
The Workload on Parallel Superomputers:Modeling the Charateristis of Rigid JobsUri Lublin� Dror G. FeitelsonShool of Computer Siene and EngineeringThe Hebrew University, 91904 Jerusalem, IsraelAbstratThe analysis of workloads is important for understanding how systems are used.In addition, workload models are needed as input for the evaluation of new systemdesigns, and for the omparison of system designs. This is espeially important inostly large-sale parallel systems. Lukily, workload data is available in the form ofaounting logs.Using suh logs from three di�erent sites, we analyze and model the job-level work-loads with an emphasis on those aspets that are universal to all sites. As manydistributions turn out to span a large range, we typially �rst apply a logarithmitransformation to the data, and then �t it to a novel hyper-Gamma distribution orone of its speial ases. This is a generalization of distributions proposed previously,and leads to good goodness-of-�t sores. The parameters for the distribution are foundusing the iterative EM algorithm.The results of the analysis have been odi�ed in a modeling program that reatesa syntheti workload based on the results of the analysis.1 IntrodutionThe study and design of omputer systems requires good models of the workload to whihthese systems are subjeted. Until reently, the data neessary to build these models |observations from prodution installations | were not available, espeially for parallel om-puters. Instead, most models were based on assumptions and mathematial attributes thatfailitate analysis. Reently a number of superomputer sites have made aounting dataavailable that make it possible to build realisti workload models. It is not lear, however,how to generalize from spei� observations to an abstrat model of the workload. Thispaper addresses the analysis of real workloads and the reation of realisti workload modelsbased on this analysis; speial emphasis is plaed on the tradeo� between the omplexity ofthe model and the resulting preditive power. The use of suh models will lead to substantialimprovements in experimental proedures, and to higher on�dene in their results.�Current aÆliation: SANgate Systems 1



The sope of this paper involves rigid parallel jobs. The reason for fousing on paralleljobs is that they lead to intriate workloads, where eah job's parallelism and runtime mayinterat; thus a more extensive modeling e�ort is needed than in traÆ models in whihpakets have a prede�ned size, and only the arrival proess is not known. \Rigid" jobs arejobs that do not hange their parallelism at runtime [8℄. We hose not to address malleableor dynami jobs at this stage due to the omplexities involved, and the lak of data, asdesribed below.1.1 Why Model?There are two ommon ways to use a reorded workload to analyze or evaluate a systemdesign: (1) use the logged workload diretly to drive a simulation, or (2) reate a modelfrom the log and use the model for either analysis or simulation. For example, trae-drivensimulations based on large address traes are often used to evaluate ahe designs [13, 12℄.But models of how appliations traverse their address spae have also been proposed, andprovide interesting insights into program behavior [24, 25℄.The advantage of using a trae diretly is that it is the most \real" test of the system;the workload reets a real workload preisely, with all its omplexities, even if they are notknown to the person performing the analysis.The drawbak is that the trae reets a spei� workload, and there is always thequestion of whether the results generalize to other systems or load onditions. In partiular,there are ases where the workload depends on the system on�guration, and therefore a givenworkload is not neessarily representative of workloads on systems with other on�gurations.Obviously, this makes the omparison of di�erent on�gurations problemati. In addition,traes are often misleading if we have inomplete information about the irumstanes whenthey were olleted. For example, workload traes often ontain intervals when the mahinewas down or part of it was dediated to a spei� projet, but this information may not beavailable.Workload models have a number of advantages over traes.� The modeler has full knowledge of workload harateristis. For example, it is easy toknow whih workload parameters are orrelated with eah other beause this informa-tion is part of the model.� It is possible to hange model parameters one at a time, in order to investigate theinuene of eah one, while keeping other parameters onstant. It is also possible toselet model parameters that are expeted to math the spei� workload at a givensite. Suh manipulations are problemati when using logs. For example, it is ommonpratie to inrease the modeled load on a system by reduing the average interarrivaltime. But this pratie has the undesirable onsequene of shrinking the daily loadyle as well. With a workload model, we an ontrol the load independent of the dailyyle. Another example is the ability to reate long workloads with more jobs than areavailable in any given log.� A model is not a�eted by poliies and onstraints that are partiular to the sitewhere a trae was reorded. For example, if a site on�gures its NQS queues with a2



maximum allowed duration of 4 hours, it fores users to break long jobs into multipleshort jobs. Thus, the observed distribution of durations will be di�erent from the\natural" distribution users would have generated under a di�erent poliy.� Logs may be polluted by bogus data. For example, a trae may inlude reords ofjobs that were killed beause they exeeded their resoure bounds. Suh jobs imposea transient load on the system, and inuene the arrival proess. However, they maybe repliated a number of times before ompleting suessfully, and only the suessfulrun represents \real" work. In a model, suh jobs an be avoided (but they an alsobe modeled expliitly if so desired).� Finally, modeling inreases our understanding, and an lead to new designs based onthis understanding. For example, identifying the repetitive nature of job submittal anbe used for learning about job requirements from history. One an design a resouremanagement poliy that is parameterized by a workload model, and use measuredvalues for the loal workload to tune the poliy.1.2 How to ModelThe main problem with models, as with logs, is that of representativeness. That is, to whatdegree does the model represent the workload that the system will enounter in pratie? Theanswer depends in part on the degree of detail that is inluded. Eah job is atually omposedof proedures that are built of instrutions, and these interat with the omputer at di�erentlevels. One option is to model these levels expliitly, reating a hierarhy of interlokedmodels for the di�erent levels [2, 1℄. This has the obvious advantage of onveying a full anddetailed piture of the struture of the workload. For example, the sizes1 of a sequene of jobsneed not be modeled independently. Rather, they an be derived from a lower-level model ofthe jobs' strutures [7℄. Hene the ombined model will be useful both for evaluating systemsin whih jobs are exeuted on prede�ned partitions, and for evaluating systems in whih thepartition size is de�ned at runtime to reet the urrent load and the spei� requirementsof jobs.The drawbak of this approah is that as more detailed levels are added, the omplexityof the model inreases. This is detrimental for two reasons. First, more detailed traes areneeded in order to reate the lower levels of the model. Seond, it is ommonly the ase thatthere is wider diversity at lower levels. For example, there may be many jobs that use 32nodes, but at a �ner detail, some of them are oded as data parallel with serial and parallelphases, whereas others are written with MPI in an SPMD style. Creating a representativemodel that aptures this diversity is hard, and possibly arbitrary deisions regarding therelative weight of the various options have to be made. We will therefore onentrate onsingle-level models, whih may be viewed as the top level in a hierarhial set of models [7℄.The most ommon approah used in workload modeling is to reate a statistial summaryof an observed workload. It is typially assumed that the longer the observation period, the1We will use \size", and also \large" and \small", to denote the degree of parallelism of a job. \Duration",\short", and \long" denote runtimes. 3



better. Thus we an summarize a whole year's workload by analyzing a reord of all the jobsthat ran on a given system during this year.The simplest and most widely used statistis rely on moments, espeially the mean andthe variane of the sample data. For example, these statistis indiate that the distributionof job runtimes has a wide dispersion, leading to a preferene for a hyperexponential modelover an exponential one. However, suh summaries may be misleading, beause they may notrepresent the shape of the distribution orretly. Indeed, more than 20 years ago Lazowskashowed that models based on a hyperexponential distribution with mathing moments anlead to inorret results [15℄. In addition, the alulation of moments an be unduly inu-ened by extreme values, that are not neessarily representative [4℄. Thus, we prefer thealulation of perentiles and an attempt to math the CDF of the target distribution.In Setion 3, we present our tehniques for modeling the CDF of a distribution. Ourhosen model is the hyper-Gamma distribution, whih is a ombination of two Gammadistributions. The parameters of these distributions are disovered using the EM algorithm.We then apply this methodology to the haraterization of the distributions of parallelism,runtimes, and interarrival times in di�erent workload logs. By omparing the logs, we identifyfeatures and parameter values that are more representative than others, and inlude themin the �nal workload model.2 Workload LogsThe analysis presented here is based on workload logs from 3 loations. Eah log ontainstens of thousands of jobs, and spans many months of ativity. The logs are typially availableas ASCII �les in whih eah job that ran on the system is represented by a single line, withseveral spae-separated �elds providing data about di�erent job attributes. These logs andothers are available on-line from the Parallel Workloads Arhive [19℄.The �rst log is that from the San-Diego Superomputer Center Intel Paragon mahine.This mahine has 416 nodes, of whih 352 onstitute the bath partition and 48 are in theinterative partition. Sheduling is based on NQS, with speial handling of partitions andnode on�gurations [26℄. The log spans all of 1995 and 1996, with about two thirds of thejobs in the �rst year; the total is 113515 suessful jobs. This log was originally availableare two separate logs for the two years, and therefore sometimes appears so in our analysis(as SDSC95 and SDSC96).The seond log is from the 1024-node Connetion Mahine CM-5 installed at Los-AlamosNational Lab (LANL). This mahine is sheduled using DJM, with a minimal partition sizeof 32 nodes. The log spans the period from January through September 1996, and ontains36306 jobs that ompleted suessfully (the full log is longer, but we only used the mostreent part).The third and �nal log is from the 100-node IBM SP2 mahine installed at the SwedishRoyal Institute of Tehnology in Stokholm (KTH). This mahine is sheduled using theEASY bak�lling sheduler [16℄. The log ontains 16221 jobs that ompleted suessfully, inthe period of Otober 1996 to August 1997. 4



3 Statistial TehniquesThis setion overs statistial distributions and tehniques that we used to �nd the workloadmodel. The idea in statistial modeling is to haraterize the workload using distributions,suh that the workload is onsistent with sampling from these distributions. This is done inthree phases:1. Deide whih distribution to use in the model.2. Find the values of that distribution's parameters, suh that it would provide a good�t to the samples.3. Chek the goodness of �t of that spei� distribution to the sample data.3.1 Candidate DistributionsIn the �rst phase we typially onsidered the distributions desribed below.Two-phase-uniform distribution: This is a generalization of the uniform distribution.Four parameters are required in order to de�ne it: l (low), m (medium), h (high),and p (proportion). The umulative distribution funtion is then onstruted as twostraight lines, passing through three points: (l; 0), (m; p), and (h; 1).Exponential distribution: This well-known distribution is often used in modeling, due tothe availability of good estimators, and its nie mathematial properties (e.g. beingmemoryless). Its pdf is f(x; �) = 1�e�x� .Hyper-exponential distribution: A mixture of two (or more) exponential distributions.The two-stage version, whih is a mixture of two exponentials, has 3 parameters: �1,�2 and p. �1 and �2 are the parameters of the two exponential distributions, and pis the proportion of the �rst one. Thus 0 � p � 1 of the population omes froman exponential distribution with parameter �1, and 1 � p from a distribution withparameter �2.Gamma distribution: This distribution is de�ned by the pdffX(x;�; �) = 1�(�)��x��1e� x�where x; �; � > 0 and �(�) = Z 10 t��1e�t dtThis is also a member of the exponential family of distributions, and therefore hasgood estimators.The gamma distribution is muh more general and \exible" than the exponentialdistribution (whih is atually a speial ase). Several examples of the e�et of itsparameters are shown in Fig. 1. The � is the shape parameter. As an be seen, when� > 1 the distribution is bell-shaped; when � � 1 it has a right tail. The smaller �,5
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Figure 1: Examples of Gamma distributions.the heavier the tail. The � is alled the sale parameter, as it determines the spread ofthe distribution (see the x sale in the bottom 3 graphs). The mean of the distributionis equal to the produt of its parameters: m = ��. The variane is ��2.As noted, several important distributions are speial ases of the Gamma distribution.The exponential distribution is obtained by setting � = 1. The Erlang distributionis obtained by setting � to be an integer. In both ases, � is the parameter of theresulting distribution (� = �).Note: Sometimes the gamma distribution is represented by �, � 0 parameters where� 0 = 1=�. The mean is then ��0 , and the variane ��02 . We will use this notation as it isthe one employed by Matlab, whih we used for our analysis.Hyper-Gamma distribution: Amixture of two (or more) gamma distributions, and there-fore a generalization of the hyper-exponential and hyper-erlang distributions. The ver-sion that we will use, whih is a mixture of two Gamma distributions, has 5 parameters:�1, �1, �2, �2, and p.
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3.2 Fitting a DistributionGiven a data sample and the funtional form of a ertain distribution, we need to �nd \good"values of the distribution's parameters. These values will de�ne exatly one distribution; forexample if the given funtion is of the form f(x; a; b) = ax + b, we need to �nd the valuesof a and b. Parameter values are judged by the degree to whih the resulting distributionmathes the sample data. There are several methods to �nd parameter values.3.2.1 Moments Estimation MethodOne way to haraterize a distribution is by its moments (mean, variane, et.), whih antypially be expressed as a funtion of its parameters (e.g. the mean of a Gamma distributionis the produt of its parameters � and �). By inverting these funtions, one obtains a formulathat expresses the parameters as a funtion of the moments. The moments of the samplean then be alulated and plugged into the formula, giving the desired parameters.The problem with this method is that it does not deal well with distributions (or samples)that have fat tails. The number of equations needed is the number of unknown parametersof the distribution. Thus if the number of parameters is large, high-order moments arerequired. These are very sensitive to sample outliers, leading to situations in whih mostof the data is e�etively ignored. For example, the exponential distribution has only oneparameter, and this an be estimated based on only the �rst moment (the mean). But thehyper-Gamma distribution has �ve, so the �fth moment is also required. Consider a samplewith one outlier, e.g. 1,1,1,1,2,2,2,3,3,4,5,15. The �fth moment, de�ned as M5 = 15Pni=1 x5i ,is 760995; 99.8% of this is due to the outlier, 155 = 759375. The resulting parameters aretherefore dominated by rare samples, that are not neessarily very representative.3.2.2 Maximum Likelihood Estimation MethodThe idea behind maximum likelihood is to derive those parameter values that would lead tothe highest probability of sampling the given data values. Sine log is a monotoni funtion,the maximum of the likelihood funtion is the maximum of the log likelihood funtion. Oftenit's easier to alulate the maximum of the log likelihood funtion, sine log makes a produtinto a sum and an exponent into a produt.For example, onsider the exponential distribution. The likelihood of sampling valuesX1; : : : ; Xn, given a parameter �, is the produt of the likelihoods of the individual values:L(X1; : : : ; Xn; �) = nYi=1 fX(Xi; �)Taking a log and developing this equation leads toln(L(X1; : : : ; Xn; �)) = ln nYi=1 1� e�Xi=�!= nXi=1 �ln(1=�)� Xi� �= n ln(1=�)� 1� nXi=1Xi7



To �nd the � that maximizes this expression we di�erentiate and equate to zero, leading ton1=� = nXi=1Xiand the solution of � equal to the mean of the sample. This proedure is based on theassumption that the random variables of the sample are independent.3.2.3 Finding Parameters for a MixtureIn a mixture, eah sample omes from one (and only one) of the distributions formingthe mixture. But we don't know whih one, making it harder to assess the parameters ofthe individual distributions. The missing data is sidestepped by using the iterative EM(Expetation Maximization) algorithm. This algorithm is based on the assumption thatthe number of distributions in the mixture and the funtional form of eah distributionare given, and that for eah distribution estimating the parameters is not hard; it usuallyprodues near-optimal results. The Algorithm proeeds as follows [18℄:1. Initialize the parameters of the distributions somehow.2. Expetation-Step: For eah observation and for eah distribution deide what part ofthis observation \belongs to" this distribution. Sine urrently the parameters of thedistribution are set, we an �nd for eah distribution the probability of getting theobservation from that spei� distribution. This probability is the \relative part" ofthe observed value that is assigned to this distribution.3. Maximization-Step: For eah distribution estimate the parameters using the maxi-mum likelihood estimation method. This estimation is done aording the \part ofobservations" that \belong to" this distribution.4. Repeat Expetation-Maximization steps until the sample likelihood onverges.In our ase the number of distributions is two, and the funtional form of eah is given(whether it is Gamma or exponential). Thus both steps (2) and (3) are easy to alulate.Given that EM is a heuristi iterative algorithm, its results and onvergene dependon how it is initialized. We developed the Medium Minimum Estimation Method for thispurpose. This method is based on the fat that often it is easy to distinguish between thetwo distributions in the mixture just by looking at the histogram of the samples, beauseit is bimodal (or beomes bimodal after applying a logarithmi transformation). We anthus simply divide the sample at the minimum point between the two modes, and estimatethe parameters for eah subsample. Likewise, the estimate for the probability of belongingto eah distribution is initialized aording to the fration of the samples that fall in eahsubsample.3.3 Assessing Goodness of FitAfter �nding the parameters and thus de�ning a spei� distribution, we want to know howwell it atually models the original sample data. In other words, we want to ensure that8



the best model we managed to �nd is indeed a good model in absolute terms. We used theKolmogorov-Smirnov goodness of �t test for this purpose [14℄. For the distributions we areonsidering, this is known to be a onservative test.3.3.1 The Kolmogorov-Smirnov MethodThe Kolmogorov-Smirnov alulates the maximal distane between the umulative distribu-tion funtion of the theoretial distribution and the sample's empirial distribution, over allthe points.1. Sort the sample's observations: X1 : : :Xn suh that X1 � X2 : : : � Xn.2. De�ne the sample's empirial umulative distribution funtion:Fn(x) = 8><>: 0 if x < X1i=n if Xi � x < Xi+11 if x � XnThe empirial CDF Fn(x) is an estimator for the theoretial distribution F (x). Further-more, if the samples are indeed from the theoretial distribution F (x), thenPr(limn!1 jF (x)� Fn(x)j = 0) = 1.3. De�ne Dn = supx fjF (x)� Fn(x)jg. Sine Fn(x) is a step funtion with all steps ofheight 1=n, this is equivalent toDn = maxi=1:::n����� in � F (Xi)���� ; ����F (Xi)� i� 1n �����4. If the value ofDn is large we will rejet the hypothesis that the theoretial and empirialdistributions are the same. If Dn is small enough we will not rejet that hypothesis.The atual threshold to use depends on the sample size n and the on�dene level �wanted, and an be found in statistial tables.3.3.2 The �2 MethodWhen F(x) is not available in the form of a simple equation, the alternative is to reaterandom samples from this distribution, and then hek whether it is reasonable to say thatthe original data and these samples ome from the same distribution. This is done usingthe �2 test. The number of samples generated should equal the number of original dataobservations.In this test, the range of values is partitioned into a ertain number k of subranges.Then the number of observations that fall into eah range (Oi) and the expeted numberof observations that should fall into eah range (Ei) are tabulated (in our ase, this is notbased on the formula but rather on the reated random samples). The metri is then�2 = kXi=1 (Oi � Ei)2EiThis is then ompared with statistis tables to asertain if it is small enough to warrant theonlusion that the distributions are probably the same.9



4 The Degree of ParallelismRigid jobs an be thought of as retangles in proessors-time spae. The most importantaspets of modeling them are therefore modeling their dimensions in terms of proessors, aswe do here, and in terms of runtime, as we do in the next setion. Diret modeling of thedegree of parallelism is possible beause this is an input parameter provided by the user:a request to submit a job for exeution is always aompanied by a spei�ation of howmany proessors to use. When onsidering moldable jobs, it is neessary to model the totalwork and the speedup funtion, in order to derive the runtime for any alloated number ofproessors.4.1 Handling Power-of-Two JobsExperiene shows that the distribution of job sizes is typially dominated by sizes that arepowers of two [4℄. This is obvious for early mahines that only allowed powers of two, suhas hyperubes and onnetion mahines. However, it persists also in systems that have noarhitetural preferene for powers of two. This raises the question of what is the soure ofthis phenomenon, and whether it should be inluded in the workload model.Jann et al. [11℄ and Downey [3℄ hose not to inlude any speial treatment for powersof two in their models. This is based on the belief that the emphasis on powers of two isnot intrinsi to the workload. Instead, it is thought to stem from habit and from inueneof queue on�guration hoies, where system administrators de�ne queues for di�erent jobsizes that are typially delimited by power-of-two nodes.We disagree on this point, and believe that jobs with sizes that are powers of two shouldbe emphasized, as is observed in the logs. One argument for this approah is that if usingpowers of two is habitual, then it is indeed an intrinsi part of the workload | this is whatusers do today, and an be expeted to do in the future as well. Another argument is thatwe ontinue to see a strong use of powers of two even in logs that ome from mahinesthat do not have queues on�gured aording to powers of two, e.g. mahines running theEASY or Maui shedulers. Finally, we note that power-of-two jobs have been shown tohave a strong impat on performane evaluation results [17℄, so departing from empirialobservations should be justi�ed arefully; retaining the observed harateristis is safer.4.2 The Modeling ProedureApart from power-of-two jobs, we also note the high fration of serial jobs that is typiallyobserved. This motivates us to partition the jobs into three lasses: serial, power-of-two,and the rest. Our modeling proedure will be based on a ombination of this distintion anda general distribution over all parallel jobs.Our proedure is shown graphially in Fig. 2. With probability p1, the job is seleted tobe serial. If not, the log of its size is seleted from an appropriate distribution. Then, withprobability p2, this value is rounded to the nearest integer so as to represent a power-of-twojob (note that p2 is not the fration of power-of-two jobs out of the total, but only out of the10
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logsizesize = 2Figure 2: Algorithm for modeling the size of a job.Two-stage uniform Gammap1 p2 l m h p Dn � � DnSDSC95 0.21 0.76 0.75 5.00 8.64 0.92 0.040 4.04 0.77 0.064SDSC96 0.21 0.89 1.00 5.00 7.00 0.86 0.038 4.92 0.69 0.052KTH 0.30 0.60 0.70 4.00 6.64 0.84 0.033 3.87 0.73 0.058LANL { { 4.50 7.00 10.0 0.82 0.083 24.95 0.25 0.114Model 0.24 0.75 min�0:2 max�2:5 max 0.86Table 1: Parameter values for logs and model of job sizes.parallel jobs). The job size is then 2 raised to the seleted value and rounded if neessary(in ase its not a power of 2).4.3 The Distribution and ParametersTo omplete the model, we must speify the parameters p1 and p2, and the distribution.For the evaluation of the two parameters we exlude the LANL-CM5 log, as this mahineonly allows partitions that are powers of two with at least 32 nodes. The values for the otherlogs are shown in Table 1. They lead to the hoie of p1 = 0:24 and p2 = 0:75 for the model.To �nd a �tting distribution, we �rst apply a logarithmi transformation, and regard theresult as a ontinuous distribution. We heked �ts to a Gamma distribution, a uniformdistribution, a two-stage uniform distribution, and a hyper-exponential distribution. Foreah one parameters were estimated and the �t evaluated using the Kolmogorov-Smirnovmethod. The best results were obtained for the Gamma and two-stage uniform distributions,and they are shown in Table 1. We hose the two-stage uniform distribution for the modelfor two reasons: �rst, its �t is slightly better. Seond, the parameter values obtained weremore onsistent aross the di�erent mahines, and it was relatively straightforward to relate11
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Figure 3: Distributions of runtimes after a logarithmi transformation, and the derived modelfor these distributions.them to the mahine size. Thus in the model we de�ne l to be 0.2 less than the minimalpossible value (to orret for the fat that when using a uniform distribution and rounding,the probability to get the end value is redued), m to be 2.5 less than the maximal value,and h to be the maximal possible value, whih is log2 P . p is set to the arithmeti mean of0.86.5 Job RuntimesAs noted above, runtime is the seond major harateristi of a rigid job. The distribution ofruntimes, however, is very di�erent from the distribution of sizes: It is ontinuous rather thanbeing disrete, and spans a muh larger range of values. The modeling tehnique is thereforeompletely di�erent. We start by desribing the modeling of a single system, and then showhow the models for the di�erent systems were ombined into a single representative model.5.1 Modeling Individual SystemsAs in the ase of job sizes, we start by applying a logarithmi transformation to the data.This redues its range, redues the inuene of extreme values that may not be representativein general, and does not a�et the quality of the results.The andidate distributions heked were the Gamma distribution, the hyper-exponentialdistribution, and the hyper-Gamma distribution (whih is atually a generalization of theprevious two, and also of the hyper-Erlang distribution). The hyper-Gamma distribution isespeially appealing beause the distributions seem to be bimodal in log spae, as shown inFig. 3.The parameters of the hyper-Gamma distribution were estimated using the middle-minimum method as a starting point for the appliation of the EM algorithm, as explainedin Setion 3. The goodness of �t was evaluated using the Kolmogorov-Smirnov method. Theresults are shown in Table 2. In most ases, the hyper-Gamma model is very lose to theoriginal data and provides a better math than other distributions. However, it does not12



�1 �1 �2 �2 p DnSDSC95 2.35 1.50 1533 0.007 0.94 0.037SDSC96 4.15 0.96 569.7 0.018 0.70 0.035KTH 5.76 0.82 159.5 0.05 0.61 0.081LANL 6.00 0.66 68.5 0.13 0.55 0.034Average model 4.20 0.94 312.0 0.03 0.685Searh model 4.00 1.00 500.0 0.02 0.70Table 2: Parameter values for model of job runtimes.pass the statistial goodness-of-�t test. The reasons for this are that our samples are notneessarily independent, and that we are dealing with extremely large numbers of samples bystatistial standards: 15000 to 70000 jobs in eah log [14℄. In order to hek this onjeture,we hose a random subsample of between 500 and 1000 jobs from eah data set, and hekedthe �t of the models to these subsamples. In all ases, the models passed the test at the 95%on�dene level.5.2 Creating a Representative ModelIn order to reate a representative model, we need to redue the four models shown in Table2 into one. We onsidered two ways of doing so.The �rst method alulates an average value for eah of the �ve parameters of the hyper-Gamma distribution, based on the values this parameter has in the four models. Given thatthe salient features of the Gamma distribution depend on produts of these parameters,the geometrial mean was hosen (but the arithmeti mean was used for p). The resultingparameter values are shown in Table 2, and the resulting distribution is ompared with theoriginals in Fig. 3. As an be seen, its shape is a plausible representative for the data.The seond method is to tabulate the range of values of eah parameter, and systemati-ally hek di�erent ombinations. Spei�ally, for eah parameter we seleted three valueswhih divide the range into equal parts, and heked the distributions resulting from all 243ombinations of these values. Most of the distributions turned out not to have the desiredharateristis (bimodal with maxima and minima in the right plaes) and were eliminated.Of the remaining ones, the one whose pdf lay losest to the middle of the pdf's of the datasets was hosen for the model. The resulting parameter values are shown in the bottom rowof Table 2. They are very lose to the values alulated using the previous method, leadingto greater belief that these values are indeed representative.Given that the model is a ompromise representing di�erent systems, it is also possibleto onsider minor modi�ations in the interest of eÆient omputability. For example, it ispossible to round the �s to the nearest integer, modify the � to ompensate for the hangein the mean, and derive a hyper-Erlang model in plae of the hyper-Gamma model (note,however, that the modeling phase was still done using the more aurate hyper-Gammadistribution). From our experiene, this uts about 12% o� the time required to omputesamples from the model. 13



�1 �1 �2 �2 p DnSDSC95 3.66 1.32 13.4 0.87 0.88 0.033SDSC96 5.12 1.09 120.0 0.10 0.71 0.026KTH 118.4 0.06 42.2 0.28 0.30 0.050LANL 5.16 1.10 30.6 0.34 0.59 0.019Average model 10.74 0.55 37.96 0.37 0.577Searh model 5.00 1.10 45.00 0.30 0.700Table 3: Parameter values for model of total job work.5.3 Modeling Total WorkThe tehniques desribed above an also be applied to the total work (the area of the job'sretangle, that is the number of proessors multiplied by the runtime). The results of doingso are shown in Table 3. Obviously, this should be ombined with a model of the speedupfuntion of parallel jobs, like those proposed by Sevik [20℄ or Downey [3℄. However, thevalidity of this model is debatable, as it is based on jobs that ran on di�erent numbers ofproessors. This is akin to an assumption of ideal speedup. Nevertheless, no diret data isavailable, so models suh as this one must be used.6 Correlation Between Parallelism and RuntimeThe idea that parallelism an be used to redue the ompletion time of a task dates bakat least to Biblial times. In terms of the workload on parallel superomputers, this may beexpeted to lead to an inverse orrelation between parallelism and runtime: large jobs usemore proessors, so they should omplete faster. But this is based on the impliit assumptionthat the total amount of work remains the same. Alternative salability models assert thatthe added parallelism is not used to solve the same problem faster, but rather to solve largerproblems [9, 22℄. This may even lead to an inrease in the total proessing time.6.1 Establishing the Existene of a CorrelationThe simplest way to hek for a orrelation between the parallelism and runtime is to alu-late the orrelation oeÆient between these variables. Doing so for our logs yields a smallpositive orrelation (ranging from 0.02 for KTH to 0.40 for SDSC96). An alternative is todivide the jobs in eah log into groups aording to their degree of parallelism, and plot theCDF of the runtimes distribution for eah suh group (Fig. 4). The fat that larger jobsgenerally have a longer runtime is then evident from the fat that their CDF is below thatof smaller jobs. This is learly seen in the SDSC logs. In the KTH and LANL logs there issome mixture among the small jobs (in the �rst two groups), but not with the large jobs inthe third group.
14
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sizes �1 �1 �2 �2 p DnSDSC95 1{4 3.73 1.05 0.19 4.77 0.97 0.0385{16 9.68 0.56 161.0 0.074 0.82 0.03417{400 12.63 0.62 197.1 0.07 0.66 0.063SDSC96 1{8 5.46 0.92 230.5 0.05 0.87 0.0339{16 9.87 0.66 1577 0.008 0.40 0.06217{320 11.65 0.71 378.4 0.037 0.46 0.065KTH 1{4 5.36 0.89 39.6 0.232 0.61 0.0455{100 8.68 0.84 89.97 0.133 0.58 0.016LANL 32 29.96 0.29 330.6 0.036 0.63 0.02164 38.33 0.25 560.6 0.023 0.45 0.039128 6190 0.001 35.11 0.331 0.47 0.140256{1024 31.82 0.37 773.3 0.019 0.47 0.052Table 4: Parameters of runtime model for di�erent size groups.
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Figure 5: Comparison of runtime model with original distributions for di�erent size groupsin the SDSC95 log.Table 4). This yields a good �t as measured by the Kolmogorov-Smirnov method. It alsoleads to the observation that the shapes of these distributions hange in a similar manner:They are all omposed of a pair of Gamma distributions with similar means, but the relativeweights of these two distributions hanges aording to the range of sizes. For small jobs,the distribution of runtimes is well modeled by the lower Gamma alone. For middle-sizejobs, the low Gamma is dominant, but the higher Gamma is unmistakable. For large jobs,the runtime distribution is omposed of the two Gammas with roughly equal weights.Based on this observation, we devised a model in whih runtimes are represented by ahyper-Gamma distribution. Four of the �ve parameters, those desribing the two onstituentGamma distributions, are �xed. Only the p parameter, whih determines the probability ofsampling either of the Gamma distributions, is orrelated with the job size. In e�et, it isreplaed by a pair of parameters that speify how it depends on the job size. Thus the totalnumber of parameters used by the model is 6. The proedure for sampling a runtime from16
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Select runtimeFigure 6: Algorithm for modeling the runtime of a job.a b DnSDSC95 �0:0043 0.995 0.038SDSC96 �0:0107 0.900 0.056KTH �0:0065 0.649 0.058LANL �0:00027 0.575 0.089Model �0:0054 0.780Table 5: Parameter values for linear dependene of p on job size.this model is pitured in Fig. 6.Results obtained by this method are shown in Fig. 7. While the model annot trakthe exat di�erenes in the shapes of the distributions for di�erent sizes, it is muh moreaurate than using the same model for all sizes.6.3 Calulating pOur model for runtimes involves two �xed Gamma distributions, and a parameter p whihrepresents the proportion of the �rst one in the population. The point is that p is a funtionof the job size. The simplest approah is to use a linear relationship: p = a � s + b, where sis the job size. Suh a relationship was previously employed by Feitelson, but in the ontextof a hyper-exponential distribution [5℄.Given that p should derease as s inreases, a will be negative. There is therefore a dangerthat p might beome negative for large s. Also, b might be larger than 1 again foring p outof its useful range. One way to solve this problem is to use a log odds transformation, basedon the equation log � p1�p� = a � s + b. This ensures that p remains between 0 and 1, buthanges the shape of its dependene on s. We heked it and found that it does not �t ourneeds for expressing the dependene of p on s, as the resulting distributions did not �t thedata. We therefore use an alternative in whih p is set to 0 if it turns out to be negative,and to 1 if it is higher than 1. In e�et, this divides the spetrum of job sizes into threesegments. For s � � ba we get p = 0 and use only the �rst Gamma. For s � 1�ba we get p = 1and use only the seond Gamma. In between we have a linear relationship.To atually �nd suitable values for a and b, we divided eah data set into 8 roughly equalgroups of jobs (aording to job size, not splitting any single size among two groups; for17
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Figure 8: Histograms of job arrivals per time of day.Our approah is to �rst model the relatively stationary arrival proess at peak hours, thenharaterize the daily yle, and �nally ombine the two.7.1 Modeling Arrivals at Peak HoursWe start by modeling the arrival proess at peak hours. This an be used in isolation, orombined with a daily model as desribed below. Based on the histograms of job arrivalsduring the day (Fig. 8) we de�ne the peak hours to be from 8:00 AM to 7:00 PM, Mondaysthrough Fridays. The interarrival times of jobs submitted during these times were tabulated,and ompared to the following distributions: exponential, hyperexponential, Gamma, andhyper-Gamma. The goodness of �t was evaluated using the Kolmogorov-Smirnov method.The results were that all but the exponential distribution gave good �ts. The hyper-Gamma distribution was marginally better than the Gamma distributions, at the expenseof using more parameters. We therefore hose the Gamma distribution for the model. Theparameter values found are shown in Table 6. The model is the geometrial mean of thefour systems.
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� � DnSDSC95 6.89 0.62 0.053SDSC96 7.13 0.70 0.072KTH 14.10 0.37 0.064LANL 15.81 0.35 0.084Model 10.23 0.49Table 6: Parameter values for model of interarrival times at peak hours.� � DnSDSC95 7.77 4.16 0.047SDSC96 6.84 4.77 0.050KTH 12.00 2.55 0.054LANL 7.00 4.86 0.056Model 8.17 3.96Table 7: Parameter values for model of daily yle.7.2 Modeling the Daily CyleWorkloads an be expeted to have yles at three levels: daily (people work less at night),weekly (people work less on the weekend), and yearly (people work less on holidays). Ofthese, the most important e�et is the daily yle, although the weekly yle may also havean e�et on the sheduling of long jobs. We shall only deal with the daily yle.The daily yle on the di�erent systems is shown in Fig. 8. This is after removal of a largepeak that appears at 3:30AM in the SDSC logs, probably due to the automati invoationof a routine administrative sript.To model the daily yle, we �rst note that the minimum is around 5 AM. We thereforeperform a yli shift of the range 00:00{04:59 to 24:00{28:59, leading to a distribution thatis essentially unimodal (ignoring the slight dip at lunhtime). This is then modeled using aGamma distribution, whose parameters are shown in Table 7.Note that these parameters depend on the yli shift of �ve hours, and on the use of48 30-minute slots for the histogram. Thus to alulate the fration of jobs that arrive in ahalf-hour interval around time t 2 [0; 24℄ we �rst multiply t by 2 (hange hours to half-hourslots), add 48 if the result is less than 10 (to aount for the 5 hour shift), and �nally evaluatew(t0) = F (t0 + 12)� F (t0 � 12) (where F is the CDF of the model Gamma distribution).7.3 A Combined ModelOur goal is to derive a workload model with interarrival times that satisfy two distint on-straints: all interarrivals taken together should math the orret distribution of interarrivaltimes, and at the same time the fration of jobs arriving at eah hour of the day shouldmath the daily yle. The way we go about ahieving this is to use the distribution ofinterarrivals at peak hours as the basis, and modify it in order to ahieve the orret number20



of jobs for eah hour of the day. In order to get the orret overall arrival rate, we modify thepeak distribution by multiplying its mean by a onstant we all ARAR (Arrive Rush-to-AllRatio). This is simply de�ned as the ratio of the mean of the omplete distribution to themean of the peak distribution, and was rather lose to 1 for all four logs (whih is partlyexplained by the fat that the distributions are after a logarithmi transformation).One approah to ahieving our goal is to modify the parameters of the interarrival timedistribution aording to the time of day, in order to math the desired arrival rate forthat time. In order to redue the omplexity of the model, we strive to �nd a funtionalrelationship of the parameters on the desired arrival rate (similar to what we did in theontext of the orrelation between the parallelism and runtime). Another approah is tokeep the underlying distribution as is, but modify the interpretation of sampled interarrivaltimes aording to the time of day. We will see examples of both types below.To hek the quality of eah approah, we need to ompare its results with the originaldata. Assessing the �t of the interarrival distribution is done using the Kolmogorov-Smirnovmethod, as for all other distributions. Assessing the �t to the daily yle is done using the�2 metri. In our ase this is alulated asP = 48Xi=1 (mi � di)2mi + diwhere mi and di are the number of observations in the model and data, respetively, in eahof the 48 half-hour slots of the day.The expeted interarrival time methodThe �rst method tried is to modify the interarrival time distribution aording to the desiredarrival rate for a ertain time slot. To do so we pre-ompute di�erent values of the �parameter of the Gamma distribution for eah slot (denoted by �(t)). Given these values,omputing the next interarrival time after a job that arrived at time t will be done by exwhere x is sampled from a Gamma distribution with parameters �(t) and � (reall that themodel is in log spae).The �(t) are omputed as follows. Let �w be the average over all slots of the values w(t)representing the fration of the jobs that arrive at time t. The ratio �w=w(t) gives the ratioof the average number of jobs that arrive at any time divided by the expeted number ofjobs that will arrive at time t. This is the inverse of the ratio of the interarrival times. Thus�ww(t) = e�(t)�e��Whih leads to �(t) = �+ log ( �w=w(t))�While this method is very simple, it led to a poor math with the daily yle. The reasonis that the number of jobs that end up arriving in eah slot does not depend only on thedistribution of interarrival times in that slot, but also on the previous slots. Thus using thismethod resulted in a distribution that is atter than desired, and is also shifted towardslater times. 21



The expeted time slots methodThe seond method tries to amend the �rst one, by alulating �(t) values that take thew(t) values of subsequent slots into aount. This is done iteratively, starting from �(t) = �,until the values onverge.In eah iteration, the alulation proeeds as follows. For eah slot t, we alulate theexpeted jump E(t) to the slot in whih the next arrival will our, but taking into aountthe fration of jobs that should arrive in that slot. Thus if the arrival rate in the target slotis high we inrease the probability of this jump, whereas if this probability is low we dereaseit: E(t) = Pt+m�1j=t w(j mod m)(j � t) Pr(j � t)Pt+m�1j=t w(j mod m) Pr(j � t)where m = 48 is the number of slots, and Pr(k) is the probability that sampling the interar-rival distribution would lead to a value k slots away. Our goal is to adjust the distribution ofinterarrival times so that this holds. To do so we ompute the weighted average of suh jumpsaording to the desired E(t) and aording to the urrent iteration's values of the interar-rival distribution parameters, and adjust the parameters to make then loser. Spei�ally,we alulate the new parameter value by�i+1(t) = E(t)Pmj=1 w(j)E(j) mXj=1w(j)�i(j)where the subsript on � denotes the iteration number. This an be understood as follows:for eah time t, the new value of � is related to the weighted average of �s in the same waythat this time's E is related to the weighted average of all Es. As the mean interarrivaltime is proportional to �, this will make the distribution of �s more similar to the desireddistribution of Es.This method produed better results, but in the end we hose to use the simpler thirdmethod.The slot weight methodIn this method interarrival times are hosen from the original distribution whih is notmodi�ed. However, the slots are given di�erent weights so that \time passes faster" in slotswhere more jobs are supposed to arrive.The idea is simple: eah slot t is onsidered as having 1800w(t)�w virtual seonds, insteadof the original 1800 real seonds (half an hour). When alulating job arrivals, we samplethe Gamma distribution of peak interarrival times, but regard the result as virtual ratherthan real seonds. Thus the next arrival has a larger hane to be trapped in a slot witha high w(t). Naturally, are must be taken to aount for progress within eah slot. Forexample, assume a ertain slot's duration is 1000 virtual seonds, and a value of 600 seondswas sampled. In this ase, the next arrival will be 0.6 of the way into this slot. If the nextsample is 500 seonds, 400 of them are used to omplete the urrent slot, and 100 to progressinto the next one. 22
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Figure 9: Comparison of the daily arrival yle using the �nal model (model1) with a smoothGamma model (model2) and with the original data (sample).As noted above, this method was seleted for use in the model. Its performane is shownin Fig. 9. Remarkably, just two parameters for the daily yle Gamma suÆe to reate the48 values of w(t) being used, and provide a deent �t.8 Workload ConsistenyAn important question when reating workload models based on logs is whether the datain the logs is onsistent to begin with. This has two faets. One is the distintion betweendi�erent job lasses, e.g. between interative and bath jobs. The other is the possibilitythat the workload evolves over time.8.1 Distintion between Interative and Bath JobsThe SDSC95 and SDSC96 logs inlude a distintion between interative jobs, whih aresubmitted diretly to the mahine's sheduler, and bath jobs that are handled by the NQSbath queueing system [26℄. This enables us to repeat all the analysis of the previous setionson eah subset of jobs separately. 23
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Figure 10: Comparison of the runtime distribution of interative and bath jobs in the SDSClogs.The results are that signi�ant di�erenes an be seen between the two job lasses. Start-ing with the distribution of job sizes, we �nd that bath jobs used up to 256 nodes, whereasinterative jobs rarely used more than 32 (although this ould also be a result of system ad-ministration poliies). In general bath jobs were larger, but, somewhat surprisingly, therewere about twie as many bath serial jobs as interative serial jobs. Bath jobs also useslightly more power-of-two sizes, at least in the 1996 log.Comparing the runtimes, we �nd that bath jobs in general ran longer. In fat, theruntimes of interative jobs are dominated by the lower Gamma of the hyper-Gamma distri-bution, whereas the runtimes of the bath jobs are deidedly bimodal (in log spae; see Fig.10). It may be onjetured that the bimodality of runtimes in other logs is also a result ofdi�erent job lasses.Considering the orrelation between size and runtime, the orrelation oeÆient alu-lated for bath jobs is signi�antly higher than for interative jobs (0.24 and 0.35 for SDSC95and SDSC96, respetively, vs. 0.02 and 0.06). The parameters for the dependene of p on sin the model are also di�erent. For bath jobs the absolute value of a is smaller, but this isbeause the range of values of s is atually muh larger.The arrival proess for the two job lasses is also somewhat di�erent. The distributionsof interarrival times at peak hours are similar, but the urve for bath jobs is shifted slightlytowards higher values relative to the urve for interative jobs. The daily yle is also similar,but the di�erenes between the daytime highs and the nighttime lows are smaller for bathjobs.These results imply that it may be important to model interative and bath jobs sepa-rately, espeially if the model will be used to evaluate a sheduler that may provide di�erentlevels of servie to di�erent job types.8.2 Workload EvolutionThe analysis of long logs assumes that the harateristis of the workload are stable. Thisis in fat known not to be so: the workload hanges when users learn to use a new mahine24



[10℄, and again when they migrate to the next mahine one the urrent one beomes dated.However, it is hard to assess these proesses from the logs.To hek the degree to whih workloads hange we ompared the SDSC95 and SDSC96logs | two onseutive years from the same mahine. The results are that the two logs aresimilar, but ertainly do have signi�ant di�erenes. The main hange is the redution inthe number of interative jobs in the 1996 log: from 55208 jobs to 17807 jobs (the numberof bath jobs remained about the same, a bit more than 20000). As the harateristis ofinterative and bath jobs are quite di�erent, this led to notieable hanges in the overallworkload: on average, in 1996, jobs used more proessors and ran longer, but arrived atlarger intervals.9 Summary and Conlusions9.1 Summary of the ModelThe �nal model is somewhat involved, and inludes the following omponents:� A model of job sizes based on a two-stage uniform distribution with 4 parameters,inluding the two speifying the minimal and maximal sizes desired. Two additionalparameters aount for the frations of serial and power-of-two jobs.� A model of job runtimes based on the hyper-Gamma distribution. This has 6 ratherthan 5 parameters, beause the p parameter is replaed by a linear model of how pdepends on the job size.� A model of arrivals based on two Gamma distributions: one for the peak interarrivaltimes, and the other for the daily arrivals yle. Two additional parameters are theshift used to model the daily yle, and the ARAR value to math the peak arrivalsto the overall arrivals.All the above is repliated three times: one for the full workload, and again for interativeand bath jobs separately.A program that implements this model is available on-line at Parallel Workloads Arhive[19℄.9.2 Comparison with Other ModelsSeveral other models of parallel workloads have been proposed in the literature.Probably the �rst detailed model, whih is also a preursor of the urrent model, wasproposed by Feitelson in 1996 [5℄. This model used a two-stage hyperexponential distributionfor the runtimes, hoosing the parameters so that the CDF \looked right" (that is, similarto that in various logs). A subsequent version used a three-stage hyperexponential [6℄. Toaommodate the slight orrelation observed between runtime and the degree of parallelism,the probability of using eah exponential depended on the degree of parallelism. The arrivalproess was not modeled, and was assumed to be a Poisson proess.25
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