Parallel I/O Subsystems in Massively Parallel Supercomputers

Dror G. Feitelsoh Peter F. Corbett
Sandra Johnson Baylor Yarsun Hsu
IBM T. J. Watson Research Center
P. 0. Box 218
Yorktown Heights, NY 10598
feit@cs.huji.ac.il{corbett,sandyj,hgu@watson.ibm.com

Tel: (914) 945-2769, Fax: (914) 945-2141

Abstract

Applications executing on massively parallel processors (MPPs) adtprire a high aggregate bandwidth of low-
latency I/O to secondary storage. In many current MPPs, this reqeiiteimas been met by supplying internal parallel
1/0 subsystems that serve as staging areas for data. Typically, tHeld&asubsystem is composed of /0O nodes that
are linked to the same interconnection network that connects the compigs. ribhe I/O nodes each manage their
own set of disks. The option of increasing the number of I/O nodes tegeiith the number of compute nodes and
with the interconnection network allows for a balanced architecture. Werexthe issues motivating the selection
of this architecture for secondary storage in MPPs. We survey therdesfgsome recent and current parallel /O

subsystems, and discuss issues of system configuration, reliabilitfileaggstems.

Keywords: parallel I/O, parallel file system, disk striping, data staging, RAID, sd¢alpbrformance, hierarchical

storage.

*Current address: Institute of Computer Science, Hebrewedsity, 91904 Jerusalem, Israel

Introduction

Massively parallel processors (MPPs), encompassing feors to thousands of processors, are emerging as a major
architecture for high performance computers. Most majonmater vendors are now offering computers with some
degree of parallelism, and many smaller vendors speci@igeducing MPPs. These machines are targetted for both
grand challenge problems and for general purpose compuin any computer, it is necessary in MPP architectural
design to provide a balance between computation, memommieth and capacity, communication capabilities, and
I/O. In the past, most of the design effort was focussed orbdsic compute and communications hardware and
software. This lead to unbalanced computers, that hadv&apoor 1/0 performance. Recently, much effort has
been focussed on the design of hardware and software fouli€ystems in MPPs. The architecture that has emerged
in many MPPs is based on an internal parallel I/O subsysteomrepassing a collection of dedicated I/O nodes, each
managing and providing I/O access to a set of disks. The I@s@are connected to other nodes in the system by the
same switching network as connects the compute nodes toézah

In this paper, we examine the reasons why many manufactafgrarallel computers have chosen the parallel
I/O subsystem architecture. We survey and compare thel@av@ subsystems in many current and recent MPPs,
examining both hardware and software issues, and look atipiile systems and their user interfaces. We focus on

how an internal I/O subsystem can satisfy application meguénts, including:

e Supplying the required bandwidth and capacity. The I/O gstiesn performance has to be balanced with the
computation rate and the communication bandwidth of thepeger. Its capacity must accommodate the gi-
gabytes of data often used by applications executing on MPRsnternal 1/0 subsystem based on multiple
I/0 nodes together with a scalable interconnection netywookides a scalable architecture that can meet these

requirements.

e Minimizing access latency to reduce process wait stateds iShachieved by connecting the I/O nodes to
the MPP’s high-performance network, and eliminating caizted control points. Process wait states are also

reduced by the provision of asynchronous I/O at the userfate.

e Providing reliability in the face of faults, and maintaigidata availability when some system element is down
or being replaced. This is done by employing redundancysadie I/O nodes, or among several disks attached

to each I/O node.

e Cost effectiveness. In many cases, adding high-perforemmé@chardware to an MPP is expensive. However, the

LAN

‘ Parallel computer
File
WS ws server PE | | /O
node Mass storage
X [HiPPI
PE | | © 8 system
2
Mainframe Mass storage g
with HiPPI system PE [& 110
internal disk g | | node
= e | D

Figure 1: The I/O systems of MPPs incorporate features of networka#tstations internally, and of mainframes and

supercomputers externally (WS = workstation, PE = procgssiement).

expense may be justified if the parallel I/O subsystem althv@snachine as a whole to be used more effectively,
especially when considering that the internal I/O subsystiso reduces the requirements placed on external file
servers. Development cost is also a major issue to MPP metnudas. By using a similar node architecture for
I/0 and compute nodes, development cost can by greatly egldmeer the cost of developing a separate external

I/O subsystem.

e Supporting complex operations. New file systems promisérgbaver the layout of file data, the ability to
partition data among application processes, and supposhfring data among processes. These features all fit

well with the programming and data decomposition modelsdased on MPPs.

The parallel I/O subsystems used in MPPs are a unique actinité feature. The development of such systems
therefore seems to contradict the general convergencengbuting in general to a network-centric structure, where
I/O is performed to specialized servers across the netvidrir contrast, we show that actually 1/0O systems in MPPs
are largely in tune with network-based I/O, but that thisasel at two separate levels: first there is the I/O across the
MPP’s internal network to the dedicated 1/O nodes, whiclirslar to 1/0 from workstations to file servers on a LAN,
and then there is I1/0 from the MPP as a whole to external masage systems, typically across high-bandwidth
channels (Fig. 1). Thus the internal parallel I/O systensieatially an adaptation of LAN-connected file servers to
a parallel environment. It does not replace the externachi@nnels and mass storage systems, but rather augments
them with a staging area that provides better service fallghapplications by being more tightly coupled with them.

In this sense, an internal parallel I/0 subsystem perfohmsame function as the high-performance I/O devices found

in most mainframes and vector supercomputers.

The systems discussed in this paper are mostly tightly eaugistributed memory MIMD (Multiple-Instruction,
Multiple-Data) MPPs. In some cases, we discuss shared-nyesnd SIMD (Single-Instruction, Multiple-Data) ma-
chines as well. For large parts of the discussion, it is coierd to define three node type€ompute nodeare
optimized to perform floating point and numeric calculasipand have no local disk except perhaps for paging, boot-
ing, and operating system softwanéO nodescontain the secondary storage in the system, and provideattadiel
file system servicesGateway nodeprovide connectivity to external data servers and masagtosystems. In some
cases, individual nodes may serve as more than one typexd&opée, the I/O and gateway functions are often handled
by the same nodes.

We begin by presenting the motivation for using an interreglapel 1/0 subsystem, and elaborate on possible
configurations and on the distinction between internal adtereal 1/0. Subsequent sections deal with reliability and

with file systems that exploit the parallel I/O to provide anbed services to applications.

Parallel I/10O

Among commercial MPPs that are currently or recently alaglathe majority include internal parallel I/O subsystems
as an important architectural feature. These 1/0 subsysteéencomposed of multiple 1/0 nodes, each with one or more
disks, that are connected to the same interconnection netrgothe compute nodes. Examples include the scalable
disk array in the Connection Machine CM-5 and the 1/O panitin the Intel Paragon (see sidebar on architectures
with parallel I/O). In this section, we examine why this sture is suitable for parallel applications running on MPPs
We then contrast the services provided by internal pardlesubsystem with those provided by external servers.

The main reason for using a parallel 1/O system is that it joiew parallel access to the data. A typical MPP
has its primary memory distributed across many compute 310848 a consequence, application data is distributed
among the nodes of the MPP. The data distribution is appmicatependent, being designed to enhance locality of
reference during computation. Indeed, much recent workasaligl programming has focused on the issue of data
decomposition, i.e. how to partition large data structamme®ng multiple processors. This is either done by language
directives, as in HPF (High-Performance Fortran) [12], @ioanatically by compilers that analyze the access patterns
[2].

I/0 operations involving distributed data structures regaommunication with all the processors which have parts

of the data. This communication can be done in parallel, &éoths network bandwidth available to all the compute

nodes. However, it should be noted that the compute nodemnarene side of the 1/0O operation. The other side is
the 1/0 subsystem. If the I/O subsystem is not itself pakatiavill not be able to utilize the parallel communication
channels with the processors. A parallel I/O system, basechdltiple /0 nodes, allows data to be transfered in
parallel between compute nodes and I/0O nodes.

The data distribution causes the characteristics of thed¢@ired by the compute nodes participating in a parallel
application to be very different from what is typical in vecsupercomputers. Instead of large sequential accesses,
there are many small fragmented accesses. It is truértlaagregatethe accesses from the different compute nodes
often cover the whole data set, but the part accesseshblgcompute node is typically fragmented because of the
distribution pattern, rather than being contiguous [17].

The fragmented nature of I/O operations from parallel ajgpidons has two consequences: first, it implies that I/O
involves the transfer of multiple small pieces of data. Tikibad, because 1/O operations are much more efficient
when large sequential blocks are involved. Second, it iesgihat there is significant false sharing of file blocks [17].
This means that different compute nodes will likely acceispiht parts of each block, making it harder to cache
blocks on compute nodes. A parallel /O subsystem withinMP solves these problems, because it is based on
the MPP’s internal high performance switching network. iSoetworks allow relatively small messages to be passed
efficiently with little latency and high aggregate bandwid@s a result, it is not so important to cache file blocks at the
comute nodes — caching at the I/O nodes is sufficient. Thegeesain turn, are also used to coalesce the fragmented
accesses from multiple compute nodes into large sequattiasses that can use the disks efficiently. Moreover, the
phenomenon of “interprocess locality” allows the the I/G@ions from one compute node to cause prefetching of
data required by another compute node [10].

We note in passing that a similar idea was implemented by 8i2 (Solid-state device) storage in the Cray X-MP
and Y-MP. Likewise, the nCUBE system allows a fraction oftbepute nodes to be used as a staging area, effectively
using their memories as an SSD. Such solid-state devicegweuyparallel /0O operations with even less latency than
an internal parallel file system, but their cost limits tredpacity.

Independent of the parallel nature of 1/0O requests on MPPsyallel 1/O subsystem is also required for purely
architectural reasons. Microprocessors double theirdspeery 18 months or so, while the bandwidth of 1/0O devices
grows at a much slower rate. Therefore there is a dangertteatupported/b ratio (this is the ratio of the floating
point operation rate of a computer to its bit rate of I/O) wgilbw larger with time [16]. In MPPs, which employ mul-
tiple high-end processors in tandem, the danger is espegiglat. In the absence of a fundamentally new persistent

storage media, the only solution to the problem of scalirth Bre bandwidth and capacity of MPP persistent storage is

to increase the number of disks accessible by the procesktirs MPP. Together with the increased number of disks,
there is a need for increased channels to access them. Tliesnthe use of a parallel I/O system. The aggregate
bandwidth of such a system is scalable, and can be tailorgukiific needs by changing the number of I/O nodes and
disks.

Note that parallel I/O systems are already being used fqrrapéssors. This is motivated by the ever-increasing
gap between CPU performance and disk performance [16]. Bt oases, the parallel disks are organized as a RAID
(Redundant Array of Inexpensive/Independent Disks) [4dvigling an interface similar to that of a single disk, but
with higher bandwidth and reliability. While this can be usegrovide balanced I/O for a uniprocessor, it is insuffi-
cient for an MPP. The RAID controller is often a bottleneclkciunrent RAID designs. Therefore, in parallel machines
the interface must be explicitly parallel, along with thedarying disk system.

Finally, another advantage of having a parallel I/O systethé distribution of loads. If I/O operations are scat-
tered across multiple 1/0 nodes, there is reduced dangemiéntion at any one device and subsequent performance

degradation.

Internal vs. External 1/0

Providing an internal 1/0O subsystem solves the immediaggls®f the compute nodes for parallel, high bandwidth,
low latency 1/O services, but it does not solve the whole IfObem. It is still necessary to get data into and out
of the MPP. In particular, many parallel applications mustcess large amounts of data that are permanently stored
in archival storage systems, often on tape [23]. To hand thterfaces are required from the MPP to external
storage systems. The basic scheme is that data to be prddessae or more applications (often on the order of
tens of gigabytes) is preloaded into the internal I/O sulesysand its parallel file system (Fig. 2). Then, one or more
applications are run against this data. Any temporary dadtored in internal parallel files as required. Finallyport
data is offloaded to an external storage system for archipiost-processing, or display. The external storage system
are often shared by the MPP and other network connected demspu

There are several advantages to having an internal par@lelubsystem as the agent for data migration to and
from the MPP. The internal parallel /0 subsystem can hafrdigmented requests much more efficiently than an
external server. External storage systems provide littteogparallel access to data. The data rates of the devices may
be fairly high, on the order of tens of megabytes per secandhle presentation of the data is sequential, and in large

blocks. While this is fine for longer term archival and on-lsterage, it is unlikely to match the data decomposition

CPU CPU
e o o
HIPPI storage
~
system X
Interconnection
network
//7 Gateway
Ethernet
node node server

5 8 e

Figure 2:Internal storage provides a staging area for data from reatelevices.

and access patterns generated by parallel applicatiokewlse, it is not likely that the boundaries on which the data
is divided among compute nodes are aligned with any paraset¢he external I/O system, such as the optimal block
size for data transfer. Thus transfers of data between the 8t the external server will usually require a phase of
data collection or distribution. This re-organization ¢endone at the 1/0 nodes.

It would also be difficult for an external file server to sati$fO requests coming directly from compute nodes
with a sufficiently low latency. If I/O requests are procebagth excessive latency (many seconds for an on-line tape
access) then applications will only be able to make 1/O retpumfrequently, and consequently, in very large blocks.
This forces users to manage their own data sets by loadimg i® compute node memory at program initiation,
and offloading them at program completion. On the other handnternal 1/0 subsystem that provides low latency
access (in the range of 1ms — 30ms) allows users to programuratypical style, where I/O requests can be made
frequently.

Communication between compute nodes and internal I/O nigddsne through a reliable, low latency, message
passing protocol, or through shared memory, rather thasitveer network protocols used by LAN connected file
servers. This is a consequence of using the MPP’s intert@icionnection network. Because they serve a more
controlled and limited environment, the communicationtpcols used on MPP networks are optimized for the case
of failure free transmission. This also reduces the latémaylved in 1/O operations.

Data reuse by multiple applications is also possible oneal#ia is loaded into the internal file system. Buffering

the data internally for reuse can reduce the bandwidth reopgnt of the gateway nodes and the external network.

Shared data that is repeatedly updated and reread by agbapglication can be effectively stored in the internal I/O
system. Data that is read by many applications can be loadles iato the internal 1/O system, and then be readily
accessible to all the applications. Data that is produceshieyapplication, and consumed by another can be effectively
buffered in the internal I/O system. In effect, the interii@ system serves as a cache for the external servers.

In the above discussion, we only talk about mass-storagersgsas external servers. In addition, there is the
option of using smaller file servers, that use the same tygeoodge devices as I/O nodes, with the same performance
characteristics. However, these also cannot replace amaitparallel I/O system. First, external file servers woul
be connected by a LAN, and require communication protocdis igher latency. Second, the 1/O requirements of
a large MPP imply that multiple file servers are required.aéle server is to be accessible from all nodes, we need
a LAN network with enough bandwidth and routing capabilityfally interconnect all of them. If the machine is
partitioned into domains attached to different file servapplications will be limited to running on nodes connected
to the correct server. An internal parallel I/0O system seklsech problems by bringing the servers into the system, and

connecting them to an internal interconnection networnls throviding adequate bandwidth among all nodes.

Architectural choices

There are several possible architectures for an intermallphl/O subsystem (Fig. 3). The simplest is to just attach
disks to compute nodes ((a) in the figure). Variants of thjgraach are used in the KSR1, the Meiko CS-2, and the
IBM SP1. However, the Meiko CS-2 and IBM SP1 only use the latisks for scratch space and paging, not for
persistent files. The reason is the difficulty in collocatipgplications and the data they need. For example, if a certai
file is stored on the disk attached to a specific node, it is foestpplications using that file to execute on that node.
But that node could already be busy running other applinatidexecuting the new application on that node would
then cause load imbalance, and executing it elsewhere vieadtto inter-node communication for the I/O, possibly
interfering with the other application’s execution, sirsggvicing the 1/0O requests would require many CPU cycles.
Adding a separate 1/O processor to the node would reducdendace with the other application’s execution, but the
I/O traffic could still interfere with its communication, pending on the topology of the network.

If the disks are attached to the network, rather than beiaglatd directly to specific nodes (Fig. 3 (b)), there is no
opportunity to collocate the data with a node that requireBach disk is equally accessible from all compute nodes
in the machine, so each node should be able to access anyitategual expectations of performance. However,

the problem of mutual interference is not solved. Considerdpplications writing two different files that reside on

PE || PE || PE || | | Vo
node

5 5 5
PE || _® PE || _® PE || B | O
28 28 g §| [Lnode

=} =} >

8 3 8 3 sz
o o o node

=} =} S
PE || PE || PE || | | Vo
node

(@) (b) (c)

Figure 3:Possible architectures for an internal parallel I/O sutgsys

the same disk. The system software on the nodes running fieatfons must coordinate the block allocation on the
disk, so that space is allocated to each individually wittcansistency and security breaches. This typically implies
some shared data structures with locks, and an access @irtiagdate them. In addition, there is no obvious place
to buffer data of files shared by more than one process.

The internal 1/0O subsystem architecture selected by mastloms is to use separate 1/0 nodes, complete with
processor, memory, and disks (Fig. 3 (c)). Examples indbd€M-5, Intel iPSC and Paragon, nCUBE, Meiko CS-2,
IBM SP2, and Tera (see sidebar on ArchitectureBach 1/0 node is responsible for storing portions of patdilles,
and handles all block allocation and buffering of thoseipag. Each parallel file is distributed in some way across the
I/O nodes. Simultaneous data movement between the multipleodes and the multiple compute nodes of different

applications is now possible, without any direct coordoraaimong the compute nodes.

Dedicated I/O Nodes

There are several reasons why so many vendors have madédiis of having dedicated internal I/0O nodes. These
include the flexibility in locating data and processing, dhe ability to provide high bandwidth 1/O, as explained
above. But dedicated I/O nodes also have drawbacks. Ingbioa, we evaluate the advantages and disadvantages of
dedicated I/O nodes, and suggest why this architecturedws ¢thosen by so many MPP manufacturers.

One argument frequently made against providing 1/0 fromné@es across the interconnection network is that the
latency of I/O accesses will increase relative to I/O froracal disk. Analysis of network I/O reveals that the dominant

portion of access latency for small reads is disk access;hwikion the order of tens of milliseconds (writes benefit

1The KSR1 can also be configured with dedicated 1/O nodes, éepting user computations from executing on nodes attaohé@ devices.

from buffering which can remove the disk latency from theical path of the write). Current MPP interconnection
networks have latencies of tens of microseconds. Therdf@enetwork itself does not add significant overhead.
However, communication and file system software can addsedibnds of latency to large requests if data is copied
between software layers. It is therefore crucial to remaweegessary copying of data, and pipeline large requests
through the software layers. Good design can reduce thelblatency of read requests to the point where it is
dominated by disk latency. Of course, it is important thatitiiernal network latency not increase dramatically under
the load that will be placed on it when 1/O is done over the oekf3].

The use of dedicated 1/0 nodes creates an opportunity toceedacess times to below disk access times by
exploiting caching and prefetching. It is frequently thesedhat multiple compute nodes request data that is not
contiguous in a file, but that the aggregation of the requedtse compute nodes is contiguous [17]. This occurs, for
example, when an application has partioned a file in a strilg@dmposition among its processes, or when processes
are each reading from or writing to the current position ohared offset into the file. Such applications are said to
display interprocess locality. In this case, I/O from skidf® nodes can result in lower latency than from a local disk
because of the benefit gained from prefetching initiatedneyrequests of other compute nodes. Recognizing such
aggregate sequential behavior can also eliminate the smtdlproblem; the aggregate write accesses may completely
overwrite file blocks that would otherwise only be partiattpdified. The need to fetch these blocks before modifying
them can be eliminated.

Separation of compute nodes from I/O nodes allows freedarorifigure the machine for the application domain.
There is a wide disparity in the 1/0O requirements of appiaa that run on supercomputers. To keep the compute
node CPUs busy, itis necessary to provide enough disks tothreeO bandwidth, capacity, and latency requirements.
Separating 1/0 nodes from the compute nodes allows thishilégyj as it allows a computer to be configured with
a specific I/O bandwidth and capacity, and reducing latengy queueing of 1/0O requests. Parallelism can be
configured both at the 1/0 subsystem interface by changiegtimber of I/O nodes, and at the disk level, by changing
the number of disks.

The distinction between the compute node and the 1/O nodinzse can simply be that I/O nodes have disks.
However, a flexible, general solution allowing for configizas with more or fewer disks as they are required would
have to provide additional empty disk slots in each compotden This would have a great impact on the compute
node packaging density. The alternative is to configure edenpodes with either no local disk or a small one only
for paging or temporary storage, allowing very compact cot@mode packaging. On the other hand, multiple high-

performance disks can be attached to the I/O nodes. For égathis is done in the IBM SP2 computer, where nodes

are eithemwide (able to have many disks) thin (able to have only a small number of disks).

If disks are attached directly to each compute node, the Gfelés are divided between computation and serving
I/O requests. This not only reduces the cycles availabledanputation, but also causes unpredictable asynchronous
interrupts that could interfere with synchronization amdme compute nodes of an application. Parallel application
run only as fast as their slowest processor between eacicatigph synchronization point. Therefore, if various
compute nodes are required at unpredictable times to sdiorieign 1/0 requests, then the performance of application
as a whole can be greatly degraded [22]. Even applicati@isithnot perform any I/0O themselves are not immune to
such interruptions. In general, it is difficult to guarantieat each application has its data locally (and therefoesdo
not interfere with other applications) except by a statidipaning of the machine. Moving all disk I/O servicing to
dedicated nodes ensures that the compute nodes are free wathout unexpected interference from 1/0O requests.
Applications are then only affected by /0 when they maker#@Quests themselves.

Finally, system software reliability remains a large issudPPs. If the same node doubles as both a compute
node and an I/O node, the file system server is vulnerablede falures caused by application software. If a user
writes code that crashes a node, the entire parallel filesystay be brought down, at least temporarily. If the user
runs in a dedicated partition, on the other hand, the nod#ésirpartition can be restarted without bringing down the
whole system. In particular, there will be no effect on othgplications and on nodes like the I/O nodes which only
run system code. This point will become insignificant as tretesn software for parallel computers matures.

Providing internal I/O through dedicated hardware can beved as a similar architectural choice to the provision
of dedicated I/O coprocessors and channels in mainframsw@gpercomputers. Examples include the CDC-6600, the
IBM 360 and 370, and all Cray computers. In these computdsgpérformance is greatly enhanced by offloading the
computations required to perform 1/O to the dedicated cogseors, freeing the main processor to spend more time
running user application code.

The fundamental choice between having dedicated 1/0 nogléscorporating the I/O function into the compute
nodes is one of performance vs. cost. The cost for providimdreds of gigabytes of secondary storage can be
very significant. Large installations such as national tatmyies typically divide their computing budget into tare
roughly equal portions: for CPUs, for networking and se@gdtorage, and for tertiary storage. Adding additional
I/O nodes to a computer increases the cost of the computaayltbe cheaper to simply add disks and memory to the
compute nodes already present, as additional processnsetwork ports are not required. However, there will be
performance degradations due to the effect on applicapfomsesses of asynchronous and unpredictable demands for

I/O, particularly if more than one application is running.

10

The cost of dedicated I/O nodes should be compared with tsteof@roviding the same level of service via other
means. Forgoing an interal /0O subsystem in favor of moreaetef external servers is not likely a cost effective
solution. In most cases, it turns out that the cost just mowof the MPP into external servers. One compromise
solution is to handle paging and scratch storage on a los#l @dind to handle external 1/0O and I/O to shared or
persistent files through a dedicated internal parallel UBsgstem. This approach is used on the Meiko CS-2 and the

IBM SP2.

I/O Node Configuration

In computers that provide a dedicated internal 1/0O subsystiee question arises of exactly how to configure it. Fol-
lowing are a few guidelines that show how the configuratiom loa tailored to meet performance goals. This is not
meant to imply that all installations actually follow suctidelines; in many cases, budgetary factors outweigh tech-

nical considerations, and the ratio of I/O and compute perémce requirements varies widely among installations.

Number of disks per node

Adding disks to a system serves two purposes: it increase®tll storage capacity, and it provides additional band-
width by means of parallel access. The achievable bandwiddim 1/0 node is primarily dependent on three param-
eters: the realizable media transfer bandwidth, the baifttivaf the channel(s) from disk to the network interface,
whether directly transferred across the I/O bus or stagesligih the processor memory, and the bandwidth of the
network interface. The goal is to balance these bandwidihi¢hat all components are fully utilized. If additional
capacity is needed, more disks can always be added, evegiritdtal bandwidth is higher than required. Attaching
more disks to existing I/O nodes is less expensive than gddw I/O nodes.

Data transfers to disk cannot be sustained at the mediddraase unless the accesses are purely sequential. The
number of disks should therefore be such that their agggagatagebandwidth (rather than peak bandwidth) matches
that of the I/O bus and network connection to the I/O node.

Let ng =number of disks per I/0O node
B4 = average disk bandwidth
B, = internal channel bandwidth
B,, = bandwidth of network interface

B;, = realized bandwidth of the 1/O node

11

Then the following relation holds:

Bi, <min{By - ng, Be, Bn}

Given current technology trends (with network bandwidtgher than disk bandwidth, and also increasing more
quickly), this implies multiple disks per 1/0O node. More thane I/O channel, e.g. multiple SCSI strings, may also
be required. This also introduces the option of using a RAHKR drray within each I/O node, increasing the effective
reliability of the disks.

As an example of the application of this equation, the diskegte nodes in the CM-5 scalable disk array have eight
disks each. These disks have a raw transfer rate of about2fdBreads and 1.8MB/s for writes, leading to a total of
16MB/s and 14.4MB/s respectively. These values are sligbiwver than the 20MB/s network bandwidth available to
each node.

The above equation can be qualified by the expected efficiefrayy prefetching and buffering mechanism that is
used. We introduce an I/O efficiency facterthat is the ratio of bytes moved over the 1/0 node networ&rfate to

bytes read or written from disk. The resulting equation is
B;, <min{e- By ng,e- B.,Bp}

¢ is increased if data read from disk is reread by more than pplkcation process before it is evicted from the buffer
cache, or if data that is overwritten several times is onliftem back to disk occasionally: is reduced if the block
size used for accessing the disk is large compared to thergrobdata moved over the network interface to satisfy
requests. Similarly, if writes are small relative to thekdidock size, and cannot be aggregated to cover complete
blocks, then each block that is partially overwritten will fetched from disk, updated, and then written back to disk.
Storing redundant data such as parity can also reeucethe worst case requiring 4 disk block accesses to modify

one byte of data.

Number of I/O nodes

The number of I/O nodes should be chosen to balance the sylséed on the capabilities of the compute nodes, the
realizable bandwidth of the 1/0 nodes, and the deskgtiratio that should be supported.
Let n.=number of compute nodes
n;, = number of I/O nodes
F = flops of each compute node

R = desiredF'/b ratio

12

Then the following should hold:

which leads to

Nio Z R B, (1)

Note thatBi < R must also hold, otherwise it is impossible to satisfy tharéds'/b requirement. Also,
Bio i < By - ne

otherwise, the data produced by the 1/O nodes could not beucoed by the compute nodes. Thereford,if = B,
which is the best it can be, then

Nio S e

The problem is deciding whdt/b ratio should be supported. A commonly quoted rule of thummfthe main-
frame era, attributed to Amdahl, suggests “one Mb/s for olBH [11]. This is sometimes used to advocate a
requirement fo'/b = 1 for supercomputers executing floating-point applicatiassvell. (Note that the bandwidths
used to expresB'/b ratios are expressed M bits/second.) A recent survey of 8 parallel scientific applications fdun
an average oF'/b =~ 100 [7]. However, those applications that performed I/O thiougt their whole execution
(as opposed to just at the beginning and the end) averAgéd~ 50, and the most I/O-intensive application had
F/b =~ 14. These numbers do not include the I/O required to load thécaions in the first place, and there was no
checkpointing. In addition, the four applications that &erore 1/O intensive were all programmed for the Touchstone
Delta, which is known to have limited 1/0O capability [20]. @itefore the programmers were motivated to minimize
their 1/0 requirements as much as possible, e.g. by recangpdata instead of storing intermediate results. In many
cases, such redundant computations can be avoided if treubl€ystem is fast enough.

A survey on I/O behavior of applications executed on a CrayiF¥supercomputer yielded different results [21].
While this survey did not focus of’/b explicitly, it did provide application runtimes and theabamount of 1/0O
they performed. Multiplying the runtime by 333 MFlops, thea performance of a Cray Y-MP processor, leads
to an upper bound on the number of floating-point operaticeswed. For 5 out of the 7 applications surveyed,
this results in estimates df/b in the range of 0.56 to 4.72. Needless to say, the real rat®actually smaller, as
applications never execute at peak performance. The I/Oweddy used for overlaying large data sets in the primary
memory, in one case using the Cray’'s SSD (solid-state deaiEé¢he target of 1/0. Admittedly, the survey focused

on 1/O intensive applications, but such applications daairt £xist. Thus the requirement fé1/b =~ 1 is not overly

13

aggressive. Measurements from a VAX/Unix environment t&agvn that an even higher 1/O rate might be required
[1].

The lower bound on the number of I1/0O nodes (Eqg. 1) can be mddifyethe inclusion of an 1/O efficiency factor,
¢, that is the ratio of bytes read or written by applicationbytes of /O across the compute node network interface.
e. is increased by effective caching of data on the compute.nibdedecreased if the amount of data moved across
the network to handle small or nonaligned requests is gréada the size of the requests, for example, if a full file

block of data is moved to the compute node when a single byafitE is read. The equation becomes:

Amount of memory per node

The amount of memory required on I/O nodes depends on thealtglperations supported by the file system and on
hardware features such as the ability to transfer datattlireetween the disk controllers and network adapters, and
ranges from small transfer buffers to large caches.

One approach is to optimize the file system to handle extiefaeje accesses, with no reuse or sharing. The
data is piped from the disk controller directly to the netkyasr streamed through small memory buffers for speed
matching, minimizing overheads for buffer management aid dopying. This approach is used in sfs on the CM-5,
where 1/O operations typically involve all the compute nedend the file system handles only one such request at a
time. Data is striped in 16-byte units — which correspondsitooptimal packet size for the network — and an 8 MB
buffer is used to marshal data movement. Intel's PFS on thegBa also does not perform any caching on I/O nodes.
Disk blocks are transferred directly to and from computeaspdising the “fast path” feature of the underlying OSF/1
AD technology.

A common mode of operation on parallel supercomputers weghll the compute nodes working in parallel on
disjoint parts of a large data set (typically in a looselypayronous SPMD style). The data set is read from and written
to disk, perhaps many times. For example, physical sinulatmight repeatedly output the whole system state every
few time steps, and large data sets require out-of-core atatipns that iteratively shuffle data between memory and
disk. While such I/O operations access large amounts of datfaei aggregate, the contribution of each PE can be
quite small (or a set of distinct small parts). These smatkases are not necessarily synchronized. This implies
strong inter-process locality and sharing of file blocks] favors the use of a buffer cache on the 1/0 nodes [17]. Such

an arrangement allows a single disk access to service fragoheequests from multiple compute nodes, and saves

14

the numerous disk accesses that would be required to sexmeitidividually. It also allows disk scheduling to be
optimized. This is done in a number of parallel file systemeluding Intel CFS, nCUBE, and Vesta (see sidebar).
The size of the buffer cache depends on how long the data nedwtskept in it. Given that we wish to use the

disks and network at their full bandwidth, the residencestfor data is

Mi Mio
T =
ng - By o Bio

T =

whereM;, = memory on each I/O node.

T should be large enough to hide asynchrony among the compdgsnwhich sets a lower bound on the amount
of memory needed. If no synchronization guarantees can luke ntata has to be kept for a long time to enable
all participating compute nodes to perform their part of #tteess. This seems to imply thaf;, tend to infinity.
However, it should be noted that the total amount of data lednaly all the the compute nodes together is limited by
the primary memory available to the application. Theretoraipper bound on the amount of memory needed on 1/O
nodes is given by

Ne -+]\/[C ~ Njo * Mz

whereM,. = memory on compute nodes. In practice, this gives a grerfigerated requirement for I/O node memory
because it is rarely true that the entire data set for an @gtjn is actively being accessed at any one time. The
aggregate behavior of the compute nodes will often exhinites temporal locality of reference in their accesses to
files. Combined with prefetching and interprocess localtych temporal locality of reference will greatly reduce
the average latency of I1/O accesses even when the aggré@atede memory is much smaller than the aggregate
compute node memory. Itis also true that the compute nodeameisiused for more than just data that is either read
from or written to the 1/O subsystem.

Finally, we note that buffering can be done in any designatedhory, not necessarily in the I/O nodes. For
example, Cray supercomputers can be configured with SSDarthaip to 8 times the size of primary memory, and
serve to effectively buffer data on the way to disk. Simitathe nCUBE system allows a number of nodes to be
designated as a RAM disk rather than being used as compués nithsPar has a large IORAM that buffers between

the processor array and the I/O devices.

Placement of I1/0O nodes

Given a large parallel machine in which nodes are physidadlysed in multiple racks or are otherwise spatially

clustered, the question of I/O node placement, both phlysied in the network, should be considered. Physical

15

placement is defined as the actual physical location wheré/@ node is housed. Network placement is defined as
the network port location of the I/O node. There are manydsda consider when determining the optimum physical
and network placement of I1/O nodes within the computer,uidiclg the network bandwidth, the switch cycle time,
the communication protocols used, and the packaging téatpmoHowever, there are two main options to consider
when determining both physical and network 1/0O node placemgisperse the 1/0 nodes throughout the system, or
concentrate them all in one place (e.g. in a single rack fgsighal placement).

Since /O messages are typically larger than other messemessing a network, spreading the nodes also has
the potential to reduce network contention relative to aengdcement scheme that concentrates the I/O nodes in one
place. This is because the larger messages are more likejuse network congestion and clustering the nodes in
one area of the network may compound this problem. If all asteamodes send I/O requests to 1/0 nodes that are
all concentrated in the same area of the network, the ragytérformance degradation may be prohibitive. Note that
the opposite effect may also occur. Dispersing the 1/O noakeg cause a mix of /0 and intercompute node message
traffic on the network that degrades compute node perforemanc

I/O nodes are a shared resource, that might be accessed bglenpfograms at the same time. The programs
execute on disjoint partitions of compute nodes. Concéngraéhe 1/0 nodes in one place in the network then has the
possible advantage of reducing interference between @ngyrConsider the case of a hierarchical switching network,
such as a fat tree [18]. If each of several programs runs awitsnetwork partition, then the communication pertaining
to each program is localized within its network partitiomlpl/O-related communication between the compute nodes
and the 1/0 nodes uses the top levels of the switching netwidiis is the case in the CM-5.

For physical placement strategies, concentrating the g@es in one place may also allow for more compact
packaging of the disks, possibly in specialized cabinetsis @pproach has been used by some vendors to simplify
power, cooling and packaging requirements. It is espgc@mmon in architectures where compute nodes do not

have the option of local disks. An example is the Thinking Maes’ DataVault, used with the CM-2 and CM-5.

Reliability

I/O operations deal with the persistent storage of datapButessors, communication links, and storage devices may
sometimes fail. A recent study shows that a failure rate &f per day is likely to be reached with a thousand-node
multiprocessor [13]. However, the failures can be maskedthgr, non-faulty components. The system should be

designed so that failures do not cause data to be lost. Fortine, failures should not even cause data to be unavailable

16

except for very short intervals. This is important for penmatly resident applications such as parallel databassss, t
critical programs such as weather forecasting, and alschieckpoint data of long-running applications.

Consider failures in compute nodes and the interconnectgawork. Such failures have to be handled in any
MPP, regardless of its 1/0 architecture. Procedures foh#mlling of such failures are well established. For example
transmission errors can be detected using error correctidas such as CRC. Link failures can be overcome by re-
routing to circumvent the failed link. Node failures are mamne by reconfiguring the logical view of the machine,
removing the failed node. If spares are available, it is jpdss$o reconfigure such that a spare node takes the place of
the failed one.

Now consider disk failures. A well known solution is usinglbedant arrays of independent disks (RAID) [4].
These systems compute the parity of the data stored on seisks, and store the parity itself on another disk. Five
schemes for doing so have been defined. The most popular di2 ®And 4, in which a set of disks store data
and a single additional disk contains the parity of the datalbthe other disks, and RAID 5, in which the parity
information is distributed across all the disks. If only atevice fails at a time, the data that was stored on it can be
reconstructed from the data on the other disks and the patitys high availability of the data is maintained. When the
device is repaired, its data is reconstructed in order taingfpe required redundancy. RAID also potentially incesas
bandwidth, due to the striping of data across multiple disks

One way to extend the RAID concept to a parallel /0O systerhiwia massively parallel computer is to calculate
the parity across I/O nodes. For example, the CM-5 ScalaldeSystem uses RAID 3 in software to generate parity
across all the disks in a partition of the scalable disk amidty one parity disk and one spare disk. The RAID approach
can protect against failures of one or more of the I/O nodesweé¥yer, it is expensive, both computationally, and in
communication cost. All file writes result in an update ofadatored in two different nodes, the data node and the
parity node for the written data. Also, a protocol is reqdite commit the newly written data, establishing that it
is written and parity protected. This is necessary to eistalbhat data can be reconstructed at recovery time. This
protocol may impose some additional overhead on the fileerystr on applications at runtime. Log structured file
systems may reduce some of this write overhead, at the expémscreased overhead for reads and for restructuring
files [24]. Logging can also be used to reduce or defer thehaaat of parity updates [27].

An alternative is to have a number of disks at each I/O nod#caltulate the parity only across those disks. Thus
each node has a separate and independent RAID. While thisaagtpdoes not protect against node failure, it does

have several advantages as a means of protecting agaktitlise.

e It reduces the load on the interconnection network by elitiiig the messages sent between 1/0 nodes to

17

calculate the parity.

e The parity calculation and update can be delegated to th®RAhtroller, thereby relieving the load on the I/O
node CPU.

e Finally, independent RAIDs at the 1/O nodes contributesht® layered design of the system. File system
functions are then built above disks that effectively ndaér This includes both special RAID controllers, and

a software RAID implementation in the device driver.

e Using RAIDs implies multiple disks per I1/0O node, which magstbandwidth requirements as described above,
and also reduces the number of network ports and disk ctersahat are required to support a given number

of disks.

RAID assemblies are becoming widely available for all cotimqmuplatforms, using standard interfaces such as SCSI.
As practically all commercially available MPPs provide Iodes with SCSI controllers, it is possible to populate
them with RAID devices. Specific examples include the KSRdtesy, which creates a RAID 3 of the five disks
attached to each node, using four for data and one for pdiitg.Intel Paragon and IBM SP2 allow multiple RAIDs
to be attached to each 1/0 node. The Meiko CS-2 uses dua¢pBAID subsystems with 5-20 drives on I/O nodes
(as opposed to the single SCSI disks used for scratch spammguute nodes).

The main drawback of confining each RAID to the disks conrktda single 1/0 node is that it reduces the degree
of protection against data loss. Calculating parity wittie confines of an 1/0 node protects against disk failure, but
does not protect against failure of the I/O node itself. Réigaration to replace the failed I/O node is not enough,
because then access to the disks attached to the node wdokt.ba possible solution is to use twin-tailed RAIDs,
and attach each one two 1/O nodes: a main one and a backup. Each I/O node serves asth@ade for one RAID,
and as the backup for another. In addition, a spare I/O nodddsd (Fig. 4 (a)). If an I/O node fails, the system is
reconfigured by switching a whole set of RAIDs to their backuand removing the failed node. This node can now
be repaired off-line. The interconnection network routiighanged accordingly, by changing the mapping of logical
I/O node IDs to physical nodes (Fig. 4 (b)). The dual-portéd®s in the Meiko CS-2 are connected in this way, but
they do not need to re-configure the network because the nagping is done in software. The IBM SP2 also allows
dual-ported RAIDS to be connected to multiple I/O nodes.

In total, this scheme needs only one standby spare node dawtiole system. It provides total reliability and
availability in the face of a single failure. Multiple diskifures can also be tolerated, as long as they occur in distin

I/0 nodes. The down time during which data cannot be accaeshed an 1/0 node fails is just the time required to

18

PE PE PE PE PE PE PE PE

Interconnection network

110 110 110 [lfe} 110 110 110 110 SPare
node node node node node node node node /0
1 2 3 4 5 6 7 8

(a)
PE PE PE PE PE PE PE PE
Interconnection network
110 110 110 Failed 110 110 110 [lfe} 110
node node node 110 node node node node node
1 2 3 4 5 6 7 8
(b)

Figure 4:(a) To provide protection from I/O node failure, every RAIBsambly is attached to two I/O nodes: a main
(solid line) and a backup (dotted line). (b) When a node falsubset of RAIDs is switched over to their backup

nodes, and the network routing is changed accordingly.

reconfigure the network. This is expected to be comparahileetdime needed to deal with a compute node failure
or a network failure. It is necessary that the file system Hliable across such faults and reconfigurations. This
may require support from other operating system componentthe use of reliable hardware components such as

nonvolatile memory.

File systems and Interfaces

A result of having an internal parallel I/O subsystem is ihatiggests that new semantics and functionality be intro-
duced in the file system, in order to support parallel progra@urrently, parallel file system interfaces is an area of
some research and early product activity. No standardsdmayet evolved, and there is some controversy about how

best to proceed. In this section, we summarize some of therduwork in this area [9].

19

Unix compatibility

Users need high level interfaces to deal with complex I/Csgstems. The most common high-level interfaces are
language /O libraries. In MPPs, these are typically immated on top of Unix or Unix-like /O system calls. There
is a large amount of existing code for serial computers thatiires these libraries or the Unix 1/0 system calls to be
implemented. While these programs do not always run effigiem MPPs, there are many users who require that this
function be preserved while they convert to parallel aggians.

At first blush it seems possible to simply use conventionalvagked Unix file systems, such as NFS or AFS.
However, distributed file systems like these are designedrt@n workstations connected by local area networks, not
on MPPs. As a result, they are not adept at handling paralf@ications, and often do not provide correct behavior
when used by parallel applications. In NFS, for example,lpewitten or modified file pages are cached at the client
node that performs the write, without immediately updating master copy of the modified pages stored on the file
server [26, 19]. There is no guarantee that the master copiyeofile will be updated consistently. Therefore, if
multiple client nodes write the same file — which is a normatieof operation in parallel programs — the file data is
likely to be incorrectly updated. AFS provides consisteaicthe session level, but this too does not solve the problem:
the last process to close a file overwrites the updates dialbther processes [14, 19].

To support parallel applications, it is necessary to iniidparallel access functions and semantics into the system
something not provided by Unix. Typically, this is done a fibrary level, with the underlying system calls not
exposed to the user. Most current commercial systems fordiP®vide conventional Unix semantics (i.e. a file
is a linear sequence of bytes), and stripe the data tranghaeeross multiple 1/0 nodes. In most cases, the MPP
file system can be cross mounted with conventional Unixilleesystems. Hence direct access from other systems
(including uniprocessors) is possible. Examples includel’s CFS on the iPSC and PFS on the Paragon, the Scalable
File System on the CM-5, the Meiko CS-2 parallel filesystefFS on the IBM SP2, and the KSR1 system.

In order to provide some extended parallel file access seesamithout deviating too far from the familiar Unix
and language /O library interfaces, some systems allowfildve placed in certaiccess modesSuch modes define
the interactions among I/O operations from different pssoes, and the way that the data is interleaved. For example,
the Express programming system provides the following.[2b6hgl mode means that all the processors synchronize
and take part in common I/O operations. For read, the dat&ai$ by one node and then broadcast to the other nodes.
For write, all nodes must write exactly the same data andaméycopy is actually written to the file. All the processors

also synchronize for each 1/0O operationnml ti mode, but here the data is interleaved according to the gsoce

20

IDs. Reads perform a scatter of data to the different compaoties, while writes perform a gather of data from the
compute nodes before writing it in one sequence to the filehid tmode, calledasync, provides uncoordinated
access from the various compute nodes, which each have ependent file pointer.

Parallel access modes are not the only deviation from caiorext Unix semantics. 64-bit offsets are introduced
to support files larger than 2GB, requiring new interfacealt@rnatives for system calls suchseek. Many systems
introduce new system calls, or use the Unhixct | andf cnt| system calls to set various special parameters and
to perform nonstandard functions such as asynchronouse&ding to a user interface that is not supported by other
machines, and so is not portable.

Parallel I/0 systems have an opportunity to match the dgtautawith the parallel access patterns. For example,
it is possible to partition the file such that the data acakbgecach process resides on a separate 1/O node, leading to
reduced communication. This option is lost if the applimatis restricted to using the Unix interface, because Unix
does not provide the tools to describe data layout. This hasmed the design of systems with explicit support for
parallel access. Such new designs are not portable. Théobgsterm solution is to develop a new standard interface

for parallel 1/0.

Parallel file access

A major problem with the serial semantics of file access ac@uthe input or output of partitioned data structures.
Many parallel applications use dense and large multi-dgiweral arrays, and partition them among the participating
compute nodes. This is the basis of the HPF data paralletgmuging language [12]. For examplel@00 x 1000
matrix may be partitioned into 16 blocks p50 x 250, with the first compute node working on the first block, the
second node on the second block, and so forth. Each compdéestares its block in its local memory. If the whole
matrix is then written to file in column-major order (the ddfdor Fortran programs), only the four compute nodes
with blocks at the left-hand edge of the matrix participatéally. When these four blocks have been written, the next
four nodes pick up. In effect, the serial nature of the fileésrthe programmer to serialize the I/O operations.

It is possible to avoid the serialization by having each nackess the part of the file that it needs, without undue
interaction with the other nodes. This approach has beemthk n"CUBE and Meiko. These systems allow a file to
be partitioned in the same way as a data structure is pasilioThen the whole data structure can be read or written
in parallel. The problem with this approach is that the dass fnecome fragmented into small contiguous portions
being accessed by individual compute nodes, leading to m@aal accesses. Continuing with the example from the

previous paragraph, each node would access its block bgrpgrfg 250 1/0 operations of 250 matrix elements each.

21

A Vesta file with four
cells can have different

logical views ~— Y Y
1123 0|]1(2]3 0)]2(4]6 ofo(1]1 0j0|O 02
67 0|1(2]3 1(3|5]|7 2(2(3]3 1111 113
9 (1011 41567 0(2(4]6 4(4(5]|5 212|2 0[2]0]2
12113]14|15 41567 1(3|5]|7 66|77 313(3 1(3(1]3
1611711819 819 (1011 8 110(12|14 8[(8(9]9 41414 416
20212223 8 (9 (10|11 9 111(13|15 1010|1111 515(5 5(7
24(25(26|27 12113(14|15 8 110(12|14 12112|13]13 6[6|6 4(6]|4]|6
28(29(30|31 1213|1415 9 111(13|15 14114|15|15 T17|7 5|17|5]|7
Single subfile Two subfiles Two subfiles Two subfiles Four subfiles Four subfiles
canonical order row cyclic row block cyclic column cyclic column block cyclic

Figure 5: Examples of logical partitioning in the Vesta file system.

One solution is to use a two-phase strategy, which decotiptedisk access from the partitioning [8]. For reads, the
data is first read into memory in large sequential chunks doce disk-access overhead, and then message passing
is used to redistribute the data as required. For writesptter is reversed. While this prevents the fragmentation
of disk accesses, it requires additional memory bufferbateixpense of user memory, and also requires additional
node-to-node transfers of data.

Another approach is to change the interface to allow use¥sdrcise more direct control over layout of file data, so
it can be matched to access patterns. This allows the use sfdhage hierarchy to be integrated into the algorithmic
design of applications, leading to better use of I/0 cajasl[6, 28]. Especially important is the capability to foem
independent I/O operations to the different parallel diskther than always doing synchronous parallel I/O opemati
to all the disks at once.

Tools for control over data layout and independent accesprawvided in the Vesta parallel file system. In Vesta,
a file is not one linear sequence, but is a 2-D structure: afseelts, each of which is a linear sequence, and is
stored on a different 1/O node. Thus the cells define the degf@arallelism in access to the file. The 2-D file can
be logically partitionedinto subfiles containing rows, columns, or blocks of the filéthout actually moving any

data (Fig. 5). Subfiles can be opened by different tasks,eyr ¢hn be shared. In particular, it is possible to define

22

a sequential view of all the file data, leading to a single $ailtffiat is striped across the 1/0 nodes and shared by all
tasks. As another example, tasks running on different ceenpades can open subfiles corresponding to different cells
(columns), resulting in independent access to differédtiddes. Note that while partitioning is functionally siamil

to having multiple independent files, it is much more congani it allows operations on the whole file (e.g. create,
checkpoint, or delete), and allows for many different vidleglical partitionings) of the same file data. Vesta also
provides a low level interface that allows arbitrary datetifaning and access, without the restrictions of recghr
decomposition.

Partitioning files is similar to decomposing data strucsuesnd as such is expected to be beneficial for distributed-
memory machines. File partitioning is also useful in shareinory machines with non-uniform memory architec-
tures. However, in shared memory machines where all mermsagually accessible, it is not as important to perform
the I/O to or from a specific memory module. Therefore suchhimess have less need for new interfaces. Examples

are the KSR1 and Tera machines.

Other interfaces

A major concern with MPPs is the difficulty of programming g@léel applications, especially in message passing en-
vironments. This difficulty is exacerbated if functions ks asynchronous parallel 1/O are used by the application.
Therefore, there is some work underway to provide highezlI#® and file system interfaces, particularly in higher
level language libraries, and in new high level languagese fbssibility is language-level persistent data types. Fo
example, persistent matrices could be introduced into I@®fker possibilities include C++ libraries that provide-per
sistent parallel objects and that perform operations omtHeor example, a C++ class library that provides persistent
matrix objects and operators that act on them could be useappljcation programmers, shielding them from the
intricacies of the underlying implementation, and ensyithmat the relatively hard task of programming to the paralle
interfaces is not repeated by each programmer. As anothenmr, the ELFS system allows the definition of parallel
file objects, complete with class-specific access methadtiieg, and prefetching [15]. Standardization at thislleve
of interface could allow portability among machines fromigas manufacturers.

A second major category of interface is the interface fomlalr data transfer between MPPs, and the related
interface for parallel data transfer between external nsé@msge systems and MPPs. Some work is going on in
this area to produce early drafts of standards, but it wkklif be several years before any firm definitions are in
place. Issues include what services should be provided, ratsvnegotiation is accomplished, what level of data

fragmentation is supported, and how to coordinate the datgedhon each individual channel with the overall data

23

transfer.

As parallel file systems and mass storage systems both métigdikely that the parallel file systems will be
integrated as the top layer in the mass storage system ¢higraand so migration of files or portions of files into
and out of the MPP will be done automatically on demand by thesrstorage system data movers. For example,
Vesta includes some support for such import and export. TARIR file system is specifically designed as an on-
line cache for data that resides in tertiary storage. EwlyiLit may be possible to have an integrated system that
migrates multi-gigabyte files from tertiary storage intalaut of the MPP’s parallel file system on demand in an
interactive computing environment. However, file systerd storage technology is a long way from achieving this
goal. An interim goal is to support offline file migration foateh submitted jobs requiring large amounts of file 1/O,

and transparent online migration of smaller files for snmatieeractive parallel jobs.

Conclusions

An internal parallel /0O subsystem solves many of the 1/Obpgms that occur in massively parallel processors. It
provides scalable bandwidth and capacity that satisfy eélqeirements of applications, and serves as a staging area
for data stored in external archival mass storage systeimis. Hhs been recognized by many vendors, e.g. Thinking
Machines, Intel, Meiko, nCUBE, IBM, MasPar, KSR, and Terdyovall include a parallel /O subsystem in the
architecture of their parallel computers.

The internal parallel I/O subsystems require new parafiebmcurrent filesystems. Most vendors try to achieve a
high degree of Unix compatibility or appearance in thessyi#tems. This sometimes means that the parallel features
of the system are hidden in special system calls added topthating system, or above the file system interface in
parallel I/O libraries. Moreover, user control over how tfaa is distributed across the 1/0 devices is limited. Gurre
research directions include the definition and standatidizaf new interfaces that allow more efficient use of padall

I/O systems, development of parallel file systems, and iatem of these systems with mass storage systems.

Acknowledgements

Thanks to Jim Cownie from Meiko for information about the ki®eiCS-2 I/O architecture and its parallel filesystem.
Thanks to Brad Rullman from Intel Supercomputer Systemssioim for information about the Paragon and PFS. And

thanks to @rard Vichniac from KSR for information regarding the KSRO Isubsystem. Any inaccuracies in the

24

presentation are the responsibility of the authors.

References

[1] J. Akella and D. P. Siewiorek,Modeling and measurement of the impact of input/output astesy perfor-

mancé. In 18th Ann. Intl. Symp. Computer Architecture Conf. Prgp. 390-399, May 1991.

[2] J. M. Anderson and M. S. LamGlobal optimizations for parallelism and locality on s¢déaparallel machinés

In Proc. SIGPLAN Conf. Prog. Lang. Design & Implementatipp. 112—-125, Jun 1993.

[3] S. J. Baylor, C. Benveniste, and Y. HsuRérformance evaluation of a parallel I/0 architectuna Intl. Conf.

Supercomputinglul 1995.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Beton, ‘RAID: high-performance, reliable
secondary storaje ACM Comput. Sun26(2), pp. 145-185, Jun 1994,

[5] S. S. Coleman and R. W. Watsonltie emerging paradigm shift in storage system architestuferoc. IEEE
81(4), pp. 607-620, Apr 1993.

[6] T. H. Cormen and D. Kotz, fhtegrating theory and practice in parallel file systtmi Proc. DAGS Symp.
Parallel /0 & Databasespp. 64—74, Jun 1993.

[7] R. Cypher, A. Ho, S. Konstantinidou, and P. Messin&chitectural requirements of parallel scientific applica
tions with explicit communicatioh In 20th Ann. Intl. Symp. Computer Architecture Conf. Prgp. 2—-13, May
1993.

[8] J. M. del Rosario, R. Bordawekar, and A. Choudhatmproved parallel I/O via a two-phase run-time access

strategy. In Proc. IPPS '93 Workshop on 1/O in Parallel Computer Systemps 56—70, Apr 1993. (Reprinted
in Comput. Arch. New21(5), pp. 31-38, Dec 1993).

[9] D. G. Feitelson, P. F. corbett, Y. Hsu, and J-P. PraBgréallel I/O systems and interfaces for parallel compliters

In Multiprocessor Systems — Design and Integratios.. Wu (ed.), World Scientific, 1995.

[10] D. G. Feitelson, P. F. Corbett, and J-P. ProBefformance of the Vlesta parallel file systemm 9th Intl. Parallel
Processing Symppp. 150-158, Apr 1995.

25

[11] J. L. Hennessy and D. A. Pattersa@pmputer Architecture: A Quantitative ApproactMorgan Kaufmann
Publishers Inc., 1990.

[12] High Performance Fortran Forunkiigh performance fortran language specificatidday 1993.

[13] R. Horst, ‘Massively parallel systems you can trusin 39th IEEE Comput. Soc. Intl. Conf. (COMPCQN)
pp. 236—241, Feb 1994.

[14] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, Mityanarayanan, R. N. Sidebotham, and M. J. West,

“Scale and performance in a distributed file systeACM Trans. Comput. Sy€i(1), pp. 51-81, Feb 1988.

[15] J. F. Karpovich, A. S. Grimshaw, and J. C. FrenchBxtensibLe File Systems (ELFS): an object-oriented ap-
proach to high performance file I70OIn 9th Object-Oriented Prog. Syst., Lang., & Appl. Conf. Prgap. 191-
204, Oct 1994.

[16] R. H. Katz, G. A. Gibson, and D. A. PattersomQisk system architectures for high performance computing
Proc. IEEE77(12) pp. 1842-1858, Dec 1989.

[17] D. Kotz and N. Nieuwejaar,File-system workload on a scientific multiproceSsdEEE Parallel & Distributed

Technology3(1), pp. 51-60, Spring 1995.

[18] C. E. Leiserson, Fat-trees: universal networks for hardware-efficient stpaputing. |EEE Trans. Comput.

C-34(10) pp. 892-901, Oct 1985.

[19] E. Levy and A. Silberschatz Distributed file systems: concepts and exanmipleBCM Comput. Sun22(4),
pp. 321-374, Dec 1990.

[20] P. Messina, The Concurrent Supercomputing Consortium: y€ear IEEE Parallel & Distributed Technology
1(1), pp. 9-16, Feb 1993.

[21] E. L. Miller and R. H. Katz, Input/output behavior of supercomputing applicationi& Supercomputing '91
pp. 567-576, Nov 1991.

[22] R. Mraz, “Reducing the variance of point-to-point transfers for pakacal-time programs |EEE Parallel &

Distributed Technologg(4), pp. 20-31, Winter 1994.

[23] IEEE Technical Committee on Mass Storage Systems aokndogy,Mass Storage System Reference Model:
Version 4 May 1990.

26

[24] M. Rosenblum and J. K. OusterhoufTHe design and implementation of a log-structured file sy5teACM
Trans. Comput. SystO(1), pp. 26-52, Feb 1992.

[25] J. Salmon, CUBIX: programming hypercubes without programming hastlh Hypercube Multiprocessors
1987 M. T. Heath (ed.), pp. 3-9, SIAM, 1987.

[26] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and Birly'Design and implementation of the Sun network
filesysteni. In Proc. Summer USENIX Technical Comip. 119-130, Jun 1985.

[27] D. Stodolsky, M. Holland, W. V. Courtright, 1l, and G. Asibson, ‘Parity-logging disk arrays ACM Trans.
Comput. Syst12(3), pp. 206—-235, Aug 1994.

[28] J. S. Vitter and E. A. M. Shriver,Optimal disk I/0 with parallel block transférin 22nd Ann. Symp. Theory of
Computing pp. 159-169, May 1990.

27

