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Abstract—It is generally accepted that variables with a narrow
syntactic scope can have short names, whereas variables with a
broad scope require more informative longer names. We study
how names are given in practice, using a dataset of nearly 640
thousand variable names from Java methods, recently introduced
by Aman et al. We extend their original analysis by using a finer
division of scopes into ranges. We find that indeed variables
with broader scope tend to be slightly longer and to include
more words. There is also a progression of changes in name
structures, with fewer single-letter names and more compound
names as the scope increases. But the biggest differences occur
at the low-scope end, not the high-scope end. In addition, we
present more evidence that words of 6 letters or more are often
abbreviated, but this is not affected by scope. Finally, we also
analyze the distribution of popularity of names and of words in
names, and show that single letter names are much more varied
and common than usually thought, even when the variables have
a broad scope.

Index Terms—variable name, variable scope, name length

I. INTRODUCTION

The names of variables and other code elements often
provide the only clues about the purpose of a computer
program. When we read a block of code in which a function is
applied to the items in a collection, it is the names which tell
us whether this code updates the grades of students in a course
or adds a bonus to the salaries of employees in a company.
In particular, informative names are a central element of the
“clean code” approach, which advocates code that can be read
like prose with no additional documentation [27].

Due to the importance of names, a basic research question
is what exactly defines a “good” name. Considerable research
has been devoted to this question. For example, Deissenboeck
and Pizka formulized rules for when names are concise and
consistent [12], and Arnaoudova et al. identify antipatterns
that reflect inconsistencies between names and how they are
used [4]. Fakhoury et al. later showed that using names
with such antipatterns leads to higher cognitive load when
reading the code [14]. Binkley and Lawrie and Caprile and
Tonella consider the normalization of the vocabulary used to
construct names [7], [9]. Avidan and Feitelson find examples
of misleading names which interfere with code comprehension
[5], while Beniamini et al. show that even single-letter names
may convey meaning [6]. Feitelson et al. suggested a 3-step
model of how developers choose names, and show that using
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this model leads to the creation of longer and better names
[16].

A recurring issue in the research literature is the length of
names. Several papers have compared the use of full words,
abbreviations, and single letters in names in terms of their
effect on code comprehension [24], [28], [19]. Binkley et al.
note that name lengths should also be limited because longer
names would be harder to remember [8]. Etgar et al. show
that focused information assists in remembering names, but
that the best recollection is achieved for short names [13].
Aman et al. claim that methods with longer names tend to
be more bug-prone [1], but a study by Lemos et al. indicates
that longer names reflect engineered code [25]. Data collected
by Holzmann indicates that function and variable names are
becoming longer with time [20].

The focus in our work is on the empirical relationship
between local variable name lengths and their syntactic scope.
It is commonly thought that short names can be appropriate
when variables have a limited scope, because in this situation
the meaning is implied by the immediate context. Moreover,
misunderstanding a local variable’s use is expected not to
have consequences beyond the surrounding block of code. For
example, Kernigham and Pike write that “shorter names suffice
for local variables; within a function, n may be sufficient,
npoints is fine, and numberOfPoints is overkill” [22]. They then
continue by giving an example where a loop is much clearer
when abbreviated names are used, and conclude “Programmers
are often encouraged to use long variable names regardless of
context. This is a mistake: clarity is often achieved through
brevity.” Using short names in a local scope is also advocated
by the Free Software Foundation’s Gnu coding standards1

and by Oracle’s Code conventions for the java programming
language2.

However, it seems that there has been very little research on
this issue. Liblit et al. report that the lengths of names of local
variables are considerably shorter than those of functions or
global variables [26]. More recently Aman et al. performed a
focused study on whether longer variable names are actually
used in larger scopes [2]. This study made two important
contributions. First, it created a large dataset with hundreds
of thousands of variable names from nearly 1000 popular
Java projects from GitHub, including an analysis of their

1https://www.gnu.org/prep/standards/#Names
2https://www.oracle.com/java/technologies/javase/codeconventions-

namingconventions.html



composition and information about their scope. Second, it laid
the groundwork for analyzing the relationship between name
structure and various other attributes (including scope), and
identified compositions which have escaped scrutiny so far—
and specifically, the inclusion of abbreviations, numbers, and
single letters within compound names.

The results presented by Aman et al. indeed show a cor-
relation between name length and scope. And this correlation
depends on the names’ structures: it is positive for compound
names, but negative for single-letter names, and, to a lesser de-
gree, single word names. But these results are based on a rather
crude classification of scopes, singling out “broad scope”
(defined as the 90–99th percentiles of the scope distribution)
compared to all other scopes. We perform a more detailed
analysis based on the same data, and conclude that name types
exhibit a progression as a function of scope. We also see that
the most divergent behavior occurs not in the broadest scope
but in the narrowest scopes, which we define as consisting
of up to 5 lines. In addition, we study the distribution of
words which are abbreviated, and show that abbreviations tend
to be applied to words of length 6 letters and above. This
constitutes a slight adjustment to the observation from the
original study which noted that programmers tend not to use
words of 7 letters or more, but without showing an analysis.
Finally, we present a more detailed analysis of the distribution
of popularity of names and of words in names, and show that
many different single-letter names are used, even when the
variables have a broad scope.

II. THE AMAN ET AL. DATASET

Aman et al. conducted a study where they collected data
about 637,077 local variables from 472,665 files of 971 open-
source Java projects stored on GitHub [2]. Initially they set
out to collect data from the 1000 top starred projects, but 29
of them did not provide usable data.

Aman et al. provide access to their dataset on the
web at URL https://bit.ly/3xLuaLK. The main file is catego-
rized local vars.txt. This is a large space-separated file with a
line for each variable. The important fields for us are:

• Field 3: name — the variable name. This is the variable
as it appears in the code, including capitalization used to
distinguish words in camelCase style.

• Field 7: range — the scope of the variable in lines. This
is calculated as the last line where the variable is valid
minus the line where it is declared (so a scope of 1 means
the declaration plus one line).

• Field 9: words — the partitioning of compound names
into words. This is largely based on identifying camel-
Case notation, but they also applied a function to recog-
nize the concatenation of two dictionary words. Unfor-
tunately this sometimes led to errors. For example, we
observed a case where “throwable” was partitioned into
“throw” and “able”.

• Field 11: details — a classification of the words in the
name, including:

– ch — a single character.

– dict — a dictionary word, found in the dictionary of
the aspell spelling utility. In addition 131 technical
terms were added to the dictionary manually after
not being recognized, for example “git” and “setter”.
This additional dictionary is provided with the data.
Using dictionary words is often considered desirable;
for example, Lawrie et al. even define identifier
quality by the use of dictionary words or a small
set of well-known abbreviations [23].

– abbrev — an abbreviation. These were identified
manually from the words that were not identified
otherwise, and their list is also provided with the
data.

– type — a data type or derived from a data type (e.g.
an acronym, like “cdl” for CountDownLatch).

– num — a number which is embedded in the name.
– other — none of the above, e.g. a sequence of letters

that is not a word but was also not identified as an
abbreviation, like “inv”.

Foe example, the made-up name q1code would be di-
vided into 3 with the classifications ch, num, and dict.
Dictionary words were by far the most common classifi-
cation. However, the dictionary used by Aman et al. may
be overly permissive, as we observed cases where a single
letter (other than “a” or “i”) or what we would consider
an abbreviation were recognized as a dictionary word.

The data also contains a classification of names into 17
different categories, based on the combination of word types
they include (for example, a dictionary word and a number
and a single character). Aman et al. use these classifications
in their analysis, but most of the categories have relatively
few names (only 6 categories contain more than 1% of the
names each, and the top three—dictionary word, compound,
and single letter—account for 91% of all names). We do not
use these combination categories.

III. ANALYSIS AND RESULTS

Aman et al. divided the range of scopes into percentiles
and deciles [2]. They excluded the top percentile, and report
most of their results by comparing the remaining top decile
(the 90-99th percentiles) with the full data. In the case of
length distributions they compare with names below and above
the median scope. These partitionings are problematic for two
reasons. First, they are coarse. Second, they induce mixtures.
For example, the 30th percentile is a scope of 4 lines. This
means that variables with such a scope appear in both the 3rd
and the 4th deciles.

In contrast, we define our partitioning based on roughly-
logarithmically-spaced boundaries, as described in Table I.
This leads to groups that are not equally sized, but they do
fall in the range of 10–20% of the names each. A special
issue is the top boundary. The data contains scopes up to 3680
lines, but Aman et al. report that the top ones appear to be
from automatically generated code. They therefore arbitrarily
decided to exclude the top percentile of the data, leading to a
top accepted scope of 157 lines. We set the boundary higher,



TABLE I
Partitioning of scopes into groups.

Scope Names Percent Comment
≤2 125,513 19.7% minimal
3–5 124,487 19.5% narrow
6–10 120,208 18.8%

11–20 115,426 18.1%
21–40 84,832 13.3%
41–380 65,678 10.3% broad
>380 933 0.1% excluded
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Fig. 1. Classification of different name types in different scope groups.

at 380 lines. The justification is that functions in the 200–
300 lines range are known to be written manually. The reason
for choosing 380 lines as the limit is that when viewing the
distribution of scopes in the data, this is the first point of
discontinuity. This boundary leads to the exclusion of only
0.1% of the data.

A. Name Types and Composition

Using the above partitioning, Figure 1 shows the name
classes (as identified by Aman et al.) that appear in each range
of scopes. Two trends stand out. The first is the rise in using
compound names in larger scopes. In the first scope group,
where the scope is up to only 2 lines, only 23.3% of the names
contain multiple terms. In the last group, with scopes above
40, this rises to 57.4% of the names. So developers obviously
prefer using compound names in larger scopes. This may be
due to a perception that they are more informative and aid
code comprehension [29].

Single-term names naturally make up the remainder of the
names. They therefore go down from being 76.7% of the
names that have minimal scope to 42.6% of the names that
have broad scope. The main difference occurs with single-
letter names, which go down from a third of all names (33.3%)
to just 5.4%. Dictionary words form roughly 40% of the names
in all the groups, a bit more for medium scopes (with a
maximum of 43.3% for scopes of 6–10), and significantly
less only in broad scopes (31.7%). Type-based names and
standalone abbreviations are rather rare and their numbers
hardly depend on scope.

These results conform with those of Aman et al., but
provide greater detail. For example, we can see that the
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Fig. 2. Word types appearing in the names in different scope groups.

broad-scope names and slightly less-broad-scope names have
similar distributions, and that the main difference occurs in
narrow-scope names, where single-letter names are especially
plentiful. Also, we see that their result concerning the reduced
number of dictionary-word names in the broad-scope group is
only part of a wider pattern.

The same type of analysis can be applied to the words in
compound names. To do so we divide these names into their
constituent terms, and count the different types. It turns out
that most of the words in compound names are dictionary
words (85.4–87.6%), and that there are only very minor
differences between scope groups with no significant trends.
We then combine this with the standalone terms (that is, non-
compound names with one word). The result is shown in
Figure 2. This is dominated by the two trends we saw already:
increasing dictionary words and decreasing single letters with
increased scope. Numbers and other also appear more in large
scopes, but their absolute numbers are low.

We note that the low number of type-derived names (around
3%) is much lower than the result of Gersta et al., who found
that 11% were related to types (their “ditto”, “diminutive”,
and “cognome” categories relative to the complete 1.4 million
names analyzed) [17]. The difference could be explained
by the fact that they also consider multi-word type names.
However, this explanation would require that types be common
among the words making up names, which is not the case (they
are a bit more than 4%). So we have no explanation of this
difference in results.

B. Name Lengths

Turning to the length of variables, Figure 3 shows the
average length of variable names as a function of scope,
measured in characters and in words. The data shows a steady
upwards trend, from 1.3 words and 5.0 letters at the minimal
scope up to 1.8 words and 8.3 letters at a broad scope. This
again provides more detail than the results presented by Aman
et al.

Another way to look at the relation between name length
and scope is to calculate the correlation coefficient. Given that
there is no reason to think that the relation is necessarily linear,
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Fig. 4. CDFs of the distributions of names’ lengths in the different scope
groups, where length is counted in characters and in words.

we use the Spearman correlation coefficient, which quantifies
the degree that the relationship is monotonic. The result is that
the Spearman correlation of scope and length as measured in
letters is 0.24, and when measured in words it is 0.22. These
are positive correlations, but rather low, indicating a diffuse
distribution of values.

Figure 4 shows the actual distributions. The plots are
cumulative distribution functions (CDFs), showing for each

length the fraction of names that are up to this length. A graph
that is shifted to the right relative to another indicates that the
distribution tends to higher values. The resulting distribution
functions are cleanly separated from each other, implying that
at each percentile the values grow larger with scope. The
differences are larger for narrow scopes, which as we saw
have many single-letter names.

Figure 5 looks at name length as measured by characters and
words together. These are just histograms of the name lengths
as measured in characters, but each bar is colored according
to the number of words that compose the name.

It is easy to see again that single-letter names are especially
common in low scopes. In addition, even the longer names
that appear in these scopes tend to have only one word: in
the minimal scope of ≤2 lines only 23.3% of the names have
more than one word, and for scopes of 3–5 it is only 29.7% of
the names. But for larger scopes the number continues to rise,
reaching 57.4% of the names for the broadest scope as noted
above. In addition, there are also more names with more than
two words.

If we draw a single such histogram for all the names in all
the scopes, the resulting distribution of lengths is bi-modal.
The first mode is the single-character names common in the
small scopes. The second mode, peaking at lengths of 4–6
letters, comes mainly from the middle and large scopes This
mode is mostly composed of single-word names, but it has a
wide right tail, which is dominated by two- and three-word
names. This distribution is similar but not the same as the
one found by Beniamini et al. 5 years ago, based on the top
200 Java projects in GitHub [6]. In their case the single-letter
mode was less pronounced, and the second mode was wider,
peaking at lengths of 4–8 letters.

C. Use of Abbreviations

One of the observations made by Aman et al. in their
study was that 46 of the 50 most-used terms in names were
shorter than 7 characters. In addition, they noted that some of
these terms were abbreviations of words with 10 to 14 letters.
They therefore speculated that programmers tend to abbreviate
words that are 7 characters long or more.

To verify this we analyzed the list of all abbreviations
identified in Aman et al.’s dataset. We classified these abbrevi-
ations into three classes. The first were abbreviations we could
identify. For these we noted the original full words that had
been abbreviated. Note, however, that the relationship of words
to abbreviations is many-to-many. There are cases where the
same word has multiple abbreviations, such as “configuration”
which is abbreviated as “config”, “conf”, or even “cfg”. At
the same time the abbreviation “pos” can signify “position”
or “positive”. We included all the options we found in the list.

The second class was acronyms, such as “sql”, “jdk”, or
“pid”. We did not expand these, as their use is very common
among developers (at least in areas where they are relevant),
and they are not thought of as abbreviations but as independent
terms in their own right. The third was terms which we did not
identify, such as “seps”, or that are not really abbreviations,
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The CDF of non-abbreviated words is shown for comparison.

such as “clazz”. We did not use these two classes in our
analysis of abbreviations.

While looking at the data we observed a few abbrevia-
tions that seemed to be missing from the list. We therefore
scanned the first 10,000 names, and identified 48 additional
abbreviations for which we could suggest the original full
words from which they were derived. Altogether we ended up
with 199 word-abbreviation pairs. Of these, 18 were actually
abbreviations of two words (for example, “regexp” which is
an abbreviation of “regular expression”). Some abbreviations
appeared both in singular and in plural (indicated by an “s” at
the end of the abbreviations, as in “apps” for “applications”).

Figure 6 shows the distributions of lengths of these abbrevi-
ations and original full words. The distribution of abbreviation
lengths is very narrow: most of them are 3–6 letters long.
The distribution of word lengths is slightly wider, and most
are in the range of 6–13 letters. This largely agrees with the
observation made by Aman et al. Their speculation that pro-
grammers tend to abbreviate long words is further supported
by the distribution of non-abbreviated words. This is similar
to the distribution of abbreviations, but slightly wider; the vast
majority of such words are 1–8 letters long and only 5% are
longer.

D. Popular Names and Words

Apart from abbreviations, it is also interesting to look at
the most popular names and the most popular words that
are used in names. The top 50 of each are listed in Table
II (for names) and Table III (for words). In each table, the
first column represents the complete dataset, and the next six
are for the different scope groups. The lists of most popular
names are similar but not identical to such lists that have been
collected in other studies [17], [3].

Two things that can be readily observed concern the vari-
ability of the results and the problems of making any concrete
statements. First, we see that there are significant differences
between the scope groups. Consequently the data for the
complete dataset is a sort of weighted average of these groups,



TABLE II
Top names overall and in each of the scope groups.

By scope
Rank All ≤2 3–5 6–10 11–20 21–40 >40

1 e e e i i i i
2 i i i result result result result
3 result ex result e sb n type
4 j result j j c c c
5 c t c c n index count
6 value j ex n j count index
7 n value s value count sb n
8 s ignored entry sb e builder name
9 ex cptr value index list name x
10 t s intent count name value action
11 entry b r list value start start
12 index listener n entry index j width
13 sb c t s size type p
14 count m index key builder file height
15 key intent m listener file x sb
16 name entry key r entry a id
17 m exception list name x y a
18 list f v p s s position
19 b n p size start m size
20 r v name child key list builder
21 x key count builder a map response
22 intent te args len map width logger
23 p field x a type key buf
24 a view sb x p params y
25 v msg b m path length v 1
26 builder index len t m size length
27 view a item b b id s
28 size x params params length entry r
29 f p view v t r out
30 file name a file id path value
31 params r child intent r url j
32 type data size length view end data
33 id ignore f data y height line
34 child item info node width view view
35 data message file id child position res
36 listener builder node view v p params
37 start container builder f params data b
38 item params res path height t list
39 len fields ret item node e done
40 y l id info data b in
41 length file k start end line devicesession
42 path info data l len offset key
43 node list type buffer url res tag
44 info ioe temp response in v url
45 res temp l k out response v 2
46 response functionaddress val map f len m
47 map id path position offset request f
48 field response d in first in v
49 position d length type response f file
50 l val array y res buffer t

but is not very similar to any of them. Second, is seems that at
least part of the variability is the result of large projects which
contain very repetitive naming. This allows some names that
are not really common in general to reach the top-50 lists;
examples include functionAddress and deviceSession.

Digging into the data, another interesting observation is that
there are names with scope-dependent behavior, while others
do not exhibit such behavior. For example, the second and
third most popular names in the whole dataset are i and result.
These names are also found at ranks 1 to 4 in all of the
scope groups, so they are indeed universally popular. But the
top-ranked name overall is e, which is commonly used for

variables representing a thrown exception. This is the top-
ranked name up to a scope of 5 lines, the third most popular at
scopes of 6–10, the eighth for 11–20, the 39th for 21–40, and
doesn’t make it into the top 50 for broad scopes of more than
40 lines (it is at rank 61). The code blocks handling exceptions
are apparently usually quite short.

Another interesting observation is the prevalence of single-
letter names. It is not just i and e. Many other letters appear.
In the full dataset, 17 of the 50 top names are single-letter
names. In the different scope groups it is between 15 and
18 names. 13 of these letters appeared in the top 50 lists of
all the groups, and also of the whole dataset. These are a,



TABLE III
Top words (standalone and part of compound names) overall and in each of the scope groups.

By scope
Rank All ≤2 3–5 6–10 11–20 21–40 >40

1 e e e i i i name
2 i i i name name name type
3 name result result result result type 2
4 result ex name list file file i
5 index value value e type result id
6 value c view index id index 1
7 id t index value index id index
8 type name id id list count count
9 file j m count count list x
10 list view key view view size v
11 view key list size value x start
12 c new c file size start size
13 count index type key x view y
14 m m s c 2 y width
15 2 ignored j type 1 1 file
16 key s file m c 2 list
17 x b new data start m m
18 size ptr entry new data width data
19 1 listener info 2 m data result
20 data intent ex n key is is
21 new id x 1 y value height
22 start file r j n height view
23 n 2 intent x path c f
24 y type count child new n max
25 j data 2 entry is key offset
26 s entry size info sb field a
27 info exception item r height map c
28 t f t node map path end
29 path field n path width end value
30 v n data s info new time
31 item v 1 builder builder class path
32 r list child map child builder b
33 is item path item class current p
34 entry info node start node length to
35 child 1 p p offset offset current
36 width x v y p num num
37 height a b sb item info n
38 p p y is to max last
39 node msg a listener e last text
40 b te time class s to key
41 map r params length max time info
42 a path start width r item in
43 field node array t entry r new
44 builder method args height current child line
45 f message is v length node field
46 intent y len time end url length
47 ex builder map a j request map
48 class size field array a f item
49 time params class position in position pos
50 offset child builder current field a class

b, c, f, i, j, n, p, r, s, t, v, and x. Their prevalence indicates
that they are widely used, and probably reflect some common
naming conventions (called “programmer slang” in [3]). In
particular, single-letter names are not just loop indexes, and
indeed some of them correspond to the more meaningful
single-letter names identified by Beniamini et al. [6]. A similar
result concerning the use of many different single-letter names
has been observed by Gresta et al. [17]. The fact that this does
not reflect just random use of short names is bolstered by the
observation that seven letters did not appear in any of our lists;
these are g, h, o, q, u, w, and z.

Similar observations can be made on the lists of most

popular words. In particular we note that many single letters
appear in all scope groups. This is also true of the broad scope
group, and contradicts the results as reported by Aman et al.,
who claim that only i and v appear in the top 50 terms of
this group, and that they are exceptions. But note that our
definition of this group is not identical to theirs.

It is also interesting to note words that are used in many
different compound names, and therefore achieve a higher
ranking than they achieve by themselves. Chief among these
are the numbers 1 and 2, which are only used as additives
to other names. They come in at ranks 19 and 15 in the full
list, and also appear in all the lists of the scope groups, with
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Fig. 7. Zipf plots of the popularity of names and words.

somewhat higher ranks in larger scopes. Note that 2 is ranked
higher than 1, perhaps because sometimes the first instance is
left unnumbered, or because it is used as shorthand for “to”.
More generally, Gresta et al. found that a bit more than 6%
of names have numbers at their end [17]. In the Aman et
al. dataset the total use of numbers appears to be much lower,
going up from 0.8% in minimal scopes to 2.6% in broad scopes
(Figure 2).

E. Distribution of Popularity

The popularity of names in different ranks is shown in
Figure 7. Alltold the dataset contained 105,321 unique names.
In the figure they are ranked from the most popular (e, which
appeared a total of 33,544 times) to the least popular (no less
than 64,531 names that appeared only once each). The graph
shows the number of appearances as a function of the rank in
log-log axes. This rendering leads to a straight line, implying
that the popularity of the name at rank k is proportional to
1/k. This relationship was famously found for the words in
natural language texts by linguist George Kingsley Zipf, and
is knows as Zipf’s law. It has since also been observed in code
[11], [3].

Figure 7 also shows a similar graph for the individual words
used in names (either as the whole name or as an element of a

compound name). In this case the graph is not a straight line.
This is a result of the rather limited basic vocabulary being
used: the 105,321 unique names in the dataset are composed
of only 13,488 unique words. When more names are added,
the frequency of words keeps rising, but new ranks (that is,
new unique words) are added less frequently, so the graph
curves downwards [30], [3].

Returning to full names, it is obvious that the popular ones
are much more common than the rare ones. It is therefore
interesting to note how dominant the popular names are
overall. We quantify this using the N1/2 metric, which is the
fraction of all the unique names, and specifically the more
popular ones, that together account for half of all the name
instances in the code [15]. In the full dataset this is 0.43%
— less than half of one percent of the names. If we look
at the scope groups separately, this grows monotonically from
0.37% in the minimal scope group to 6.73% in the broad scope
group. This implies that the popular names are more dominant
in narrow scopes, and that the distribution is somewhat less
skewed in broader scopes.

IV. THREATS TO VALIDITY

Our work is based on data collected and processed by Aman
et al. [2]. As such it is subject to all the threats to validity
of that work. For example, Aman et al. limited their work
to code in the Java language, in order to avoid the possible
confounding factor of programming languages. This entails a
threat to external validity, as the results may not generalize to
other languages.

The main processing they performed was to divide com-
pound names into terms, and to classify these terms. The
partitioning algorithm they used may not be optimal, and other
results may be obtained by using different procedures such as
[18], [10], [21]. The classification depends on the dictionary
used to identify dictionary words, and on lists of abbreviations
that may be incomplete. To mitigate part of this threat, we
added abbreviations that appeared to be missing from the
original list. A new threat that was introduced concerns the
association of abbreviations with full words. As we noted
this association is many-to-many, and we cannot know if any
specific association was intended.

Another issue concerns the tabulation of names and words
by their popularity. As we noted, it may happen that a name
is extremely popular in only one project, but that is enough
to make it look very popular globally. We considered the
alternative of counting the projects in which a name appears
rather than and total number of instances in all projects. The
result was that 41 of the top 50 names stayed the same,
including 16 of the 17 single-letter ones, albeit their order
changed somewhat. It therefore seems that this would not
cause a fundamental change to the results.

More generally, however, the details of the results depend
on the projects from which names are gathered. For example,
other studies have found somewhat different lists of popular
names, including in the top ranks [17], [3]. But the general



trends appear to be stable, including the prevalence of single-
letter names, names that are types, etc. Consequently we
believe that the above results and definition of popularity are
generally valid despite these threats.

V. CONCLUSIONS

Aman et al. set out to study variables with broad syntactic
scope, in terms of their attributes (length and classification)
and the words from which they are composed. We extend
this work by providing a more detailed analysis that compares
variables with different scopes, from a minimal scope of up
to 2 lines, up to broad scopes of hundreds of lines.

Using six ranges of scopes, rather then singling out only
variables with broad scope, allowed us to make more accurate
observations regarding the effect of scope on name choice.
We replicated Aman et al.’s result that the names of variables
with broad scope indeed tend to be longer, and added the
observation that this is part of a progression, and that the
biggest differences are that variables with minimal scope are
shorter. Likewise, we replicated the result that more variables
with broad scope have compound names, and less of them
have single-letter or dictionary word names. To this we added
the observation that the results for compound names and
single-letter names are also part of a progression, with single
letter names being especially common in narrow scopes. But
dictionary word names are different, and have roughly the
same prevalence in medium and narrow scopes, which are
just slightly higher than in broad scopes.

In addition we also replicated Aman et al.’s observation that
long words tend to be abbreviated, and noted that this starts
for words of 6 letters. We also looked at the most commonly
used names and words, both overall and for different scopes,
and found that single letter names are quite popular, and that
many different letters are used.

A major shortcoming of this study is that Aman et al.
consider only the scopes of local variables within a function
or method. They do not compare local variables with data
members of the class (fields), which have global scope within
the class. Their justification for this omission was that data
members are part of the class design, and therefore their
names are usually given by designers, not by programmers.
Comparing them to names given by programmers writing
functions may then introduce a confounding factor of who
gave the names.

While this is indeed a valid concern, we believe that a
comparison of the names of data members and local variables
still has value. When developers think of different scopes,
they usually think of the differences between class scope and
function scope. The fact that the names may be given by
different people is part of this. But the collection of the needed
data for such a study is left for future work.

The presented data provides a detailed portrait of the current
practice of naming in open source Java projects. This includes
a characterization of how local variables’ names’ lengths and
structure change with scope, and the identification of the
most popular names in each scope. These results suggest two

directions for deeper research:
1) What are the reasons and implications of the different

structures used in different scopes? Are longer names
with more words indeed needed in order to comprehend
longer code segments? In other words, is the use of more
characters and words justified? Our detailed results con-
cerning what developers do in practice enable a focused
study of the possible benefits of specific behaviors, such
as increased use of compound names in larger scopes.

2) The most popular names include many more different
single-letter names than expected, which appears to
diverge from common naming guidelines. This sug-
gests several followup questions. When exactly are such
names used and how does this correlate with scope?
As a specific example, why does the popularity of the
name t plummet with increased scope, while that of x
grows? Does the use of single-letter names come with a
price of reduced comprehensibility? Our results identify
specific popular single-letter names, thus providing the
motivation and the foundation for future studies of this
phenomenon.

Making progress on these further research directions can be
expected to lead to improved naming guidelines that will be
useful for practitioners.

EXPERIMENTAL MATERIALS

Complete experimental materials and results are available
on Zenodo using DOI 10.5281/zenodo.7699870
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