a production-use parallel
machine.

Within the trace, each submission request has atimestamp which specifies when the job was submit-
ted, and also several attributes that specify the resourcesused by the job. For a space-sharing parallel
machine executing rigid jobs, typical attributes are the job’s size — the number of processors used by
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job, and the job’sruntime — the interval of time during which these processors were used, and thus
were unavailable for other jobs. When the trace is used for simulation, these attributes are treated as the
resourcerequirements of the job. In addition, jobs may have aruntime estimate — a rough estimation
provided by the user and used by the scheduler to plan ahead.

Replaying a trace directly implies anopen model, in which the jobs’ submission rate is dictated by
the timestamps from the trace. Sometimes these timestamps are scaled by a certain factor, so as to
increase or decrease the load. In either case, there is no feedback between the completion of jobs and
the submission of subsequent jobs.

The alternative is aclosed model, having an unconditional feedback between the completion of a job
and the submission of the the next job. For this model, the timestamps in the trace are ignored and
submission requests are issued only after a previous job completes. The problem is that this leads to
extreme regularity: there are no bursts of activity — severely limiting the optimizations that can be
performed by the scheduler, and there is no way to manipulatethe load for the simulation. For these
reasons, the conventional performance evaluation methodology adopted the open model in generating
the workload.

During the simulation statistics are recorded for each individual job. These typically includes the job’s
wait-time — the time the job spent in the scheduler’s queue waiting for processors to become available,
the response-time — the time between submission to completion (wait time + running time), and the
slowdown — the response time normalized by the actual runtime, which shows how much slower the
job ran due to the load on the system. At the end of the simulation, the means for these metrics are
calculated and used as performance metrics.

2.2. Motivating a New Methodology

We argue that workloads generated by replaying traces are not reliable representatives of real work-
loads, because the traces contain asignature of the feedback effects which existed between the users and
their scheduler at the site where trace was recorded, and that replaying that signature during simulation
results in inaccurate performance predictions.

Consider for example a loaded system where jobs wait for a long time in the scheduler’s queue for
processors to become available. Because users often wait for their jobs to complete before submitting
more jobs, such a high load will actually cause the submission rate to decrease, eventually leading to a
decrease in the load. As the load decreases, jobs wait less time in the queue and respond faster, causing
the submission rate to increase again, eventually leading to a higher load, etc.

Figure 1 illustrates that suchself regulation by users (avoid submitting additional jobs if the system is
already overloaded) indeed exists in real workload traces.In these scatter plots, each log is partitioned
into weekly slices. For each slice, the number of jobs submitted is counted. In addition, the average
node-seconds needed by these jobs is tabulated. Plotting one against the other shows that when there are
many jobs, they tend to be smaller; when jobs are heavy, theretend to be fewer of them.

Such feedback effects leave their signature in the trace in the form of timestamps for each submission
request record. When replaying the trace according to thesetimestamps, the generated workload matches
the scheduling policy that was in effect on the traced system, instead of adapting itself to the scheduling
policy being evaluated. This means that the rate of submissions will not decrease if the scheduler model
fails to handle the load, nor will it increase if the model handles the load easily, causing performance
prediction to be underestimated or overestimated.

We also argue that load scaling, as currently performed, further ruins the representativeness of the
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Figure 1. The effect of feedback in real workloads: in weeks w here many jobs are submitted they
tend to be small, and vice versa.

workload, because it generates conditions which cannot exist in a real environment. One example is
the violation of dependencies between job completions and subsequent submissions. As noted above,
users often wait for their jobs to complete before submitting more jobs, which means that some jobs
simply will not reside together in the scheduler’s queue. When scaling the load by modifying the jobs
submission timestamps, submission requests may be issued before the jobs they depend on complete.

Finally, the conventional performance evaluation methodology uses metrics that are conjectured to be
good proxies for user satisfaction, such as the wait time or response time. It does not support a metric
that directly quantifies productivity, such as throughput.This is an inherent problem with open system
models, because in such models the throughput is dictated bythe workload and is not affected by the
scheduler (at least as long as the system is not overloaded).

The methodology we suggest below incorporates feedback into the workload generation processes
to get accurate performance predictions, but unlike the pure closed model discussed above, it postulates
bursts of jobs, allowing the scheduler to perform optimizations. Load scaling is performed in a safe man-
ner that preserves the workload representativeness, and throughput (and hence productivity) becomes a
metric that can be measured.

2.3. Site-Level Modeling Details

We suggest a novelsite-level modeling evaluation methodology to accurately predict the true perfor-
mance of parallel system schedulers. The essence of this methodology is that workloads are generated
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generated by several concurrent user sessions. Each sessio n has a workpool model that defines
the characteristics of the submitted jobs, and a job submiss ion model that defines when they are
submitted and infuses feedback to the workload generation p rocess.

dynamically during the simulation in a manner that reliablymimics feedback effects found in real sites.
This implies that we simulate not only the evaluated scheduler, but also the users, who generate the
workload for the scheduler. During their activity periods,known assessions, users may wait for their
jobs to complete; when they do, they infuses feedback into the workload generation process.

In addition to the scheduler and user models, a complete site-level simulation may also include a
machine model. This may be important because the performance of specific applications may be affected
by the machine’s architecture [18], or by interference fromother jobs [13]. However, such detailed
simulations require much more information about applications and take much longer to run. While we
do not rule this out, and in fact various research efforts have used detailed machine model simulations
[14, 9], in this paper we wish to focus on the feedback effectsrelated to the workload generated by the
users. We therefore assume that job runtimes are not affected by the system state. This assumption is
often made in conventional simulations.

The workload observed by the modeled scheduler at any given time during the simulation is a combi-
nation of workloads generated by all user sessions that are active at that time (Figure 2). A session model
has two components: a job submission behavior model and a workpool model. The job submission be-
havior defines thestructure of the session, i.e. when the user submits more jobs and when he waits for
jobs to complete. The workpool model specifies thecharacteristics of the jobs. Importantly, we found
that these two models are independent of each other. This contributes to the flexibility of the simulation,
allowing to experiment with different models and modify theworkload generated by each session.

Table 1 summarized the difference between the conventionaland site-level evaluation methodologies.
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Category Conventional Site-Level

Evaluation tool Simulation Simulation
Workload source Trace replay Users sessions

Job submissions Trace timestamps
Submission
behavior model

Job characteristics Trace based Workpools model

Load scaling
Trace (de)-
compression

Number of sessions
Submission model

Table 1. Methodology Comparison.
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Figure 3. CDF of think-times. Negative values indicate that one job started before the previous one
completed.

3. Modeling Users Job Submission Behavior

3.1. The Structure of Sessions

Users interact with computer systems in periods of continuous activity known as sessions [8, 1, 19].
For parallel systems schedulers, a session is made of one or more job submissions, and may contains
short periods of time in which none of the user’s jobs are active, i.e., neither waiting in the scheduler’s
queue nor running. These periods of inactivity, known asthink times, are exploited by the user to think
about his previous jobs results, possibly make correctionsand adjustments, and prepare new submis-
sions, all within the same session.

Zilber et al. [19] analyzed several parallel system scheduler traces and classified user sessions. A
preliminary step to extracting sessions data was to determine the session boundaries. This was done by
setting a threshold on the think-time distribution: shorter think times are considered to be think times
within a session, while longer ones are periods of inactivity after which a subsequent submission starts
a new session.

The CDF of think-times for the different traces is shown in Figure 3. The plots show that at about
twenty minutes the CDF stops its steep climb, which means that a large portion of the jobs are submitted
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within twenty minutes of the completion of a previous job — indicating continuous activity periods by
the users. Furthermore, beyond twenty minutes and for rest of the time scale the think-times are evenly
distributed, without any features indicating a natural threshold. Zilber et al. therefore defined sessions
to be sets of jobs submitted within twenty minutes from the completion of the previous job. In our work
we adopt this definition.

Another feature of the think time distribution, which has little importance for session classification,
but is highly important for understanding users’ job submission behavior, is the fact that a major fraction
of the think-times (over 50% for some traces) is below zero. These negative values result from the
definition of think-time asthe time between the completion of the previous job and the submission of the
current job; they indicate that jobs were submitted before the previousjob completed.

With respect to users job submission behavior this means that within sessions, users submit jobs
eithersynchronously or asynchronously. Synchronous submissions are those that may depend on the
completion of previous jobs, as identified by a positive think time. These submissions thus effectively
depend on the load on the system and the scheduler’s ability to handle that load, and provide the desired
feedback. Asynchronous submissions are those that do not wait for the previous job to complete. These
submissions occur regardless of the state of the system.

For the purpose of modeling the users’ job submission behavior, we define abatch to be a set of jobs
submitted asynchronously to one another, and the termbatch-width to denote the number of jobs in the
batch. Using this definition, a single job submitted synchronously is simply a special case batch that has
a width of one.

Batches provide a convenient way to model the way users submit their jobs: a session is made of
a series of one or more batches, where each batch contains oneor more jobs. The time between the
termination of the last job in a batch and the submission of the first job in the next batch must not
exceed twenty minutes — the session’s think-time boundary.Within a batch, all jobs except the first are
submitted before the previous job completes. All this is illustrated in Figure 4.

3.2. Simple Job Submission Behavior Model

To model the users job submission behavior we thus need threesets of data

• The distribution of batch-widths

• The distribution of job inter-submission times within batches

• The distribution of (positive, inter-batch) think-times of up-to twenty minutes
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Figure 5. Distribution of batch-widths.

Data for these distributions can naturally be obtained by analyzing workload traces from different par-
allel machines. Given the data, one can model it by fitting appropriate probability distribution. Alter-
natively, one can use the empirical data directly. As fittingdistributions is secondary to our primary
goal of demonstrating the importance and effect of feedback, we use empirical distributions from the
SDSC-SP2, CTC-SP2 and KTH-SP2 traces in the simulations reported in this paper.

Figure 5 shows the distribution of batch-widths for the three workloads. Obviously the distributions
are quite similar in all the traces, indicating that this data is representative of user job submission behav-
ior in general. The dominating fraction of batches are of width one. Batches of width 2 are the second
most common, accounting for about 10% in each trace. Larger batches are progressively rarer.

The distributions of inter-submission times for asynchronous job submissions within a batch is shown
in Figure 6. Note that this refers to the time fromone submittal to the next, and is therefore non-negative
(as opposed to the think time, which is the interval from a termination to a submittal). These and the
distributions of think-times between batches shown in Figure 7 favor short times, and are also consistent
across the three traces.

4. Modeling Workpools

We claim that the users job submission behavior is largely independent of the characteristics of the
jobs that are submitted. Modeling flexibility is enhanced byassociating each session with distinct job
submission and workpool models, which define the characteristics of the batches and jobs submitted
during that session. In principle, the models should be statistically different, e.g. one model for light day
jobs and another for heavy night jobs. However, in our current implementation, they all draw from the
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Figure 6. Distribution of jobs inter-submission times with in batches.
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Figure 7. Distribution of think times between batches.
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Figure 8. Distribution of Job Sizes.

same empirical distributions.
A basic workpool model is essentially composed of two distributions, corresponding to the two main

attributes of parallel jobs:

• Size: the number of processors required for the job to execute, assuming pure space slicing.

• Runtime: the actual time it will execute once all processorshave been allocated

Analyzing the traces also indicates that jobs display a “locality of sampling”: successive jobs tend to
be very similar to each other. This may be because users actually submit the same jobs repeatedly. To
capture this effect, we also tabulate the distribution of such repetitions.

Just like for the job submission behavior model, we model workpools using empirical data drawn
from the three traces. The distribution of the jobs sizes forthe three traces is shown in Figure 8. As
has been observed before, this is a modal distribution with most jobs using power-of-two nodes [5]. The
distributions of runtimes and repetitions are shown in Figures 9 and 10, respectively. Again we see that
they are reasonably similar across the three traces.

5. Simulation Framework

Our site-level simulation framework,SiteSim, enables easy development and combination of job sub-
mission and workpool models, and reliable evaluation of different scheduler models using dynamically
generated workloads.

SiteSim defines two types of entities:users andschedulers. Users generate the workload in periods
of activity called sessions. At present, only a static set ofsessions is supported, and there are no user
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Figure 9. Distribution of repetitions that cause locality e ffects.
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Figure 10. Distribution of jobs runtime
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#uid load av-util av-resp av-wait av-sld num jobs complete model wp
1 0.03 0.03 10442.51 4499.69 78.71 3813 31513254 BatchMD PlainWP
2 0.03 0.03 11117.34 5005.84 88.80 3725 31536947 BatchMD PlainWP
3 0.05 0.05 11347.87 4815.70 64.83 3324 31535919 BatchMD PlainWP
4 0.04 0.04 10644.51 4684.78 81.99 3103 31535571 BatchMD PlainWP
5 0.06 0.06 12645.24 6177.19 118.85 3382 31546507 BatchMD PlainWP
6 0.05 0.05 11701.22 5476.37 70.18 3468 31535337 BatchMD PlainWP
7 0.05 0.05 11398.12 4763.21 61.94 3282 31556002 BatchMD PlainWP
8 0.06 0.06 10543.12 4365.96 53.99 3216 31541829 BatchMD PlainWP
9 0.04 0.04 11345.47 5104.82 67.69 3720 31554444 BatchMD PlainWP
10 0.05 0.05 11571.11 5535.23 56.37 3380 31579372 BatchMD PlainWP
#sid load av-util av-resp av-wait av-sld num jobs complete policy num usr
1 0.46 0.46 11273.54 5044.73 74.55 34413 31579372 FCFS 10

Table 2. SiteSim output: per-user and system-wide statisti cs.

arrivals or departures. As explained in Section 2.3, simulating a detailed machine model is not required,
and therefore the machine model is embedded in the schedulermodel. See Figure 2 for ilustration.

SiteSim supports multiple schedulers (and hence — machines) in the same simulation. The reason is
that it is a convenient way to model a single machine having multiple partitions; A partition is a group of
processors dedicated for executing a specific class of jobs e.g., interactive or batch, short or long. Thus,
multiple schedulers, each having its own private waiting queue and a scheduling policy, is effectivly
equivelent to a single machine, with partitions dedicated for specific classes of jobs.

SiteSim can also run conventional simulations, simply by replaying standard workload format traces
(See http://www.cs.huji.ac.il/labs/parallel/workload/swf.html). For these simulations only one user is
defined, with a job submission model that uses the jobs’ submission timestamps from the trace, and a
workpool model that takes job characteristics from the trace. By synchronizing the submission times
with the jobs characteristics, SiteSim guarantees an exacttrace replay.

Before the simulation starts, several parameters need to beconfigured: the number of users that partic-
ipate in the simulation, their workpool and job submittal models, the scheduler model (policy) managing
the machine, and the size of the machine to be managed.

SiteSim can be easily configured using command line parameters, and provides defalt values for
parameters that were not specified. These parameters are described below:
#> ./sitesim -h
usage: ./sitesim [-d] [-c <l swf> | [-u <#>] [-m <batch>] [-w <plain>] ] [-s

<fcfs|easy>]
The-d parameter is used for extended debug information. The-c parameter is used for replaying

a trace using conventional simulation. The-u parameter defines the number of users, and-m and-w
define their submittal and workpool models, respectively (in the simple version, all users employ the
same models). Finally, the-s parameter defines the scheduler model to evaluate. SiteSim defaults
to 10 users, batch-based job submittal model (Section 3), plain workpool model (Section 4), and the
first-come-first-served (FCFS) scheduler model.

At the end of a simulation, SiteSim generates per-user and system-wide statistics, and a standard
format trace containing records for every job job submittedduring the simulation. This can be used for
post-mortem analysis or for other simulations. Examples ofthe statistics are shown in Table 2.

In the simulations reported here, we typically define 10 users, who all use the same job submission and
workpool models. As noted above, these models use empiricaldata from real traces. We used distribu-
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(f) Think times simulation

Figure 11. Workload model validations.

tions generated by combining the data from all three traces.In the simulations, we randomly generated
job attributes from these distributions, and repeated jobsaccording to the distribution of repetitions. To
validate this approach we plotted the resulting distributions of workload attributes in Figure 11. These
were indeed found very similar to the original distributions.
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(b) Job sizes simulation
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(e) Job runtimes data
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(f) Job runtimes simulation

Figure 11. (continued)

6. The Effect of Feedback on Evaluations

6.1. Inaccurate Performance Predictions

Users often wait for their jobs to complete before submitting more jobs. If they use a low-end sched-
uler, that fails to optimize the machine’s resource usage, their jobs will spend a long time in its queue
waiting for resources to become available. As a result, new job submissions will be delayed. On the
other hand, if the machine’s resources are managed by a high-end scheduler, queuing times shorten and
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Figure 12. Experiment illustration: (1) Site level simulat ion generates a trace with a signature of one
scheduler. (2) Conventional simulation using this trace pr edicts another scheduler’s performance.
(3) Site-level simulation of this other scheduler produces performance metrics used to quantify the
prediction inaccuracy.

jobs complete earlier, causing new submissions to be issuedearlier.
When recording job submissions in a trace, the submission timestamps form a signature of the feed-

back effects between the users and the scheduler, and as explained above, different schedulers would
result in different signatures. Later, when the trace is replayed during a simulation, it is the original
signature that determines the rate of submissions. A trace from a high-end scheduler will contain a
signature that, when replayed, will generate higher loads compared to a trace from a low-end scheduler.

To quantify how inaccurate performance predication using the conventional methodology may be,
we designed an experiment in which a low-end scheduler is evaluated using a trace from a high-end
scheduler, and vice-versa (Figure 12). The idea is that the trace of the high-end scheduler will generate a
load that will be too much for the low-end scheduler to handle; due to the lack of feedback the submission
rate will not decrease, and the simulation results will indicate extremely poor performance for the low-
end scheduler, underestimating its true performance. Similarly, the high-end scheduler will handle the
low-load trace of the low-end scheduler easily, but becausethe submission rate will not increase as
happens in a real environment, the simulation will indicatevery good performance for this scheduler,
overestimating it’s true performance.

To generate the two traces we used SiteSim to run a site-levelsimulation of 10 concurrently active
users (sessions). For the high-end scheduler we used the EASY scheduler [11, 16], which employs back-
filling (executing jobs from the back of the queue) to reduce fragmentation and improve responsiveness.
For the low-end scheduler we used FCFS (first-come-first-served). For the runtime estimates (required
by EASY) we used the actual jobs runtime, that is, our estimates were perfectly accurate. The machine
we simulated had 128 processors.
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Metric
(average)

EASY
Site-lev.

FCFS
Conv.

FCFS
Site-lev.

Prediction
inaccuracy

Response [s] 8571 87370 11897 634%
Wait [s] 2283 81082 5611 1345%
Slowdown 21.4 1127 78.7 1332%

Table 3. Underestimated performance.

Metric
(average)

FCFS
Site-lev.

EASY
Conv.

EASY
Site-lev.

Prediction
inaccuracy

Response [s] 11897 7695 8571 10%
Wait [s] 5611 1409 2283 38%
Slowdown 78.7 17.3 21.4 19%

Table 4. Overestimated performance.

Underestimated Performance We ran a site-level simulation using the EASY scheduler as the high-
end scheduler. We then ran a conventional simulation using the resulting trace, but this time we used the
FCFS scheduler. The results of the simulation indicate verypoor performance of the FCFS scheduler:
over 24 hours on average for the jobs to respond, and 22.5 hours of waiting in the queue. Obviously,
given these performance predictions, one would never consider using an FCFS scheduler, especially
when comparing with EASY that achieves an average response of less than21

2
hours.

Next, we repeated the site-level simulation for the same user population, this time using FCFS. The
results indicate that FCFS actually performs reasonably considering its limitations; the jobs respond in
3

1

3
hours (just 39% more than EASY), and their mean wait is about1

1

2
hours. The results for FCFS are

still worse than those of EASY, but not as poor as predicted using the trace with the EASY signature.
In fact, FCFS mean response time was overestimated by 634%, mean wait time by 1345%, and mean
slowdown by 1332%! These results are summarized in Table 3.

Note that the comparison of EASY to FCFS when using a site-level simulation is no longer based
on serving the samejobs (as in conventional simulations), but on serving the sameusers. As a result
of the feedback FCFS actually served fewer jobs, but the difference was less than 10% for a load of 10
sessions. Throughput is further discussed in Section 6.3.

Overestimated Performance Repeating the above experiment methodology in the oppositedirection,
we ran a 10 users, site-level simulation with the FCFS scheduler managing the machine, and then ran a
conventional simulation on the generated trace, using the EASY scheduler. The results indicate excellent
performance for EASY: two hours on average for the jobs to respond, and just 23 minutes of waiting in
the queue. However, these performance predictions are actually far too good. A site-level simulation
of EASY for the same user population indicates its mean response time was overestimated by 10%, the
mean wait by 38%, and the mean job slowdown by 22%. These results are summarized in Table 4.

The above results are summarized in Figure 13. Clearly, underestimated performance is much larger
than overestimated performance. Also, the response time seems to be the least sensitive to performance
prediction inaccuracy due to lack of feedback, and the waiting time the most sensitive; the slowdown
is in between. This is because the wait time is the most directmeasure of the system’s effect on job
performance.
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Figure 13. Underestimated and overestimated performance.

6.2. Safe Load Scaling

One of the important features of a performance evaluation methodology is the ability to examine
performance at different load levels. In the conventional methodology, load scaling is typically done by
modifying the jobs submission timestamps before replayingthe traces in the simulation. By multiplying
job submission timestamps from the original traces by a constant load scaling factor, the time between
subsequent submissions either increases or decreases, depending on whether the factor is greater or
smaller than one, respectively. This either decreases or increases the submission rate, and hence the load
observed by the scheduler.

Similarly, modifying the jobs runtimes from the original traces increases or decreases the load; in this
case, the submission rate remains the same, but since each job requires more (or less) time in order to
terminate, the pressure on the machine, and thus the load observed by the scheduler also increases or
decreases, respectively. Another alternative is to modifythe job size, which has a similar effect (but may
be undesirable because it affects the way jobs pack together).

Modifying the original traces may effect the representativeness of the workload, by generating condi-
tions which cannot exist in a real environment. One example is the violation of dependencies between
job submissions. As explained above, users may wait for their jobs to complete before submitting more
jobs, which means that there is a dependency between submissions; jobs that are dependent cannot reside
together in the scheduler’s queue.

When scaling the load by modifying the jobs submission timestamps, it may well occur that when
replaying the trace, submission requests will be issued before the jobs they depend on have completed,
and even worst — before the jobs they depend on even start executing. This raises the risk that the
scheduler being evaluated will choose to execute jobs that depend on the completion of other jobs which
still reside in the queue, totally violating the original job order.

To quantify these effects, we used SiteSim to monitor submission dependency and execution ordering
violations which occur during a conventional simulation. We ran twosite-level simulations, both with 10
concurrently active user sessions. In the first simulation we used the FCFS scheduler, and in the second
we used EASY. For each scheduler SiteSim generated a trace containing all job submission requests,
their time-stamps, and dependency information. These traces are different because they include the
signatures of the different schedulers.

We then ran conventional simulations using these traces. For each trace we simulated both the FCFS
and EASY schedulers, at varying load levels ranging from 0.2to 0.7 for FCFS and 0.2 to 0.9 for EASY
(as EASY can sustain a higher load). We instrumented SiteSimto count the number ofsubmission
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Figure 14. Submission-dependency and Execution-ordering violations.

dependency violations — the number of times a job is submitted to the scheduler, but actually depends
on the completion of a job that has not completed yet. We also count the number of times the scheduler
chooses to start executing a job that depends on the completion of a job that still remains in the queue.
We call the latterexecution ordering violations.

Figure 14 shows the fraction of jobs whose submission or execution involved violations. In all sub-
figures, the dashed vertical line shows the original load in the trace, without any load scaling.

For the FCFS trace in sub-figures (a) and (b), we see that for both schedulers, the percentage of
submission dependency violations starts to increase at 0.5offered load1 — the original load in the trace.
For the FCFS scheduler the percentage of submission violations increases almost linearly, reaching
100% at 0.7 offered load — a load at which the simulated systemis saturated. Obviously, because FCFS
executes jobs according to queue order, there are no execution ordering violations.

For the EASY trace in sub-figures (c) and (d), we see that when using the FCFS scheduler the per-
centage of submission dependency violations starts to increase far before reaching the original load in
the trace. The reason is that the EASY trace contains such a high-load signature, which is too much for
the FCFS scheduler to handle, even if the load is scaled belowthe original load in the trace. In fact,
some submission dependency violations occur even for the EASY scheduler under reduced load. There
are no violations only at an offered load of 0.55 (the original load from the EASY trace), because at this

1The offered load is the load imposed on the system in an open model. The accepted load is what the system manages to
handle, and may be lower than the offered load if it is saturated or requests are dropped.
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Figure 15. Load scaling in Site-level simulations
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Figure 16. Load scaling in conventional simulations

point the lack of feedback of the conventional simulation has no effect on the representativeness of the
workload.

For site-level simulations, load scaling is performed by simulating different numbers of users, which
effectively changes the number of concurrently active sessions — increasing or decreasing the load.
There is no problem with violating any dependency because the workload is dynamically generated
which means that a submission which depends on the completion of a previous job will only commence
after a that job has completed and following a period of think-time.

Figure 15 shows how the value of performance metrics changes, when the load is scaled for site-level
simulations. As can be expected, the performance of EASY is always better than that of FCFS, but the
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Figure 17. Utilization and throughput in conventional simu lations.

more interesting phenomenon is the shape of the curves; instead of the curves often seen in open-system
models, which tend to infinity when the load approaches the saturation point, see Figure 16, here the
degradation in performance is much milder, due to the feedback that curbs the generation of additional
work.

6.3. Quantifying Productivity

Increasing overall site productivity is a primary goal of any parallel system scheduler, but the conven-
tional evaluation methodology lacks a metric for quantifying productivity. The only metric that correlates
with productivity is theaverage machine utilization — the fraction of the machine that got utilized over
its activity period. Intuitively, the larger this fractionis, the more work that was performed, implicitly
indicating a higher productivity. However, in conventional simulations this is dictated by the rate new
jobs are submitted, so it does not really reflect on the performance of the scheduler. Typical results
achieved by conventional simulations are shown in Figure 17: as long as the system is not saturated, the
accepted load matches the offered load.

In contradistinction, our site-level evaluation methodology provides a metric that quantifies produc-
tivity directly: the systemthroughout, which is defined as the number of jobs processed in a given time
frame. Figure 18 shows the throughput, measured as the average number of jobs executed in a 24 hours
timeframe, for the FCFS and the EASY schedulers. For comparison, it also shows the utilization. The
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Figure 18. Utilization and throughput: implicit and explic it productivity measures.

results indicate that the two metrics are highly correlated. They also show how the throughput levels out
when the system becomes saturated. Beyond this point addinguser sessions does not contribute to the
throughput, but only increases the average response time. Also, the onset of saturation is gradual rather
than being sharp as in conventional simulations.

7. Related Work

Most of the work on workload modeling for parallel supercomputers has been based on the open
model, where jobs arrive at a given rate irrespective of how the scheduler handled previous jobs [10,
5, 4, 3, 12]. However, there has been some workload modeling work that also involved feedback. One
example is the study of gaming traffic [2]. Ganger and Patt observe the neither the open nor the closed
model are satisfactory in their pure form, because real workloads are a mix with only some items being
critical for progress [6]. It has also been suggested to try to use feedback in network design to avoid
congestion [15].

Our model of sessions built of batches of jobs is related to other generative hierarchical workload
models, which use several layers to try and mimic the processthat generates the workload. Hlavacs et
al. [8] presented a framework for modeling user behavior in interactive computer systems, using sessions,
applications, and commands, which are initiated synchronously. An implementation of the framework
for generating workload for network traffic simulation was presented in [7].

Arlitt [1] analyzed user sessions for the 1998 World Cup Web server. The analysis uncovered the
internal structure of the sessions, distinguishing automatic requests generated by browsers for retrieving
embedded files such as images, from user-initiated requestsfor retrieving pages of information.

Zilber et al. [19] analyzed parallel systems traces and classified users and sessions based on their
characteristics. Traces generated using their modeling framework will feature self similarity, locality of
sampling and daily and weekly cycles — properties found in real traces, which cannot be generated using
simple trace-generating models. Their work can be incorporated in ours by defining diverse submission
behavior and workpool models.

8. Conclusions

We have shown that user sessions on parallel supercomputerscan be modeled as a sequence of batches
of jobs, where the jobs within each batch are submitted asynchronously, but each new batch is only
started a certain time (the think time) after the last job in the previous batch completed. This imparts a
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measure of feedback on the workload generation process, leading to a better match between the workload
and the scheduler’s capabilities. Ignoring this feedback effect leads to exaggerated evaluations, that mix
performance results related to the evaluated scheduler with results that are due to the scheduler that was
used when the workload data was traced.

The simulations presented in this paper are limited to usinga static number of active sessions. In a
real site, users arrive and depart at different times, so thenumber of active sessions changes dynamically.
A natural extension to our work would be to model the users population [17] and use that model in
the simulation, to dynamically change the number of user sessions that are active at different times.
Furthermore, not all user sessions generate similar workloads for the scheduler. Our next challenge is
therefore to develop a library of workpools and submittal models, and combine them in various ways to
produce sessions with different characteristics. Finally, our new methodology calls for new performance
metrics. One such metric, the scheduler’s throughput as a quantifier for the site’s productivity, was
introduced in Section 6.3. An interesting research direction is to find new metrics that measure the
users’ satisfaction of the scheduler performance even moredirectly.
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