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Abstract. Reliable performance evaluations require representative work-
loads. This has led to the use of accounting logs from production systems
as a source for workload data in simulations. But using such logs directly
suffers from various deficiencies, such as providing data about only one
specific situation, and lack of flexibility, namely the inability to adjust
the workload as needed. Creating workload models solves some of these
problems but creates others, most notably the danger of missing out on
important details that were not recognized in advance, and therefore not
included in the model. Resampling solves many of these deficiencies by
combining the best of both worlds. It is based on partitioning real work-
loads into basic components (specifically the job streams contributed by
different users), and then generating new workloads by sampling from
this pool of basic components. The generated workloads are adjusted
dynamically to the conditions of the simulated system using a feedback
loop, which may change the throughput. Using this methodology ana-
lysts can create multiple varied (but related) workloads from the same
original log, all the time retaining much of the structure that exists in
the original workload. Resampling with feedback thus provides a new
way to use workload logs which benefits from the realism of logs while
eliminating many of their drawbacks. In addition, it enables evaluations
of throughput effects that are impossible with static workloads.
This paper reflects a keynote address at JSSPP 2021, and provides more
details than a previous version from a keynote at Euro-Par 2016 [18]. It
summarizes my and my students’ work and reflects a personal view. The
goal is to show the big picture and the building and interplay of ideas, at
the possible expense of not providing a full overview of and comparison
with related work.

1 Introduction

Performance evaluation is a basic element of experimental computer science [3].
It is used to compare design alternatives when building new systems, to tune
parameter values of existing systems, and to assess capacity requirements when



setting up systems for production use. Lack of adequate performance evaluations
can lead to bad decisions, which imply either not being able to accomplish mis-
sion objectives or inefficient use of resources. A good evaluation study, on the
other hand, can be instrumental in the design and realization of an efficient and
useful system.

It is widely accepted that the performance of a computer system depends on
its design and implementation. This is why performance evaluations can be used
to judge designs and assess implementations. But performance also depends on
the workload to which the system is subjected. Evaluating a system with the
wrong workload will most probably lead to erroneous results, that cannot be
relied upon [10, 17]. It is therefore imperative to use representative and reliable
workloads to drive performance evaluation studies. However, workloads can have
complicated structures and distributions, so workload characterization can be a
hard task to perform [5].

The problem is exacerbated by the fact that workloads may interact with the
system and even with the performance metrics in non-trivial ways [12, 13]. Thus
it may not be enough to use a workload model that is generally correct, and it
may be important to get minute details correct too. But it is not always clear in
advance which details are the important ones. This suggests that the workload
should be comprehensive and include all possible attributes [26].

In the field of parallel job scheduling, the workload is the sequence of jobs
submitted to the system. Early research in this field, in the 1980s, lacked data
on which to base workloads. Instead studies were based on what were thought to
be reasonable assumptions, or compared possible distributions — for example, a
uniform distribution of job sizes, a distribution over powers of 2, and a harmonic
distribution [23, 24]. But it was not known which of these is the most realistic.

Since the mid 1990s workload logs became available (starting with [22]) and
were collected in the Parallel Workloads Archive [34, 28]. This enabled the sub-
stitution of assumptions with hard data [16, 14]. In particular, using logged data
to drive simulations became the norm in evaluations of parallel job schedulers.
But experience with this methodology exposed problems, especially in the con-
text of matching the workload to the simulated system. This is described below
in Section 3.

The suggested solution to these problems is to use resampling with feedback,
as described in Section 4. The idea is to partition the workload into basic com-
ponents, specifically the individual job streams produced by different users, and
sample from this pool of components to create multiple alternative workloads
[49]. At the same time, feedback from the simulated system is used to pace the
workload generation process as would occur in reality [19, 37, 39, 51]. In practi-
cal terms, this means that we no longer just simulate the behavior of the system
under study — rather, we study the dynamics of how the system interacts with
its environment, and in particular, with its users.

The fact that jobs are submitted by simulated users might seem innocuous
at first, but in fact it has major implications. The feedback effect works in both
directions. On the one hand, the volume of the workload can grow as far as



the system capacity allows. But on the other hand we also have a stabilizing
negative feedback, where extra load causes the generation of additional load to
be throttled [19]. This reduces the risk of system saturation.

The resulting methodology enables evaluations that are not possible when
using logs as they were recorded — and in particular, evaluations of how system
design may affect throughput and utilization. This is extremely important, as
low utilization of large-scale systems translates to the loss of a sizable fraction of
the investment in the system. Notably, this methodology applies to any system
type, not only to the context of parallel job scheduling.

2 Background

Our discussion is couched in the domain of parallel job scheduling. Parallel jobs
are composed of multiple interacting processes which run on distinct proces-
sors. They can therefore be modeled as rectangles in processors×time space,
where the height of a rectangle represents the number of processors used, and
its width represents the duration of use. This representation rests on the as-
sumption that processors are allocated to jobs on an exclusive basis, and jobs
are run to completion on dedicated processors. This enables the parallel pro-
cesses which constitute the job to communicate with each other efficiently using
the machine’s high-speed network, and avoids memory contention problems.

Scheduling parallel jobs is the decision of when each job will run. This can
be considered as packing the rectangles which represent the jobs. An important
goal is to create a dense packing, and minimize the space between job rectangles,
because such spaces represent resources that are not utilized. Note that schedul-
ing is an on-line problem: at each instant we do not know of future job arrivals,
and even once a job arrives, we do not know for sure how long it will run.

The simplest scheduling algorithm is First-Come-First-Serve (FCFS), which
simply schedules the jobs in the order that they are submitted to the system
(Fig. 1). An alternative is EASY, named after the Extensible Argonne Scheduling
sYstem which introduced it [31, 33]. The idea here is to optimize the schedule
by taking small jobs from the back of the queue, and using them to fill in holes
that were left in the schedule, an operation known as backfilling. This reduces
fragmentation and improves throughput.

But note that the utility of backfilling depends on the workload. For example,
if all the jobs require more than half the processors, two jobs can never run at the
same time, and backfilling cannot be used. Thus if EASY is evaluated with such
a workload, the result would be that the backfilling optimization is useless. But
if real workloads actually do include many small jobs, then this conclusion would
be wrong. Therefore workloads used in evaluations must be representative of real
workloads. In particular, we need to correctly specify the job arrival patterns,
and the job resource demands (processors and runtime).

An important observation is that, in the context of job scheduling (as op-
posed to task scheduling), there is a human in the loop. Jobs are submitted
by human users of the system, and they often wait for the results of one job
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Fig. 1. Illustration of a sequence of parallel jobs (the workload) and how it would be
scheduled by FCFS and EASY up to time T . Hatched areas represents wasted resources.

before submitting another job. This creates a feedback loop from the system
performance to the job submittal process. Our work is about how to achieve
representativeness, and at the same time, how to incorporate this feedback.

3 Using Workload Logs and Models to Drive Simulations

There are two common ways to use a logged workload to analyze or evaluate
a system design: (1) use the logged data directly to drive a simulation, or (2)
create a model from the log and use the model for either analysis or simulation.
As we’ll show, both have deficiencies that may lead to problems in evaluations.
The idea of resampling can be thought of as combining the two in order to enjoy
the best of both worlds.

3.1 Workload Modeling

The generation of a workload model proceeds as follows:

1. Identify the workload attributes that need to be modeled. These are the
important attributes that are expected to influence the outcome, for example
the job arrival times and resource requirements.

2. Collect data, namely workload logs from production systems.



3. Fit the data regarding the identified workload attributes to mathematical
distributions.

The model is then the description of the workload using these distributions. It
can be used for random variate generation as input to simulations, or else the
mathematical distributions can be used directly in a mathematical analysis.

Workload models have a number of advantages over logs. Some of the most
salient ones are [17, Sect. 1.3.2]:

– The modeler has full knowledge of workload characteristics. For example, it
is easy to know which workload parameters are correlated with each other
because this information is part of the model. Such knowledge increases our
understanding, and can lead to new designs based on this understanding.
Workload logs, on the other hand, may include unknown features that nev-
ertheless have a significant influence on the results. These cannot be exploited
and may lead to confusion.

– It is possible to change model parameters one at a time, in order to inves-
tigate the influence of each one, while keeping other parameters constant.
This allows for direct measurement of system sensitivity to the different pa-
rameters. In particular, it is typically easy to check different load levels. It
is also possible to select model parameters that are expected to match the
specific workload at a given site.

– A model is not affected by policies and constraints that are particular to the
site where a log was recorded. For example, if a site configures its job queues
with a maximum allowed duration of 4 hours, it forces users to break long
jobs into multiple short jobs. Thus, the observed distribution of durations
in a log will be different from the “natural” distribution users would have
generated under a different policy, and the log — despite being “real” —
is actually unrepresentative. In a model we can recreate the postulated real
distribution.

– Logs may be polluted by bogus data. For example, a log may include records
of jobs that were killed because they exceeded their resource bounds. Such
jobs impose a transient load on the system, and influence the arrival process.
However, they may be replicated a number of times before completing suc-
cessfully, and only the successful run represents “real” work. In a model, such
jobs can be avoided (but they can also be modeled explicitly if so desired).

– Models have better statistical properties: they are usually stationary, so eval-
uation results converge faster [9], and they allow multiple statistically equiv-
alent simulations to be run so as to support the calculation of confidence
intervals. Logs, on the other hand, provide only a single data point, which
may be based on an unknown mixture of conditions.

These advantages have led to the creation and use of several workload models
(e.g. [30, 4, 2, 32]), and even a quest for a general, parameterized workload model
that can serve as a canonical workload in all evaluations [25].



3.2 Problems with Models

By definition, models include only what you know about in advance, and decide
to incorporate in the model. As the result they do not include workload features
that you think are not important, or that you don’t know about. But such
workload features may actually be important, in the sense that they have an
effect on scheduler performance.

Over the years several examples of important attributes that were not antici-
pated in advance have been discovered. Three interesting ones are the following.

User Runtime Estimates: Perhaps the most interesting feature of parallel job
workloads — in terms of its unexpected importance — is user runtime estimates.
Many schedulers (including EASY) require users to provide estimates of job
runtime when submitting a job; these estimates are then used by the scheduler
to plan ahead. Simulations often assumed that perfect estimates are available,
based on the assumption that users are motivated to provide them: shorter
estimates increase the chances to backfill, but too short estimates would cause
the job to be killed when it overruns its allocated time. This turned out to be
wrong on two counts: first, estimates are actually very inaccurate, and second,
it actually matters.

Typical runtime estimate accuracy data is shown in Fig. 2 [33]. These are
histograms of the fraction of the user runtime estimates that was actually used
(that is, of the quotient of the true runtime divided by the user’s estimate).
Ideally we would like to see all jobs near 100%, implying near-perfect estimates.
But the actual peak at 100% is due to jobs that were killed because they exceeded
their estimate. For other jobs except the very shortest ones the histogram is flat,
implying that the estimates provide little information about the actual runtimes.
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Fig. 2. Histograms of user runtime estimate accuracy, from logs from the CTC and
KTH SP2 machines [33].

the effect of these inaccurate estimates is that unnecessary holes are left in
the schedule. These holes allow for backfilling, and in particular, short holes



allow for the backfilling of short jobs [45]. This leads to a shortest-job-first like
effect, which improves scheduling metrics like the average response time. As a
result it appears that worse estimates lead to better performance [20, 52, 33].
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Fig. 3. Comparison of the CDFs of the distributions of user estimates and actual
runtimes, from logs from the CTC and BLUE machines [42].

In order to achieve more reliable evaluations we need a better model of user
runtime estimates and their (in)accuracy. This turned out to be highly non-trivial
[42]. As shown in Fig. 3, users tend to use round figures such as 30 minutes or
2 hours as their estimates. And they tend to over-estimate by a large amount,
often using the maximal allowed estimate, so as to avoid the risk of having their
jobs killed. Together, this means that estimates provide much less information
than they could.

In retrospect we now have a good model of user runtime estimates [42], and
a good understanding of the interactions between estimates and other features
of the workload, and the conditions under which one scheduler is better than
another [45, 13]. But the more important result is the demonstration that perfor-
mance evaluation results may be swayed by innocent-looking workload details,
and that a very detailed analysis is required in order to uncover such situations.

The Daily Cycle of Activity: Another example is that real workloads are
obviously non-stationary: they have daily, weekly, and even yearly cycles. In
many cases this is ignored in performance evaluations, with the justification
that only the high load at prime time is of interest. While this is reasonable
in the context of network communication, where the individual workload items
(packets) are very small, it is very dubious in the context of parallel jobs, that
may run for many hours.

Consider the “user-aware” scheduler, which attempts to promote interactive
work by prioritizing short jobs that have been submitted recently [39, 51]. This
idea is based on the observation that short response times are correlated with
short think times [38]: if a job’s response time is short, chances are that the



user will submit another job soon after. But if the response time is long, the
think time till the next job will also be long, implying that the user may leave
the system and take a break. Consequently, by prioritizing recent short jobs,
we better support users’ workflows and facilitate the extension of their active
sessions.

A comprehensive evaluation of this idea turned out to require two unusual
elements. One was a user model which responds to feedback from the system
performance, and adjusts the submittal of jobs based on their response time.
This is discussed at length below in Sect. 4.3. The other was that the workload
include a daily cycle of activity, as described at the end of Sect. 4.4.

Note that we did not explicitly design the user-aware scheduler to exploit the
daily cycle of activity. But its performance turned out to depend on the existence
of such a cycle [26]. The reason was that the prioritization of recent short jobs
led to the starvation of long and non-recent jobs. If the workload exhibited
a daily cycle, the non-critical jobs submitted during prime time were delayed
and executed later during the night hours. As a result the system backlog was
drained, and the full capacity was available for the interactive work of the next
day. But if the workload did not have a daily cycle, there was no non-prime time,
and thus no alternative time to execute the non-critical jobs. They therefore had
to compete, and interfere with, the interactive workload — making it seem that
the user-aware scheduler provides no benefits.

Workload Locality: Yet another effect that is prevalent in logs but usually
absent from models is locality [15]. The locality properties of real workloads
are especially important for the evaluation of adaptive and predictive systems
(for example, it may be possible to predict job runtimes and compensate for
inaccurate estimates [43]). Such features are becoming more commonplace with
the advent of self-tuning and self-management. The idea is that the system
should be able to react to changing conditions, without having to be reconfigured
by a human operator [21]. But in order to study such systems, we need workloads
with changing conditions as in real workload logs. A model based on random
sampling from a distribution will not do, as it creates a stationary workload. This
can be solved by employing “localized sampling” from the distribution [15], but
a better solution is to use user-based modeling (or resampling), as described
below.

3.3 Using Logs Directly

The perception that workload models may be over-simplified and unjustified has
led many researchers to prefer real workload logs. Logs are used to generate the
workload for simulations in a straightforward manner: jobs just arrive according
to the timestamps in the log, and each job requires the number of processors
and runtime as specified in the log.

The advantage of using a traced log directly as the input to a simulation
is that it is the most “real” test of the simulated system: the workload reflects



a real workload precisely, with all its complexities, even if they are not known
to the person performing the analysis [10, 17]. Consequently, this is the current
best practice and is widely used.

The first such log to be made available came from the iPSC/860 hypercube
machine installed at NASA Ames Research Center, and included all jobs exe-
cuted on the system in the fourth quarter of 1993 [22]. This provided a wealth of
hitherto unknown information regarding the distributions of job sizes and run-
times and patterns of user activity. Over the years many additional logs have
been collected in the Parallel Workloads Archive [34, 28]. This resource is widely
used as shown in Fig. 4.
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Fig. 4. Number of citations to the Parallel Workloads Archive on Google Scholar.

Contributing to the popularity of the Parallel Workloads Archive is the fact
that each log is accompanied by copious metadata concerning the system and
the logged data. In addition, all the logs are converted to a “standard workload
format” [1]. Thus if a simulator can read this format, it can immediately run
simulations using all the logs in the archive.

3.4 Drawbacks of Using Logs

While using logs “as is” avoids the problems associated with models, logs too
have their drawbacks. Three major issues are the following.

Evaluation Flexibility: Each log reflects only one specific workload, and can
only provide a single data point to the evaluation. But evaluations often require
multiple simulations with related workloads. For example, the calculation of
confidence intervals is best done by running multiple simulations with distinct
but statistically identical workloads. This is easy with a workload model but
impossible with a log.

More specifically, it is not possible to manipulate logs to adjust the workload
to the simulated system and conditions, and even when it is possible, it can be
problematic. In particular, it is often desirable to evaluate the performance of a



system under different load conditions, e.g. to check its stability or the maximal
load it can handle before saturating. Thus a single load condition (as provided
by a log) is not enough, and we need a tunable parameter that allows for the
generation of different load conditions.

In log-based simulations it is common practice to increase the load on the
system by reducing the average interarrival time. For example, if a log represents
a load of 70% of system capacity, multiplying all interarrival times by a factor
of 7/8 = 0.875 will increase the load to 80%. But this practice has the unde-
sirable consequence of shrinking the daily load cycle as well. The alternative of
increasing the runtime to increase the load is not much better: jobs that origi-
nally came one after the other, and maybe even depended on each other, may
now overlap. And increasing the number of processors to increase load is even
worse. For example, if job sizes tend to be powers of 2 (which they are) then
they pack well together. Increasing them by say 10% is not always possible (a
4-processor job can only be increased in increments of 25%), and when possible
it has detrimental effects on the packing of the jobs onto processors.

Dirty Data: While logged data represents real activity, it is dubious whether
all real data is worth using. Potential problems include errors in data record-
ing, workload evolution and non-stationarity, multi-class workload mixtures, and
abnormal activity.
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Fig. 5. Arrivals per week on two parallel supercomputers, showing flurries of activity
due to single users [27, 44].

One type of unrepresentative activity is huge short-lived surges of activity
by individual users, called flurries (Fig. 5). Such flurries may single-handedly
affect workload statistics, especially the statistics of job arrivals, and perhaps
also job attributes (a flurry with numerous similar jobs will create a mode in the
distribution). While the existence of flurries is not uncommon (many logs exhibit
them up to a few times a year), they are very different from the normal workload
between them, and also different from each other. They should therefore be
removed from the workload logs before they are analyzed and used in simulations
[27, 44].



An example of the effect of a workload flurry is shown in Fig. 6. This is
a rather small flurry that occurred in the CTC SP2 log. The log records data
about 79,302 jobs submitted by 678 users over the course of 11 months. One of
these users, user no. 135, had a flurry of 2080 jobs, nearly all of them during
one day. The log was used in simulations of the EASY scheduler for different
load conditions, where the load was changed in steps of 1% by modifying the job
interarrival times as described above. Surprisingly, the results where erratic: the
average bounded slowdown showed considerable fluctuations between neighbor-
ing load conditions. Even more surprisingly, these fluctuations disappeared when
user 135’s flurry was removed from the log, leaving a curve similar to what is
expected in queueing analysis results [44]. In other words, a flurry that contained
just 2.6% of the jobs and existed largely during a single day out of 11 months
led to unreliable results.
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Fig. 6. The effect of the CTC flurry on slowdown results.

A different type of example is shown in Fig. 7. This is not a short-lived flurry,
but rather the voluminous activity of a single user throughout the recorded log.
In fact, user no. 2 in the HPC2N log accounted for no less than 57% of the jobs
that appear in the log. Thus, if this log is used to analyze schedulers, we risk
optimizing the scheduler to the behavior of a single user on a certain cluster in
Sweden. An alternative interpretation is that this is not a real user, but rather
represents a funnel for jobs from some external source, e.g. a multi-national grid
system. This is just as bad, as it means that all data about individual users is
lost.

The above examples suggest that workload data should be chosen carefully,
and unrepresentative data should be removed. But this is a controversial sugges-
tion: after all, if we start manipulating the data, aren’t we harming the scientific
validity of the results? In my opinion extolling the use of data as is reflects ig-
norance. Workload data that does not reflect typical system usage should be
identified and removed [27]. However, we need to be transparent about the con-
siderations for such cleaning, and what exactly was done to clean the data. In
the parallel workloads archive, many logs have a cleaned version where flurries
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have been removed, and the documentation contains the details of the filters
used [28].

Signature of the Logged System: At a deeper level, we find that logged
workloads actually contain a “signature” of the logged system. In other words,
there is no such thing as a “real” workload which is the right one for general
use: every workload observed on a real system is the result of the interaction

between that particular system and its users. If the system behaves differently,
for example if we decide to use a different scheduler, the users change their
behavior as well.

This has major implications. It means that using a workload from one sys-
tem to evaluate a different system is wrong, because the workload will not fit
the simulation conditions [37, 38, 39]. We demonstrated this using a pair of
cross-simulations of the two schedulers described above (Fig. 1) [37]. The first
is the well known FCFS scheduler, which is inefficient and leads to wasted re-
sources, because processors are left idle until the first queued job can run. The
second is the optimizing EASY scheduler, which optimizes the schedule by tak-
ing small jobs from down the queue and backfilling them into holes left between
earlier jobs. This allows EASY to sustain a heavier load. Using these schedulers,
we conducted a site-level simulation of each one, namely a full simulation of
the interaction between the scheduler and its users (this is explained below in
Sect. 4.3). Importantly, in these simulations the workload is generated on-the-
fly. These generated workloads were recorded, creating logs like those that are
obtained from real supercomputer sites.

We then used each log as the input to a conventional simulation of the other
scheduler (Fig. 8). As expected, the simulation of FCFS using a workload gen-
erated by an EASY simulation led to system saturation and overloading: FCFS
could not handle the load that was generated when users interacted with EASY.
Conversely, simulation of EASY using a workload generated by an FCFS simula-
tion failed to show that EASY had a significant advantage, because the workload
was not challenging enough.
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Taken together, all these problems seem to imply that workload logs are
actually not any better than workload models. Resampling and feedback are
designed to solve these problems and facilitate reliable evaluations.

4 Resampling and Feedback

The root cause of many of the problems with using logs is that a log represents
unique conditions that were in effect when it was recorded, and may not be
suitable for the desired evaluation. At the same time logs contain significant
structure that we want to retain. Resampling is a way to provide flexibility
while preserving the structure. And feedback adds just the necessary level of
adjustment to the conditions that hold during the evaluation.

4.1 Before Resampling: Input Shaking and User-Based Modeling

The idea of resampling grew out of the ideas of input shaking and user-based
modeling.

Input shaking was also an innovative use of logs in simulations [46]. The idea
was to “shake” the job stream, meaning that in general the workload remained
the same as in the log, but some of the jobs were adjusted to a small degree.
For example, their arrival time could be changed by a small random amount.
This enabled many simulations with similar but not identical workloads, and
facilitated the identification of situations where the original results were actually
due to some artifact and therefore not representative.

User-based modeling is based on the observation that the workload on a
multi-user system is composed of the workloads by multiple individual users [8,
5]. The idea is then to turn this into a generative approach to creating workloads:
first create independent workloads representing the different users, and then
combine them together.



This idea was first proposed as a mechanism to generate locality of sampling
[11], based on the fact that different users submits jobs with different characteris-
tics [8, 5]. Since the community of active users changes over time, the number of
active users in a given week — and the number of different programs they run —
will be relatively small. The short-term workload will therefore tend to include
repetitions of similar jobs, and will consequently tend to have more locality and
be more predictable. But over a longer period this will change, because the set
of active users has changed.

The essence of user-based modeling is an attempt to capture this structure
using a multi-level model of the user population and the behavior of individual
users. The top level is a model of the user population, including the arrival of
new users and the departure of previous users. The second level models the
activity of individual users as a sequence of sessions synchronized with the time
of day (again based on data extracted from logs [48]). The lowest level includes
repetitions of jobs within each session.

Remarkably, user-based modeling makes significant progress towards solving
the problems outlined above:

– The workload will naturally have locality provided that the job models of
different users are different from each other. During the tenure of each set
of users the job stream will reflect the behavior of those users.

– The load on the system can be modified by changing the number of active
users, or in other words, by changing parameters of the user population
model. More users would generate higher load, but do it “in the right way”.

– The generated workload can include non-stationary elements such as a daily
cycle, by virtue of the model of when users engage in sessions of activity [39].

– As a special case, unique events such as workload flurries can be included or
excluded at will, by including or excluding users with such unique behaviors.

– By using heavy-tailed session durations (and inter-session breaks) one can
generate self similarity [47], which has been found in many types of workloads
including parallel jobs [41, 49].

The drawback of this approach is the need to collect data and construct all these
models. But maybe all this modeling takes us too far from the original log data?
Resampling was designed to retain the original data as much as possible, and
modify only whatever is needed for a specific purpose.

4.2 Resampling from a Log

Resampling is a powerful technique for statistical reasoning in situations where
not enough empirical data is available [6, 7]. The idea is to use the available
data sample as an approximation of the underlying population, and resample
from it. Applying this to workloads, we can create workloads using the following
procedure [49]:

1. Partition a workload log into its basic components, taken to be the individual
job streams submitted by different users.



2. Sample from this pool of users.
3. Combine the job streams of the selected users to create a new version of the

workload.

When looking at individual user traces, we find that some of them are active
throughout much of the log’s duration, while others are active only during a rel-
atively short interval (a few weeks or months). We therefore distinguish between
long-term users and temporary users (Fig. 9), and use them differently in the
resampling. Users whose entire activity is too close to either end of the log are
excluded.
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Fig. 9. Conceptual framework of dividing users into long-term and temporary, and
reusing them in a generated workload [49]. Each rectangle represents the full extent of
activity by a certain user.

Given the pools of temporary and long-term users, the resampling and gen-
eration of a new workload is done as follows:

– Initialization: We initialize the active users set with some temporary users
and some long-term users. The defaults are the number of long-term users
in the original log, and the average number of temporary users present in a
single week of the original log. Users are not started with their first job from
the trace, because we are trying to emulate a workload that was recorded over
an arbitrary timespan, and there is no reason to assume that the beginning
of the logging period should coincide with the beginning of a user’s activity.
Therefore each user is started in some arbitrary week of his traced activity.
However, care is taken that jobs start on the same day of the week and time
of the day in the simulation as in the original log.

– Temporary users: In each new week of the simulation, a certain number of
new temporary users are added (and a similar number are expected to leave,



on average). The exact number is randomized around the target number,
which defaults to the average rate at which temporary users arrived in the
original log. The selected users are started from their first traced jobs. A
user can be selected from the pool multiple times, but care is taken not to
select the same user twice in the same week.

– Long-term users: The population of long-term users is constant and con-
sists of those chosen in the initialization. When the traced activity of a
long-term user is finished, it is simply regenerated after a certain interval.
Naturally the regenerations are also synchronized correctly with the time
and day.

Each active user submits jobs to the system exactly as in the log (except that
their timing may vary to reflect feedback as explained below). The flow of the
simulation is shown in Fig. 10.

jobs
queue

waiting
simulated
scheduler

machine
parallel

the simulated system

think time
long term users

user arrivals
new temporary

temporary users

temporary users
finished

think time

Fig. 10. Queueing model of long term and temporary users in the simulation, leading
to a semi-open system [51].

Using resampled workloads enjoys all the benefits listed above for user-based
workloads. In addition to that, it has the following advantages over using a log
directly:

– We can create multiple different workloads with the same underlying struc-
ture and statistics, and

– We can extend the workload by continued resampling beyond the original
length of the log.

However, recall that logs contain a signature of the interaction between the
users and the scheduler (Sect. 3.4). In addition, each user’s job stream contains
a signature of interactions with the activity of other users: when one user loads
the system, others tend to back off (Fig. 11). So if we just remix them randomly
we might create unrealistic conditions. To solve these problems we need to add
feedback.
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relatively few jobs. When there are many jobs, all of them, by all users, are small.

4.3 Adding Feedback

Conventional simulations that replay a log to recreate the workload essentially
assume an open systems model: they assume the jobs arrive from an external,
large user population, which is insensitive to the system’s performance. As a
result the jobs’ arrivals are independent of each other. However, real computer
systems are often more like closed systems [35, 36]: They have a limited user
population, and new jobs are submitted only after previous ones terminate. This
leads to a feedback from the system’s performance to the workload generation.

We therefore suggest that it is not enough to simulate the computer system in
isolation — we should also simulate the system’s environment, namely the users
who interact with the system, create its input, and wait for its response [37]. With
resampling we introduce this explicitly by including a changing user community
in the simulation. It is these (simulated) users who create the (simulated) jobs
submitted to the (simulated) system. We need to add a feedback effect to these
users’ behavior.

Another way to look at the resulting system dynamics is as follows. Con-
ventional performance evaluations, whether based on simulations or queueing
analysis, attempt to assess the system’s performance as a function of the offered
load. But at the same time, the additional load generated by the users depends
on the system’s performance. By studying both effects together we can find the
equilibrium point where workload generation and performance match each other
(Fig. 12) [10]. This is the actual expected performance for this system and these
users.

The fact that realistic workloads need to be paced according to system per-
formance has also been noted in the context of computer networks [29]. In this
case the feedback is caused by link congestion, which may not be readily visible
in packet traces.
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User Models with Feedback: The way that feedback is incorporated into the
simulations is via user models. As noted above there are three such models. The
top level, the population model, is handled by the resampling as explained in
sect. 4.2. The bottom level, that of jobs, is actually taken directly from the logs.
The middle model, which concerns user activity patterns, is where the feedback
comes in.

The way this works is shown in Fig. 13. In its simplest form, each user’s
activity is modeled by transitions between three states:

– Thinking and submitting a job,
– Waiting for a job to terminate, and
– Being away from the system.

When a job is submitted the user transitions to the waiting state. The feedback
signal informs the user that the job has terminated, causing a transition back to
the think and submit state. Alternatively, if the wait is too long, a transition to
the “away” state may occur. Such a transition can also occur due to the passage
of time. Returning to the system is also usually associated with the passage of
time, e.g. simulating coming to work in the morning.

Recovering Dependencies from Logs: The idea of feedback is to pace the job
submittal rate. Additional jobs will be submitted (by the simulated users) only
after the jobs that they depend on have terminated (on the simulated system).

In other words, when we want to evaluate a new scheduling policy using
a representative workload, the workload should reflect the user-level logic and
not just parrot a previous workload. The logic is embodied in the dependencies
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Fig. 13. Illustration of a user-based simulation with feedback. When users are in ses-
sion, they alternate between submitting jobs (S) and waiting for feedback regarding
previous jobs (W). The sessions themselves often depend on (simulated) time of day.

between jobs. Note that there is a tradeoff involved: the traditional approach is
to replay the log using the exact timestamps of job arrivals as recorded in the
log. This may violate the user logic if jobs are delayed in the simulated system.
the alternative is to retain the logical dependencies, at the expense of losing the
recorded timestamps. We argue that it is more important to preserve the logic

of the users’ behavior than to repeat the exact timestamps that appear in the

original log.
The problem is that accounting logs used as data sources do not include ex-

plicit information regarding the dependencies between jobs. We therefore need to
identify user sessions and extract dependencies between the jobs in each session
[37, 50]. Two types of dependencies have been suggested [50]:

– Order constraint: jobs should start in the same order in the simulation as
in the original log. In any log, the arrival times of all the jobs submitted by
the same user form a sequence. Each job in the sequence should therefore
depend on the previous job.

– Potential dependence constraint: every job potentially depends on all the jobs
that have terminated before it started to run. As the jobs in each session
form a sequence, it is enough to enforce dependencies on the last terminated
job in each previous session.

These dependencies are illustrated in Fig. 14.
The way to integrate such considerations into log-driven simulations is by

manipulating the timing of job arrivals. In other words, the sequence of jobs
submitted by each user stays the same, but the submittal times are changed
[50]. Specifically, each job’s submit time is adjusted to reflect feedback from the
system performance to the user’s behavior.
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Fig. 14. Dependencies on previous job arrivals and terminations. The ones shown in
red show that the two types are not redundant.

However, a job cannot arrive immediately when all its constraints are re-
moved. Rather, its arrival should reflect reasonable user behavior (for example,
users often go to sleep at night). One possible model of user behavior is the
“fluid” user model. The idea of this model is to retain the original session times
of the users, but allow jobs to flow from one session to another according to the
feedback. To do this, we keep each session’s start and end timestamps from the
original log. The think times between successive jobs are also retained from the
original log. But if a job’s execution is delayed in the simulation, leading to the
next arrival falling beyond the end of the session, the next job will be delayed
even more and arrive only at the beginning of the next session [50]. Contrariwise,
if jobs terminate sooner in the simulation, jobs that were submitted originally
in the next session may flow forward to occur in the current one.

4.4 Applications and Benefits

So what can we do with this new tool of workload resampling with feedback? Here
are some results that would be hard or impossible to achieve with conventional
simulations that just replay an existing log.

Validation: The first and foremost is to validate simulation results. Simulating
with a given log provides a single data point. But with resampling we can get
a distribution based on statistically similar workloads. In most cases the value
which is obtained using a conventional simulation is within the body of this
distribution, and the result is verified (Fig. 15). The width of the distribution
can then be used to estimate the result’s accuracy. But in some cases (e.g. the
Blue log on the right) the distribution is shifted, indicating a mismatch between
the behavior of the users in the original log and the expected behavior in the
simulated system. This is a warning that a direct simulation with the original
log may not be suitable for an evaluation of this scheduler.

Enhanced Simulations: Other benefits are more technical in nature. One of
them is the ability to extend a log and create a longer workload, with more
jobs in total, so as to facilitate better convergence of the results and reduce the
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Fig. 15. Histograms of the average waiting time in a thousand simulations of EASY on
resampled workloads, compared to a simulation using the original logs (vertical line).

detrimental effects of the initial “warmup” period. This is easy to achieve: we
just continue resampling on and on for as long as we wish.

In principle it may seem that we can also change the load on the system by
increasing or decreasing the number of active users. This is done by changing the
number of long-term users in the initialization, and the number of new temporary
users which arrive in each simulated week. Such a manipulation facilitates the
study of how the system responds to load, and enables the generation of response
curves similar to those obtained from queueing analyses. However, as noted
above, increasing the load on the system is at odds with the throttling effect
that comes with feedback. This is further discussed below.

Nevertheless, adding users to increase the load does work as long as the
system does not saturate. This has the benefit of making low-load logs usable.
Some logs were recorded on very low-load systems, with a utilization of only
25% of capacity or so. These workloads are not interesting as they do not tax
the system to any appreciable degree. But by using resampling to increase their
load they become interesting.

Finally, we note that once we partition the workload into individual users we
can also look at different user classes in isolation. One example noted before is
the workload flurries occasionally produced by some users. We can then evaluate
the effect of such flurries by oversampling these users, and thus causing more
and more flurries to occur (Fig. 16).

Throughput and Capacity Evaluation: Using results from resampling and
feedback for verification hinges on the claim that such simulations are more valid
to begin with. As noted above, using a log to drive a simulation suffers from the
possible mismatch between the behavior of the users in the logged system and
the behavior that would be observed for the simulated system. In particular, if
the simulated system is more powerful, the users would be expected to submit
more jobs, and vice versa. In simulations with feedback this indeed happens
automatically, as demonstrated in Fig. 17. Note that this result is impossible
to achieve using conventional log-based simulations. The ability of EASY to
support a higher load is only observable when using feedback-based simulations.
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However, note that increasing the load on the system is at odds with the
throttling effect that comes with feedback. As the load increases, the system will
naturally take longer to process each job. Simulated users who are waiting for a
job to terminate before submitting their next job will therefore be delayed. So
having more users will eventually cause each of these users to produce additional
work at a slower rate, and the load will cease to increase! This is good because
it is assumed that such an effect exists in real systems, where users abandon the
system if it is too slow. But it frustrates our attempt to control the load and
increase it at will.

Importantly, as a result of these dynamics we also have the additional benefit
of being able to measure the maximal load that the system is expected to sup-
port. Resampling and user-based modeling facilitate the use of throughput as a
performance metric, because the users become part of the simulation. But every
system has a maximal capacity, and if the load exceeds this capacity the system
saturates. In real systems this hardly happens, because of the feedback, and the
system settles into a slightly lower load. Identifying this maximal expected load
is an important part of a performance evaluation. Likewise, if we add system
abandonment to the user behavior model, we can add the metric of the number
of frustrated users.

Simulating User Aware Schedulers: Given that simulations based on re-
sampling and feedback can exhibit changes in throughput, they can specifically
be used to evaluate adaptive systems that are designed to enhance throughput
(and thus productivity) rather than response time [39, 51].

For example, we can design a scheduler that prioritizes jobs based on their
expected response time (mentioned above in Sect. 3.2). The idea is that if the
response time is short, there is a good chance that the user will continue to
submit more jobs. Note, however, that this depends on a model of what users
care about. Regrettably, we typically do not have any explicit information about
a user’s motivation and considerations. But still some information can be gleaned
by analyzing logs. For example, the question of what annoys users more and
causes them to abort their interactive work has been investigated by tabulating
the probability to submit another job as a function of the previous job’s response
time or its slowdown [38]. The result was that response time was the more
meaningful metric (Fig. 18).

Based on this insight, we define think times of 20 minutes to be the boundary
between continuously submitting jobs in the same session (short think times and
rapid additional jobs) and session breaks (a long time before the next job, so
the user probably took a break). With this definition, we find that the longer a
job’s response time, the lower the probability that the session will continue —
namely, that the think time till the next job is submitted will be shorter than
20 minutes [38, 39].

With this background we can design schedulers that prioritize jobs that are
expected to have short response times [39, 51]. To avoid starvation this is bal-
anced with prioritizing based on waiting time. At one extreme all the weight is
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Fig. 18. A job’s performance as measured by the response time is a better predictor
of subsequent user behavior (think time till the next job) than the job’s slowdown.

placed on responsiveness, accepting the risk of starvation. At the other extreme
all the weight is placed on waiting time and none on responsiveness, which is
equivalent to EASY. Different mixes lead to a spectrum of algorithms.

Trying to evaluate this idea with conventional workloads and simulations is
useless — such simulations cannot evaluate productivity, and might even show
that average response time is actually increased. But with a dynamic user-based
simulation we can compare the resulting dynamics as the competition for re-
sources intensifies. The results are shown in Fig. 19. When priority is given to
the interactive jobs, sessions retain their length despite increasing load and the
overall system throughput increases.
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Fig. 19. Average job throughput and session length are higher the more emphasis is
placed by the scheduler on responsiveness (as reflected by the parameter α; CREASY
is a version of EASY with priority to critical interactive jobs).

It is also interesting to see how these results are achieved. Fig. 20 shows an
analysis of the performance achieved by different job classes, where the classifi-
cation is based on runtime: short is up to 1 minute, medium is 1 to 10 minutes,
and long is above 10 minutes. As seen in the graph, the user-aware scheduler



achieves a significant reduction in response time for short and medium jobs,
which are prioritized, while suffering a significant increase in response time for
the long jobs, which were delayed.
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Fig. 20. The improved performance of short jobs comes at the expense of long jobs,
which are delayed.

Interestingly, this only worked when the simulation included a daily cycle
of activity [26]. In retrospect, the reason is simple: the daily cycle allows the
jobs that were delayed to run later, when the load on the system abates. A
comparison of the (simulated) scheduler queue lengths is shown in Fig. 21. For
both EASY and the user aware scheduler the queue builds up in the morning.
But with EASY it quickly drains in the evening, leaving the system idle during
the night. The user-aware scheduler, in contradistinction, overcommits during
the day. As a result it has much more work left for the night, and utilizes the
resources that EASY leaves idle. In simulations without daily cycles this effect
cannot occur, and both schedulers display the same level of performance.
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Fig. 21. Queue lengths in simulations with and without daily cycles; EASY on the left
and user-aware on the right. The simulation used a simple model where jobs arrive
only between 8 AM and 6 PM.



5 Conclusions

Resampling with feedback provides a new way to use workload logs in simu-
lations, enabling the generation of varied and dynamically adjusted workloads
that are specifically suited to evaluate the simulated system. This combines the
realism of real log data with the flexibility of models. Basing the simulations as
closely as possible on real logs reflects the importance of using hard data rather
than assumptions. Adjusting the workload to the specific conditions during the
simulation reflects the importance of the interaction between the users and the
system. Without this, evaluation results are of unknown relevance, and might
pertain to only irrelevant situations which do not occur in practice.

Particularly, by applying resampling and feedback to real workloads we achieve
the following:

– Retain all important (including possibly unknown) details of the workload
as they exist in logs recorded from production systems, with as little modi-
fications as possible. At the same time, avoid the “signature” of the system
on which the log was recorded.

– Enable evaluations of throughput and user satisfaction in addition to (or
instead of) being limited to the response time and slowdown metrics. This
also leads to natural support for assessing the saturation limit of the system.

– Provide a new interpretation of the goal of “comparing alternatives under
equivalent conditions”: this is not to process exactly the same job stream,
but rather to face the same workload generation process (users). This ac-
knowledges the realization that there is no such thing as a generally correct
workload — rather, the workload depends on system.

Table 1. Performance metrics under oblivious workloads and workloads with resam-
pling and feedback.

Metric Oblivious Resampling+feedback

load compared with offered load to
find the threshold beyond which
the system saturates

measured to find the maximum
utilization achievable — a
performance metric

throughput if not saturated, throughput is
completely determined by the
workload

achieved throughput is the main
metric of system performance

response
time

response time is the main metric
of system performance

quoting response time is
misleading without taking into
account the throughput and user
frustration

user
satis-
faction

assumed to be measured by the
response time or slowdown

measured directly by the feedback
model, e.g. in the form of
frustrated user departures



The shift to using resampling with feedback has very significant implica-
tions. First, performance metrics change (Table 1). The new interpretation of
good performance is that a better scheduler facilitates the execution of more
jobs. Therefore the most important metric becomes the throughput. This can
not be measured using conventional log-based simulations, where the workload
is oblivious to the simulated system conditions, because in that context the
throughput is dictated by the log and does not change in the simulation. More-
over, a consequence of achieving higher throughput may be that the average
response time is also somewhat higher. In conventional simulations this would
be taken as indicating that performance is worse, but now it is a side-effect of
an improvement.

Related to this change in metrics is a change in simulation dynamics. In con-
ventional oblivious simulations one must worry about system saturation. If the
system is saturated, the simulation results are unreliable. A thorough methodol-
ogy then has to check various load conditions to find the system capacity limit.
But with resampling and feedback we do not need to do this any more. The
feedback counteracts our efforts to increase the load by adding users and jobs,
and leads to stability. The simulation then naturally settles to the throughput
that reflects the correct balance between user behavior and system performance.

Workload manipulations such as those embodied in resampling with feedback
are important tools in the performance analyst’s toolbox, that have not received
due attention in terms of methodological research. As a result, inappropriate
manipulations are sometimes used, which in turn has led to some controversy
regarding whether any manipulations of real workloads are legitimate. By in-
creasing our understanding of resampling-based manipulations we hope to bol-
ster the use of this important tool, allowing new types of manipulations to be
applied to workload logs, and enabling researchers to achieve better control over
their properties, as needed for different evaluation scenarios.

Naturally, there are many opportunities for additional research regarding
resampling and feedback. One element that is still largely missing is the user
population model, and especially the issue of leaving the system when perfor-
mance is inadequate. Another is the distribution of user types and behaviors.
Resolving these issues requires not only deep analysis of workload logs, but also
a collaboration with researchers in psychology and cognition [40]. After all, com-
puter systems are used by humans.
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