
Reproducing, Extending, and Analyzing
Naming Experiments⋆

Rachel Alperna,1, Ido Lazera,1, Issar Tzachora,1, Hanit Hakima, Sapir
Weissbucha, Dror G. Feitelsona,∗

aThe Hebrew University, Dept. Computer Science, 91904, Jerusalem, Israel

Abstract

Naming is very important in software development, as names are often the only
vehicle of meaning about what the code is intended to do. A recent study on how
developers choose names collected the names given by different developers for
the same objects. This enabled a study of these names’ diversity and structure,
and the construction of a model of how names are created. We reproduce
different parts of this study in three independent experiments. Importantly, we
employ methodological variations rather than striving of an exact replication.
When the same results are obtained this then boosts our confidence in their
validity by demonstrating that they do not depend on the methodology.

Our results indeed corroborate those of the original study in terms of the
diversity of names, the low probability of two developers choosing the same
name, and the finding that experienced developers tend to use slightly longer
names than inexperienced students. We explain name diversity by performing
a new analysis of the names, classifying the concepts represented in them as
universal (agreed upon), alternative (reflecting divergent views on a topic), or
optional (reflecting divergent opinions on whether to include this concept at all).
This classification enables new research directions concerning the considerations
involved in naming decisions. We also show that explicitly using the model
proposed in the original study to guide naming leads to the creation of better
names, whereas the simpler approach of just asking participants to use longer
and more detailed names does not.

Keywords: Variable names, code comprehension.

1. Introduction

Choosing variable names is one of the most common yet important tasks
that programmers perform in their everyday workflow. Variable and function

⋆This research was supported by the ISRAEL SCIENCE FOUNDATION (grant no.
832/18).

∗Corresponding author: feit@cs.huji.ac.il
1These authors contributed equally to the research

1

names account for around a third of the tokens and two thirds of the characters
in the source code of large open source projects [19]. It is generally agreed that
meaningful names are instrumental aids for program comprehension [13,14,23,
35]. However, names can also be misleading and cause difficulties [7,8], and low
quality names have been associated with low quality code [17]. It is therefore
important to understand the process of name selection, and its effect on the
quality of names and code.

Previous research on naming largely falls into two categories. Some studies
are concerned with the more technical aspects of names. This includes structural
issues such as names’ length or style [2, 15, 16]. There have been conflicting
findings regarding the effect of using abbreviations on comprehension [24, 25,
36, 37]. Several works have considered the extreme case of single-letter names,
showing that even they may convey meaning [9, 39]. Conversely, longer names
have been linked to variables with broader scope [3, 21] and to developers with
more experience [22]. Regarding style, several researchers have attempted to
determine whether camelCase or snake case have any advantage [10,11,38].

Other studies focus on the semantics of names. For example, several studies
have analyzed the grammar and part-of-speech tags of words used in names
[28, 29]. Interesting observations have been made based on identification of
renamings performed during program maintenance. One common change is that
names become more narrowly focused when words are added to a name [30].
Alternatively, the semantics of names may actually change when words in a
name are replaced [6].

There have also been suggestions on how to improve name quality. For
example, Caprile and Tonella suggest standardization of variable names using
a lexicon of concepts and syntactic rules for arranging them [18]. Deissenboeck
and Pizka stress the need for concise and consistent naming [19]. Binkley et al.
suggest rules for enhancing the information expressed by field names [12]. The
possibility of tool support for selecting names has also been discussed. Liu et
al. have shown that in many cases the contents of the body of a function can be
used to construct a good function name [26]. Raychev used machine learning
on “big code” to predict variable names, achieving 62% accuracy [33], and Alon
et al. exploit the code structure to predict method names [1].

But how do developers choose names in practice? A recent study by Feit-
elson et al. included experiments where developers were presented with various
scenarios, and asked to name objects that are expected to be used in those sce-
narios [22]. This study is unique in that the generated data shows how multiple
developers would name the same objects — and in particular, the variability
that may result. And indeed the study authors observed that different devel-
opers tend to choose different names under identical circumstances. However,
these names were nevertheless found to often include common structures and
words. In addition, a 3-step model was suggested for how names are created.

An important methodological challenge faced by this study was the danger of
an accessibility bias. By describing a scenario we might implant the words used
in the description in the minds of the experiment participants. It would then
be natural for them to use these same words when naming objects. To reduce

2

this danger the study employed bilingual subjects, and presented the scenario
in Hebrew to distance it from the writing of code. A followup study used emojis
in place of key words in the description, and achieved similar results [34].

The accessibility bias is just one of many threats to validity that the original
study, like any empirical study, may suffer. Such threats can be mitigated,
at least to some degree, by using careful and innovative experimental designs
— such as using bilingual subjects. But even research that seems to clear
all known threats cannot be considered the final word on a subject. There is
always a possibility that some unknown limitation or interactions between the
experimental variables affects the results. The best way to validate results is
therefore to reproduce them using alternative methodologies [20]. If the results
are found to corroborate those of the original study, this will then increase the
confidence that they are valid, because the same results were obtained by two
different methodological approaches.

This leads to our main motivation and first research question:

RQ1) Can the results of Feitelson et al. [22] be reproduced using variations on
the experimental methodology?

Our main variation is to replace the descriptions of the scenarios with actual
code, but with meaningless variable names, and ask participants in the experi-
ment to rename them and give them meaningful names. This achieves two goals.
First, it is an alternative approach to reducing the accessibility bias. Second,
this alleviates an additional limitation of the original study, which was limited
to the naming of central variables and data structures. The reason was that it
would be unreasonable to refer to specific local variables in a general description
of a scenario. But in our code-based experiments participants also need to name
parameters and local variables.

We also extend the analysis of the names themselves in terms of their seman-
tics. The original study introduced a methodology for identifying the concepts
embedded in a name and the words used to represent these concepts. We use
this methodology to dissect the variable names in our experiments, and show
that their structure generally agrees with the findings of the original study. But
we also ask an additional question:

RQ2) Why do different developers come up with different names for the same
objects?

To answer this we define a classification of concepts according to the level of
variance in their use. We hypothesize that concepts that exhibit high variability
expose disagreements in the naming process, and that this is an important source
of naming variations. This is important because it provides clues regarding
issues that should be studied further, with the ultimate potential for drafting
guidelines about the considerations that may be applied when choosing names.

Finally, the original study included an intervention experiment, where par-
ticipants were instructed about the suggested model of name construction before
being asked to give names. The result was that names given by participants

3

instructed about the model were generally considered better by external judges,
and were also slightly longer. Our third research question asks whether a simpler
alternative intervention may suffice:

RQ3) Can higher-quality names be obtained by simply telling developers that
longer names are better?

We therefore included such a third treatment in our reproduction of this last
experiment. The result was that actually knowing about the model is required,
and that telling participants that longer names are better is not enough to
change their behavior.

The rest of this paper is structured as follows. The next section describes the
original study by Feitelson et al. [22]. Sections 3 and 4 then describe the first
two experiments we conducted. The methodology for name analysis is laid out
in Section 5, and the results presented in Section 6. Section 7 then describes the
intervention experiment, followed by Section 8 which explains the methodology
of judging names’ quality and Section 9 which presents the results. The paper
ends with threats to validity in Section 10 and conclusions in Section 11.

2. The Original Study

To enable a clear understanding of how our reproduction differs from and
extends the original study, we first describe that study [22]. The study was based
on the definition of 11 independent scenarios. Each scenario described a certain
programming problem, followed by several questions related to a hypothetical
program that could be written to address this problem. Except in one scenario,
there was no actual code — just a verbal description. The questions were about
the naming of variables, constants, or functions in this hypothetical program,
or about understanding such names which allegedly come from the program.
For example, one of the scenarios was of a mouse searching a maze for cheese
which is moved every day, and two of the questions were about naming the data
structure describing the maze and the variable which notes the location of the
cheese today. Eight of the scenarios had 2 or 3 versions, with the description of
the scenario given in Hebrew and English. Three additional scenarios had only
a Hebrew version, and contained only name understanding questions.

In the first experiment in the study each participant was asked to answer
6 randomly chosen scenarios. The data that was collected led to a plethora of
results, including the following. The comparison of names given for English and
Hebrew versions of the same scenario was used to demonstrate the accessibility
bias. As expected, participants given the English version tended to use words
from the description, in some cases to the exclusion of all else. Participants
given the Hebrew version created much more diverse names. This effect was
quantified using two metrics which we use too:

• The focus, defined as the fraction of times that the most popular name or
word was used;

4

• The diversity, defined as the quotient of distinct names or words divided
by total names or words.

The diversity of the names was used to show that in most cases there is a very
low probability that two developers would choose the same name in the same
situation. In addition, the results were used to study the distribution of name
lengths. This showed that experienced participants tend to use slightly longer
names, with more concepts. Sex, however, did not have any effect on name
length.

In the present paper we reproduce the results concerning the partitioning of
names into words, and the distributions of focus and diversity. Then we extend
the analysis of the concepts, and introduce a classification of concepts based on
how they are used and how they relate to other concepts.

In the original study the quantitative results were followed by a qualitative
discussion of name structure. The names used in programs are often composed
of multiple words. The analysis indicated that these represent different concepts,
and it is the combination of these concepts which bestows meaning to the name.
This led to the formulation of a 3-step model of name formation: first, select the
concepts to include in the name; second, select words to represent the different
concepts; and third, decide how to combine these words to create the name.

Following the derivation of this model, a second experiment was presented.
This second experiment was like the first, with the difference that the afore-
mentioned model was used to guide participants in their naming. The results
were that using the model appeared to facilitate the creation of better names,
as judged by external judges (that is, the judges did not know the details of the
experiment). In addition, the names produced in this second experiment tended
to be slightly longer than those from the first experiment. In the present paper
we also reproduce this second experiment, and extend it with a third treatment,
where participants are just told that longer names are better. This enables us
to distinguish between a possible improvement due to causing participants to
focus more on the names, and a possible improvement specifically due to using
the model.

We note that this study was also replicated recently by Mi et at., with
an emphasis on naming by students [27]. In their case Chinese was used for
describing the scenarios, as it was found to lead to a smaller effect on the results
than English descriptions. The results were largely the same as in the original
study. An interesting new result was that the improvement using the model
is especially large for beginning students, who otherwise tend to use especially
short names. Our work differs from this replication due to our analysis of the
names’ structures and the use of a third treatment when assessing the effect of
the naming model, as described above.

3. Reproduction Experiment 1

As noted above, our reproduction started with the original naming exper-
iment. We designed and executed two independent naming experiments, de-

5

scribed in this section and the next, using a new methodology; having two
experiments allows for additional methodological variations, which further sup-
ports the validity of the results (in case they agree). We then performed a more
detailed analysis of the names’ structures than in the original study. This will
be described in section 5.

3.1. Experimental Materials

Our approach for creating the experimental materials for this experiment was
to use a short program with a well-defined purpose, and replace the meaningful
variable names in it with generic ones (a, b, c, etc.). We had to decide if
we wanted to write the code ourselves or find something existing online. We
realized that finding suitable code may hard, because it needed to fulfill some
very specific requirements: it had to be understandable without any comments
or variable names, and it had to have a range of interesting variables. We
eventually decided on writing our own custom code in this experiment, and
using real code in the second experiment.

Writing the code was challenging because we needed something understand-
able but not too simple, with a wide variety of variables, so that the naming
task would be non-trivial. We chose to write a rich description of our code,
so that the variables could represent many different details that arise from the
description. After we wrote a program that had the complexity level we aimed
for, we needed to avoid creating an accessibility bias. We used two different
methods. First, we wrote the description in Hebrew, as was done in the original
study. While this can not eliminate all the bias, it means that the participants
at least couldn’t use our words directly when naming the variables. Second, we
chose function names that are overly-descriptive. This means that the partici-
pants can easily understand what the functions do, but cannot use the function
names directly in naming the variables.

The code we wrote deals with a quiz published by a dairy company to pro-
mote its business2. The code includes functions to read an input file with the
answers of people who had answered the quiz, to score these answers based on
a given scoring rubric, to select 3 winners out of those who had achieved the
highest score, and to send them personalized email notifications.

3.2. Experiment Structure

The experiment had four main sections. The first was a general introduction
to the experiment. It explained that this is an experiment about naming vari-
ables which is expected to take about 10 minutes, and that the code is in Python.
It then stressed that all collected data will be used for research only, that no
identifying information is collected, and that continuing to the questionnaire
indicates agreement to participate in the research.

2Unfortunately this choice may lead to confusion between make-believe participants an-
swering questions in this quiz and real participants answering questions in our experiment.
We consistently use “quiz” when referring to the code to avoid such confusion.

6

The second section was the longest and constituted the experiment itself. It
started with a general description of the dairy company’s quiz, written in He-
brew. This was followed by 5 code segments: the definition of global constants,
the main function, and 3 service routines. Each segment was first introduced by
a short Hebrew description. The code itself was shown as an image with conven-
tional color highlighting. While the functions had excessively long descriptive
names as explained above, the variable names seen by study participants were
single letter names in alphabetical order, starting with the service routines and
then the main function. However, some letters were skipped, e.g. common loop
index variables i and j. The task was to give better names to all the variables
in the code segment.

The third section came after the questions about the variables in all the
code segments. This was a short survey concerning the considerations used
in the naming. Considerations we asked about included keeping the names
concise, making them distinct from each other, making the code understandable,
etc. Participants in the experiment were asked to note the importance of these
considerations on a 5-point scale.

The final section of the experiment contained demographic questions about
programming language use, educational background, experience, sex, and age.

3.3. Experiment Execution

The experiment was conducted using the Google Forms platform. Partici-
pants were recruited via personal contacts and solicitation in our department’s
computer labs, aided by chocolate treats. All the participants naturally knew
Hebrew. All told we had 71 participants in this experiment. 79% were male and
18% female; 3% preferred not to identify. The participants had a quite extensive
range of (professional) programming experience. A third, 33%, had 1–2 years
of experience. Another 30% had 3–5 years, and 11% had 6–9 years. Just over
a quarter, 26%, had 10 years experience or more. The same wide distribution
holds for education. 13% were current students, 41% had a first degree, and
31% had an MSc. The rest had learned to program at school or in the army
(10%) or were self-taught (6%).

4. Reproduction Experiment 2

The second experiment, in contradistinction to the first, used real code taken
from GitHub. It also obfuscates function names rather than using overly de-
scriptive names. This complements the first experiment and reduces the threat
that our programming style affects the results.

4.1. Experimental Materials

In this experiment we used real code from open-source repositories on GitHub.
Using natural code as opposed to synthetic code is expected to give us a more
realistic setting for our naming questions. The considerations we applied when
choosing the code samples were the following:

7

• Programming language: we used Python — a simple, well known language,
familiar to most programmers as well as to new students.

• Complexity : we wanted to have simple functions, which have a clear goal,
so participants will understand them correctly and be able to propose
meaningful variable names. However, we needed to avoid trivial functions,
in order to motivate participants to invest thought in finding variable
names that convey meaningful intent.

• Length: we chose relatively short functions, considering the fact that long
functions may take more time to understand and may reduce the cooper-
ation of the participants.

• Domain: We chose to use code taken from utility libraries, to avoid any
need for specific domain knowledge and any dependence on knowing the
common jargon used in a specific domain. This again makes the experi-
ment more accessible to all participants.

To apply these considerations, one of the authors initially selected 10 candi-
date code snippets from various utility libraries hosted on GitHub, and masked
the variable names. Then another author performed the task of assigning mean-
ingful names to the variables, and at the same time assessed how easy each snip-
pet was to understand so that it would not take too long during the experiment.

Based on the results of this second author we chose 3 code snippets for the
experiment. These snippets performed the following functions. The first was
taken from a Python lists utility library3. This function receives two input lists,
a data list and a masks list, and filters the first list using the indications from
the second list. The indications can be 0/1 or True/False. Our version was
slightly abbreviated: we removed the initial check that the inputs are indeed
instances of list.

The second function comes from a Python string utilities library4. This func-
tions creates a random string of the requested length using upper and lowercase
letters and digits.

The third function is also from this library5. This function converts a string
in snake case to using camelCase style. A flag parameter can be used to make the
initial character lowercase, and another parameter allows the words separator
in the input to be any string rather than the underscore character. Our version
was again slightly abbreviated, with input checks removed.

The original function names were all removed and replaced by foo to make
respondents focus on understanding the code, and to avoid the use of words
from the function names as a pool of candidates for use in variable names.

3https://github.com/gilbertohasnofb/listools/blob/master/listools/listutils/ list mask.py
4https://github.com/daveoncode/python-string-utils/blob/master/ string utils/genera-

tion.py#L41
5https://github.com/daveoncode/python-string-utils/blob/master/ string utils/manipu-

lation.py#L324

8

This approach is the opposite of the approach used in the first experiment as
described above. The variable names in the code were replaced by single-letter
names in alphabetical order, starting anew from A in each function. Participants
were asked to replace these arbitrary names with meaningful ones.

4.2. Experiment Structure

The experiment structure was similar to that of the first experiment. The
first section was a general introduction to the experiment. It explained that
this is an experiment about naming variables which is expected to take about
15 minutes. It then stated that no identifying information is collected, and
that continuing to the questionnaire indicates agreement to participate in the
research.

The next 3 sections constituted the body of the experiment. Each started by
displaying the code of one of the functions, shown as an image with conventional
color highlighting. This was followed by questions soliciting better names for all
the variables in the functions (including both parameters and local variables).

The final section of the experiment contained demographic questions about
sex, age, experience, educational background, and programming language use.

4.3. Experiment Execution

The experiment was carried out using the Google Forms platform. As we
wanted to randomize the order of the 3 functions, we created 6 equivalent forms
with all possible orders. We created a separate load balancer which chose one
of these versions at random, and used this in invitations to participate in the
experiment. In order to raise motivation among the participants, we randomly
selected 10 participants who completed the survey to win a small prize.

Participants were recruited via personal contacts and solicitation in our de-
partment’s computer labs. This was hampered by reduced attendance due to
the Corona pandemic, and despite our best efforts we managed to enlist only
45 participants in this experiment. 73% were male, 22% were female, and 4%
did not identify. They had a roughly similar distribution of experience as the
participants in the first experiment, with 41% having 0–2 years of experience,
16% having 3–5 years, 24% having 6–9 years, and 19% having 10 or more. In
this case 27% were BSc students and another 16% already had the degree, 22%
were MSc students and 11% had an MSc, and 25% did not have a formal CS
education.

5. Names Analysis

As noted above, an additional goal of our work — apart from reproducing
the experiment from the original study — is to extend the analysis of the names
selected by the experiment participants. In particular, we focus on the names’
structure: the words that compose them, and these words’ meanings.

To enable this analysis, we start by partitioning each name into words. This
is done by a simple routine which identifies the camelCase and snake case styles

9

of word composition. To focus on the meaningful words, we ignore prepositions
such as “of”, “and”, etc. (except in the statistics of names’ lengths).

The next step is to correct obvious spelling errors in words used in names.
The justification for this is that we are interested in the meaning of the names
and not in the English and typing skills of the participants. However, we re-
tained cases which can be interpreted as abbreviations, because these are in-
tentional different representations of a concept. For example, in crct answr the
second word was left as it was and not corrected to answer.

The heart of our analysis, following the original study, is to identify the con-
cepts included in each name and the words used to represent each concept. This
was done manually, with the aid of the interactive tool developed in the original
study. In this we diverge from the common practice of using statistical measures
such as term entropy to study semantic effects [7,31,32]. Manual identification
facilitates a much more nuanced classification, including considerations for re-
moving ambiguity, as demonstrated by some examples shown below.

The tool used supports the analysis of all the names given for each variable,
one such variable at a time. All the names chosen by the study participants
for this variable are displayed in a column one beneath the other. The analyst
can then interactively add columns that represent different concepts he or she
identifies in the names. Words representing these concepts are copied to the
appropriate column. Whenever a new word is copied, the tool scans all sub-
sequent names, and if the same word appears in them, it automatically copies
it to the same column for those names too. This reduces the manual effort of
recording all the classifications. The end result is a matrix with a row for each
name, as exemplified in Figure 1. The first cell in the row contains the name
itself. Subsequent cells contain words in the name that represent the concepts
represented by the different columns. If a name does not include a certain con-
cept, the corresponding cell is left empty. This procedure was performed by one
of the authors for all the variables in both experiments. The resulting classifi-
cation was then verified by another author. Any changes made in this second
pass were then approved by the first author.

In analyzing concepts there were a few instances where we left words unclas-
sified if they did not make sense (and in rare cases a whole name was wrong for
the given variable). There were also a few cases which required extra care. For
example, the code in Experiment 1 tabulating the score of the quiz copied each
answer to a local variable and then cast it to an int in another variable. This
second variable was named answer i by several participants. But by comparing
with the first variable, it appears that the i could mean either int or index —
two different concepts. An opposite example was found in Experiment 2. The
first function there had a list of Booleans as a parameter, used as indicators to
filter another list. Two of the names given to this parameter were index map and
items bool. Taken in isolation, “index” and “item” are different concepts: one
indicates a location, the other what is found at that location. Likewise, “map” is
an operation on list elements and “bool” is a datatype of list elements. However,
we decided that in this case the names are actually semantically equivalent, and
assigned both index and items to the concept “list items”, and both map and

10

Concepts
Name Score Question Answer Correct Per Number

correct answer score score answer correct
correct answer points points answer correct
points per question points question per
points points
points for correct q points q correct for
points for question points question for
question val val question
answer score score answer
question score score question
score per question score question per
num points for correct answer points answer correct for num
score score
successful answer score score answer successful
num points correct answer points answer correct num
points per correct answer points answer correct per
correct val val correct
points per answer points answer per
pts per ans pts ans per
correct ans point point ans correct
correct score score correct

Figure 1: Examples of names and their analysis into concepts, for the GLOBAL C constant
in Experiment 1. This constant represents the points awarded for each correct answer in the
quiz. The full results included many more names (including repetitions) and a few more rare
concepts.

bool to the concept “filter”.
Extending a distinction already alluded to in the original study, we classify

the concepts included in a name into the following categories:

• Universal — a concept that is in the consensus, with all or nearly all
names including a word representing this concept. Example: the concept
“score” in Figure 1.

• Correlated — one of a pair of concepts which tend to appear together,
because their combination is a phrase that expresses the desired semantics.
Example: the concepts “answer” and “correct” in Figure 1.

• Alternative — one of a set of concepts which together are universal or
nearly so, but they do not appear together in the same name. To qualify,
the words representing these concepts should not be synonyms: if they
were, they would all describe a single concept. Rather, the alternatives
may represent a difference of opinions about how to portray a certain
attribute of the variable’s intent. This could be based on different points
of view (e.g. “question” vs. “answer” in Figure 1), or else it can reflect
different levels of generalization, where one concept is more general (e.g.
“data”) while another is more focused (e.g. “scores”). In some cases one

11

of the alternatives may be dominant over the other alternatives (that is,
universal in its own right).

• Optional —a substantial fraction of names include this concept, but others
do not contain anything related. Example: the concept “per” in Figure
1. This reflects a difference of opinions about whether something is worth
including at all.

• Rare — a relevant concept that is used by only a small fraction of the
names. This is a special case of an optional concept, where the prevailing
consensus is that it is not worth using. Example: “number” in Figure 1.

Note that this is slightly different from the classification used by Regev et al.,
which was based only on frequency and disregarded semantics [34].

A possible question is whether to keep correlated concepts separate: should
we perhaps unite them into a single more specific concept? For example, in
Experiment 1 names given for the constant GLOBAL A always included the two
concepts of “index” and “contact info” together. This could be interpreted
as reflecting the joint concept of “location of contact info”. However, upon
reflection it seems better to retain the distinct concepts, as this facilitates a
more precise analysis of concepts and the words that represent them. This is
especially true if there are any instances where not all the constituent concepts
are indeed used together.

6. Results on Name Use and Structure

The following subsections describe the results of our reproduction of the
study of Feitelson et al. [22]. The first two subsection answer Research Question
RQ1, and Section 6.3 answers RQ2.

6.1. Name Reuse

We start with a reproduction of the analysis of name use as done in the
original study of Feitelson et al. [22]. Table 1 summarizes the results regarding
the variability of names, using the metrics of focus and diversity defined above.
It also shows the estimated probability that two developers use the same name
(denoted P2hit), using the formula from the original study.

Figure 2 shows the cumulative distribution functions (CDFs) of the diversity
and focus results across all variables in both experiments. They are amazingly
similar to the CDFs found in the original study, indicating that the mix of
variables with different levels of focus and diversity is similar in experiments
performed at different times and using different methodologies. The focus tends
to be low, with the most popular name used in between 6–45% of the responses.
The diversity tends to be higher, with 40–90% of the names given by experiment
participants being different from each other.

Figure 3 shows the CDF of P2hit results. Again this is very close to the
distribution obtained in the original study. P2hit tends to be low, and the

12

Table 1: Results of name reuse for all the variables in both experiments. N : number of answers
regarding this variable; Diff: number of different names given; Divers=Diff/N : diversity of
names; Max: maximal answers giving the same name; Focus=Max/N : focus, the probability
of the most popular name; P2hit: estimated probability of two participants using the same
name. Compare with Table 1 of [22].

Exp Variable N Diff Divers Max Focus P2hit
exp1 GLOBAL A 71 46 0.647 11 0.154 0.0450

GLOBAL B 70 29 0.414 32 0.457 0.2265
GLOBAL C 70 38 0.542 8 0.114 0.0506
GLOBAL D 71 36 0.507 17 0.239 0.0890
a 69 29 0.420 27 0.391 0.1837
b 70 26 0.371 28 0.400 0.1832
c 67 35 0.522 13 0.194 0.0701
d 63 35 0.555 8 0.126 0.0531
e 64 20 0.312 22 0.343 0.1552
f 72 58 0.805 4 0.055 0.0231
g 63 18 0.285 27 0.428 0.2149
h 63 37 0.587 19 0.301 0.1080
m 63 49 0.777 5 0.079 0.0284
n 72 31 0.430 32 0.444 0.2129
o 64 50 0.781 6 0.093 0.0307
p 66 31 0.469 28 0.424 0.1942
q 61 24 0.393 19 0.311 0.1308
r 63 18 0.285 21 0.333 0.1751
s 65 30 0.461 26 0.400 0.1791
t 62 25 0.403 35 0.564 0.3277

exp2f1 A 45 32 0.711 4 0.088 0.0409
B 45 36 0.800 4 0.088 0.0350
C 43 32 0.744 8 0.186 0.0578
D 44 27 0.613 7 0.159 0.0671
E 42 37 0.880 3 0.071 0.0306

exp2f2 A 44 33 0.750 7 0.159 0.0526
B 43 38 0.883 4 0.093 0.0319
C 44 38 0.863 3 0.068 0.0309
D 44 31 0.704 5 0.113 0.0464

exp2f3 A 44 33 0.750 3 0.068 0.0351
B 43 36 0.837 3 0.069 0.0319
C 44 24 0.545 11 0.250 0.1012
D 44 35 0.795 5 0.113 0.0382
E 44 21 0.477 18 0.409 0.1931
F 43 31 0.720 8 0.186 0.0600

13

fraction of responses

0 0.2 0.4 0.6 0.8 1

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

0

20

40

60

80

100

focus

diversity

focus

diversity

Figure 2: Cumulative distribution functions of focus and diversity of names given to all
variables in both experiments. The dashed lines are the equivalent results from the original
study (Figure 6 of [22]).

P2hit

0 0.2 0.4 0.6 0.8 1

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

0

20

40

60

80

100

Figure 3: Cumulative distribution function of P2hit for all variables in both experiments.
The dashed line is the equivalent result from the original study (Figure 8 of [22]).

median is only 6.0% probability that two subjects would choose the same name.
The main divergence from the results of the original study is in the tail of the
distribution. In the original study there were two cases where a large fraction
of the subjects chose exactly the same name. These were cases where a single
short word was the obvious choice. In the present experiments there was only
one such case, but with a much milder effect.

To summarize, our results in the current experiments closely match the
results from the original study in terms of the distribution of names.

14

exp1

variable name length

0 5 10 15 20 25 30 35

n
u
m

b
e
r

o
f
in

s
ta

n
c
e
s

0

25

50

75

100

125

150

175

6 words

5 words

4 words

3 words

2 words

1 word

exp2

variable name length

0 5 10 15 20 25 30 35
n
u
m

b
e
r

o
f
in

s
ta

n
c
e
s

0

25

50

75

Figure 4: Histograms of variable name lengths for all variables in both experiments, with
partitioning into words. Compare with Figure 4 of [22].

6.2. Name Lengths

We also compared the distributions of lengths of names in the reproduction
experiments with the distribution of name lengths in the original study. The
histograms of lengths are shown in Figure 4. The longest name seen was po-
tential winners contact and score list (in Experiment 1), which is composed of 6
words and has 35 characters (excluding the underscores).

The distributions seen in Figure 4 are pretty similar to that of Figure 4 in
the original study. The differences are:

• The names are generally shorter. In the original study the average length
was 11.8 letters, and in the current experiments it was 9.8 letters. Com-
paring the histograms of the two experiments, it is also obvious that the
names in Experiment 2 tended to be shorter than those in Experiment 1.
Moreover, there were many more single-word names: 48% in Experiment
2, 35% in Experiment 1, but only 22% in the original study. A possi-
ble explanation for these differences is that the reproduction experiments
contained concrete and short codes. Experiment 2 in particular was com-
posed of short independent functions. Thus the scope of the naming was
much smaller, allowing participants to use shorter names.

• The distribution can be divided into single-word names and multi-word

15

name length [characters]

0 5 10 15 20 25 30 35

c
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

0

20

40

60

80

100

inexperienced

students (N=165)

experienced

developers (N=690)

Figure 5: CDFs of variable name lengths for experienced developers as opposed to inexperi-
enced students. N refers to the number of names given. Compare with Figure 5 of [22].

names. In the original study these formed two distinct modes, but in
the reproduction they are adjacent. The single word names are mostly
3–7 letters long, wider than the 4–5 letters of the original study (which
had an especially sharp peak of 4-letter names). We do not have a good
explanation for this difference. The multi-word names are mostly 8–16
letters long in both the original study and in the reproduction.

We note that the distribution of lengths in all these experiments (including
the original study) are not identical to the distribution seen in real production
code: real code has many more single-letter variable names [9]. These usually
reflect various programming idioms, such as using i for loop indices. As our
experiments do not ask for names for such indices it is not surprising that
we see very few single-letter names. In the original study, which was based
on descriptions of scenarios, there were only 2 such names. In the replication
experiments, which are based on actual code, there were 26 (after removing
cases where the name was the same as the letter that represented the variable
in the experiment). Most were in Experiment 2, for example in a local variable
within a list comprehension construct.

Another interesting result obtained in the original study was an interaction
between demographics and name length: it was found that experienced devel-
opers tend to give slightly longer names than inexperienced students. At the
same time, it was also found that the distributions of name lengths produced
by males and females were identical. The same results were reproduced in the
current experiment. Experienced developers, defined as those with at least 5
years of experience, created names composed of 1.80 words on average, with an
average length of 9.73 letters. First degree students with at most 2 years expe-
rience created names composed of 1.62 words on average, and with an average
length of 7.89 letters. The cumulative distribution functions (CDFs) of lengths
are shown in Figure 5. A CDF that is lower and shifted to the right indicates a

16

exp1 variable GLOBAL C

0 0.2 0.4 0.6 0.8 1

Maximum

Number

Reward

Each

VarType

Question

Per

Correct

Answer

Score

Frequency

exp1 variable a

0 0.2 0.4 0.6 0.8 1

Contact

Question

Actual

Count

Information

VarType

Participant

Answer

Frequency

Figure 6: Example variables with varied concepts.

distribution of higher values. As can easily be seen, the distribution represent-
ing experienced developers dominates that of students. This result was found to
depend on the identification of students — inexperienced developers who were
not students were practically indistinguishable from experienced ones.

6.3. The Concepts in Names

Our main extension over the original study is in a deeper analysis of the con-
cepts embedded in names, that is of the semantics of the words which compose
the names. This answers Research Question RQ2. It is based on identifying the
concepts represented by the different words in the names, as described above
in Section 5. We then drew a histogram of the frequency in which all the con-
cepts in all the names appear. This showed concentrations near the two ends
— very many concepts that appear only infrequently, and some that appear a
lot. Based on this we defined universal concepts to be those that appear in at
least 85% of the names, and rare ones to be those that appear in up to 15%.
Concepts that appear in between 15% and 85% of the names are optional.

Figure 6 shows two examples where there were concepts of many different
types. GLOBAL C in Experiment 1 is a constant representing the number of
points given for each correct answer in the quiz. Names given to this constant
include correct answer score, points per question, and more (as was shown in Fig-
ure 1). The concept of “score”, which also includes the word “points” and the
abbreviation “pts”, was universal: it appears in 95% of the names. Interestingly,
some of the participants ascribed the score to the question, and others to the
answer. The concepts of “question” and “answer” where therefore alternatives,
and never appeared together in the same name. The concept of “correct” was
optional — many but not all participants specified that the points are specifi-
cally given to correct answers and not just any answer. In addition there were
a number of rare concepts, such as specifying that this is a “number” of points,
or that its type is a “constant”.

The other example is the variable a, which represents a single participant’s
quiz that is being processed. The names given to this variable universally in-

17

cluded the concept of “answers”, which appeared in 92% of the names. There
were two optional concepts describing these answers. One indicated that the
answers belong to a “participant” (37% of the names). The other indicated that
the type was a “list” of answers (15%). A small number noted that the quiz
also included “information”, meaning the participant’s email, and not only the
answers to the questions.

When analyzing names, the most prominent concepts are the universal
ones. But sometimes they stand out more than others. The data for all variables
in both experiments is shown in Table 2. The top part shows variable with
concepts identified as universal. In most cases the next most frequent concept
appears with a significantly lower frequency. But when there are no universal
concepts, and especially when the top concept is not very frequent, there are
usually other concepts with similar frequencies.

As the examples in Figure 6 show, there were two main types of relationships
between concepts. One was pairs of concepts that were strongly correlated,
and nearly always appeared together. These are simply cases where the desired
semantics are best expressed by a phrase. Examples we saw are listed in Table
3. In some cases both members of the pair appeared in the majority of the
names. Note that even when the number of appearances of two concepts is
very close, it does not necessarily mean that they always appear together. It
could be that there are similar numbers of instances where one appears and
the other does not, in both directions. A case in point is the variable o, where
the concept “winner” appeared 39 times and the concept “index” appeared 40
times, but they appeared together only 24 times. These concepts were therefore
not considered correlated.

The other common relationship was alternatives. These are shown in Table
4. The top one is in GLOBAL A, which represents the number of questions in the
quiz. This has a dominant concept representing “number”. Three alternative
concepts describe what it is that the number represents. The most commonly
used denoted “questions”. A few others used an opposite concept denoting
“answers”. And a third group used a concept of “parts” of a whole, meaning
parts of the quiz. Another example is GLOBAL D, where the dominant concept
representing those who won was “winners”, but in a few cases this was replaced
by “random”, which is how they were selected, or “prize”, which is what they
got.

The defining characteristic of alternatives is that they do not appear to-
gether in the same name. However, there are isolated cases where this does
happen. For example, in GLOBAL D there was one instance of using the name
number of prize winners.

As noted above, the optional concepts were often adjectives describing some
other (possibly universal) concept. In some cases they had a technical nature:
specifying the type of the variable, e.g. that this is a “list”, or being the “current”
one. In some cases inferior choices are made. For example, the first function
of Experiment 2 uses a zip of two lists, and the items were sometimes named
“first” and “second” instead of indicating their true function.

Some of the rare concepts were even worse. For example, the second pa-

18

Table 2: Examples of universal concepts. The ones bellow the dividing line are prominent but
not universal. Tot: total names given for this variable; Top Con: the most frequent concept;
Next Con: the next most common concept; N : names including each concept; Freq: frequency
of concept; Ratio: of frequencies of top two concepts.

Exp Var Tot Top Con. N Freq Next Con. N Freq Ratio
2f3 E 44 Word 44 100% String 6 13% 7.73
1 G C 70 Score 67 95% Answer 29 41% 2.32
1 p 66 Place 63 95% Winner 14 21% 4.54
1 d 63 Answer 59 93% VarType 38 60% 1.55
1 g 63 Best 59 93% Score 55 87% 1.07
1 a 69 Answer 64 92% Participant 26 37% 2.50
1 b 69 Score 64 92% Total 16 23% 4.02
1 n 72 Winner 66 91% VarType 8 11% 8.31
1 G B 70 Answers 64 91% Correct 54 77% 1.18
1 e 64 Contact 58 90% Participant 16 25% 3.62
1 r 63 Name 57 90% Winner 18 28% 3.23
1 c 67 Answer 60 89% VarType 37 55% 1.62
2f2 A 44 Length 39 88% String 15 34% 2.60
1 t 62 Winner 54 87% VarType 10 16% 5.46
2f3 C 44 Separator 38 86% Char 8 18% 4.80
1 s 65 Message 54 83% VarType 13 20% 4.17
1 q 61 Mail 49 80% Winner 16 26% 3.09
1 G D 71 Number 56 78% Winner 54 76% 1.03
2f3 D 42 Words 33 78% Titled 17 40% 1.96
2f3 B 43 Case 33 76% First 21 48% 1.59
2f1 D 42 Item 32 76% First 11 26% 2.94
1 h 63 Participant 45 71% Result 31 49% 1.45
1 G A 71 Number 53 74% Question 47 66% 1.12
2f3 A 44 String 32 72% Input 13 29% 2.50
2f2 C 44 Char 32 72% Random 20 45% 1.61
2f2 B 42 Char 27 64% Pool 19 45% 1.43
1 o 64 Index 40 62% Winner 39 60% 1.04
1 m 63 Best 39 61% Participant 28 44% 1.39
2f1 A 42 VarType 26 61% First 19 45% 1.36
2f1 C 42 Result 25 59% Filtered 14 33% 1.80
2f1 B 45 VarType 26 57% Filter 22 48% 1.19
2f2 D 44 VarType 24 54% Output 21 47% 1.15
1 f 72 Participant 35 48% Score 27 37% 1.31
2f3 F 43 Output 21 48% String 21 48% 1.01
2f1 E 41 Item 19 46% Include 11 26% 1.78

19

Table 3: Examples of pairs of concepts that nearly always appear together. Tot: total names
given for this variable; Con 1/2: the concepts; N : names including each concept; Both: the
degree of overlap.

Exp Var Tot Con. 1 N Con. 2 N Both
1 GLOBAL A 71 number 53 question 47 42
1 GLOBAL B 71 correct 54 answer 64 53
1 GLOBAL C 71 correct 28 answer 29 23
1 GLOBAL D 71 number 58 winner 54 46
1 g 64 best 59 score 55 55

Table 4: Examples of alternative concepts used in names. Tot: total names given for this
variable; Alt: the alternatives; N : names including each alternative.

Exp Var Tot Alt. 1 N Alt. 2 N Alt. 3 N
1 G A 71 question 47 part 12 answer 4
1 G C 71 answer 29 question 20
1 G D 71 winners 54† prizes 7† random 4
1 f 72 score 27 results 13 answers 6
1 b 71 score 64 results 3
1 m 63 participant 28 winner/ 23

candidate
1 t 63 winner 54† chosen 5†

1 q 63 email 49 contact/ 9
info

2f1 A 45 list 26‡ values 11‡

2f1 C 45 result 25† filtered 14†

2f2 B 45 chars 27‡ alphabet 13‡

2f2 C 45 random 20‡ list 18‡

2f2 D 45 output 21 random 18
2f3 F 44 result 21† edited 15†

†with one overlap; ‡with few overlaps.

rameter of the first function in Experiment 2 was a map to filter by. Two
respondents chose to call it non empty, which is indeed checked in the code, but
obviously not its intent. As another example, the variable denoting the ranking
of winners for printing the notification message was most often named related
to “place”, but a couple just used “string”.

finally, GLOBAL A also served to extract the email address of quiz respon-
dents, which was included in the quiz results immediately after their answers to
the quiz questions (so in the array of results the answers were in cells 0 through
GLOBAL A-1, and the email was in cell GLOBAL A). 3 of the 71 participants
gave names based on this use of the constant rather than on its use for the
number of questions in the quiz. This is an example of why it is a bad idea to
use such dual-purpose constants. It would have been better to create a separate
constant for the email, which could be defined to be equal to the one reflecting

20

max concept frequency [%]

40 50 60 70 80 90 100

d
iv

e
rs

it
y

0

0.2

0.4

0.6

0.8

1

CC=−0.866

Figure 7: Relationship of maximal concept frequency and names diversity for all variables in
both experiments.

the number of questions.
Perhaps the most interesting variables are those with no clear pattern. These

exhibit a large diversity and many alternate or optional concepts, but no con-
sensus regarding the main ones and how to express them. This is demonstrated
in Figure 7, which shows that diverse names are inversely correlated with hav-
ing a dominant concept. Characterizing them may therefore shed light on what
causes difficulties in naming.

6.4. Reasons for Name Choices

Another extension over the original study was a short survey regarding the
considerations used in naming, that was included in Experiment 1. Participants
were presented with a series of statements, and were asked to register their
agreement on a 5-point scale. The results of this survey are shown in Table 5.
The two top reasons cited where that names should describe their purpose and
promote the understandability of the code. Keeping names concise by avoiding
extra words received a relatively low score. It therefore seems that developers
prefer descriptiveness over brevity.

7. Reproduction Experiment 3

Our third experiment reproduces the second experiment of the original study,
where participants were instructed on using the 3-step model to construct
names. As one of the results was that the names they created were longer
than when they did not receive such instruction, we added another treatment
in which we suggested to participants that long names are better. This enables
a check whether using the model explicitly actually makes a difference, or per-
haps similar results may be achieved with a simpler intervention — answering
Research Question RQ3.

21

Table 5: Results of survey in Experiment 1 regarding reasons for name choices. µ: the average
of the answers.

ensure the names
describe their purpose

µ = 4.6

1 2 3 4 5
0

20

40

60

80

P
er
ce
nt
s

make the code
understandable

µ = 4.6

1 2 3 4 5
0

20

40

60

80

P
er
ce
nt
s

keep the names as
task-specific as possible

µ = 4.0

1 2 3 4 5
0

20

40

P
er
ce
nt
s

make the names distinct
from each other

µ = 3.8

1 2 3 4 5
0

20

40

P
er
ce
nt
s

include all the relevant
details in each name

µ = 3.6

1 2 3 4 5
0

20

40

P
er
ce
nt
s

make the names good
English sentences or
expressions

µ = 3.4

1 2 3 4 5
0

20

40

P
er
ce
nt
s

keep the names concise
(avoid extra words)

µ = 3.3

1 2 3 4 5
0

20

40

P
er
ce
nt
s

keep the names as
general as possible

µ = 2.6

1 2 3 4 5
0

20

40

P
er
ce
nt
s

include an indication of
the variable’s type

µ = 2.5

1 2 3 4 5
0

20

40

P
er
ce
nt
s

7.1. Experimental Materials

The experimental materials were based on 5 independent programming sce-
narios, similar to those used in the original study. Each scenario presented a
programming problem. As in the original study, we attempted to create non-
trivial but general problems that any programmer can understand and relate

22

to. Two of the scenarios were taken from the original study: the minesweeper
game and the mouse looking for cheese in a maze. Three scenarios were new:
a library system, a four-in-a-row game, and a friend-bring-friend campaign in
a high-tech company. In each case the description of the scenario was followed
by 3–5 questions about names of variables that may be expected to appear in
a program that solves this problem. For example, in the library scenario par-
ticipants were asked to name the constant specifying the maximal number of
books that a subscriber may loan, the Boolean field in a book object specify-
ing whether the book is currently on loan, and the data structure holding the
library’s subscribers. There were a total of 19 such questions in all 5 scenarios.
No actual code was presented and no code was written.

The descriptions of the scenarios were given in Hebrew, as was done in the
original study. As shown there, this reduces the accessibility bias and reduces the
risk that participants will be influenced by the wording used in the descriptions
[22].

7.2. Experiment Structure

The experiment was composed of three sections. The first section introduced
the experiment as dealing with code comprehension. It asked participants to
provide their initial ideas and not look for “correct” answers. It also stated that
no personal data will be collected and that the results will be used for research
purposes only, that the experiment is expected to take around 10 minutes, and
that continuing to the questionnaire constitutes consent to participate.

The second section contained demographic background questions. We asked
about participants’ sex, age, years of programming experience, and whether
they are students. Those answering that they are students were also asked
about their degree and study year.

The final section of the experiment contained the 5 scenarios and the naming
questions about each one. This section started with an explanation that sev-
eral programming scenarios will be presented in the following pages, and that
participants are requested to give names to variables that take part in solutions
to these scenarios. The difference between the three treatments was limited to
additional details that appeared after this explanation. In one treatment noth-
ing was added beyond the above statement. The second treatment noted that
naming is important, and that research has shown that long detailed names
which explain the role of the variable make the code more understandable. The
third treatment presented the 3-step model of naming, with an example (the
same example about the display of the score in a bowling alley as in the original
study), and asked participants to use this model when giving names.

The 5 scenarios and their questions followed. In the third treatment a short
one-line reminder of the 3-step model was shown at the top of each scenario.

7.3. Experiment Execution

This experiment was conducted online using the Qualtrics platform. Partic-
ipants were recruited via personal contacts and solicitation in our department’s

23

computer labs. As added motivation they were invited to enter a raffle for a
200 NIS gift card. There were 150 participants in total, divided equally among
the three treatments. 59% were male and 41% female. Their programming
experience (excluding studies) ranged from 0 to 28 years, with 37% having 0–2
years, another 37% with 3–4 years, and 24% with 5 years or more. In this ex-
periment 91 of the participants (61%) were active students, of which 62 where
BSc students in their 3rd or 4th year, and 9 were graduate students.

The treatment shown to each participant was chosen at random. All par-
ticipants received the same 5 scenarios, but in a random order, so as to reduce
threats related to learning and fatigue.

8. Judging Name Quality

The goal of this experiment was to see if the interventions — being instructed
about the 3-step naming model, or that longer names are better — lead to the
creation of better names. Note that when we speak of name quality we do
not mean whether they adhere to style conventions [16, 17]. Rather, we are
interested in name quality in terms of their semantics in the context of the
different scenarios. To assess this we recruited 6 external judges, who were not
involved in the experiment in any way, and devised two alternative protocols
for grading and ranking the names. Each protocol was executed by 3 judges.

The judges were 4 males and 2 females, with an average of 7.8 years of
programming experience (well above the average of the participants in the ex-
periment). They were paid 500 NIS for their work (approximately $150). They
were assigned at random to either of the two judging protocols. The judges
assigned to each protocol all received exactly the same tasks, but they worked
individually, without being exposed to what the other judges were doing.

8.1. Name Normalization

The first step in the analysis was to normalize the names. The normal-
ization consisted of converting them to all lowercase, with words separated by
underscores (that is, to snake case format). However, word separation was only
applied when the participant separated the words. For example, if the partici-
pant wrote boardsize as one word, it was not separated into board size.

Following the normalization all repetitions were removed. This left us with
3 pools of unique names for each variable in each scenario, containing the names
given under the 3 treatments. Our goal is to find whether there exists a difference
in quality between the names in these 3 pools, and if so, which treatment led to
the best names.

A possible threat to the comparison between names is that some names are
very similar to each other. Such small differences can have little if any semantic
meaning, and therefore may not reflect a real difference in quality. We therefore
tagged names that had a Levenshtein distance of 2 or less, meaning that one
name could be transformed into the other by changing up to 2 letters. Such
tagged pairs were not compared to each other in the data presented to the
judges.

24

8.2. Ranking Protocol

The ranking protocol was an extension of the judging protocol used in the
original study. In that study judges were presented with pairs of names, one from
each treatment, and asked to judge which they thought was the better name
in the context of the given programming scenario. In the current experiment
judges were presented with triplets of names, one from each treatment.

The data was presented to the judges in the form of an Excel workbook. The
workbook contained 19 sheets, one for each variable from one of the scenarios.
Each sheet started with the description of a scenario and a question about a
variable. These description and question were exactly the same as those shown
to participants in the experiment. Following was a table with 4 columns and 40
rows. In each row, the first 3 columns contained different names given to this
variable by participants in the 3 different treatments. The judges were asked to
decide which of the 3 names is the best, in the sense that it provides the best
aid to understand the variable’s role, and to copy it to the 4th column. The
tables shown to the 3 judges contained exactly the same 40 triplets of names,
but the order of the rows was randomized differently for each judge.

This protocol is based on a direct comparison of names given under the 3
treatments. The treatment that leads to higher quality names is identified as
the one whose names were most often selected as the best names.

8.3. Grading Protocol

The second judgment protocol is based on grading individual names, rather
than on comparing names to each other.

The data was again presented to the judges in the form of an Excel workbook,
with 19 sheets, one for each variable from one of the scenarios. Each sheet again
started with the description of a scenario and a question about a variable, as in
the previous judging protocol. Following was a table, where each row contained
one variable name from one of the treatments. All the names given under all of
the treatments were included, so the number of rows was different in each case.
The names were presented in a random order, which was different for each of
the 3 judges. The judges were asked to give a grade to each name, on a scale of
1 to 10. 1 meant that the name does not help at all to understand the variable’s
role, and 10 meant that if helps very much to understand the variable’s role.

This protocol assesses the quality of each name individually, without any
direct comparisons between them. The treatment that leads to higher quality
names is identified as the one whose names were given higher grades.

9. Name Quality Results

The 3 judges who performed the ranking protocol needed to select the best
name of 3 from 40 triplets of candidates from 19 naming questions, for a total
of 760 triplets. One judge did not provide an answer in one case, so we were left
with 759 results. In 477 of them (which are 62.8%) all 3 judges agreed on the
best name. In an additional 277 (36.4%) 2 judges agreed. So in total a majority

25

grade

1 2 3 4 5 6 7 8 9 10

c
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

0

20

40

60

80

100

no explanations

long names

3−step model

Figure 8: CDFs of grades given by the judges to names generated under the three treatments.
Grades given to names generated by participants who were coached about the 3-step model
for name formation tend to be higher.

of the judges (2 or more) agreed in a whopping 99.3% of the cases. The analysis
focused on these agreed names.

Assigning the chosen names to treatments is complicated by the fact that
some names were actually used by participants in more than one treatment.
Specifically, 60.9% of the chosen names could be uniquely assigned to a single
treatment, but 20.4% appeared in 2 treatments, and 18.6% were used in all 3
treatments. In each triplet of candidates such names represented one specific
treatment, but in principle they could also have represented another treatment.
We therefore assigned scores inversely to the number of treatments in which a
name appeared. Thus chosen names that were used in only one treatment gave
one point to that treatment. Chosen names that were used in 2 treatment gave
1
2 a point to each of these treatments, and names that were used in all 3 gave 1

3
of a point to each.

With this accounting, names representing the 3-step model treatment were
chosen as the best in 41.3% of the cases. Names representing the treatment
where participants were told that long detailed names are better were chosen in
30.9% of the cases. And names representing the treatment where participants
received no specific instructions were chosen in the remaining 27.7% of the
cases. Thus the 3-step model treatment names were chosen more often than
names from either of the other two treatments, but not a majority of the time.

The results of the grading protocol are shown in Figure 8. This graph shows
CDFs of the grades given to names from the 3 treatments. It is easily seen that
two of the treatments — where participants received no specific instructions, and
where they were told that long detailed names are better — produced essentially
the same distribution of grades. The third treatment, where participants were
instructed about the 3-step model for name formation, led to a distribution that
is shifted to higher values. The average grades in the first two distributions were
5.59 and 5.60; in the third it was 6.22 — 11% higher.

26

name length [letters]

0 5 10 15 20 25 30

c
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

0

20

40

60

80

100

no explanations

long names

3−step model

name length [words]

1 2 3 4 5 6

c
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

0

20

40

60

80

100

Figure 9: CDFs of variable name lengths for names generated under the three treatments.
Names generated by participants who were coached about the 3-step model for name formation
tend to be longer.

Another result from the original study was that judges tended to prefer
longer and more detailed names. Given the grading of names which we per-
formed here (and did not exist in the original study) we can analyze this in
two steps. First, Figure 9 shows the distribution of name lengths for names
given under the 3 treatments. The results are essentially similar to the results
regarding the grades. In the first two treatments the distributions of lengths are
essentially the same. In the 3-step model treatment the distributions are shifted
to longer lengths, both when length is quantified using the number of letters
and when it is quantified using the number of words in the name. For exam-
ple, when given no specific instructions and when instructed about using long
detailed names, 26.0% and 23.3% of the names that the participants produced,
respectively, contained only one word. In the third treatment, where they were
instructed about the 3-step model, only 9.8% of the names had only one word.
The average lengths in the first 2 treatments were 12.9 and 12.5 letters and 2.23

27

name length [words]

1 2 3 4+

g
ra

d
e

s

0

2

4

6

8

10

N=794 N=1963 N=1254 N=708

Figure 10: Distributions of grades for names with different numbers of words.

and 2.24 words. In the third treatment they were 15.0 letters and 2.57 words:
2.1–2.5 letters longer and 0.33 words longer.

The above results show that the 3-step model treatment produced longer
names and names that received higher grades. But they do not show that
these two results are related. The second step of the analysis fills this gap by
looking at the distribution of grades given to names with different lengths, from
all three treatments together. The results are shown in Figure 10. Obviously
grades correlate with length, and names with more words receive higher grades.
The correlation coefficient is 0.49, and performing a linear regression indicates
that each additional word increases the grade by 1.14 points on average.

Together these analyses reproduce and add details to the results of the orig-
inal study. We reproduce the result that instructing participants about the
3-step model for naming facilitates the creation of better names. We extend
this by also showing that a simpler intervention, where participants are only in-
structed that longer more detailed names are better, does not produce such an
effect. We also reproduce the result that using the model leads to the creation of
longer names, and directly show that longer names receive higher grades when
judged on how much they help to understand a variable’s role.

The implication for practice is that coaching about the 3-step model may
be expected to help developers to create better names. Just advising them that
longer detailed names are better is not expected to deliver improved perfor-
mance. Likewise, mechanical aids such as IDE plugins that check name lengths
will probably not work. The 3-step model works because it guides developers
in how to think about the names.

10. Threats to Validity

The experiments reported here have an exploratory nature, rather than try-
ing to establish causality. Therefore the main threats to validity concern con-
struct validity and external validity. More generally, reproduction is a major ve-

28

hicle for addressing threats to validity. In this sense all our current experiments
are intended to verify the validity of the observations made in the original study
of Feitelson et al. [22]. In addition, we use independent complementary experi-
ments, so analogous results can further reduce threats. For example, Experiment
1 may suffer from threats to internal validity due to writing experiment-specific
code and influencing names via functions names. But these threats do not exist
in Experiment 2. So if the results of Experiment 1 match those of Experiment
2, this is evidence that the threats did not materialize.

One source of threats to construct validity is that an experiment is not sim-
ilar to real-life coding. Participants may invest less effort, as witnessed by some
superficial names they gave (reflecting technicalities rather than substance).
Such names are probably less common in real development. Also, these ex-
periments employ relatively short blocks of code, which justify using relatively
short names. In real code names can be much longer [4]. We therefore need to
perform experiments in such settings too. Another threat is that maybe some
participants happened to take part in more than one of the experiments, and
their experience with one could affect their behavior in another. We can not
know for sure, as participation in the experiments was anonymous.

One of our goals was to avoid an accessibility bias by using a general Hebrew
description, and renaming in actual code rather than specific descriptions of
variables. But the function names in Experiment 1 could compromise this. For
example, one helper function was named process the answers of one participant,
and the word participant figured prominently in names referring to the people
who participated in the quiz. However, the word answer was not used much, and
the word question was very dominant, despite not having been mentioned by us.
Likewise, regarding the helper function select who get prizes, the word prize was
seldom used, while the word winner was omnipresent. These observations testify
that our study participants understood the code and used their own words, and
that accessibility was probably not a decisive factor.

Our analysis of the concepts in names is based on personal judgment. For
example, in the second function of Experiment 2, the parameter is the length of
the random string to generate. Names given to this parameter often included
“length” or “number”, but never both together. In this context we decided to
consider them as representations of the same concept. But separating them into
different concepts and considering them to be alternatives is also possible. We
reduced this threat by having two authors reach a consensus about the concepts,
but independent analyses may reach different conclusions. The best approach
to validate our results is for other research groups to replicate these experiments
using their own experimental materials and their own analysis.

Likewise, the analysis of name quality in the third experiment is also based
on judgment. We mitigated the risks involved by employing multiple exter-
nal judges who worked independently, and by using two alternative judgment
protocols.

As for external validity, our experimental subjects are in general not na-
tive English speakers. Hence they may fashion names that may sound jar-
ring to native English speakers, for example won participants rather than win-

29

Table 6: Reproduced results from Feitelson et al. [22].

Result Rep? Details
Distribution of name lengths partly names were shorter

distribution was not bimodal

Division of names to words partly there were more single-word
names

Experienced developers give
longer names

yes inexperienced need to be
students

Sex does not affect name lengths yes

Distribution of focus of names yes

Distribution of diversity of
names

yes

Distribution of probability to
give same name

yes

Judges tend to agree which name
is better

yes near universal agreement of
majority

Judges prefer names from 3-step
model

partly conditions were different (3
choices rather than 2)

Judges prefer longer names yes based on correlation with grades

ning participants. They may also use linguistic anti-patterns like a singular name
for an array [5]. This affects the distributions we see, and causes them to be
more diverse, because more variants of words are used, and perhaps also more
questionable concepts. Note, however, that the majority of software developers
in the world are not native English speakers, so our results may actually be
generally representative. However, comparing the names produced by native
English speakers and non-native-English speakers is an interesting avenue for
further research.

11. Conclusions

We reproduced many of the results from Feitelson et al. [22], as summarized
in Table 6, thereby answering Research Question RQ1. Importantly, our repro-
duction used alternative experimental methodologies, notably using renaming
of variable names in code with meaningless names, as opposed to giving names
based on a verbal description of a scenario. This corroborates the validity of
the results beyond the use of an exact replication.

We also performed several extensions to the experiments and analyses of
the original study. For example, we suggest a more detailed classification of
concepts based on their frequency and their relationship to each other. This
can be used to explain the sources of naming variations (Research Question
RQ2). We also add a third treatment and a new judging methodology to the

30

intervention experiment. This shows that merely suggesting that longer names
are better does not affect naming behavior, and that instruction about the 3-
step model is required to generate names that receive higher grades (answering
Research Question RQ3).

The goal behind these experiments and analyses is to better understand
how developers choose names, and when and why naming is difficult. Our
results point where we should look for answers: we should focus our research
on variables that receive long and diverse names. Long names imply using
a multiplicity of concepts, and specifically many optional and rare concepts
rather than few universal ones. Diversity, especially as a result of a lack of a
clear pattern of dominant concepts, implies uncertainty and conflicting opinions
on what the names should be and what they should include. Together these
characteristics identify naming pain-points that stand to benefit from better
understanding and from the development of mitigation strategies.

The same considerations apply to putting these results to practical use. De-
velopers today are required to “use meaningful names”, but without any coach-
ing on how to achieve this objective. Our results suggest a possible approach
to train developers to think effectively about naming. Start by assembling a
sizable group of developers, say 20 to 30, and present them with a naming
challenge like our Experiment 1. Select names that are expected (based on the
results reported above) to exhibit high diversity, and analyze them interactively,
showing the participants how the names they had chosen can be dissected into
sets of concepts, and the differences between the chosen concepts and ways to
express them. This can lead to a discussion of the considerations involved. Why
did some of the developers in the group choose to include or exclude a certain
optional concept? What are the implications of using one or another alternative
concept? Is there any value in adding rare concepts? Point out warning sig-
nals, such as concepts that describe technical issues, which indicate superficial
naming and a need for improvement. Finally, introduce the 3-step model for
forming names: selecting the concepts to include, the words to represent them,
and the order of these words. Such a training session can equip developers with
guidance on how to think about naming, and inform them on how others see
these issues, thereby improving the use of names to convey information.

Experimental Materials

Complete experimental materials and results are available on Zenodo at DOI
10.5281/zenodo.10665377.

References

[1] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq: Generating se-
quences from structured representations of code”. In 7th Intl. Conf. Learn-
ing Representations, May 2019.

31

[2] R. S. Alsuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and
J. I. Maletic, “On the naming of methods: A survey of professional de-
velopers”. In 43rd Intl. Conf. Softw. Eng., pp. 587–599, May 2021, DOI:
10.1109/ICSE43902.2021.00061.

[3] H. Aman, S. Amasaki, T. Yokogawa, and M. Kawahara, “A large-scale
investigation of local variable names in Java programs: Is longer name
better for broader scope variable?” In 14th Quality of Inf. & Commun.
Tech., pp. 489–500, Sep 2021, DOI: 10.1007/978-3-030-85347-1 35.

[4] N. Amit and D. G. Feitelson, “The language of programming: On the
vocabulary of names”. In 29th Asia-Pacific Softw. Eng. Conf., pp. 21–30,
Dec 2022, DOI: 10.1109/APSEC57359.2022.00014.

[5] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them”. Empirical Softw. Eng.
21(1), pp. 104–158, Feb 2016, DOI: 10.1007/s10664-014-9350-8.

[6] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y.-G. Guéhéneuc, “REPENT: Analyzing the nature of identifier re-
namings”. IEEE Trans. Softw. Eng. 40(5), pp. 502–532, May 2014, DOI:
10.1109/TSE.2014.2312942.

[7] V. Arnaoudova, L. Eshkevarti, R. Oliveto, Y.-G. Guéhéneuc, and G. Anto-
niol, “Physical and conceptual identifier dispersion: Measures and relation
to fault proneness”. In 26th Intl. Conf. Softw. Maintenance, Sep 2010, DOI:
10.1109/ICSM.2010.5609748.

[8] E. Avidan and D. G. Feitelson, “Effects of variable names on comprehen-
sion: An empirical study”. In 25th Intl. Conf. Program Comprehension,
pp. 55–65, May 2017, DOI: 10.1109/ICPC.2017.27.

[9] G. Beniamini, S. Gingichashvili, A. Klein Orbach, and D. G. Feitel-
son, “Meaningful identifier names: The case of single-letter variables”.
In 25th Intl. Conf. Program Comprehension, pp. 45–54, May 2017, DOI:
10.1109/ICPC.2017.18.

[10] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif,
“The impact of identifier style on effort and comprehension”. Empirical
Softw. Eng. 18(2), pp. 219–276, Apr 2013, DOI: 10.1007/s10664-012-9201-
4.

[11] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To CamelCase or un-
der score”. In 17th Intl. Conf. Program Comprehension, pp. 158–167, May
2009, DOI: 10.1109/ICPC.2009.5090039.

[12] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informativeness
using part of speech information”. In 8th Working Conf. Mining Softw.
Repositories, pp. 203–206, May 2011, DOI: 10.1145/1985441.1985471.

[13] S. Blinman and A. Cockburn, “Program comprehension: Investigating the
effects of naming style and documentation”. In 6th Australasian User In-
terface Conf., pp. 73–78, Jan 2005.

32

[14] R. Brooks, “Towards a theory of the comprehension of computer pro-
grams”. Intl. J. Man-Machine Studies 18(6), pp. 543–554, Jun 1983, DOI:
10.1016/S0020-7373(83)80031-5.

[15] S. Butler, M. Wermelinger, and Y. Yu, “A survey of the forms of Java
reference names”. In 23rd Intl. Conf. Program Comprehension, pp. 196–
206, May 2015, DOI: 10.1109/ICPC.2015.30.

[16] S. Butler, M. Wermelinger, and Y. Yu, “Investigating naming convention
adherence in Java references”. In 31st Intl. Conf. Softw. Maint. & Evol,
pp. 41–50, Sep 2015, DOI: 10.1109/ICSM.2015.7332450.

[17] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the influence
of identifier names on code quality: An empirical study”. In 14th European
Conf. Softw. Maintenance & Reengineering, pp. 156–165, Mar 2010, DOI:
10.1109/CSMR.2010.27.

[18] B. Caprile and P. Tonella, “Restructuring program identifier names”.
In Intl. Conf. Softw. Maintenance, pp. 97–107, Oct 2000, DOI:
10.1109/ICSM.2000.883022.

[19] F. Deissenboeck and M. Pizka, “Concise and consistent naming”. Softw.
Quality J. 14(3), pp. 261–282, Sep 2006, DOI: 10.1007/s11219-006-9219-1.

[20] D. G. Feitelson, “From repeatability to reproducibility and corrob-
oration”. Operating Syst. Rev. 49(1), pp. 3–11, Jan 2015, DOI:
10.1145/2723872.2723875.

[21] D. G. Feitelson, “Reanalysis of empirical data on Java local variables with
narrow and broad scope”. In 31st Intl. Conf. Program Comprehension, pp.
227–236, May 2023, DOI: 10.1109/ICPC58990.2023.00037.

[22] D. G. Feitelson, A. Mizrahi, N. Noy, A. Ben Shabat, O. Eliyahu, and
R. Sheffer, “How developers choose names”. IEEE Trans. Softw. Eng.
48(1), pp. 37–52, Jan 2022, DOI: 10.1109/TSE.2020.2976920.

[23] E. M. Gellenbeck and C. R. Cook, “An investigation of procedure and
variable names as beacons during program comprehension”. In Empirical
Studies of Programmers: Fourth Workshop, J. Koenemann-Belliveau, T. G.
Moher, and S. P. Robertson (eds.), pp. 65–81, Intellect Books, 1991.

[24] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names take
longer to comprehend”. In 24th Intl. Conf. Softw. Analysis, Evolution, &
Reengineering, pp. 217–227, Feb 2017, DOI: 10.1109/SANER.2017.7884623.

[25] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “What’s in a name? a
study of identifiers”. In 14th Intl. Conf. Program Comprehension, pp. 3–12,
Jun 2006, DOI: 10.1109/ICPC.2006.51.

[26] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim, and
Y. Le Traon, “Learning to spot and refactor inconsistent method names”.
In 41st Intl. Conf. Softw. Eng., May 2019, DOI: 10.1109/ICSE.2019.00019.

33

[27] Q. Mi, X. Wang, and B. Chen, “How students choose names: A replication
study”. In 37th Intl. Conf. Automated Softw. Eng., art. 206, Oct 2022, DOI:
10.1145/3551349.3561174.

[28] C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,
M. W. Mkaouer, and E. Hill, “On the generation, structure, and semantics
of grammar patterns in source code identifiers”. J. Syst. & Softw. 170, art.
110740, Dec 2020, DOI: 10.1016/j.jss.2020.110740.

[29] C. D. Newman et al., “An ensemble approach for annotating source code
identifiers with part-of-speech tags”. IEEE Trans. Softw. Eng. 48(9), pp.
3506–3522, Sep 2021, DOI: 10.1109/TSE.2021.3098242.

[30] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An
empirical investigation of how and why developers rename idnetifiers”.
In 2nd Intl. Workshop on Refactoring, pp. 26–33, Sep 2018, DOI:
10.1145/3242163.3242169.

[31] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of software
readability”. In 8th Working Conf. Mining Softw. Repositories, pp. 73–82,
May 2011, DOI: 10.1145/1985441.1985454.

[32] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu,
“On the “naturalness” of buggy code”. In 38th Intl. Conf. Softw. Eng., pp.
428–539, May 2016, DOI: 10.1145/2884781.2884848.

[33] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from “big code””. In 42nd Ann. Symp. Principles of Programming Lan-
guages, pp. 111–124, Jan 2015, DOI: 10.1145/2775051.2677009.

[34] O. Regev, M. Soloveitchik, and D. G. Feitelson, “Using non-verbal expres-
sions as a tool in naming research”. In 29th Intl. Conf. Program Compre-
hension, pp. 347–357, May 2021, DOI: 10.1109/ICPC52881.2021.00040.

[35] F. Salviulo and G. Scanniello, “Dealing with identifiers and com-
ments in source code comprehension and maintenance: Results from an
ethnographically-informed study with students and professionals”. In 18th
Intl. Conf. Evaluation & Assessment in Softw. Eng., art. 48, May 2014,
DOI: 10.1145/2601248.2601251.

[36] G. Scanniello and M. Risi, “Dealing with faults in source code: Abbreviated
vs. full-word names”. In 29th Intl. Conf. Softw. Maintenance, pp. 190–199,
Sep 2013, DOI: 10.1109/ICSM.2013.30.

[37] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension”. In 26th Intl. Conf. Program Comprehension, pp. 31–40,
May 2018, DOI: 10.1145/3196321.3196332.

[38] B. Sharif and J. I. Maletic, “An eye tracking study on camelCase and
under score identifier styles”. In 18th Intl. Conf. Program Comprehension,
pp. 196–205, Jun 2010, DOI: 10.1109/ICPC.2010.41.

34

[39] A. Swidan, A. Serebrenik, and F. Hermans, “How do Scratch program-
mers name variables and procedures?” In 17th IEEE Intl. Working
Conf. Source Code Analysis & Manipulation, pp. 51–60, Sep 2017, DOI:
10.1109/SCAM.2017.12.

35

