
Experimental Analysis of the Root Causes
of Performance Evaluation Results:

A Backfilling Case Study

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

Modern computer systems are very complex, and many factors influence their perfor-
mance. It may therefore happen that seemingly minor variations or assumptions in the per-
formance evaluation procedures actually determine the outcome. We provide a detailed case
study, in which two parallel job schedulers based on backfilling are compared, using four dif-
ferent workloads and two different metrics. Simulations show that sometimes the same work-
load gives different results when using different metrics;this is explained by the fact that the
metrics are sensitive to different job classes, and do not measure the performance of the whole
workload in an impartial manner. Likewise, the same metric sometimes gives different results
when using different workloads; this turned out to depend onsubtle details, such as the use of
accurate runtime estimates when real estimates are not available, or using a machine size that
is not a power of two. More worrisome is the fact that such seemingly minor details had more
effect than the basic features of the different workloads, such as the distributions of job sizes
and runtimes. This motivates the use of experimental methodology to investigate the effect of
different factors, and uncover those that lead to the observed results.

Keywords:
C.1.4.d Scheduling and task partitioning
C.4.g Measurement, evaluation, modeling, simulation of multiple-processor systems
D.4.8.f Simulation
K.6.2.d Performance and usage measurement

1 Introduction

The goal of performance evaluation is often to compare different system designs or implemen-
tations. The evaluation is expected to bring out performance differences that will allow for an
educated decision regarding what design to employ or what system to buy. Thus it is implicitly
assumed that observed performance differences indeed reflect important differences between the
systems being studied.

1



However, performance differences may also be an artifact ofthe evaluation methodology. The
performance of a system is not only a function of the system design and implementation. It may
also be affected by the workload to which the system is subjected, and even by the metric being
used to gauge the performance. Thus it is important to understand the effect of the workload and
metrics on the evaluation. To complicate matters, in some cases the effect is not due to the metric
or workload alone, but rather to an interaction between themand the system [6].

We present a case study of a detailed analysis of such a situation. We start by providing the re-
quired background: first a description of the systems being compared, which are two rather similar
versions of parallel job schedulers (Section 2), and then a description of the methodology, includ-
ing the workloads used to drive the schedulers, and the performance metrics that were measured
(Section 3). Next we report the performance results obtained by running simulations as described
above (Section 4). While each set of results seems to answer the question of the relative merit of
the two schedulers, the set as a whole includes some discrepancies when using different workloads
and metrics. The main part of the paper is the analysis of these results (Sections 5 and 6). It shows
that they do not stem from inherent differences between the schedulers, or from significant statisti-
cal differences between the workloads (even though such differenced do in fact exist). Rather, the
different results stem from intricate interactions between the schedulers, the workloads, and the
metrics. Moreover, these interactions involve minor details and assumptions that are easy to over-
look. We conclude that a detailed analysis as to the source ofperformance differenced is required
in order to assess whether the results are credible, and thatexperimental methodology is needed to
verify that suspected factors are indeed the cause of observed differences.

2 Parallel Job Scheduling with Backfilling

The domain we will use is the scheduling of parallel jobs for execution on a parallel supercomputer.
Such scheduling is typically done in two dimensions:partitioning, in which disjoint subsets of
processors are allocated to different jobs, andtime slicing, in which processors serve processes
belonging to different jobs. We will focus on partitioning,and specifically, on an optimization
called backfilling.

Scheduling jobs using partitioning is akin to packing in 2D.Regard one dimension (say the
vertical) as representing processors, and the other (the horizontal) as representing time. A parallel
job is a rectangle, representing the use of a certain number of processors for a certain duration of
time. The scheduler has to pack these rectangles as tightly as possible, within the space provided
by the available resources. In the context of backfilling, the sizes of the rectangles are known: each
submitted job comes with a specification of how many processors to use, and an estimate of how
long it will run.

Given that jobs come in various sizes, they typically do not pack perfectly. Therefore holes are
left in the schedule. Backfilling is the process of trying to fill in these holes using newly submitted
small jobs. Two main versions of backfilling have been studied in the literature: EASY backfilling
and conservative backfilling.

EASY backfilling is part of the Extensible Argonne Scheduling sYstem developed for the IBM
SP1 machine [16]. This version of backfilling is rather aggressive in trying to maximize system
utilization. The scheduler is called whenever there are idle processors (e.g. due to the termination

2



����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

time

running jobs

�����
�����
�����

�����
�����
�����

first

queued jobs

backfill

now

to
ta

l p
ro

ce
ss

or
s

id
le

reservation

Figure 1:An example of EASY backfilling.

of a running job) and jobs are waiting (because sufficient processors were not available earlier). Its
operations can be summarized as follows:

1. Scan the queue of waiting jobs in the order they had arrived(FCFS), and allocate processors
as requested.

2. When you reach a job that requires more processors than remain available, calculate when
the required processors are expected to become free (based on the running jobs’ runtime
estimates). Make a reservation to run this job at that time.

3. Continue to scan the queue of waiting jobs. Allocate processors to any job that is small
enough (i.e. sufficient processors are available) and will not interfere with the commitment
to run the first queued job.

A simple example is given in Figure 1.
EASY backfilling makes a reservation for the first queued job at each stage, but its backfilling

may cause delays to other queued jobs [19]. Conservative backfilling aims to reduce this risk. To
do so, it makes a reservation for each newly submitted job at some future time, based on the current
knowledge of the system state. This commitment may be based on backfilling the new job, but is
subject to the condition that such backfilling will not violate any previous commitments.

The two versions of backfilling therefore make different tradeoffs in their backfilling policy.
EASY performs as much backfilling as possible, thus reducingthe response time of backfilled
jobs, at the possible expense of delaying other jobs. Conservative prevents the delaying of jobs, so
their response time will not grow in an uncontrolled manner,but this comes at the price of limiting
the reduction of response time of backfill jobs. The questionis then which of the two approaches
is better. Our case study is a set of simulations designed to answer this question.

It should be noted that other variants of backfilling have also been suggested. The main ideas
are to allow the scheduler more flexibility, by allowing it some slack in fulfilling reservations
[24, 23], or by considering different sets of jobs for backfilling [21]. Backfilling has also been
integrated with multiple-queue scheduling [14] and with gang scheduling [26]. But here we focus
on the two simpler variants.

3



3 Evaluation Methodology

There are many ways to evaluate the performance of schedulers. A major distinction is between
the off-line scheduling of a given set of jobs, and the onlinescheduling of a very long sequence of
jobs that arrive at unknown times. We prefer the latter, which is more realistic.

3.1 Simulation

We perform the evaluation by discrete event simulation. Theevents of interest are the arrival and
termination of jobs. Each job requires a certain number of processors, runs for a certain time,
and also has a user estimate of its runtime. As each job terminates, the quality of the service it
had received is tabulated. One of the most commonly used metrics for scheduling is the average
response time (the time from when a job was submitted until itterminated). The problem with this
metric is that it is typically dominated by long jobs: a job that runs for several hours has much
more weight than a job that only runs for a few seconds.

An attempt to solve this problem is the use of slowdown as a metric. Slowdown is the response
time normalized by the job’s actual running time. Thus it measures how much slower the job ran
due to scheduling conflicts with competing jobs, and seems tobetter capture users’ expectations
that a job’s response time will be proportional to its runtime. While this seems to put all jobs on an
equal footing, it turns out to be dominated by short jobs, because the job’s runtime appears in the
denominator. This is especially problematic when using workload models which may contain jobs
that are much shorter than a second. We therefore use a version known as “bounded slowdown”
[8], defined as

bounded slowdown= max

{

Tresp

max{Trun, 10}
, 1

}

The threshold of 10 seconds is chosen to represent the maximal interactive time — that is, short
jobs are allowed this much delay without penalty. In addition, the metric is set to 1 if the response
time is shorter than this threshold, to avoid values smallerthan 1 (which would imply a false sense
of speedup).

The simulation uses the batch means approach to evaluate confidence intervals for the average
response time and slowdown [9]. The batch size is set to be 5000 jobs, as recommended by
MacDougall for open systems under high load [18]. Dependingon the length of the workload log,
10 to 17 batches were completed, and the first discarded to bring the system to a steady state. The
number of queued jobs at the end of each batch is also recorded, in order to enable the identification
of situations in which the system is actually saturated and jobs accumulate in the queue.

Due to the large variability of job durations, the metrics are also highly variable. As a con-
sequence the results often seem not to be statistically significant, as the 90% confidence intervals
overlap. We therefore performed a more sophisticated analysis of these results, using the common
random numbers1 variance reduction technique [13]. In this analysis, we first compute the dif-
ference in response times or slowdowns between the two schedulers on a per-job basis, which is
possible because we are using the same workload log. We then compute confidence intervals on

1The name is somewhat of a misnomer in this case, as we are usinga logged workload rather than generating it
using a random number generator.

4



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  64  128  256

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

job size

CTC
SDSC

Jann
Feitelson

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

runtime [s]

CTC
SDSC

Jann
Feitelson

Figure 2:Comparison of workloads.

these differences using the batch means approach. If the confidence intervals do not include zero,
the difference is significant.

3.2 Workloads

Workloads for parallel job scheduling are interesting due to the combination of being relatively
small and at the same time relatively complex. The size of typical workloads is tens of thousands
of jobs, as opposed to millions of packets in communication workloads. These workloads are
characterized by a large number of factors, including the job sizes, runtimes, runtime estimates,
and arrival patterns. The complexity derives not only from the multiple factors themselves, but
from various correlations between them. Research on these issues is facilitated by the availability
of data and models in the Parallel Workloads Archive [1]. In addition, these workloads are often
used for parallel system evaluations (e.g. [5, 22, 26, 19, 3,12]).

The main workloads we used are a log of jobs run on the Cornell Theory Center (CTC) IBM
SP2 machine from July 1996 through May 19972, and a model based on the first2

1

2
months of this

workload which was created by Jann et al. [10]. Despite the close relationship between the two
workloads, there are several differences (Figure 2):

• In the CTC workload, most jobs request a power-of-two numberof nodes. In the Jann
workload it was decided not to favor powers of two, based on the assumption that this is
not a real attribute of the workload but rather a consequenceof administrative policies. This
notion was later borne out by a user survey conducted by Cirneand Berman [4].

• The CTC workload had a sharp administrative limit on runtimeat 18 hours. In the Jann
model there is no such limit, as a continuous distribution isused to represent the runtimes.
But given that the chosen distribution is supposed to mimic the CTC workload statistics,

2For the simulations and analysis reported here we removed a flurry of 1999 one-node jobs lasting about 42–48
seconds each that were submitted by user 135 in one day; it is assumed that this was the result of a misbehaving
script. This large burst of small jobs is very sensitive to details of the scheduling and tends to cause large fluctuations
in simulation results. It represents 2.55% of the total workload of 78500 jobs. The justification for removing such
flurries is elaborated in [25].

5



relatively few jobs have runtimes longer than 18 hours. At the other extreme, the CTC log
hardly has any jobs shorter than 30 seconds, whereas the Jannmodel has many such jobs.

• The Jann model uses a hyper-Erlang distribution to model runtimes and interarrival times.
While this matches the first three moments of the original distribution, it also leads to a
somewhat bimodal structure that does not exist in the original.

• The Jann model does not include the modeling of user estimates of runtime. We therefore
used the actual runtime in the simulations. This is equivalent to assuming that the estimates
are perfect.

In addition, we also use a log of jobs run on the San-Diego Supercomputer Center (SDSC)
IBM SP2 from May 1998 through April 20003, and a model proposed by Feitelson [7]. As can be
seen from the graphs, these two workloads have a similar distribution of job sizes which has fewer
small jobs than the CTC and Jann workloads. The Feitelson model is also unique in having many
more short jobs. The SDSC log also has shorter jobs than CTC and Jann, but not as short as in the
Feitelson model.

Each workload is represented by a single data file specifyingthe arrival time, runtime, and
number of processors used by each job, and in the case of the CTC and SDSC workloads, also the
estimated runtime. In order to create different load conditions, all the arrival times are multiplied
by a suitable constant. For example, if the original workload file leads to a load of 0.7 of capacity,
multiplying all interarrival times by a factor of7/8 = 0.875 will cause the jobs to arrive faster, and
increase the load to 0.8 of capacity.

4 Simulation Results

The typical methodology for evaluating systems (in our case, schedulers) calls for simulating their
behavior, and tabulating the resulting performance. This is usually repeated numerous times under
different conditions, including different load levels anddifferent parameter settings for the system.
This enables a study of how the system responds to load, and what parameter settings lead to
optimal performance.

In this paper we emphasize two other dimensions instead: theworkload used to drive the
simulation, and the metric used to measure the results. Figure 3 shows results of comparing our
two schedulers using four different workloads, and two different metrics. In all cases, simulations
are run for different load levels, and the behavior of the system as a function of load is plotted.
These results can be divided into four groups:

• Results which show that EASY is better than conservative. These include the results obtained
with the CTC, SDSC, and Jann workloads, when using the response time metric.

• Results which show that conservative is better than EASY. Such results were obtained from
the Jann workload when using the bounded slowdown metric.

3In this log we also removed two flurries, one composed of 30-second one-node jobs by user 365, and the other
composed of 1-minute 32-node jobs by user 319 [25]; they are known to affect simulation results, but in the specific
simulations used here they seem to have only a marginal effect.

6



CTC workload

 0

 10000

 20000

 30000

 40000

 50000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

 0

 20

 40

 60

 80

 100

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

SDSC workload

 0

 10000

 20000

 30000

 40000

 50000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

 0

 50

 100

 150

 200

 250

 300

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

Jann workload

 0

 10000

 20000

 30000

 40000

 50000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

-100

-50

 0

 50

 100

 150

 200

 250

 300

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

Feitelson workload

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

 0

 100

 200

 300

 400

 500

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

Figure 3:Simulation results with 90% confidence intervals.

7



• Results showing that both schedulers are essentially the same. The results from the Feitelson
model fall into this class.

• A combination: results that show the schedulers to be equivalent under most loads, and
show an advantage for EASY only under high load. Such resultswere observed for CTC
and SDSC when using the bounded slowdown metric. It should benoted that such high
loads are seldom achieved in practice on this class of machines [11, 20].

In short, if only a single set of results is used, the conclusions would depend on which specific set
was chosen. Our goal in the next sections is to uncover the root causes for these discrepant results.

5 Analysis of Jann vs. CTC Results

As noted above, the Jann model is specifically meant to mimic the CTC workload. Nevertheless,
the simulation results indicate that the two produce discrepant predictions. For the Jann workload
the response time metric favors EASY backfilling, whereas the slowdown metric favored conser-
vative backfilling. The CTC workload, at the same time, favors EASY for both metrics (albeit for
slowdown only under very high load). This is therefore actually a triple interaction of scheduler,
workload, and metric. In this section we focus on a detailed analysis of how this triple interaction
comes about.

5.1 Producing Discrepant Results

Both the slowdown metric and the backfilling policy are sensitive to job duration. We therefore
start by partitioning the jobs into five classes according totheir duration, and tabulating the results
for each class separately. The classes used were very short (< 30sec), short (< 5min), medium
(< 1hr), long (< 10hr), and very long (> 10hr). The results are shown in Table 1. For the CTC
workload, both metrics favor EASY backfilling for each classindividually, and also for all of them
together. But in the Jann workload we indeed see a differencethat depends on job class. For
jobs that are longer than 1 hour, both metrics favor EASY. Butfor shorter jobs, both metrics favor
conservative backfilling.

Given that for each job class both metrics agree, how does this turn into discrepant results when
the whole workload is considered? The answer is due to simplearithmetic. The average response
time of all jobs is a weighted average of response times of thedifferent classes, with the weights
proportional to the number of jobs in each class. The same goes for slowdown. But when response
times are used, the high values that dominate the average come from the long jobs, whereas when
we calculate the average slowdown the high values come from the short jobs. Thus the average
response time is similar to the response time for long jobs, which favors EASY, whereas the average
slowdown is similar to the slowdown of short jobs, which favors conservative.

5.2 Source of Performance Differences

The results in Table 1 indicate that the difference between the CTC and Jann results is due to the
short jobs, which fare better under conservative in the Jannworkload, but not in the CTC workload.

8



number response time bounded slowdown
job class of jobs∗ EASY vs. cons EASY vs. cons

Jann model
very short 33728 10737.46> 7699.22 837.22> 488.89
short 74642 11384.41> 8368.95 144.14> 79.72
medium 106331 10484.76> 8788.11 15.44> 9.38
long 76974 48652.08< 66560.68 2.56< 2.59
very long 41624 91151.88< 112610.74 1.79< 1.82
all 333300 29600.57< 34892.05 122.75> 90.53

CTC workload
very short 380 6640.05< 11020.90 627.92< 1062.75
short 28746 6378.98< 6564.45 64.38< 75.91
medium 16906 9689.79< 10580.02 11.76< 12.65
long 20334 28829.00< 36771.25 2.36< 2.87
very long 10133 67616.53< 84720.34 1.29< 1.63
all 76500 21190.66< 25855.42 30.71< 37.58
∗ the numbers may differ slightly for the two schedulers as different
jobs may remain in the queue at the end of the simulation.

Table 1:Simulation results for different job classes. EASY backfilling is better in all cases for the
CTC workload, and for long jobs in the Jann workload. Resultsshown are for load of 0.85.

To try and understand why this happens, we need to understandhow the scheduler interacts with
the workload.

As the difference between our two schedulers is in their backfilling policy, a good place to start
is investigating their backfilling patterns. Figure 4 showsthe absolute numbers of backfilled jobs as
a function of job length (top), as well as the additional backfilling achieved by EASY, as a fraction
of the backfilling achieved by conservative (bottom); thus avalue of 0.1 means that EASY did
10% more backfilling. Surprisingly, for CTC conservative backfilling actually achieves somewhat
higher backfilling levels! But the main difference between the workloads is that under the Jann
workload, EASY achieved much more backfilling of long jobs.

After checking many other possibilities (see below), the root cause for this was found to be the
use of accurate runtime estimates with the Jann workload. Accurate runtime estimates provide full
information for backfilling decisions. The conservative algorithm has to take multiple reservations
into account, and this is especially problematic for long jobs, that have the potential to interact
with many other jobs. EASY, on the other hand, only has to consider one reservation. Therefore
conservative achieves much less backfilling. But when estimates are inaccurate, jobs tend to ter-
minate before the time expected by the scheduler. This creates holes in the schedule that provide
new backfilling opportunities, that can be exploited by bothschedulers.

To confirm this hypothesis, we re-ran the CTC simulations butusing the actual runtimes rather
than the original user estimates to control the backfilling.The results, shown in Figure 5, largely
confirm the conjecture. When using accurate estimates, conservative performed much less back-
filling of long jobs than before. And as expected, this led to an inversion of the results, with

9



Jann 

job length
<30s <5min <1hr <10hr >10hr

jo
bs

 b
ac

kf
ill

ed

0

20000

40000

60000

80000

CTC

job length
<30s <5min <1hr <10hr >10hr

jo
bs

 b
ac

kf
ill

ed

0

5000

10000

15000

20000

25000

EASY

cons

Jann 

job length
<30s <5min <1hr <10hr >10hr

ad
d’

l b
ac

kf
ill

 w
/ E

A
S

Y

−0.1

0

0.1

0.2

0.3

0.4

0.5 CTC

job length
<30s <5min <1hr <10hr >10hr

ad
d’

l b
ac

kf
ill

 w
/ E

A
S

Y

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4: Increased backfilling with EASY relative to conservative scheduler. Data for load of
0.85.

conservative achieving better average slowdown scores. A similar but weaker effect also occurred
when running the SDSC workload with accurate runtime estimates. The results were inverted, but
the differences was much closer to zero.

We are now left with one last question: how does the reduced backfilling under the conservative
policy lead to better performance when measured using the slowdown metric? The answer is
in the details. The reduced backfilling applies tolong jobs. On the other hand, slowdown is
sensitive mainly toshort jobs. So the performance change results from less backfilling of long jobs,
which leads to better performance of short jobs. This is explained as follows. Under the EASY
policy, backfilling is allowed provided it does not delay thefirst queued job. But it might delay
subsequent queued jobs, including short ones, that will then suffer from a very large slowdown.
The conservative policy prohibits such backfilling, with the specific goal of preventing such delays
for subsequent jobs. In the simulations with the Jann workload, this turned out to be the decisive
factor. Similar observations have been made independentlyby Srinivasan et al. [23].

To summarize, our analysis exposed the following triple interaction:

• The Jann and CTC workloads differ (among other things) in that the CTC workload is a
real trace including user estimates of runtime, whereas theJann model does not include this
detail.

• Due to using accurate estimates for the Jann model, the conservative scheduler achieved
less backfilling of long jobs that use few processors. This isobviously detrimental to the
performance of these long jobs, but turned out to be beneficial for short jobs that don’t get
delayed by these long jobs.

10



 0

 10000

 20000

 30000

 40000

 50000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

-20

 0

 20

 40

 60

 80

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

CTC w/ accurate estimates

job length
<30s <5min <1hr <10hr >10hr

jo
bs

 b
ac

kf
ill

ed

0

5000

10000

15000

20000

25000

EASY

cons

CTC w/ accurate estimates

job length
<30s <5min <1hr <10hr >10hr

ad
d’

l b
ac

kf
ill

 w
/ E

A
S

Y

0

0.1

0.2

0.3

0.4

0.5

(for load of 0.8)

Figure 5:Results for the CTC workload when using actual runtimes as estimates, to verify that this
is the cause of the Jann results. Compare with Figures 3 and 4.

• As response time is dominated by long jobs, the response timemetric showed that EASY is
better than conservative for the Jann workload. The slowdown metric, on the other hand, is
dominated by short jobs, so it showed conservative to be better.

As real workloads have inaccurate runtime estimates [19], it seems that in this particular case the
CTC results should be favored over the Jann results.

It should be noted that other works have also investigated the effect of user runtime estimates
on performance [19, 27, 2]. However, these works did not elucidate the mechanisms by which the
inaccurate estimates cause their effect.

5.3 Non-Issues

Finding that the difference between the CTC and Jann resultshinges on the runtime estimates was
surprising not only because this it routinely brushed asideas unimportant, but also because there
is no lack of other candidates, which seem much more significant. In this section we demonstrate
that they are indeed unimportant in our case.

The usual suspects regarding performance variations are the statistical differences between
the workloads. Figure 6 shows histograms of the distribution of job sizes for jobs with different
runtimes, comparing the two workloads. The most striking difference is that the Jann workload

11



CTC < 30sec

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

Jann < 30sec

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

CTC < 5min

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

10
.1

43

Jann < 5min

1 2 4 8 16 32 64 128 256 512
pr

ob
ab

ili
ty

 [%
]

0

2

4

6

8.
32

9

CTC < 1hr

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

8.
91

8

Jann < 1hr

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6
20

.6
02

CTC < 18hrs3min

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

22
.5

98

Jann < 18hrs3min

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

17
.7

7

CTC > 18hrs3min

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

Jann > 18hrs3min

1 2 4 8 16 32 64 128 256 512

pr
ob

ab
ili

ty
 [%

]

0

2

4

6

Figure 6:Histograms of job sizes for jobs of different durations. Each bar represents a sequence
of sizes between powers of two. Note that some of the higher bars are truncated.

12



has tails at both ends, which the CTC workload does not. The CTC workload is bounded at 18
hours4 (an administrative issue), whereas the Jann workload has a tail that extends beyond 30
hours. The CTC workload hardly has any jobs shorter than 30 seconds, probably due to the fact
that the measurement includes the time to start up the required processes on all the nodes, and to
report their termination. In the Jann model, by contradistinction, over 10% of the jobs are shorter
than 30 seconds, and many jobs only run for a fraction of a second.

The long jobs in the tail could affect the results by causing longer delays to other jobs that wait
for their termination because they need their processors. To check this, we re-ran the simulations
with a modified version of the Jann workload, in which all jobslonger than 18 hours were deleted.
The results were essentially the same as for the original workload.

The short jobs could affect the results by contributing veryhigh values to the average slowdown
metric. This argument is not very strong, as we use the bounded slowdown metric, which is
designed to reduce the impact of very short jobs. Nevertheless we re-ran the simulations with a
modified Jann workload, this time removing all the jobs shorter than 30 seconds. Again, the results
were not significantly different from those of the original workload.

Another major difference between the workloads is that in the original CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jobs are spread evenly between each two
consecutive powers of two. Previous work has shown that the fraction of jobs that are powers of
two is important for performance, as it is easier to pack power-of-two jobs [17]. However, in our
case this seemed not to make a qualitative difference. It waschecked by running the simulations
on a modified version of the Jann workload in which the sizes of80% of the jobs were rounded up
to the next power of two.

Finally, the size of the system is also important. The Jann model specifies the use of 322 pro-
cessors, which is the number used in the simulations. For CTC, we used 430 processors, which is
the size of the batch partition on the CTC machine. Repeatingthe simulations using 512 nodes led
to somewhat lower backfilling rates, because 512 is a power oftwo, and therefore jobs pack much
better, leaving less holes in the schedule. However, the relationship between the two schedulers
did not change significantly.

6 Comparison with Feitelson Results

Having explained the results obtained using the CTC and Jannworkloads, and the reasons for
the differences between them, we now turn to the Feitelson workload (the behavior of the SDSC
workload is less interesting as it is similar to that of CTC).Comparing this workload with the
previous two, the question is why no major differences are observed between the performance of
the two schedulers in this case.

6.1 Long Serial Jobs

A special feature of the CTC and Jann workloads is that they have very many serial jobs, and
moreover, that most long jobs are serial. This is a result of the fact that when the CTC SP2 machine

4About 2.4% of the workload exceed this bound and are killed bythe system. Of these, 90% are killed within one
minute, and another 5% within 5 minutes. The highest runtimeobserved is 20 hours.

13



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

runtime [s]

CTC

serial
2-4
5-8

9-32
>32

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

runtime [s]

Jann

serial
2-4
5-8

9-32
>32

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

runtime [s]

SDSC

serial
2-4
5-8

9-32
>32

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

runtime [s]

Feitelson

serial
2-4
5-8

9-32
>32

Figure 7:Distributions of runtimes for jobs of different sizes in thevarious workloads.

was installed, it replaced a large ES/9000 mainframe, and inherited the mainframe’s workload (the
Jann model, in an attempt to model the CTC workload, copied this feature). Indeed, the large
number of serial jobs and the large proportion of long serialjobs are seen clearly in Figures 2 and
6. We may therefore conjecture that the performance differences we saw emanate specifically from
the backfilling of long serial jobs, and the subsequent delaying of larger short jobs. In the Feitelson
workload, in contrast, serial jobs tend to be shorter than larger ones.

To check that this explanation is viable, we first compare thedistributions of runtimes in the
various workloads, and how it correlates with job size. The graphs are shown in Figure 7, with
a separate line for jobs in different ranges of size. Apart from many interesting variations, one
feature does indeed stand out: in the CTC and Jann workloads,serial jobs are generally very long
in comparison with larger job sizes. In the Feitelson workload, by contradistinction, serial jobs are
generally very short in comparison with larger job sizes. Inthe SDSC workload, they are in the
middle.

6.2 Verification Using the Feitelson Model

To verify this conjecture, we modified the Feitelson workload and re-ran the simulations. Part
of this has been done in the past, as reported in [19]. That paper suggested the following two
modifications to the Feitelson model (Figure 8 “Feitelson→CTC”):

14



Jann
CTC

 1  2  4  8  16  32  64 128 256degree of parallelism  0.001
 0.1

 10
 1000

 100000

runtime
 0

 0.1

 0.2

 0.3

 0.4

fraction of jobs Feitelson
CTC

 1  2  4  8  16  32  64 128 256degree of parallelism  0.001
 0.1

 10
 1000

 100000

runtime
 0

 0.1

 0.2

 0.3

 0.4

fraction of jobs

Feitelson->CTC
CTC

 1  2  4  8  16  32  64 128 256degree of parallelism  0.001
 0.1

 10
 1000

 100000

runtime
 0

 0.1

 0.2

 0.3

 0.4

fraction of jobs Feitelson->ser
CTC

 1  2  4  8  16  32  64 128 256degree of parallelism  0.001
 0.1

 10
 1000

 100000

runtime
 0

 0.1

 0.2

 0.3

 0.4

fraction of jobs

Figure 8: Detailed comparison of different workloads, using the CTC workload as a reference.
The second modification of the Feitelson model only affects serial jobs, and does not in general
resemble the CTC or Jann workloads.

• Modify the distribution of job sizes to emphasize small jobs, and

• Modify the distribution of runtimes to emphasize longer jobs.

The details of implementing these modifications were hand tailored to create a workload that
closely resembled both the CTC and Jann workloads. In particular, the distribution of sizes em-
phasized serial jobs and jobs in the range of sizes from 8 to 31, and serial jobs also received special
treatment in terms of making them longer. Note that this is atodds with the original Feitelson
model, in which a weak correlation exists between job size and runtime [7]. Simulating the behav-
ior of the EASY and conservative schedulers on this modified Feitelson workload indeed showed
behavior similar to that of the Jann workload (Figure 9 top).However, the magnitude of the effect
was smaller.

Based on our current understanding of the matter, we can suggest a simpler modification:

• Specifically create many long serial jobs.

This leads to a model that is quite different from the Jann andCTC workloads, because only the
serial jobs have been changed (Figure 8 “Feitelson→ser”). However, making this change and re-

15



Feitelson workload modified to resemble Jann/CTC

 0

 10000

 20000

 30000

 40000

 50000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

Feitelson workload modified to include numerous long serialjobs

 0

 20000

 40000

 60000

 80000

 100000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

-100

 0

 100

 200

 300

 400

 500

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

Feitelson workload modified to include numerous long serialjobs, using 139 nodes

 0

 20000

 40000

 60000

 80000

 100000

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

re
sp

on
se

 ti
m

e 
[s

]

load

EASY
conservative

difference

-100

 0

 100

 200

 300

 400

 500

 0.4  0.5  0.6  0.7  0.8  0.9  1

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

load

EASY
conservative

difference

Figure 9: Simulation results for modified Feitelson workloads. Compare with results shown in
Figure 3.

16



running the simulations5 produced results that are quite similar to the previous, more elaborate
modified model (Figure 9 middle). Thus we can indeed claim to have identified the crucial aspect
of the workload that is needed in order to create the distinctive results seen with the Jann and CTC
workloads.

However, the results are still much less pronounced than those obtained from the Jann work-
load. Given that the original modification of the Feitelson workload (Feitelson→CTC) is extremely
similar to the CTC and Jann workloads, the explanation for this is not the workload statistics.
Rather, it is the size of the machine used in the simulation: using 139 nodes instead of 128 sig-
nificantly increases the gap in performance observed between EASY and conservative (Figure 9
bottom). The reason for this is that most job sizes are powersof two, so using a machine size that
is not a power of two leads to more idle processors and more options for backfilling. Both the CTC
and Jann workloads specify non-power-of-2 sizes.

7 Conclusions

Simulations of the relative performance of EASY and conservative backfilling, using different
workloads and metrics, exhibit discrepant results. However, detailed analysis of the specific cir-
cumstances of each simulation allows us to elucidate the following general conclusions:

• If the workload does not contain many long serial jobs, both backfilling policies lead to
similar performance results.

• If the workload does indeed contain many long serial jobs, aswas the case at CTC, and to
a lesser degree at SDSC, the relative performance depends onthe accuracy of user runtime
estimates and on the number of nodes in the system.

– If user runtime estimates are inaccurate, the EASY policy leads to better results. This
is expected to be the more common case.

– But if user runtime estimates are highly accurate, conservative backfilling degrades the
performance of the long serial jobs and enhances the performance of larger short jobs.
This leads to better overall slowdown results.

– This effect is intensified when the number of nodes is not a power of two.

This can be formulated as a decision tree for use in predicting performance.
Apart for settling the issue of the relative merits of EASY and conservative backfilling, this

work also underscores the importance of workload models andtheir details. All the workloads we
investigated have been accepted as reasonable and representative by researchers who have used
them in the past. But using different workloads can lead to completely different results, none of
which are universally correct. If this happens, one should find the workload features that lead

5The Feitelson model is somewhat problematic in the sense that it sometimes produces workloads that are not well-
behaved when the load is increased by multiplying all arrival times by a constant smaller than unity. The causes for
this behavior, and indeed how to model different load conditions in general, is the subject of a separate research effort.
In our case, the suggested modification seemed to accentuatethe problem. The solution was to generate multiple
workloads using different random number streams, and use the one in which the load could be increased in the most
predictable manner.

17



to the performance differences. This then enables the prediction of performance results for new
workload conditions.

In addition to different workloads, seemingly benign assumptions can also have a decisive
impact on evaluation results. In our case, the assumption ofaccurate runtime estimates, shown to
be unlikely to be true in [19, 15], was now shown to be instrumental in the results obtained using
the Jann workload. This underscores the need to collect realdata that can serve as the basis for
performance evaluation, reducing the risk of using unbasedassumptions.

Acknowledgments

This research was supported in part by the Israel Science Foundation (grant no. 219/99). The workload
models and logs on which it is based are available on-line from the Parallel Workloads Archive [1]. The
workload log from the CTC SP2 was graciously provided by the Cornell Theory Center, a high-performance
computing center at Cornell University, Ithaca, New York, USA. The workload log from the SDSC SP2 was
graciously provided by the HPC Systems group of the San DiegoSupercomputer Center (SDSC), which is
the leading-edge site of the National Partnership for Advanced Computational Infrastructure (NPACI). The
code for the Jann model was graciously provided by Joefon Jann of IBM Research. Many thanks to them
for making the data available and for their help with background information and interpretation.

References

[1] “ Parallel workloads archive”. URL http://www.cs.huji.ac.il/labs/parallel/workload/.

[2] S-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “The impact of more accurate requested runtimes
on production job scheduling performance”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 103–127, Springer Verlag, 2002. Lect.
Notes Comput. Sci. vol. 2537.

[3] W. Cirne and F. Berman, “A comprehensive model of the supercomputer workload”. In 4th Workshop
on Workload Characterization, Dec 2001.

[4] W. Cirne and F. Berman, “A model for moldable supercomputer jobs”. In 15th Intl. Parallel & Dis-
tributed Processing Symp., Apr 2001.

[5] A. B. Downey, “Predicting queue times on space-sharing parallel computers”. In 11th Intl. Parallel
Processing Symp., pp. 209–218, Apr 1997.

[6] D. G. Feitelson, “Metric and workload effects on computer systems evaluation”. Computer 36(9),
pp. 18–25, Sep 2003.

[7] D. G. Feitelson, “Packing schemes for gang scheduling”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 89–110, Springer-Verlag, 1996. Lect. Notes
Comput. Sci. vol. 1162.

[8] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong, “Theory and practice
in parallel job scheduling”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 1–34, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[9] R. Jain,The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.

18



[10] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, andJ. Riodan, “Modeling of workload in MPPs”.
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 95–
116, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[11] J. P. Jones and B. Nitzberg, “Scheduling for parallel supercomputing: a historical perspective of achiev-
able utilization”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 1–16, Springer-Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

[12] E. Krevat, J. G. Castaños, and J. E. Moreira, “Job scheduling for the BlueGene/L system”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 38–54, Springer Verlag, 2002. Lect. Notes Comput. Sci. vol. 2537.

[13] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis. McGraw Hill, 3rd ed., 2000.

[14] B. G. Lawson and E. Smirni, “Multiple-queue backfilling scheduling with priorities andreserva-
tions for parallel systems”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 72–87, Springer Verlag, 2002. Lect. Notes Comput.
Sci. vol. 2537.

[15] C. B. Lee, Y. schwartzman, J. Hardy, and A. Snavely, “Are user runtime estimates inherently inaccu-
rate?”. In Job Scheduling Strategies for Parallel Processing, Springer-Verlag, 2004. (to appear).

[16] D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph (eds.), pp. 295–303, Springer-Verlag, 1995. Lect. Notes Comput.
Sci. vol. 949.

[17] V. Lo, J. Mache, and K. Windisch, “A comparative study of real workload traces and synthetic
workload models for parallel job scheduling”. In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph (eds.), pp. 25–46, Springer Verlag, 1998. Lect. Notes Comput.
Sci. vol. 1459.

[18] M. H. MacDougall,Simulating Computer Systems: Techniques and Tools. MIT Press, 1987.

[19] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and user runtimeestimates
in scheduling the IBM SP2 with backfilling”. IEEE Trans. Parallel & Distributed Syst. 12(6), pp. 529–
543, Jun 2001.

[20] L. Rudolph and P. Smith, “Valuation of ultra-scale computing systems”. In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 39–55, Springer Verlag, 2000. Lect.
Notes Comput. Sci. vol. 1911.

[21] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to optimize the performance of parallel
job scheduling”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 228–251, Springer-Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[22] M. S. Squillante, D. D. Yao, and L. Zhang, “The impact of job arrival patterns on parallel scheduling”.
Performance Evaluation Rev. 26(4), pp. 52–59, Mar 1999.

[23] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Selective reservation strategies
for backfill job scheduling”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 55–71, Springer-Verlag, 2002. Lect. Notes Comput.
Sci. vol. 2537.

19



[24] D. Talby and D. G. Feitelson, “Supporting priorities and improving utilization of the IBMSP scheduler
using slack-based backfilling”. In 13th Intl. Parallel Processing Symp., pp. 513–517, Apr 1999.

[25] D. Tsafrir and D. G. Feitelson,Workload Flurries. Technical Report 2003-85, Hebrew University, Nov
2003.

[26] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam, “Improving parallel job scheduling by
combining gang scheduling and backfilling techniques”. In 14th Intl. Parallel & Distributed Process-
ing Symp., pp. 133–142, May 2000.

[27] D. Zotkin and P. J. Keleher, “Job-length estimation and performance in backfilling schedulers”. In 8th
Intl. Symp. High Performance Distributed Comput., Aug 1999.

20


