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Abstract—Complexity metrics are useful to identify potentially
problematic code. But there is little agreement regarding which
complexity metrics should be used and exactly what should be
measured, partly because many different factors influence code
complexity and comprehension. Code regularity has recently been
identified as another such factor, which may compensate for
other complexity factors, especially in long functions with high
cyclomatic complexity. Given that regularity consists of repeated
code structures, it has been suggested to measure regularity by
compressing the code with standard text compression tools. But
such compression can be done in many ways. We compare five
widely available compression tools (LZ77, gzip, LZMA, bzip2, and
bicom) and four levels of preprocessing the code (using the code
as is, or reducing it to a skeleton of keywords and possibly
some formatting). The comparison is done in terms of how the
different combinations discriminate between different functions,
how they correlate with human perceptions of complexity, and
how well they handle relatively short functions. The results show
that different combinations of compression tool and code pre-
processing lead to significantly different levels of discrimination
and correlation with human perceptions, and in addition some
combinations are extremely bad in handling many functions and
should be avoided. Our recommendation is to use gzip or bicom
on a code skeleton containing keywords and formatting.

Index Terms—Software complexity metrics, Code regularity,
Compression.

I. INTRODUCTION

Program comprehension is a vital preliminary step of soft-

ware maintenance. The ability to comprehend a given program

naturally depends on the programmer’s experience, his or her

knowledge of the problem domain, and the complexity of

the program itself [21]. Our focus is on the measurement of

program complexity, and in particular of one specific factor

that has an influence on this complexity, namely the code’s

regularity.

Measuring code complexity is difficult because there are

so many different factors that have an effect on developers

who are trying to comprehend, correct, or modify the code.

As a result there is no single metric of complexity, and in

fact, any given metric will fail to match human perceptions

of complexity in some cases [3], [14], [12]. Myriad metrics

are therefore used to measure distinct aspects of complexity:

McCabe’s cyclomatic complexity (MCC) and nesting measure

control flow complexity [17], [7], Halstead’s metrics measure

vocabulary and operator use [6], fan-in and fan-out measure

data flow [8], and other metrics measure elements of style

and formatting [9], [5]. Regularity was recently introduced

as yet another code attribute that may affect comprehension

[12], [13], [10], [22]. Specifically, it was demonstrated that

developers faced with long regular functions perceive them

as less complex than the conventional metrics (e.g. LoC and

MCC) suggest, and also perform cognitive tasks better than

when faced with shorter non-regular versions of the same

functions. An example of such a regular function from the

Linux kernel is shown in Figure 1.

In order to further investigate the importance and effects of

code regularity we need an objective metric that can quantify

the degree to which given code is regular. Intuitively, regularity

means that the same structures in the code repeat themselves

over and over again. It has therefore been suggested that

regularity may be quantified by compressing the code, and

noting the compression ratio [13]. This indirect methodology

is based on the mechanisms used in compression algorithms,

where repeated segments are replaced with pointers to earlier

instances in order to derive a shorter representation.

Still, this basic idea may be implemented in many different

ways. First, there is the question of which compression scheme

to use. In the following we compare common tools such

as gzip and bzip2 and more exotic ones like LZMA and

bicom. Then there is the question of possible preprocessing

of the code, to better express the regularities in the control

structure. We therefore compare compression of the raw code

with compression of a skeleton containing only the keywords,

possibly with some of the formatting.

Our goal in the present work is to find the best combination

of compression scheme and preprocessing, within the frame-

work of using compression to quantify regularity. Naturally,

this does not go to say that there are no other ways to quantify

regularity. However, finding the best parameters is enough

to support continued work on code regularity, and is also

important for future comparisons with competing approaches.

In order to identify the best combination, we use all of

the available combinations to compress 18755 functions taken

from seven systems in different domains. These functions

have an MCC of 20 or more to exclude short and simple

functions where regularity is not expected to play a part. Our

results show that different combinations indeed lead to very

different results, so it is important to select the compression

methodology carefully. In particular, some of the combinations



s t a t i c i n t a m d 8 1 1 1 e c a l c c o a l e s c e ( s t r u c t n e t d e v i c e ∗dev )
{

s t r u c t amd8111e pr iv ∗l p = n e t d e v p r i v ( dev ) ;
s t r u c t a m d 8 1 1 1 e c o a l e s c e c o n f ∗ c o a l c o n f = &lp−>c o a l c o n f ;
i n t t x p k t r a t e ;
i n t r x p k t r a t e ;
i n t t x d a t a r a t e ;
i n t r x d a t a r a t e ;
i n t r x p k t s i z e ;
i n t t x p k t s i z e ;

t x p k t r a t e = c o a l c o n f−>t x p a c k e t s − c o a l c o n f−>t x p r e v p a c k e t s ;
c o a l c o n f−>t x p r e v p a c k e t s = c o a l c o n f−>t x p a c k e t s ;

t x d a t a r a t e = c o a l c o n f−>t x b y t e s − c o a l c o n f−>t x p r e v b y t e s ;
c o a l c o n f−>t x p r e v b y t e s = c o a l c o n f−>t x b y t e s ;

r x p k t r a t e = c o a l c o n f−>r x p a c k e t s − c o a l c o n f−>r x p r e v p a c k e t s ;
c o a l c o n f−>r x p r e v p a c k e t s = c o a l c o n f−>r x p a c k e t s ;

r x d a t a r a t e = c o a l c o n f−>r x b y t e s − c o a l c o n f−>r x p r e v b y t e s ;
c o a l c o n f−>r x p r e v b y t e s = c o a l c o n f−>r x b y t e s ;

i f ( r x p k t r a t e < 800){
i f ( c o a l c o n f−>r x c o a l t y p e != NO COALESCE){

c o a l c o n f−>r x t i m e o u t = 0x0 ;
c o a l c o n f−>r x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = NO COALESCE;
}

}
e l s e{

r x p k t s i z e = r x d a t a r a t e / r x p k t r a t e ;
i f ( r x p k t s i z e < 128){

i f ( c o a l c o n f−>r x c o a l t y p e != NO COALESCE){

c o a l c o n f−>r x t i m e o u t = 0 ;
c o a l c o n f−>r x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = NO COALESCE;
}

}
e l s e i f ( ( r x p k t s i z e >= 128) && ( r x p k t s i z e < 512) ){

i f ( c o a l c o n f−>r x c o a l t y p e != LOW COALESCE){
c o a l c o n f−>r x t i m e o u t = 1 ;
c o a l c o n f−>r x e v e n t c o u n t = 4 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = LOW COALESCE;
}

}
e l s e i f ( ( r x p k t s i z e >= 512) && ( r x p k t s i z e < 1024)){

i f ( c o a l c o n f−>r x c o a l t y p e != MEDIUM COALESCE){
c o a l c o n f−>r x t i m e o u t = 1 ;
c o a l c o n f−>r x e v e n t c o u n t = 4 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = MEDIUM COALESCE;
}

}
e l s e i f ( r x p k t s i z e >= 1024){

i f ( c o a l c o n f−>r x c o a l t y p e != HIGH COALESCE){
c o a l c o n f−>r x t i m e o u t = 2 ;
c o a l c o n f−>r x e v e n t c o u n t = 3 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = HIGH COALESCE ;
}

}
}

/∗ NOW FOR TX INTR COALESC ∗/
i f ( t x p k t r a t e < 800){

i f ( c o a l c o n f−>t x c o a l t y p e != NO COALESCE){

c o a l c o n f−>t x t i m e o u t = 0x0 ;
c o a l c o n f−>t x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = NO COALESCE;
}

}
e l s e{

t x p k t s i z e = t x d a t a r a t e / t x p k t r a t e ;
i f ( t x p k t s i z e < 128){

i f ( c o a l c o n f−>t x c o a l t y p e != NO COALESCE){

c o a l c o n f−>t x t i m e o u t = 0 ;
c o a l c o n f−>t x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = NO COALESCE;
}

}
e l s e i f ( ( t x p k t s i z e >= 128) && ( t x p k t s i z e < 512) ){

i f ( c o a l c o n f−>t x c o a l t y p e != LOW COALESCE){
c o a l c o n f−>t x t i m e o u t = 1 ;
c o a l c o n f−>t x e v e n t c o u n t = 2 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = LOW COALESCE;

}
}

e l s e i f ( ( t x p k t s i z e >= 512) && ( t x p k t s i z e < 1024)){

i f ( c o a l c o n f−>t x c o a l t y p e != MEDIUM COALESCE){
c o a l c o n f−>t x t i m e o u t = 2 ;
c o a l c o n f−>t x e v e n t c o u n t = 5 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = MEDIUM COALESCE;
}

}
e l s e i f ( t x p k t s i z e >= 1024){

i f ( t x p k t s i z e >= 1024){
i f ( c o a l c o n f−>t x c o a l t y p e != HIGH COALESCE){

c o a l c o n f−>t x t i m e o u t = 4 ;
c o a l c o n f−>t x e v e n t c o u n t = 8 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = HIGH COALESCE ;
}

}
}

}
r e t u r n 0 ;

}

Fig. 1. Example of a regular function from the Linux kernel.

fail to effectively compress thousands of functions, because

they (or some of their preprocessed versions) are too short. As

being able to handle functions of modest length is important,

these combinations should be avoided.

The remainder of this paper is structured as follows. In the

next section we motivate our work and present its research

questions. Our methodological approach, including a descrip-

tion of the compression schemes and preprocessing levels, is

presented in section III. We present the results and analyze

them in section IV, also showing the correlation of regularity

with perceived complexity and documentation of the code.

Finally, we discuss the results and conclude in section VI.

II. MOTIVATION AND RESEARCH

QUESTIONS

In view of the large number of metrics that have been

defined for measuring code complexity, it is now accepted

that there is no one metric or factor that fully reflects the

complexity of source code [4], [18].

In previous work we have suggested regularity as an ad-

ditional factor that affects code comprehension, especially

in long functions, and provided experimental evidence for

its significance [13], [10]. Specifically, we conducted several

experiments where developers with different levels of expe-

rience were required to understand functions and to perform

maintenance tasks on functions, where different subjects were

actually working on different versions of the same function.

Thus we could evaluate the dependency between performance

and the style in which the function was coded. Additional

experiments required subjects to evaluate and grade a set of

functions. The produced rankings provide us with “ground

truth” regarding how human developers perceive code com-

plexity. Using this information we can now ensure that our

metrics reflect human perception, a quality that is missing in

many metrics that were proposed on theoretical grounds.

The preliminary operational definition of regularity we used

in that study was based on compression. We applied the gzip

tool to compress 30 functions and used the compression ratio

as a metric for regularity. This was actually done twice: first

with the full function code and then using only the control

structure while removing formatting, layout, and expressions.

Comparing the compression ratios with the human grading,

we found a weak correlation between the grades and the

compression ratios achieved on the whole function. We found a

moderate correlation between the grades and the compression

ratios of the control structure, and even better correlation when

using the grades given based on the visual representation of

the functions.

These results show that the methodology of calculating the

compression has an effect on the results. Consequently, a

systematic investigation of the methodology is needed.

Our ultimate goal is to define an objective metric for code

regularity that reflects perceived complexity. Based on the

framework of using compression ratios to quantify regularity,

this may be itemized into the following research questions:

1) Does it matter what compression scheme is used?
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2) What elements of the source code should be com-

pressed?

3) What is the best combination of compression scheme

and code preprocessing level that would reliably reflect

code regularity?

To answer these questions, we need a way to evaluate the

available compression schemes and combinations. We use the

following three criteria:

1) Good discrimination. We expect functions with different

levels of regularity to exhibit different compression

ratios. A good compression algorithm that compresses

all the functions to the same degree would be useless

for us, even if the compression ratios are all very

high. To check this we use thousands of functions from

multiple sources, and look at the distributions of com-

pression ratios produced by the different compression-

preprocessing combinations.

2) The compression ratio should negatively correlate with

perceived complexity: a higher compression ratio means

higher regularity which should yield better comprehen-

sion. To verify this we use the same 30 functions we

used in the previous work [13], and check the correlation

of complexity scores we have with the compression ra-

tios achieved by the different compression-preprocessing

combinations.

3) Success on as many functions as possible. Some com-

pression schemes fail to compress some functions, espe-

cially when only a minimal skeleton is used, probably

because they are too short. We obviously prefer metrics

that can work on any function.

III. METHODOLOGICAL APPROACH

A. Compression Schemes

As explained above our operational quantification of reg-

ularity is based on compression. However, there are many

compressing schemes available. The compression schemes that

we examine in this work are three that are based on the

Lempel-Ziv algorithm: LZ77, gzip, and LZMA. Furthermore,

we also examine bzip2 and bicom. Table I summarizes these

schemes and indicates the versions used.

Text compression usually works on complete files: an input

file is compressed to create an output file. To work on

functions, we create temporary files that include only the

function of interest.

The most basic compression scheme we use is the original

Lempel-Ziv algorithm LZ77 [25]. This is a dictionary-based

compression scheme, where repeated occurrences of a string

are replaced with a pointer to the original occurrence. The key

point is that the pointer consumes less space than the string

itself assuming the matched string is long enough. Literals that

are not matched are output verbatim. The dictionary need not

be stored, as it can be reconstructed during the decompression.

A very popular version of the Lempel-Ziv algorithm is

implemented in the gzip tool, which is part of the common

GNU software distribution. It combines LZ77 with Huffman

TABLE I
COMPRESSION SCHEMES USED IN THIS STUDY.

Tool Version Description

LZ77 N/A The basic Lempel-Ziv dictionary-based
compression algorithm as implemented
by Marcus Geelnard.

gzip 1.4 a variant of the Lempel-Ziv algorithm
as included in the GNU project.

LZMA 4.32.0.beta3 Lempel-Ziv Markov-chain Algorithm,
another improved version of the
Lempel-Ziv algorithm.

bzip2 1.0.5 Compression algorithm using the
Burrows-Wheeler block sorting
transformation and Huffman coding.

bicom 1.01 Bijective compression based on predic-
tion by partial matching.

coding. The output file format includes some static overhead

(magic number, version number, timestamp, original file name,

and CRC check) so in some cases, especially with small input

files, the output may be larger than the input.

Another compression scheme based on the Lempel-Ziv

algorithm that we use is LZMA. This is based on LZ77

followed by a range encoder. The dictionary size is huge

relative to previous implementations, with special support for

repeatedly used match distances. The encoding is done using

context-based prediction.

Another compression scheme we use is bzip2. This uses,

at its core, the Burrows-Wheeler block sorting transformation,

which treats blocks of input to create sequences of repetitions

of the same symbol. This is then put through run-length

encoding and Huffman coding. Similar to the gzip tool, bzip2

always performs the compression even if the compressed file

is larger than the input.

The last compression scheme we use is bicom. This is a

bijective compressor from the PPM family. Bijective means

that it can always operate both ways: any file can be both

compressed and decompressed. In other words, it does not

produce any specified file format. PPM means prediction by

partial matching. This is an adaptive statistical compression

scheme, where the last n symbols are used to predict what

will come next. Arithmetic coding is used to represent the

output. This compressor is efficient even for very short input

sequences. It was developed for a Windows platform, but we

easily compiled and used it on a Linux system.

B. Code Preprocessing Levels

Regularity in code may occur in different forms, such as

repeated block structures, formatting, identifier names, and

operators usage. We believe that regularity in structure, which

is dominated by the control-flow constructs, has a large effect

on the overall understanding of the code. When using com-

pression to quantify regularity, the question is then what parts

of the code should be compressed to best reflect regularity and

provide a good correlation with humans’ opinions.

We define four levels of code preprocessing. The first level

is the raw code, where we take the source code as is (including

3



TABLE II
KEYWORDS IN THE C LANGUAGE AND THEIR LETTER-CODE MAPPINGS.

Keyword Mapping

if A
else B
while C
for D
switch E
case F
do G
? H

TABLE III
THE SYSTEMS FROM WHICH FUNCTIONS WERE TAKEN.

Name Version Domain # functions

Windows WRK-v1.2 Op. syst. 420
FreeBSD 9 (stable) Op. syst. 1413
OpenSolaris 8 Op. syst. 864
Linux 2.6.37.5 Op. syst. 2819

Firefox 9 (stable) Browser 681
GCC 4.8.0 Compiler 1391
OpenSSL 1.0.0k Library 194

comments and blank lines) and compress it. The other extreme

is the unformatted control flow skeleton, where we remove

all expressions, layout, and comments. Thus we are left with

just the sequence of control flow constructs (keywords) and

braces (to preserve the nesting), with no linebreaks. In between

are two levels where we retain the formatting (linebreaks and

indentation), in order to better reflect the block structure. The

difference between them is that one contains only the format-

ting, while the other also indicates the existence of individual

statements (by retaining each statement’s semicolon).

A potential problem with preserving keywords from a

given programming languages is that keywords have different

lengths, and there may be common substrings that cause

keywords to overlap. These characteristics may be expected

to affect the compression without reflecting any regularity. For

example, multiple repetitions of switch may be compressed

more than a similar sequence of the shorter if. To prevent

such bias in the compression process we replace all the

occurrences of each keyword with a single letter. For example,

the keyword if is replaced by the letter code A. Table II

shows the mapping between keywords and letter codes. (It

should be noted that such a replacement was not used in

our previous study [13].) The results of applying the different

transformations are exemplified in Figure 2.

C. Data Collection

We have 5 compression schemes combined with 4 code

preprocessing levels yielding 20 different combinations. We

examine these combinations on 18755 C functions from dif-

ferent systems taken from different domains. The different

systems, their domains, and the number of functions extracted

(filtered) from each system are summarized in Table III.

Initially, our scripts extracted all functions of all systems.

However, there is an intrinsic problem in C source code that is

caused by the C preprocessor (CPP) conditional compilation

directives. This interweaving causes problems in particular due

1 Raw

is_prime(int n)

{
int i, flag=0;

for (i=2; i<=n/2; ++i) {
if (n%i==0) {

flag=1;

break;

}
}
if (flag==0)

printf("%d is prime",n);

else

printf("%d not prime",n);

}

2 Skeleton

{
;

D;;{
A{

;

;

}
}
A

;

B

;

}

3 Format

{
D{

A{
}

}
A

B

}

4 Keywords

{D{A{}}AB}

Fig. 2. Example of the four levels of preprocessing the code.

to unbalanced braces. To avoid this we dropped each source

file that has such problems.

Functions that passed the first step were filtered by their

cyclomatic complexity value. We took functions with MCC 20

or higher to ensure a minimum size of the function’s structure,

as regularity is especially meaningful for long functions and

compression may fail on very small functions. We use the

pmccabe [1] tool to calculate the MCC values of the different

functions.

After these two filtering steps we had 18755 different

functions. However, for many of these functions some of

the different compression schemes yielded negative reduction

percentages. Removing all these problematic cases led to a

reduced set of 7744 functions.

Looking at the 11011 “bad” functions we found that almost

all of them (about 95%) have MCC lower than 40, which

means that they are relatively small functions. As compression

schemes perform better on large inputs, this might explain

the negative values they received. To support this conjecture

we looked at all combinations to see where the negative

values come from, and found them all in the most extreme

preprocessing level (keywords and braces only) compressed by

the bzip2 scheme and in some cases also the LZMA scheme. In

this level each function is in its shortest form, as we remove

all its content including formatting and layout and preserve

only control flow keywords which are then replaced with a

single letter. Thus the functions may be reduced to a few dozen

characters. The problems with bzip2 and LZMA do not mean

that such behavior does not occur in other schemes, but it is

not as prevalent. Table VII shows the different combinations

4
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Fig. 3. Complementary cumulative distribution plots of compression ratios for 7744 functions using 20 combinations of preprocessing level and compression
scheme.

and the number of functions out of the total 18755 that each

combination failed to compress. Apparently the other schemes

handle small inputs better. We show later that, for schemes that

do not fail often, using the full 18775 functions or the reduced

set of 7744 functions does not lead to significant changes in

the results.

IV. RESULTS AND ANALYSIS

A. Discrimination

As described above we have 20 candidate combinations

of compression scheme and preprocessing level. We applied

these to 7744 functions taken from 7 different systems that

belong to 4 domains. Each function was preprocessed at 4

different levels, and each of the results was then compressed

by 5 different compression schemes.

Figure 3 shows the distribution of the results using the com-

plementary cumulative distribution function (survival function)

of the obtained compression ratios. This distribution function

shows the probability to observe a sample that is bigger than

a given value.

According to this figure both the compression scheme

and the preprocessing level have a significant effect on the

achieved compression. The different schemes and the differ-

ent preprocessing levels lead to different distributions. This

means that selecting the best compression scheme and pre-

processing level is indeed important. Arbitrarily selecting a

popular compression scheme with some or no preprocessing

is inappropriate.

When comparing compression schemes, the figure shows

that some compression schemes consistently compress better

than others, relatively independently of the preprocessing level.

For example, the gzip, and bicom schemes compress very well

at all preprocessing levels, so all their distributions are concen-

trated between moderate and high compression ratios. There

is even a slight advantage for the bicom scheme (compresses

better than gzip).

The bzip2 and LZMA schemes exhibit similar behavior for

three of the preprocessing levels. But with the keywords only

preprocessing level (level 4) the distributions also include low

compression ratios. Interestingly, the LZ77 scheme has more

diverse distributions: one is relatively high, two distribute over

moderate up to high values, and one concentrates at rather low

values.

When using the results to compare preprocessing levels,

we observe that the raw code preprocessing level (level 1)
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TABLE IV
DISCRIMINATION ABILITY OF THE DIFFERENT COMBINATIONS, AS

MEASURED BY THE DIFFERENCE IN COMPRESSION RATIOS AT THE 15TH

AND 85TH PERCENTILES OF THE DISTRIBUTIONS OF FIGURE 3.

7744 functions 18215 functions

Combination Width per func. Width per func.

lz77 1 20.7 0.0038 21.2 0.0016
lz77 2 18.0 0.0033 21.3 0.0016
lz77 3 20.7 0.0038 24.7 0.0019
lz77 4 26.9 0.0049 29.9 0.0023

gzip 1 13.2 0.0024 13.7 0.0010
gzip 2 9.7 0.0017 12.9 0.0010
gzip 3 13.1 0.0024 17.8 0.0013
gzip 4 21.8 0.0040 31.3 0.0024

lzma 1 13.6 0.0025
lzma 2 12.1 0.0022
lzma 3 17.9 0.0032
lzma 4 33.3 0.0061

bzip2 1 13.6 0.0025
bzip2 2 12.8 0.0023
bzip2 3 19.3 0.0035
bzip2 4 38.6 0.0071

bicom 1 11.0 0.0020 11.0 0.0009
bicom 2 7.0 0.0013 10.0 0.0007
bicom 3 9.0 0.0016 12.0 0.0009
bicom 4 13.0 0.0023 18.0 0.0013

compresses relatively highly across the different schemes. One

explanation is that the code is the longest at this level when

compared with others, and therefore has more potential for

compression. Moreover, the input content at this level is real

source code and English text, which are what most compres-

sion schemes are optimized to handle (as stated explicitly in

the gzip manuals for example).

High compression ratios are obviously a desirable trait for

compression schemes. But in the context of using compression

to measure regularity, uniformly high compression ratios may

be counterproductive. Instead, what we want is a good discrim-

ination between input functions that have different degrees of

regularity. (In the next section we add to this the requirement

that this discrimination also corresponds to complexity as

perceived by human developers.)

To assess the discrimination provided by the different com-

binations of compression and preprocessing, we focus on the

central 70% of each distribution. This is the steepest part

of the graph, excluding the bottom 15% which are always

considerably lower and those above the 85th percentile which

are always considerably higher. A large difference between

the 15th and 85th percentiles of the compression ratio distri-

bution indicate that good discrimination is possible. A small

difference runs the risk that small changes in the code may

lead to large and inappropriate changes in the placement

in the distribution. In addition, we also divide this span of

compression ratios (width column in Table IV) by the number

of functions, to see the average difference per function (per

function column in Table IV).

Table IV shows the results for the different combinations,

both for the common set of 7744 functions and for the larger

set of 18215 functions (out of a total of 18755) that are handled

successfully by LZ77, gzip, and bicom.

According to this table combinations at level 4 (keywords

and braces only, with no formatting) exhibit the best discrim-

ination, sometimes by a wide margin. One explanation for

this is that because it is the shortest representation of the

code, compression ratios are necessarily lower, and every little

difference in length or regularity has an effect.

Levels 1 (raw) or 3 (keywords with formatting) vie for

second place. With bicom raw code provides a bit more

discrimination, whereas with LZMA and bzip2 the formatted

skeleton appears a bit better. With LZ77 and gzip they are

essentially the same. Level 2 (including also semicolons for

statements) is nearly always the least discriminative.

The results are not changed when looking at different sets

of functions. Obviously, in order to achieve a fair comparison,

all the combinations should be evaluated on the same set of

functions. However, some of the combinations turn out to

mishandle a large fraction of the original 18755 functions

(this is discussed further below). The problem is that maybe

limiting the evaluation to the subset of 7744 functions that

all combinations can handle may distort the results regarding

the better schemes, which can actually handle many more

functions. We therefore also checked the distributions for a

much wider set of functions, which are well handled by only

three compression schemes. The results for this set are also

presented in Table IV. They are consistent with those discussed

above for the smaller set of functions.

B. Correlation of Regularity with Human Perception

In this section we examine the different combinations of

compression schemes and preprocessing levels against other

factors that are supposed to be related to regularity: perceived

complexity and documentation in the source code.

1) Regularity and Perceived Complexity: In one of the ex-

periments conducted in our previous work 30 diverse functions

with high MCC (McCabe’s cyclomatic complexity) values

were presented to 15 experienced programmers [13]. The

experiment was conducted in two phases, on different days.

In one phase each subject was presented with listings of

the functions and in the other phase he was presented with

code structure diagrams (CSD: a visual representation of the

code structure [12], [11]). Which representation came first

was randomized across subjects. The subjects were asked to

assign a perceived complexity score to each function in each

representation. The result was a moderate negative correlation

between perceived complexity and regularity, where regularity

was measured by compression using gzip of a keywords plus

braces representation of the code.

We can now compute the correlations between the rankings,

from our previous work [13], and all 20 combinations of

compression and preprocessing, to see which combination best

matches the rankings of the human programmers. The two cor-

relation methods (Spearman and Pearson) yielded very close

results but we preferred the Spearman rank correlation because

the data tends to be non linear. The results are presented

in Table V and Figure 4, for both modes of presenting the

functions (visual and listing).
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Fig. 4. Correlation between perceived complexity and compression ratios. Top row shows results when using code listings and second row when using CSD
visualizations.

TABLE V
CORRELATIONS BETWEEN PERCEIVED COMPLEXITY AND COMPRESSION

RATIO FOR DIFFERENT COMBINATIONS OF COMPRESSION SCHEMES AND

PREPROCESSING LEVELS.

Combination Code CSD

lz77 1 -0.179 -0.393
lz77 2 -0.495 -0.579
lz77 3 -0.452 -0.564
lz77 4 -0.421 -0.449

gzip 1 -0.158 -0.363
gzip 2 -0.475 -0.551
gzip 3 -0.490 -0.594
gzip 4 -0.413 -0.524

lzma 1 -0.164 -0.363
lzma 2 -0.461 -0.530
lzma 3 -0.423 -0.525
lzma 4 -0.364 -0.402

bzip2 1 -0.136 -0.337
bzip2 2 -0.411 -0.489
bzip2 3 -0.323 -0.431
bzip2 4 -0.217 -0.193

bicom 1 -0.152 -0.362
bicom 2 -0.493 -0.556
bicom 3 -0.502 -0.608
bicom 4 -0.430 -0.535

According to these results, using the raw code (preprocess-

ing level 1) has very low correlation across all schemes. The

other three preprocessing levels achieve reasonable correla-

tions for all compression schemes except bzip2. When using

the code listing representation, levels 2 and 3 achieve the

best correlation for all schemes and level 4 achieves slightly

lower results. Similar results are achieved when using CSD

representation. As for the highest correlation overall, it occurs

at level 3 of bicom for both the visual mode and code listing

representations. gzip also achieved high correlations which are

not far from those of bicom.

2) Regularity and Comments: Regularity is characterized

by repeated code; similar code segments may consecutively

occur within a function. It seems reasonable to assume that

programmers document such regular functions less than other

non-regular ones. The rationale is that once the first instance

of some repeated code segment is documented the program-

mer fairly believes that following instances of that pattern

are understandable by implication, so he would provide less

comments for these instances or even not provide comments

at all.
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TABLE VI
CORRELATION BETWEEN COMMENTS AND COMPRESSION RATIOS FOR

DIFFERENT COMBINATIONS OF COMPRESSION SCHEMES AND

PREPROCESSING LEVELS.

Combination Correlation coefficient

lz77 1 -0.471
lz77 2 -0.298
lz77 3 -0.240
lz77 4 -0.224

gzip 1 -0.428
gzip 2 -0.253
gzip 3 -0.177
gzip 4 -0.201

lzma 1 -0.358
lzma 2 -0.209
lzma 3 -0.122
lzma 4 -0.142

bzip2 1 -0.298
bzip2 2 -0.118
bzip2 3 -0.034
bzip2 4 -0.034

bicom 1 -0.392
bicom 2 -0.284
bicom 3 -0.217
bicom 4 -0.197

Thus we conjecture that the more the function is regular

the less likely it is to be documented. To examine this idea

we measure the comments of each function of this study and

check if there is any correlation between this measure and the

regularity as quantified by the 20 different combinations of

compression scheme and preprocessing.

There are many ways to measure comments: character-based

length, word-based length, non-stop-word length, or just the

number of comments. However, no matter which metric one

chooses, it should be normalized relative to the function length

(LOC). In other words, we are interested more in the density

of commenting than in their absolute number. This point of

view is required to reliably reflect situations where we have

equal regularity measures for functions with different lengths.

In this work we calculated the character-based length of all

comments divided by the logical lines of code of that function.

We applied the Spearman nonparametric rank correlation

coefficient between the comments ratio and the compression

ratio for all 20 combinations of compression schemes and

preprocessing levels of the 7744 set of functions. The results

are shown in Table VI. Generally, a moderate correlation is

achieved when the raw version of the functions is used. The

best correlation is achieved in level 1 for the gzip and LZ77

schemes, with a slight advantage of the latter one. Many other

combinations also showed some correlation but it was weaker.

bzip2 showed essentially no correlation in its non-raw versions.

These results show that this direction is promising and

apparently programmers indeed document regular code less

than non-regular code. However, more work should be done

in the direction of the best way of measuring comments and

the ways developers document regular code.

C. Handling Small Functions

Generally, compression schemes are good with large inputs.

However, most of the functions in any system are not con-

TABLE VII
NUMBER OF FUNCTIONS EACH COMBINATION FAILS TO COMPRESS,

PRODUCING NEGATIVE REDUCTION.

Combination # Bad functions

lz77 1 0
lz77 2 4
lz77 3 15
lz77 4 534

gzip 1 0
gzip 2 4
gzip 3 15
gzip 4 59

lzma 1 0
lzma 2 8
lzma 3 96
lzma 4 7994

bzip2 1 0
bzip2 2 45
bzip2 3 287
bzip2 4 10942

bicom 1 0
bicom 2 0
bicom 3 0
bicom 4 0

sidered large. For example, in this work we collected 18755

different functions from different systems where more than

half of them have a cyclomatic complexity below 40. Many

more functions have MCC below 20 and were not included

in our sample to begin with. (The cyclomatic complexity is a

relevant threshold criterion as we look at the control structure

of each function).

Functions with relatively low MCC values lead to small

input files that might cause the compression algorithms to

create compressed files that are larger than the original ones. In

particular, one should remember that most of the compression

schemes have some headers that enlarge the output files

without reflecting real compression.

The problem is critical in levels 2, 3, and especially 4, as in

these levels much of the functions’ contents are removed and

the resulting input files are very small. This greatly reduces

the effectiveness of the compression schemes in identifying

and quantifying regular code as they fail to compress these

files by shortening them.

We have already seen that more than half of the functions

checked failed to be compressed in level 4 of bzip2, and more

than 40% failed in level 4 of LZMA. It is important to mention

that other schemes and levels fail also, but not as massively

as bzip2 and LZMA. Table VII shows the numbers of the

“bad” functions under the different combinations. Note that

in this work we considered only functions with MCC above

20. We expect that functions in the range between 10 and 20

would cause many more failures for the different compression

schemes.

While gzip fails for a relatively small number of functions,

bicom stands out for its ability to compress small files — it

did not fail for a single function, regardless of preprocessing

level. We believe that these differences and the inability of the

current compression schemes to deal with small files indicate

that there is room for considering other compression schemes,
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especially ones that are good at small files and maybe even

irreversible (lossy) compression schemes. This is permissible

in our context because we are not concerned with storing the

information, just with measuring the regularity.

At the same time, we note that the shorter the function,

the smaller the scope it has for regularity. Moreover, short

functions are typically considered easier to understand, so the

question of regularity is less pressing for short functions.

V. RELATED WORK

To the best of our knowledge we are the first to study

regularity in the context of code comprehension. In [12] we

examined more than 1000 versions of the Linux kernel where

we identified functions with very high cyclomatic complexity

values. We found that these functions are not really as complex

as their MCC complexity metric suggests. In particular, many

turned out to be well structured and very regular. We then sug-

gested the use of compression (using gzip) as an operational

metric to enable the quantification of regularity. A survey we

conducted provided empirical evidence for correlation between

the measured regularity scores and perceived complexity by

developers. In [13] we extended this work to encompass more

systems and more domains, finding that regular functions also

occur in systems and domains other than Linux.

Based on these results, we set out to verify the conjecture

that regularity is one of the factors that allows developers

to handle long high-MCC functions successfully. In a con-

trolled experiment we compared the performance of subjects

in terms of time and correctness when working on different

implementations of the same specification, where one of

the implementations adopted a regular style [10]. We found

that the subjects working with the regular version achieved

better results than others. The tasks that were used to assess

comprehension in this experiment were feature adding, bug

fixing, and functionality description.

Similar observations and results were reported in [22].

They introduced the idea of Control Flow Pattern (CFP) and

Compressed Control Flow Pattern (CCFP). They used CCFPs

to eliminate some repetitive structure from flow graphs. They

concluded that methods with high cyclomatic complexity have

very low entropy and are easy to understand.

Sasaki et al. also ascribed the large cyclomatic values that

some modules exhibit to the presence of repeated structures

such as consecutive if-else structures [20]. They claimed that

it would not be so difficult to understand such source code.

They proposed to preprocess the code to make complexity

measurement more efficient.

Regularity has been noticed before, but not quantified.

Chaudhary et al. conducted an experiment to study the effect

of control and execution structures on program comprehension

[2]. One result that contradicted their intuitive expectation was

the positive correlation between the subjects’ score and the

control structure complexity. They attributed this result to the

existence of syntactic and semantic regularities in the code.

They claimed that these regularities reduced the efforts in the

learning process and yielded a higher score.

Regularity has also been considered in other areas. Lipson

has defined structural regularity as the compressibility of the

description of the structure [15]. In addition to the regularity

definition, a metric for quantifying the amount of regularity

was suggested. It was defined by the inverse of the description

length or Kolmogorov complexity.

Recently, Zhao et al. have shown that regularity leads to

spontaneous attention [24]. This may be part of the explanation

of why regular code is easier to understand.

There are also works that have used the term “regularity”

with different meanings. For example, Lozano et al. use regu-

larity in the context of naming conventions, complementary

methods, and interface definitions [16]. Zhang suggested a

revised version of Halstead’s length equation. He based it on

the fact that the distribution of lexical tokens in the studied

systems follow Zipf’s law [23]. Similar results, regarding the

distribution of lexical tokens, were presented by [19].

VI. DISCUSSION AND CONCLUSIONS

We have already shown in a previous work that regularity

is yet another factor that may have a substantial effect on code

comprehension. We also suggested to measure it using com-

pression. In this study we have performed a methodological

investigation of this idea, and considered 20 different combi-

nations of compression scheme and code preprocessing level.

We used 5 compression schemes, namely LZ77, LZMA, gzip,

bzip2, and bicom. We used 4 levels of preprocessing which

are based on control-flow structure, formatting, and statement

awareness. The effectiveness of the 20 combinations was

evaluated by how well they discriminate between functions,

how well their compression ratios correlate with perceived

complexity, and how well they handle small functions.

The results show that bzip2 and LZMA are problematic even

with not-so-small functions, so they are less useful and should

not be used. bicom is best on small files, but has somewhat

lower discrimination than gzip. gzip is also very good, except

with the most extreme preprocessing.

The bicom scheme achieved the highest correlations with

perceived complexity so it best reflects effect on humans.

gzip’s performance was very close to that of bicom. Similar

results were also achieved by LZ77, with an advantage of being

more discriminative.

As for preprocessing levels, level 1 (using the raw code)

leads to very low correlations, so this should not be considered

and preprocessing should definitely be used. Several interac-

tions occur between the correlations and other attributes. The

most extreme preprocessing, level 4, led to the best discrimina-

tion, but had somewhat lower correlations than levels 2 and 3.

Preprocessing level 2 gives the highest correlations for LZ77,

LZMA, and bzip2, but level 3 was better for gzip and bicom.

Our conclusion is that gzip or bicom combined with pre-

processing level 3 (retain keywords, braces, and formatting,

but not statements) are the best combination. bicom may be

better at handling small functions, and has the advantage of not

adding a header that distorts the compression ratio (due to its

bijective nature). But gzip is more widely available. Luckily,
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the combination we used in previous work turns out to be near

optimal, and therefore the results are valid.

These results indicate that compression is a promising

way to measure regularity, but it is important to choose an

adequate scheme. Not all schemes correlate with perceived

complexity and not all of them have the same discrimination

ability. Furthermore, the whole code of the functions is not

representative and a preprocessing step on the code should be

performed prior to compressing.

VII. THREATS TO VALIDITY

Our work suffers from several threats to validity. We prepro-

cessed the code in various levels by removing different things

and retaining others. It might be that some of the removed stuff

has an effect on regularity and we missed that. For example,

Green et al. present a set of coding guidelines that are partially

based on formatting. They suggest considering a program

as a table by using vertical alignments, and considering the

use of white space to show structure [5]. These guidelines

represent factors that are part of regularity. Our work considers

indentation and structure but not all these factors.

Another threat is that most compression schemes add head-

ers to the compressed output, which distorts the compression

ratio. This can be avoided by careful parsing of the output

files to better reflect the true representation of the compressed

data.

A third threat is that we evaluated the effectiveness of

different combinations based on their correlation with a pre-

vious study in which complexity grades were given to 30

functions. Comparisons with larger sets of functions, and

with multiple methods of assessing their complexity, would

increase confidence in the results and allow for more general

conclusions.

For future work, an interesting issue is measuring regularity

of small functions. Indeed, we have shown a scheme that is

capable of compressing small functions, but it has somewhat

lower discrimination ability. Moreover, in this work we ex-

amined only functions with cyclomatic complexity of 20 or

more, but a significant fraction of functions is below that.

Another avenue is to examine other families of compression

schemes which were not examined in this study. For example,

lossy compression scheme may be adequate as humans do not

really read repeated code line by line and allow themselves to

skip predictable parts.
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