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ABSTRACT
As parallel jobs get bigger in size and finer in granularity,
“system noise” is increasingly becoming a problem. In fact,
fine-grained jobs on clusters with thousands of SMP nodes
run faster if a processor is intentionally left idle (per node),
thus enabling a separation of “system noise” from the com-
putation. Paying a cost in average processing speed at a
node for the sake of eliminating occasional processes delays
is (unfortunately) beneficial, as such delays are enormously
magnified when one late process holds up thousands of peers
with which it synchronizes.

We provide a probabilistic argument showing that, under
certain conditions, the effect of such noise is linearly pro-
portional to the size of the cluster (as is often empirically
observed). We then identify a major source of noise to be
indirect overhead of periodic OS clock interrupts (“ticks”),
that are used by all general-purpose OSs as a means of main-
taining control. This is shown for various grain sizes, plat-
forms, tick frequencies, and OSs. To eliminate such noise,
we suggest replacing ticks with an alternative mechanism
we call “smart timers”. This turns out to also be in line
with needs of desktop and mobile computing, increasing the
chances of the suggested change to be accepted.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—syn-
chronization; D.4.7 [Operating Systems]: Organization
and Design—Distributed systems; C.4 [Performance of
Systems]: Modeling Techniques, Measurements Techniques

General Terms
Performance, Measurement, Experimentation, Design

Keywords
Modeling system noise, HPC, operating systems, timing ser-
vices, ticks, timer interrupts, smart timers, synchronization

1. INTRODUCTION
Clusters are becoming very popular for high-performance

computation (HPC) and range in size from tens to thou-
sands of nodes. Such systems typically employ a general-
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Figure 1: Due to synchronization, each computation phase is

prolonged to the duration of the slowest process.

purpose operating system (OS) on each node (e.g. in last
year’s Top500 supercomputer list [5] ten of the top twenty
machines ran Linux). Parallel jobs are usually executed on
such clusters by spawning one process per CPU, and running
to completion with no interference [9]. HPC applications are
often bulk-synchronous which means each participating pro-
cess is composed of iterative computation phases separated
by barriers, where speedy processes wait for lagging ones to
catch up. The granularity, or time it takes to complete a
single computation phase, can be a millisecond or even less
for real world applications [25].

It is within this context that systems began to experi-
ence great difficulty in scaling applications to make use of
hundreds to thousands of compute nodes [26, 16, 25, 29].
Phillips et al. [26] noted that the problem stems from a
variability in the duration of computation phases: They ob-
served that while in most cases phases take a relatively con-
stant time to complete, they are sometimes prolonged. The
delay is arguably unnoticeable for a sequential application.
But in the context of a bulk-synchronous job, the price is
dramatically amplified, as all the other processes across the
cluster must wait for a delayed process to catch up. This
effect is commonly illustrated [26, 16, 25, 29] as in Fig. 1.
Phillips et al. noticed that the variability problem is greatly
alleviated if one processor in each (4-way) node is left idle.
They concluded that “the inability to use the 4th processor
on each node for useful computation” is a major problem.

A year later, Petrini et al. [25] faced a similar problem
with an application running on the ASCI-Q, that actually
terminated sooner when utilizing only three processors of
the available 4-way nodes. They managed to explain this
phenomenon when discovering that variability is due to sys-
tem noise, that is, per-node system activity, which is largely
unrelated to the parallel application. Such activity is as-
signed to an idle processor if such exists. However, if all the
processors are assigned to processes belonging to the paral-



lel job, one will be preempted in favor of the system activity
and will be forced to wait until the system activity is done.
This delay was traced to be the major source of variability.

The first part of this paper (Section 2) suggests a simple
theoretical model that quantifies this effect of noise, regard-
less of its source. Each process of a parallel job has some
probability to be delayed due to noise while it is computing
on its home node. If this probability is small enough, we
show that the harmful impact of noise (on the entire job)
grows linearly with the cluster size. In fact, the job’s prob-
ability to be delayed is simply a multiple of the cluster size
and the single-node probability to suffer from noise. Linear
performance degradation is indeed reported by several em-
pirical studies that have measured the impact of noise as a
function of cluster size [16, 25].

System noise is generated due to two types of activities.
First, there are various system daemons that wake up once
in a while. In Linux, these may include kswapd and bd-
flush (deal with swapping), ntpd (synchronizes clock), inetd
(serves requests for rsh, telnet etc.), nfsd (file system) and so
on. Additionally, within a cluster, there is usually at least
one per-node daemon as part of the cluster infrastructure.
The second type of noise-generating activity are interrupts
handled by the OS, which can be responsible for up to two
thirds of the slowdown incurred on applications by noise
[25]. It is this type of noise that is the focus of the second
part of our paper (Section 3).

The most common interrupts are network and periodic
clock ticks. The former may be generated upon events such
as arrival of data, when buffers are full etc. The latter serve
as OS means of measuring passage of time, providing timing
services, and maintaining control.

Periodic clock ticks are with us since the birth of general-
purpose OSs, 30 years ago: At boot time, a general-purpose
kernel sets a hardware clock to generate periodic interrupts
every few milliseconds (this constant time interval is called a
tick). The interrupts invoke a kernel routine responsible for
important OS activities such as accounting for the CPU time
used by the current process, designating it for preemption if
its quantum is exhausted, or notifying the process if it has
pending signals. Until recently, 100 Hz was the default tick
frequency, used by all Windows and Unix flavors. This value
hasn’t changed much since the dawn of general purpose OSs,
e.g. back in 1976, Unix 6 running on a PDP11 used a tick
rate of 60 Hz [20]. Recently, it has been shown that a 100
Hz rate is inadequate for multimedia applications [7], and
so the last year has seen a growing trend of increasing the
tick rate to 1000 Hz (Linux, FreeBSD, DragonFlyBSD).

Section 3 shows that the indirect overhead of ticks (the
cache misses they force on applications) is a major source of
noise suffered by parallel fine-grained jobs.

The practical meaning of ticks is that general-purpose OSs
are software components that are actually based on polling.
This may have been a good design decision in the 1970s,
but things have changed since. Section 4 notes that ticks-
related problems manifest themselves in several non-HPC
domains. These include mobile or autonomous systems that
are uselessly wasting power on ticks that can be avoided,
and soft realtime applications (e.g. multimedia) that receive
inferior timing services, inherently limited by the tick res-
olution. The drawbacks of ticks are accumulating into a
critical mass suggesting the price of polling is becoming too
high, and that it’s time to reconsider. Consequently, Sec-

tion 4 concludes with the suggestion to replace ticks with an
alternative novel mechanism called “smart timers”, which
eliminates tick noise as well as accommodating the needs of
the other aforementioned domains.

Finally, the paper is finished with Section 5 that surveys
related work and Section 6 that concludes.

2. MODELING THE EFFECT OF NOISE
We are interested in quantifying the effect of noise. As

additional nodes imply a noisier system, one can expect the
delay probability of the entire job to increase along with its
size. Petrini et al. [25] assess the effect of noise through de-
tailed simulation of its (per site) components. In contrast,
this section analytically shows that if the single-node prob-
ability for delay is small enough, the effect of size is linear:
it simply multiplies the single-node probability.

2.1 The Probabilistic Argument
Let n be the number of nodes allocated to a job. Given a

node, let p be the probability some process running on it is
delayed due to noise, within the current computation phase
(a node may be an SMP, so it may run multiple processes
from the same job). For simplicity, we assume independence
and uniformity across nodes, namely, delay events on dif-
ferent nodes are independent of each other and have equal
probability. Under these assumptions, the probability that
no process is delayed on any nodes is (1 − p)n. Therefore,

dp(n) = 1 − (1 − p)n (1)

denotes the probability that the job is delayed within the
current computation phase. Recall that p should be rela-
tively small if we are to contain the negative effect of noise.
If this is the case, we claim that

d̄p(n) = pn ≈ dp(n) (2)

is a reasonable approximation. The rest of this subsection is
devoted to finding out the constrains on p, in order for this
approximation to be accurate, e.g. since dp(n) is a probabil-
ity, p must surely be smaller than 1

n
.

Consider the difference ∆ between the original function
and its approximation

∆ = d̄p(n) − dp(n) = pn − 1 + (1 − p)n (3)

Note that ∆ is nonnegative (has positive derivative and is
zero if p = 0). According to the binomial theorem

(1 − p)n = 1 − pn +
n(n − 1)

2
p2 +

n�
k=3

�
n

k� (−1)k pk (4)

where the rightmost summation has a negative value1. There-
fore, by combining Equations 3 and 4, we get that

0 ≤ ∆ <
n(n − 1)

2
p2 <

n2p2

2
1Dividing the absolute value of the k and k+1 elements in
the summation yields 1

p
× k+1

n−k
. Since p < 1

n
, the left term

is bigger than n. The right term is bigger than k+1
n

which is

bigger than 1
n
. The quotient is therefore bigger than 1, indi-

cating the k-th element is bigger than its successor. Conse-
quently, the summation can be subdivided into consecutive
pairs in which odd k elements are negative, and are bigger
(absolute value) than their even k+1 positive successors.



which means that ∆ is bounded by some small ε if p <
√

2ε

n
.

For example, ∆ < 0.01 if p < 1
7n

. Additionally, the relative
error of the approximation is smaller than (say) 5% if

∆

d̄p(n)
<

n2p2

2np
=

np

2
≤ 0.05

which holds if p ≤ 1
10n

. Another way of looking at this
constraint is that the approximation is good as long as

dp(n) ≤ 1 − �1 −
1

10n�n

≈ 1 − e−
1

10 ≈ 0.1

The bottom line is that dp(n) ≈ pn indeed serves as an
intuitive linear “noise law” for small enough p.

2.2 Consequences of the Model
The dp(n) function (Eq. 1) attempts to quantify the prob-

ability to suffer from noise. The pn approximation (Eq. 2)
states that the impact of noise on a parallel job is linearly
proportional to the number of nodes it occupies, if p is small
enough relative to 1/n. Intuitively, under these conditions,
the probability of overlap between the noise on two distinct
nodes is negligible, so each additional node adds a probabil-
ity of p to the probability that the whole job will be delayed.
But if the condition is not met, and 1

10n
� p, we are nearly

certain to experience noise on some node in each phase. In
this case, more nodes will not introduce additional noise.

What would be a desirable value for p? Fig. 2 (bottom)
plots dp(n) as a function of n for various p values. Evidently,
if n is hundreds to thousands of nodes, than p should prob-
ably not exceed 10−5, guaranteeing dp(n) ≤ 0.1. To make
noise-probability effectively zero across this range, p should
be in the order of 10−6, which is certainly preferable for ma-
chines of tens of thousand of nodes that begin to emerge (e.g.
BlueGene/L). Generally, by the “noise law” approximation,
systems should be designed such that p ≤ α

n
in order to

bound noise-probability below a small fixed threshold α.
To illustrate the accuracy of the “noise law” approxima-

tion, let us examine the point associated with n = 103 and
dp(n) = 10−2 in the top of Fig. 2. Note that the curve that
passes through this point is associated with p = 10−5. This
indicates that limiting the probability of delay due to noise
endured by a thousand nodes job to be 1:100 requires a sys-
tem with p = 10−5, namely, that the probability of a process
to be interrupted by noise on the node would be 1:100,000.

In this example p = 10−5 = 10−2

103 =
dp(n)

n
exactly as pre-

dicted by the approximate pn “noise law”. This argument
holds for any n and dp(n) ≤ 1

10
we choose.

2.3 Assumptions of the Model
Recall the probabilistic argument relies on the assump-

tions of independence and uniformity. Arguably, these as-
sumption don’t always hold. For example, as nodes occa-
sionally communicate, one might expect that a message sent
from one node would generate noise at the receiving end.
However, the independence assumption may still be reason-
able as supercomputers usually employ high-end communi-
cation networks (Myrinet or Quadrics) that provide dedi-
cated processors for handling of network events, thus mask-
ing them from node processors. Additionally, noise activ-
ity that happens more or less simultaneously across nodes
(e.g. conversing daemons), has less severe implications on
the application, as the cost is amortized by the fact it is
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paid synchronously. It is therefore reasonable to expect that
independent noise sources have worse implications on per-
formance than dependent ones. Consequently, our model
can serve as an upper bound on noise impact.

Uniformity is also not entirely true, e.g. some nodes may
host special cluster daemons thus experience greater noise.
However, this is expected to have marginal effect on our
probabilistic argument as it requires only trivial changes
that do not fundamentally alter the main result.

It is therefore our opinion that the model truly reflects
the nature of noise, despite possible inaccuracies. This is
satisfactory when seeking a general understanding of the
phenomenon, rather than exact numbers. It is neverthe-
less possible dependent noise sources will require a different
model that should somehow be combined with ours. In any
case, we would like to point out that the noise component
targeted by this paper (OS clock ticks) is both independent
and uniform across nodes, as assumed.

2.4 Assessing Slowdown
So far, we have discussed the probability of a job to be

delayed. The next step is to devise its actual slowdown,
namely, the relative delay which noise components impose
on the job. Firstly, note that our model implicitly assumes a
Bernoulli delay distribution: either the delay occurred (p) or
it didn’t (1− p). But reality might not be bimodal as often
there are different probabilities for different delays. This is
exemplified in Fig. 3 that shows the phase-duration CDF
of one task that has G=1ms granularity, and is running on
a uniprocessor node (this is the result of a simple micro-
benchmark; more details in Section 3). Considering the tail
of this distribution, we note that the per-node chance for a
1.5ms phase or bigger is p = 10−2. This can be used with our



model to devise a loose lower bound on the slowdown: For
example, if the size of the cluster is n = 10, then the linear
version of the noise law applies (with respect to p = 10−2),
in which case dp(10) ≈ pn = 0.1 and therefore the expected
slowdown factor is bigger than

(0.9 · 1ms + 0.1 · 1.5ms) / 1ms = 1.05

On the other hand, for an n = 100 cluster,

dp(100) = 1 − (1 − 10−2)100 = 0.63

and therefore the slowdown is bigger than

(0.37 · 1ms + 0.63 · 1.5ms) / 1ms = 1.32 (5)

A generalization of this, that produces an accurate assess-
ment of the slowdown, must take the whole distribution of
phase durations into account. Let Xj be a random vari-
able representing the phase duration of an application with
granularity G on node j; assuming uniformity, {Xj}j=1..n all

have the same distribution. Let Y = max {Xj}j=1..n
. Since

a computation phase is completed only after the latest task
arrives, the expected value of Y represents the average phase
duration of the whole job. Dividing this by the granularity
gives the slowdown: E(Y )/G.

Note that the above procedure is simply a generalization
of our model that assumes Xj is a Bernoulli variable: If G
is the noise-free phase duration, and G′ is the longer noisy
duration, then E(Y ) = G · (1 − dp(n)) + G′ · dp(n).

2.5 Model vs. Reality
Our linear approximation of the probability to be affected

by noise seems to agree with measurements that have been
conducted on a number of systems. For example, measure-
ments taken on the ‘ASCI-White’ and ‘Blue-Oak’ of the
all-reduce operation with an increasing number of nodes,
show that performance degradation due to noise is linear
(see Fig. 6 in [16]). Measurements of a barrier operation on
the ‘ASCI-Q’ seem to follow the same pattern (see Figs. 7
and 16 in [25]). More interesting are measurements of the
complete SAGE application on ASCI-Q, shown in Figs. 1
and 17 of [25]. A detailed (noiseless) model of this applica-
tion [17] predicts that the phase duration should initially in-
crease steadily with the number of nodes, but then it should
stabilize when more than about 512 nodes are used. How-
ever, the actual performance curve shows that the duration
continues to grow linearly in this range, adding ∼0.13 sec
for every additional 1024 processors.

Based on the the detailed description of the ‘ASCI-Q’
noise sources in Fig. 13 of [25], we further conjecture that for
n ≥ 512 all fine grained frequent noise becomes a certainty
(by dp(n)). Thus, from that point on, results become dom-
inated by the coarser, less frequent, noise. The probability
of such noise is small enough for the linear approximated
“noise law” to apply (per-node event every 1-2 minutes, on
only 2 nodes out of each 32 ‘ASCI-Q’ sub-cluster).

Based on the above, we claim that individually apply-
ing the dp(n) argument on various noise sources (very few
according to [25]), is a feasible approach that can yield a
reasonable assessment of noise impact.

3. MEASURING THE NOISE
The previous section has shown that the extent of noise

experienced by a parallel job is a function of its size (in

nodes) and p. The latter term expresses the probability
a process is delayed within a computation phase, which is
relatively easy to quantify. Our next step is therefore eval-
uating p along with the duration of delays (which will allow
approximation of actual slowdown). As we do not have a
working supercomputer at our disposal, we only deal with
native OS noise. This turns out to be dominated by periodic
clock ticks. To complete the picture, coarser noise generated
by various cluster daemons should also be characterized.

3.1 Methodology

Calibration. The simplest manner in which one can mea-
sure p is to carefully calibrate a computation phase to take
a certain amount of fixed time Tgrain (which represents the
granularity of the application). The computation phase
should then be executed iteratively a large number of times,
while measuring the actual duration. This would yield a dis-
tribution D from which p can be extrapolated. The problem
with this approach (as anybody who ever attempted it would
know) is that it is impossible to just “calibrate a computa-
tion” to take a predefined amount of time. This is actually
the main problem we are facing, that is, constant work takes
a variable amount of time to complete due to noise (i.e. any
calibration loop is susceptible to noise). All one can do is
choose a heuristic that is the most appropriate.

One possible heuristic is calibrating the computation such
that the minimum is Tgrain (suffered the least amount of
noise and represents a quieter environment). Another is
calibrating the average to be Tgrain (probably closer to re-
ality). The heuristic we chose was to try and place the ver-
tical part of D’s CDF (the part between the head and the
tail; see Fig. 3) on the given Tgrain. For this purpose we se-
quentially executed an empty loop of one million iterations
(a “phase”) for 100,000 times. We measured the duration
of each phase using a cycle resolution counter [6]. Measure-
ments were ascendingly sorted and averaged between the
ten and twenty percentiles (2nd decile). This average was
translated to actual time (by dividing it with the processor
clock frequency) and served as the interpolation basis when
approximating the number of per-loop empty iterations re-
quired to obtain a Tgrain long computation.

Note that regardless of the heuristic chosen, what matters
most is the span of D, namely, how it relates to its minium
(shortest phase), which is closest to the noiseless optimum.

Micro Benchmarking. The micro benchmark we used to
generate the D distribution is a simple program that gets
a Tgrain parameter, and performs a million computation
phases (empty loops) calibrated to take Tgrain time. The
actual duration of phases is recorded in a preallocated array
which is printed upon completion2. No other user process
was running while the measurements took place. However,
the machine ran the default-installation system daemons.
Note that since “computation phases” are modeled as empty
loops, the measured noise-impact actually constitutes an op-
timistic approximation, as phases are hardly vulnerable in
terms of data locality (the only data used is the array).

Using an SMP to measure noise-impact for when it is fully
utilized, requires running a benchmark instance on all pro-

2The array is initialized beforehand to make sure it is allo-
cated in physical memory rather than using a single copy-on-
write page, so that allocation will not effect the benchmark.



cessors, and merging of results upon completion (recall p is
the probability that at least one phase is delayed, it doesn’t
matter in which of the node’s processes). A simpler alterna-
tive is to run the benchmark on a uniprocessor, thus ensuring
only one benchmark instance suffers all system noise.

Sample Space. The value of p and the D distribution are
products of many factors. To establish our claim (regarding
periodic OS ticks) as universal, we have chosen to exam-
ine various combinations of four such factors: architectures,
OSs, grain sizes, and tick frequencies. The various (unipro-
cessor) platforms we have used are listed in Table 1. For
convenience, each configuration is given an ID (M1-M4).
Unless stated otherwise, the OS kernel is Linux-2.6.9 with
the default 1000 Hz tick rate (SMP enabled, so that associ-
ated overheads are included). The rest of the factors that
influence D are specified when relevant.

KLogger. When needed, kernel profiling was performed us-
ing klogger, a kernel logger we developed that supports effi-
cient fine-grain events. While the code is integrated into the
kernel, its activation at runtime is controlled by applying a
special sysctl call using the /proc file system. In order to
reduce interference and overhead, logged events are stored
in a 64 MB buffer in memory, and only exported at the end
of each benchmark instance. The implementation is based
on inlined code to access the CPU’s cycle counter and store
the logged data. Each event has a header including a serial
number and timestamp with cycle resolution, followed by
event-specific data. The overhead of each event is only 90
cycles on P-III and roughly twice that much on P-IV. In our
use, we log all interrupts and their outcome so that we have
complete knowledge of system activity while klogger is on.
Note that klogger and the benchmark use the (same) CPU’s
cycle counter and therefore their output can be combined
into a global view of the system. Consequently, we are able
to pinpoint which computation phases were interrupted, for
how long, and the nature of interruptions.

3.2 Results
In this subsection we demonstrate the instability of the

phase duration distribution and track the source of this phe-
nomenon to be the cache effects caused by clock ticks. We
then go on to gradually consider the factors influencing the
D distribution as listed above (granularity, architecture, tick
frequency and OS).

Instability. The resulting D distribution of running the mi-
cro benchmark on M3 with a Tgrain of 1ms are shown in
Fig. 3 and are summarized in Table 2. These results are
very disturbing: the OTHER average phase duration is 1060
µs whereas the minimum is only 668 µs, a slowdown factor
of 1060

668
≈ 1.6 even for a uniprocessor. Recall that no other

user processes run while measurements take place. FIFO
scheduling (1.4 slowdown) insures that even system pro-
cesses are not interrupting our benchmark. As this has never
been reported (to the best of our knowledge), we hypothesize
that this remarkable “head phenomenon” is overlooked by
other noise studies which might ignore it by considering the
frequent duration (1ms in this case) to be their base case.
This can happen when estimating an application’s phase du-
ration using its average execution time on one node, and in
so doing, implicitly including fine grained noise elements.

ID Processor Main Memory Cache Size Bus
Type Clk Size Clk Type L2 L1 Clk

date code
GHz MB MHz KB KB K MHz

M1 P-III 0.9 256 133 SDRAM 256 16 16 133
M2 P-IV 2.4 1024 266 DDR-SDRAM 512 8 12 533
M3 P-IV 2.8 512 400 DDR-SDRAM 512 8 12 800
M4 P-IV 3.0 1024 400 DDR2-SDRAM 1000 16 12 800

Table 1: Different platforms on which the benchmark was

run. The size of the L1 instruction cache is specified in KB for

Pentium-III and in micro operations (Kuops) for Pentium-IV.
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Scheduler Avg. Med. Stddev Min Max
OTHER 1060 999 127 668 8334
FIFO 1080 1025 140 778 1959

Table 2: Statistics of the D distribution shown in Fig. 3 [µs].

Instability is much worse for clusters. Recall that the Y
axis of Fig. 3 (right) can serve as an approximation of p. For
example, there is a p=1:100 chance a phase duration would
take longer than ∼1.5ms. Repeating the rough approxima-
tion procedure detailed in Section 2.4, with the difference of
changing the denominator in Eq. 5 to be 668µs (the mini-
mum) yields a slowdown factor lower bound of ∼2.

Sources of Noise. The difference between the FIFO and
OTHER schedulers sheds some light on the source of the
observed phase duration variability3. When running the
benchmark as FIFO, we know for a fact it was not preempted
in favor of other processes. We can therefore conclude that
noise generated by system daemons is only responsible for
the difference in variability exhibited by the two policies,
that is, the horizontal “right turn” taken by the OTHER
curve at p = 10−5 (right of Fig. 3; intersecting the X axis
beyond 8 ms, as indicated by Table 2). We conclude that
the major guilty party of committing harmful frequent fine
grained noise are system interrupts — executed in a non-
process context. Instrumenting the kernel to log all inter-

3Both scheduling policies are mandated by POSIX [27, 12]:
OTHER is the default time-sharing policy; FIFO is a First
In First Out realtime policy. Different processes may have
different policies. Realtime processes are never preempted
in favor of non-realtime processes.



Interrupt / IRQ Count Direct Overhead
Description ID Cycles Percent

per node tick 0 1,082,744 23,437,759,192 0.775%
per CPU tick 239 1,082,731 1,674,717,580 0.055%
network 18 5,917 102,987,708 0.003%

Table 3: The system interrupts that occurred within the

M3/1000Hz/FIFO/1ms benchmark. The benchmark’s total du-

ration was eighteen minutes (3,023,642,905,020 cycles on a 2.8

GHz machine). Data instrumented by klogger.
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M3/1000Hz/FIFO/1ms experiment with disabled caches (inner

curves gradually subtract the direct overhead of interrupts).

rupts (Table 3) revealed that the only activity present in
the system while the FIFO measurements took place were
about a million ticks and ∼6000 network interrupts, indi-
cating ticks are probably the main cause of variability.

Cache Effects. An immediate experiment we have con-
ducted to test our hypothesis regarding ticks, is to run the
same benchmark with different tick rates (Hz). The results
are shown in the left of Fig. 4 and indeed indicate that re-
ducing Hz significantly diminishes variability. On the other
hand, one is unable to ignore the variability that is still
there. Attributing this to the direct overhead of the re-
maining interrupts (ticks and network) seems unrealistic.
Further, note that the direct overhead of interrupts within
the original 1000 Hz FIFO experiment amounts to a mere
0.83% (Table 3). This isn’t remotely enough to explain the
observed variability (Fig. 3) and the overall 39% overhead
(FIFO average vs. minimum in Table 2). The conclusion
is that variance is mostly the outcome of indirect overhead,
that is, cache misses incurred when context switching back
and forth between interrupts and the application. This was
verified by repeating the 1000 Hz experiment with a dis-
abled cache. Naturally, everything ran slower and results
were more stable, but this has finally allowed us to provide
a full explanation of variability: The “noisy” curve in Fig.
4 (right) shows the tail of the no-cache phase duration dis-
tribution. To its left, according to the information provided
by klogger, the “minus tick” curve explicitly subtracts di-
rect overhead caused by ticks from the phases in which they
were fired. Finally, the “minus net” curve further subtracts
direct overhead of network interrupts. The end result is a
prefectly stright line indicating all phase durations are equal
and all variability is accounted for.

To conclude, our findings indicate that the observed vari-

ability is a product of ticks, network interrupts, and the
cache effects they cause. Supercomputers usually employ
high-end communication networks (Myrinet, Quadrics) that
provide dedicated processors for handling of network events.
Such hardware has potential to largely eliminate most net-
work interrupts as a source of variability, which would leave
ticks as the major source of degraded performance.

We remark that the reason behind the shorter phases at
the head of the distribution (Fig. 3) remains somewhat of
a mystery. Indeed, Fig. 4 serves as strong evidence that
this happens due to interactions between cache and OS in-
terrupts. However, our benchmark uses very little memory:
the (volatile) loop index, the measurements array (assigned
at the end of each phase), and the loop instructions them-
selves: a working set of presumably very few cache-lines,
that seems too small to justify such an effect. Neverthe-
less, the effect was consistently reproduceable on all P-IV
machines we have checked.

Granularity. The p probability of per-node noise is tied to
the granularity of the computation. Real world applications
exploit fine grained parallelism ranging from several millisec-
onds (sometimes referred to as “medium grain”) to less than
a millisecond [15, 17, 26, 25, 16, 13]. Fig. 5 shows the tail of
the phase duration distribution obtained by the platforms
specified in Table 1, for various grain sizes. Durations are
expressed as percentile addition relative to the shortest as-
sociated phase. Setting M2 aside, one apparent observation
is that finer grain sizes imply an increased p, as indicated
by the Y-aligned curves at the right of Fig. 5 (short delays
with low probability) gradually becoming orthogonal to the
Y-axis when moving to the left (longer delays with higher
probability).

This can be easily explained when considering the 1µs sub-
figure: Phases of 1µs are short enough so that most mange
to escape the noise, that is, ticks occurring at a 1000 Hz
frequency. However, every thousand phases (1 ms) one is
bound to be interrupted by a tick and pay its full price
(> 1µs). As a consequence, 1µs-curves become perpendicu-
lar to the Y-axis for p ≈ 1

1000
.

A coarser granularity implies reduced variability due to
a combination of two factors: the overhead penality gets
smaller relatively to the grain size, while at the same time
more phases suffer from similar noise. For example, at Tgrain

of 1 ms most phases suffer from one tick (while a small frac-
tion mange to escape them or alternatively suffer from two).
The fact that the situation is worse for Tgrain of 1µs than of
1 ms, is somewhat different than the observation made by
Petrini et al. [25] that the effect of noise is most pronounced
when the application “enters in resonance with noise of a
similar harmonic frequency and duration”. If this was the
case than the situation was reversed. Indeed, phases of 1µs
are rarely interrupted by 1000 Hz ticks, but according to the
“noise law” this is sufficient to slow the entire application
down for a large enough n. In accordance with Petrini’s
observation, variability is further reduced when moving (to
the right of Fig. 5) into a state where noise frequency is
finer than Tgrain and the relative overhead penalty becomes
much smaller.

Hardware and Tick Rate. The data shown in Fig. 5 indi-
cates that platforms have decisive effect on the amount of
noise. Recall that according to Fig. 2, systems should as-
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Figure 6: Cache miss counts for the FIFO 1 ms benchmarks.

pire to reduce per-node noise below a threshold of p = 10−5

(or better yet, p = 10−6) so that the noise effect would
be marginal for most practical cluster sizes. Unfortunately,
this is not the case for any of the tested platforms, as all
of them suffer from significant noise with higher probabil-
ities for grain ≤ 1ms. Evidently, the P-III machine (M1)
is usually the least vulnerable to ticks’ cache effects, closely
followed by the P-IV 3.0 GHz machine (M4 — the fastest we
have tested), while not that far behind we find the P-IV 2.8
GHz (M3) at third place. The results of the slowest P-IV
(M2) are simply disastrous.

When examining Table 1 it is somewhat tempting to cat-
egorize the machines into a vulnerable (M2/M3) and invul-
nerable (M1/M4) classes based on the L1-data size, as this
is the only quality in which vulnerable machines are consis-
tently inferior to invulnerable ones. However, considering
the fundamental differences between the P-III and P-IV ar-
chitectures, such a division might be arbitrary and unjusti-
fied. On the other hand, the inherent similarities between
the P-IV machines suggest that a better methodology would
be to focus on the differences between these platforms. Our
next step was therefore to instrument the P-IV kernel with
Intel’s Performance Monitoring Counters technology [4]. Us-
ing special registers, we were able to count the number of
L1 and L2 cache misses that occurred while the P-IV bench-
marks were running.

The results are shown in Fig. 6 and coincide with our
findings so far: cache miss rates of both L1 and L2 perfectly
correlate with the variability exhibited by the P-IV machines
(Fig. 5), with M2 suffering the largest number of misses
and M4 suffering the least. Note that increasing the tick
frequency does not effect L2 much. The effect is much more
pronounced for the L1 cache, with a miss rate growth of up
to a factor of 6.6 (M2).
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Figure 7: Similar variability for different OSs.

We can only speculate as to the reason why the different
configurations yield such dissimilar results in terms of cache
behavior. It is probably reasonable to assume that the fact
M4 enjoys a bigger L1-data cache (Table 1) immediately
translates to improved cache hit rates. It is also reasonable
to expect M3 to be superior to M2 in this respect, due to
improved memory and bus speed. Regardless of the exact
reason, the bottom line is that relatively minor differences
in hardware configurations can have decisive effect on the
variability of computation duration, even for an application
as trivial as our benchmark, which only records the ending
time of empty loops. We expect variability to significantly
increase when replacing this artificial benchmark with real
world applications, as these will stress the competition over
memory between the application and periodic interrupts.

Operating System. Ticks are employed by all general pur-
pose OSs. The goal of our final experiment was to make
sure variability is not the artifact of Linux implementation
specifics. For this purpose we have also bechmarked another
OS — FreeBSD (5.3 stable). Fig. 7 shows the result of run-
ning the FIFO/1ms/1000Hz/M3 benchmark on the two OSs,
indicating FreeBSD suffers from similar deficiencies.

4. ELIMINATING THE NOISE
We have shown that periodic OS ticks are a main source of

noise. It has been suggested [22, 25, 16, 29] that noise effects
can largely be reduced if noise activity is gang scheduled
[8], that is, set up to simultaneously run across the parallel
machine at the exact same time. While this approach does
not avoid the per-node price of noise, it does make sure the
price is paid simultaneously, thus preventing the harmful
amplification effect as quantified by the “noise law”.



Indeed, such an approach is especially suitable for coarser
and longer noise generated by various system daemons [25,
16, 29]. These can actually be considered as sub-processes
of a “system job” that alternately executes along with the
user’s job according to the gang scheduling rules (time shar-
ing). However, in order to apply this approach on fine
grained periodic noise as generated by ticks, the nodes com-
posing the cluster must effectively have perfectly synchro-
nized clocks. Establishing this might be technically prob-
lematic for large clusters, though some machines do in fact
offer a global clock [22, 16, 29]. Nevertheless, this is not
guaranteed and even if available, might entail a price of in-
creased complexity, overhead, and asynchronous noise.

Regardless of the actual price, we argue that synchroniz-
ing ticks is analogous to treating the symptom rather than
the disease. Instead of paying the price of synchronicity, why
not eliminate ticks altogether? There is no real technical dif-
ficulty, and it actually turns out there are other non-HPC
domains that will greatly benefit from ticks removal. This
section briefly describes why this is indeed the case and how
to accomplish the task. More details can be found in [31].

4.1 The Case Against Ticks: A Global View
We have already made the first non-HPC case for remov-

ing ticks when showing their indirect overhead at the desk-
top level can be significant for some platforms. In fact, all
machines associated with the data presented in Fig. 5 are
standard workstations at our department. None of us were
happy to find out that e.g. M3 operates 1.6 times slower
than its optimum. The fact this optimum is obtained at a
rare rate of 1:10,000 (Fig. 3) does not weaken this argument.

The second case for removing ticks concerns OS timing
services, that are crucial for multimedia and other soft real-
time tasks. Tick resolution (Hz) is important because sys-
tems measure time by it, including when timer alarms should
go off. If Hz is too coarse, deadlines might be missed. For ex-
ample, we have shown that when playing a standard MPEG
60 frames per seconds movie, a player might discard 2

3
of its

frames if played on a 100 Hz OS [7]. In this particular case,
an increase to 1000 Hz was enough to solve the problem. But
even finer timing services are required (ranging up to tens of
thousands of events per seconds), e.g. for video rates of crash
experiments [32] and rate-based networking [1]. Increasing
Hz to accommodate this generates significant overheads [7].

The third case for removing ticks involves power consump-
tion considerations crucial for mobile and autonomous sys-
tems. Ticks occur even if the system is otherwise idle, thus
uselessly wasting power (20W according to [19]). We have
shown that increased tick rate translates to significant power
loss [31]. It seems remarkable such a huge effort is spent on
throttling (slowing the hardware clock down when possible),
while useless OS-clock activity is completely overlooked.

4.2 The Solution: Smart Timers
Evidently, ticks are problematic in domains transcending

HPC noise. It seems their drawbacks are significant enough
to constitute a true incentive for change, that may actually
be sufficient to overcome conservative opposition (recall that
this is a 30 years old design decision that affects all mod-
ern OSs). On the other hand, ticks seem like an inevitable
compromise between contradicting system requirements of
reduced overhead (mobile and HPC systems) vs. improved
timing services (multimedia and soft realtime systems).

Indeed, all existing solutions to the problems raised above
are domain-specific in that one domain’s solution ignores or
worsen the problem of other domains. An excellent example
for this is handling HPC (tick) noise by synchronizing it.
Another example are realtime systems which replace peri-
odic ticks with one-shot timers that are set only for specific
needs and fired exactly at their designated time [18, 28, 11].
These are unsuitable for general purpose OSs as any user can
bring the system down by generating numerous events with
nanosecond differences. Other timing mechanisms that can
be utilized by a general purpose OS (soft-timers [1], firm-
timers [14]) are yet again domain-specific because they build
on and extend periodic ticks. Solutions that target power
consumption silence ticks when the system is idle (but tim-
ing, noise, and non-idle power issues still remain).

We contend a unified solution to all the problems is in fact
available and within reach. We call this smart timers, de-
fined to combine (1) accurate timing with a settable bound
on maximal latency, (2) reduced overhead by aggregating
nearby events, and (3) reduced overhead by avoiding un-
necessary periodic ticks. Perhaps the most intuitive imple-
mentation of smart timers would be to preserve alignment
of all events on Hz boundaries (Hz is the “settable bound
on maximal latency”; time alignment obtains event aggrega-
tion) while avoiding useless ticks by setting a one-shot timer
to the next (aligned) event if such exists, along with doing
all kernel accounting upon each kernel entry rather than pe-
riodically. If no timers exist (idle system or only one CPU
bound process is running), no timer would be set: the OS
will resume control only upon other device interrupts (e.g.
keyboard, network) or system calls. See details in [31].

5. RELATED WORK

5.1 About Noise
The negative effect of noise on parallel systems has been

known for more than a decade [22]. Our contribution in-
cludes suggesting a probabilistic model to explain this phe-
nomenon, placing the focus on ticks’ indirect overhead as a
major source for noise endured by fine-grained jobs, noting
ticks price might be significant even if they are synchronized,
showing the implications of architecture and tick frequency
on this price, and suggesting this should be dealt with by
means of tick elimination rather than synchronization, as
part of a global case against ticks (smart timers).

To the best of our knowledge, the first study recognizing
the effect of noise on parallel machines was conducted in
1994 by Mraz [22], who noticed that the time it takes a token
to circulate between 128 machines connected in a virtual
ring is dramatically amplified due to large variance in peer
to peer communication. The variance source was traced
to be rare activity of system daemons and OS interrupts,
namely, noise. In spite of its rarity, variance impact was
nevertheless decisive as the token’s chances to escape it in all
nodes were slim (probably obeying the “noise law”). Various
techniques were attempted in an effort to reduce variance
which included raising the priority of the application relative
to the system daemons (up to the point where these are
starved), and synchronizing ticks across all nodes.

The next report on HPC noise was by Phillips et al.
[26] and involved the NAMD application spanning up to
3,000 processors on the Pittsburgh Supercomputer Center’s
Lemieux (750 4-way nodes). This work was the first to note



the inability to productively use the fourth processor, which
nowadays seems to be the common wisdom.

A year later at SC’03, two noise related studies were pub-
lished. The first, by Jones at el. [16], utilized several super-
computers, the largest was Lawrence Livermore National
Laboratory’s ASCI-White, composed of 512 16-way SMP
nodes (8,192 processors). This paper serves as a compre-
hensive roadmap for practical noise reduction techniques,
including gang scheduling of daemon noise (by raising the
application’s priority and periodically reducing it in a co-
ordinated manner such that daemons are allowed to run)
and, yet again, synchronizing ticks (while reducing their fre-
quency). Unfortunately, the most effective technique was
nevertheless refraining from using the sixteenth processor.

The second SC’03 paper by Petrini at el. [25], discovered
“missing performance” on the (2,048 4-way) 8,192-processors
Los Almos ASCI-Q, when comparing its observed perfor-
mance to the performance predicted by a suitable model
[17]. In accordance with the above, this study also recom-
mends gang-scheduling of noise along with not using the
fourth processor. This paper characterized noise as a col-
lection of “harmonics” and claimed that different types of
noise “resonate” with applications differently, depending on
their granularity (a noise component is most harmful if its
frequency and duration matches the granularity of the appli-
cation). After characterizing the ASCI-Q noise components,
the “kernel activity” was found to be responsible for up to
66% of the noise effecting fine-grained jobs. In a later paper
[13], this activity was identified as mostly ticks and network
interrupts, coinciding with our findings in Table 3.

Based on the findings in [25], Terry et al. [29] developed
a Linux scheduler kernel patch for the Cray XD1 system,
which is essentially a full fledged gang scheduler with a tick-
long time slots. The kernel is made aware of jobs (of user or
system) and makes sure these are co-scheduled. Obviously,
this relies on nodes having fully synchronized clocks.

Finally, there is Fast OS4 (“Forum to Address Scalable
Technology for runtime and Operating Systems”) which is
backed by IBM, Intel, HP, SGI, Bell Labs, LLNL, LANL,
Caltech, and more. This forum embodies ten projects aimed
to provide adequate OS for large clusters, eight of which list
noise as a problem (four with “high priority”) [21].

5.2 About Ticks
Research regarding timing and ticks was mostly conducted

in the realtime domain. Many studies have recognized and
tried to solve the inherent problem of general-purpose OSs
not being able to adequately support multimedia and other
soft realtime applications [23, 1, 3, 2, 14, 7, 24]. The fun-
damental problem is the coarse granularity of Hz (OS clock
tick frequency). As general-purpose OSs cannot use one-
shot timers (popular within hard realtime systems), relevant
research efforts were inclined to pay additional overhead
penalty for the sake of improved accuracy, consequently
making the OS less suitable for HPC environments.

Three papers specifically targeted ticks: Etsion et al. [7]
checked the benefits and inherent limitations of periodic
timers by increasing Hz (up to 20,000) and found this may
be quite beneficial in terms of accuracy, but results in se-
vere overhead penalty. Aron and Druschel [1] implemented
soft timers keeping Hz unchanged, while opportunistically
using each kernel entry (e.g. due to system call), when the

4http://www.cs.unm.edu/˜fastos

context switch is already payed, to check whether expired
timers exist. Goel et al. [14] defined firm timers to combine
all timer mechanisms (periodic, one-shot, soft) to provide
better timing services while making sure that the potential
one-shot overhead is bounded. Since all these mechanisms
incorporate periodic ticks, HPC systems do not benefit.

Finally, the “High Res POSIX timers” Linux project5 in-
cludes five timing patches. None of these are “smart timers”.
Those that state they are tickless, “no HZ tick test” and
“VST tick elimination”, are pure one-shot or stop ticking
only when the system is otherwise idle, respectively.

6. CONCLUSION AND FUTURE WORK
System noise is widely recognized as a major obstacle to

applications’ scalability [26, 16, 25, 21]. We develop a model
that formulates the intensity of noise, suggesting a simple
theoretical explanation for the well known empirical fact
that noise effects increase with cluster size (n). Assume p is
the per-node probability for a running task to be delayed by
noise. If p is small enough (e.g. p ≤ 1

10n
), our intuitive “noise

law” states that noise is linearly proportional to n such that
p×n is a good approximation of the parallel job’s probability
to be delayed upon each computation phase. This is in line
with measurements that have been conducted on a number
of systems showing linear performance degradation [16, 25].

Given a system, trivial (node) benchmarking of the appli-
cation’s phase-duration, yields a distribution from which p
can be deduced, along with the approximated delay-duration
caused by noise. Combining this with the “noise law”, re-
sults in a quick-and-dirty lower bound of slowdown penalty.
Indeed, our model is more valuable when seeking rough fig-
ures and a general understanding of the noise phenomenon,
rather than the exact numbers. (However, we do outline the
manner in which better estimates can be obtained.)

An important consequence of the noise model is its im-
plication on how systems should be designed. We find that
practical cluster sizes (up to thousands) require a p which is
smaller than 10−5, if noise effects are to be kept tolerable.
A p value of 10−6 would essentially eliminate the effect. We
evaluate p for a large number of grain sizes, architectures,
and OSs, and consistently find it to be much larger than the
appropriate thresholds if granularity is fine (few ms or less).

Some architectures exhibit (much too) large p values with
significant delays, even for coarser grain sizes of tens to hun-
dreds of milliseconds. In fact, p is shown to be surprisingly
sensitive to seemingly minor changes in the hardware con-
figuration, especially considering the application we used for
evaluation is hardly vulnerable in terms of data locality. We
expect this phenomenon to be amplified for real world appli-
cations which typically possess these vulnerabilities. System
designers should be made aware that such modest changes
might have decisive implication on applications’ runtime.

The main guilty party of generating noise that is mostly
harmful to fine grained applications is identified to be pe-
riodic OS clock interrupts (ticks), that almost exclusively
constitute the fine grained noise activity within the system.
While the direct overhead of ticks is relatively small (be-
low 1% across all benchmarked architectures), their indirect
overhead might reach tens of percents, possibly amplified by
the “noise law” to hundreds of percents. In particular, we
identify a strong correlation between increased variability in

5http://sourceforge.net/projects/high-res-timers



phase-duration and L1/L2 cache miss rates. Additionally,
we find L1 miss rates to be tightly correlated to tick fre-
quency, in contrast to L2 misses which remain relatively un-
changed, even when tick frequency is significantly increased.

Finally, a major contribution of this paper is challeng-
ing the common wisdom of handling ticks-noise by means of
ticks synchronization [22, 16, 25, 29]. This approach can in-
deed alleviate the noise problem to some extent, but might
be hard or impossible to implement on large clusters. Addi-
tionally, while overcoming the noise amplification effect (by
making sure ticks occur simultaneously across all nodes),
this approach still suffers from the potentially significant
per-node indirect-overhead penalty incurred by ticks, which
can sometimes reach tens of percents.

In addition to the above drawbacks, we argue that the
most important deficiency of the ticks synchronization ap-
proach, is that it actually treats the symptom rather than
the cause. The only way to fundamentally get rid of fine
grain noise is by eliminating ticks altogether. A basic OS
principle suggested by Finkel is that events at a high level
are actually polling at a lower level [10]. For over 30 years
OSs have used polling. It is now time to consider push-
ing the polling down to the hardware, leaving the OS to
be event-based. We suggest “smart timers” as an alterna-
tive to ticks. These allow accurate timing with a settable
bound on maximal latency and reduced overhead by ag-
gregating nearby events and by avoiding unnecessary peri-
odic ticks [31]. We show that these properties make the
“smart timers” mechanism appealing to several non-HPC
domains (desktops, multimedia, soft realtime, mobile and
power-aware computing), thereby increasing its chances to
be incorporated within general purpose operating systems.
We are in the process of developing an appropriate patch to
the Linux-2.6 kernel.
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