
1

How Developers Choose Names
Dror G. Feitelson Ayelet Mizrahi Nofar Noy
Aviad Ben Shabat Or Eliyahu Roy Sheffer

Department of Computer Science
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

F

Abstract—The names of variables and functions serve as implicit
documentation and are instrumental for program comprehension. But
choosing good meaningful names is hard. We perform a sequence of
experiments in which a total of 334 subjects are required to choose
names in given programming scenarios. The first experiment shows that
the probability that two developers would select the same name is low:
in the 47 instances in our experiments the median probability was only
6.9%. At the same time, given that a specific name is chosen, it is usually
understood by the majority of developers. Analysis of the names given
in the experiment suggests a model where naming is a (not necessarily
cognizant or serial) three-step process: (1) selecting the concepts to
include in the name, (2) choosing the words to represent each concept,
and (3) constructing a name using these words. A followup experiment,
using the same experimental setup, then checked whether using this
model explicitly can improve the quality of names. The results were
that names selected by subjects using the model were judged by two
independent judges to be superior to names chosen in the original ex-
periment by a ratio of two-to-one. Using the model appears to encourage
the use of more concepts and longer names.

Index Terms—variable naming, code comprehension

And out of the ground the Lord God formed every beast
of the field, and every fowl of the air; and brought
them unto Adam to see what he would call them:

— Genesis 2:19

1 INTRODUCTION

The names of variables and functions are a major part of
programs’ source code. In large open source projects about
a third of the tokens are identifiers, and they account for
about two thirds of the characters in the source code [12].
But the importance of names is not based only on their
volume. Their importance stems from the fact that they
serve as implicit documentation, conveying to the reader
the meaning of the code and the intent of the developer
who wrote the code [9], [17]. In fact, sometimes names are
the only documentation. This is even advocated as part of
the “clean code” approach, which states “if a name requires
a comment, then the name does not reveal its intent” [28].

And indeed, it is generally agreed that meaningful
names are instrumental aids for program comprehension
[17], [8], [34]. Programming courses therefore routinely

Dror Feitelson holds the Berthold Badler chair in Computer Science. This
research was supported by the ISRAEL SCIENCE FOUNDATION (grants
no. 407/13 and 832/18).

require their students to “use meaningful names”. Books
on programming may devote entire chapters to the issue
of naming (e.g. McConnell’s Code Complete [29, chap. 11]
or Martin’s Clean Code [28, chap. 2]). But there has been
relatively little actual research on what “meaningful names”
means [26], and how to ensure that names are meaningful.

One of the reasons that naming is problematic is that
names derive from natural language, typically from English.
But natural language is inherently ambiguous, including,
for example, synonyms (different words that mean the
same thing), polysemy (words with multiple meanings), and
homonyms (different words with identical spelling). As a
result names chosen by one developer may not convey the
expected meaning to another developer [12]. It is therefore
interesting to see how names are chosen in practice, and
whether the process of choosing names can be improved.

To investigate these issues we conducted a sequence of
experiments, using a total of 334 students and professional
developers as experimental subjects. The core experiments
present the subjects with several programming scenarios,
and elicit names for key variables, data structures, and
functions that are expected to be used in writing code for
these scenarios. The first and larger experiment checked
spontaneous naming based on each subject’s independent
inclinations. Based on the results of this experiment we
developed a 3-step model of how names are constructed:
(1) selecting the concepts to include in the name, (2) choos-
ing the words to represent each concept, and (3) creating
a name from these words. The second experiment then
checked what names are generated by subjects that have
been introduced to this model explicitly, using exactly the
same scenarios as the first experiment. This was followed
by an assessment by two independent judges of whether
these names were superior over the names generated in the
first experiment.

Our main contributions are as follows:

• On the methodological level, we
1) Develop an experimental approach for studying how

names are chosen in various programming scenarios
without requiring the actual writing of voluminous
code;

2) Use bilingual experimental subjects to separate the
description of scenarios from the coding, thereby
reducing the danger that subjects would be guided

toward speci�c names by wording used in the de-
scriptions;

3) Introduce head-to-head competitions where judges
select the superior name from two candidates as a
means to assess the relative quality of names in a
given context.

� In terms of empirical results, we
1) Show that developers are indeed strongly in�uenced

by the description of a scenario when they choose
names in the context of that scenario;

2) Show that the probability that two developers would
choose the same name in the same situation is typi-
cally very low;

3) Find that experienced developers tend to use longer
names composed of more words;

4) Characterize the structure of names and suggest a
3-step model that could explain how they are con-
structed.

� Finally, regarding practical implications, we
1) Demonstrate that developers can use the model of

name construction to guide the process of choosing
names;

2) Find that names chosen using the model tend to
contain more concepts, and are judged to be superior
by a ratio of two-to-one.

2 RELATED WORK

Practically all programming guidelines and textbooks state
that variables should be given “meaningful names”. But
spoken language is ambiguous, and people may use dif-
ferent words to refer to the same concepts and operations.
Furnas et al. studied spontaneous word choice for the com-
mands of an interactive system, and found the variability to
be surprisingly high: in every case two people favored the
same term with a probability of less than 0.2 [16]. In a related
vein, Hindle et al. show that the vocabularies of different
projects tend to be more diverse than the commonly used
vocabulary in natural language [20]. We perform an exper-
iment similar to that of Furnas for variable and function
names in code, and show that high variability exists in this
context too. To the best of our knowledge such a study
has not been performed before. We also introduce a novel
methodology, where the description of the context is given
in a different language (Hebrew) so as to reduce the effect
on subjects.

Several studies have shown the importance of good
names. Rilling and Klemola show that code fragments with
high identi�er density may act as “comprehension bottle-
necks” [32]. Osman et al. demonstrated that names are
crucial for understanding UML diagrams—without them
there is no clue of what the different classes actually do
[30]. Haiduc et al. found that when summarizing code, de-
velopers tend to include in the summary practically all the
terms that appear in method names, and the vast majority
of terms in parameter types [18]. In an ethnographic study,
Salviulo and Scanniello found that experienced developers
prefer to rely on variable names rather than on comments
for comprehension and maintenance [34].

Conversely, some studies have shown the detrimen-
tal effects of bad names. Butler et al. found that �awed

identi�er names are associated with low quality code [10].
Arnaoudova et al. introduced the notion of “linguistic an-
tipatterns” where names are misleading [3]. Problematic sit-
uations include mismatch of type, number, or behavior (e.g.
a `set' method that returns a value). Avidan and Feitelson
have shown that misleading identi�er names are worse than
meaningless names like consecutive letters of the alphabet,
as they may lead to errors in program comprehension [4].
These results emphasize the importance of identi�er nam-
ing, and indicate that guidance on naming identi�ers may
be bene�cial.

Perhaps the most studied aspect of variable names is
their length, and in particular the possible use of abbrevia-
tions. Binkley et al. suggest that long names tax memory, so
a limited length and a limited vocabulary are preferable [7].
Interestingly, even single-letter names may convey meaning,
provided the right letter is chosen [5], [40]. Several studies
have found that abbreviations do not have a signi�cant ef-
fect. Lawrie et al. found that in many cases abbreviations are
just as understandable as longer names [24]. Scanniello et al.
showed that full names did not help novice programmers
�nd and �x faults [35]. However, other studies claimed that
abbreviations are detrimental to comprehension. Takang et
al. �nd that full names are better than abbreviations [41],
and Hofmeister et al. and Schankin et al. claim that compre-
hension is faster with full and descriptive names [21], [36].

Turning to suggestions for improving variable names,
Caprile and Tonella suggest standardization of variable
names using a lexicon of concepts and syntactic rules for
arranging them [11]. Deißenböck and Pizka stress the need
for concise and consistent naming [12]. Binkley et al. sug-
gest rules for enhancing the information expressed by �eld
names [6]. Such approaches can mesh nicely with our model
of name construction.

The possibility of tool support for selecting names has
also been discussed. Allamanis et al. noted that automatic
suggestion of function or class names is harder than sug-
gesting variable names, because of the need to describe
abstract functionality [1]. Conversely, Liu et al. have shown
that in many cases the contents of the body of a function can
be used to construct a good function name [27]. Raychev
used machine learning on “big code” to predict variable
names, achieving 62% accuracy [31], and Alon et al. exploit
the code structure to predict method names [2]. Our focus,
in contradistinction, is on helping developers think about
naming.

At a deeper level of analysis, it is very interesting to
consider the interaction between code comprehension and
cognitive processes in the brain [26], [39]. Brooks has the-
orized that names support top-down comprehension based
on forming hypotheses regarding what the code does [9].
Groundbreaking work by Siegmund et al. using fMRI brain
imaging has shown that understanding source code acti-
vates parts of the brain related to language processing [37].
In later work, Siegmund et al. found evidence for using
semantic chunking when performing bottom-up compre-
hension tasks [38]. Fakhoury et al. combined the fNIRS
brain-imaging technique with eye tracking to show that
linguistic anti-patterns in the code correlate with cognitive
load as measured directly in the brain [13]. Works like these
contribute signi�cantly to our understanding and apprecia-

2

tion of the importance of naming.

3 EXPERIMENT ON NAME SELECTION

Our general goal is to better understand the issue of mean-
ingful names and their role in program comprehension.
This starts with basic science: understanding how names
are formed as part of understanding why naming is hard
and sometimes problematic. Our �rst experiment concerns
how developers choose names. It employs a survey, given
to professional developers and computer science students,
to see what names they choose in various scenarios, and
how they understand given names.

3.1 Research Questions

We concretize the above focus using the following research
questions:
RQ1) What is the probability that different developers will

select the same name in the same scenario?
To answer this question, we also need to consider two
sub-questions:
RQ1.1) Is name choice affected by the wording used

in the description of the scenario?
RQ1.2) Is name choice affected by demographics

(e.g. experience or sex)?
RQ2) How well do developers understand names chosen

by others?
RQ3) What is the structure of chosen names? In particular,

what is the distribution of name lengths, and to what
degree are multi-word phrases used?

3.2 Methodology

We use a survey on the Internet to present scenarios and ask
how relevant constructs would be named or how named
constructs are understood. This is an unusual experiment
because we are primarily interested in the variability be-
tween subjects.

3.2.1 Survey Structure

The survey was structured as a sequence of independent
scenarios. Each scenario lays out a situation or a problem,
followed by several focused questions. Question types in-
clude:

� Suggest a name for a variable, constant, or data struc-
ture (16 questions).

� Suggest a signature for a function, including its name
and its parameters (5 questions).

� Interpret a given variable or function parameter name
(9 questions).

� Interpret a given function signature (6 questions). In
some cases this included writing a line of pseudo-code
to remove ambiguity.

A major problem in studying spontaneous naming is
that the description of the context and the question itself
necessarily use words. Being exposed to these words makes
then more accessible, and therefore subjects will tend to use
words from the description in the names they create. Thus
providing the description undermines the spontaneity we
are trying to characterize.

We reduce the accessibility problem by using multilin-
gual subjects. In particular, our subjects are typically native
Hebrew speakers who are also �uent in English. We can
then provide the description in Hebrew, and this is expected
to have a much smaller effect on the names chosen in
English (which is universally used in programming). As a
control other subjects are given the description in English,
to establish whether the accessibility effect indeed exists.

In all, 11 scenarios were de�ned, most of them including
3–6 questions. 8 of the scenarios had both Hebrew and
English versions (see brief synopsis in Table 1 below). The
3 scenarios that had only a Hebrew version did not require
respondents to produce names, but asked only about their
understanding of given names. 2 of the multi-version sce-
narios had 2 separate English versions in addition to the
Hebrew version, using different wording in English. In total
121 questions were needed for all the versions of all the
questions. All experimental materials, including a full listing
of the survey questions, are available for additional study
and reproduction (see link at end).

3.2.2 Survey Execution

The survey was conducted using the Qualtrics web-based
platform. Subjects were presented with 6 randomly selected
scenarios in a random order. For each scenario, one version
was selected at random; thus no subject saw multiple ver-
sions of the same scenario. No personally identifying data
was collected. None of the questions were compulsory; re-
spondents could skip questions or stop without completing
the survey. In such cases, we use only the part that was
completed.

The survey was conducted in May 2018 in two phases:
�rst with professional developers and then with students.
Developers were recruited via personal contacts with col-
leagues in the high-tech industry and requesting them to
propagate it. Students were recruited in student labs by
handing out the link to the survey together with a chocolate
treat. Altogether, 234 respondents answered at least one
question.

The survey started with a few demographic questions.
75% of the respondents were male, and 25% female. The
most common ages were in the range 24–27, but the mean
age was 27.9 years. Experience ranged from 0 to 29 years,
with an average of 5.8 years. 70% identi�ed themselves as
students in computer science or engineering.

3.2.3 Analysis of Results

Importantly, the survey questions were open text and not
multiple-choice, so as to give respondents the opportunity
to select names and express themselves. This makes the
analysis of the results much harder, as we need to identify
cases where different responses actually mean the same
thing. We automated part of this process, but much of the
analysis required going over the responses manually.

In order to compare names, we use a normalization
procedure. First, we identify suspicious cases and divert
them for manual inspection. We de�ne suspicious names
as

� having more that 30 characters.
� containing non alphanumeric or underscore characters.

3

Figure 1. Choice of words for expressing the concept of “bene�t” when the description was in English and explicitly used “bene�t”, as opposed to
a Hebrew description that used the word “pinuk”. Variations on the same word (spelling or plurality) are shown together. “None” means that the
concept was not represented in the name.

In many cases, suspicious names were indeed not names
but comments by the experimental subjects (such as “I don't
know what to do here”). Such answers were removed from
further consideration.

Second, names were normalized to lower case with
words separated by _. The normalization �rst partitions the
name into a sequence of words, using a regular expression
that recognizes camelCase and a variety of separators (-, _, .,
and white space). Each word is then converted to lowercase.
Finally the words are rejoined using _. Then names with a
Levenshtein distance � 2 are identi�ed. This means that
one name can be transformed into the other by up to 2
single-letter edits (insertion, deletion, or substitution) [25].
This allows us to avoid variability that actually re�ects
only spelling errors, e.g. if someone wrote “bord” instead
of “board”. All such corrections were veri�ed manually.

Questions about function signatures were handled sim-
ilarly. We use a regular expression for identifying a general
C-like function signature (optional return type, name, and
parentheses with a comma-separated list of arguments).
Each name is then displayed interactively to the analyst
to identify its meaning relative to the question. This step
is necessary for function parameters because experimental
subjects may present the parameters in arbitrary order. The
answers are remembered in case the same parameter name
is used again later.

The hardest questions to analyze are those that require
the experimental subjects to say what they think some name
means. These answers were clustered based on our best
understanding into clusters of answers that essentially say
the same. In order to ensure that our classi�cation is not
too subjective, we recruited an external analyst to check a
sample of the classi�cations. In nearly all cases, there was

agreement.

3.3 Results

As noted, our survey included 121 questions answered by
234 subjects (each answering only a subset), in many cases
leading to a wide distribution of results. We cannot show
all of these results here. Rather, we focus on the main
trends and on interesting examples. The full raw results are
available as part of the experimental materials.

3.3.1 The Effect of Accessibility

Many of the questions involved choosing names for vari-
ables, data structures, or functions. As noted above, a po-
tential problem with studying this is the possibility of an
accessibility effect: by describing the scenario in which a
name needs to be chosen, we expose the subjects to speci�c
words that are candidates for being used in the name.
To check this effect and answer RQ1.1 we used bilingual
subjects, and provided some of them with a description in
Hebrew rather than in English.

An example of the results obtained is shown in Fig.
1. The scenario was the calculation of bene�ts accrued by
using a credit card, where a point is awarded for each 2000
Shekels charged up to a maximum of 4 points per month.
Three of the questions were to name a function used to
determine whether a customer has additional bene�t points
available this month, to name a variable storing the number
of bene�ts available, and to name the constant 4. The names
suggested in each case were varied, but most of them
contained the concept of “bene�ts”. When presented with
an English description, practically all the subjects actually
used the word “bene�t”. The Hebrew description used the

4

Figure 2. Choice of words used in naming a data structure describing a maze when the English description used “maze” or “labyrinth”, and when
the description was given in Hebrew using “mavoh”. Variations on the same word (spelling or plurality) are shown together. Words not related to
the maze (e.g. “descriptor”) are excluded.

Figure 3. Distributions of the number of different words used for the
main concept when naming variables.

word “pinuk”, and this transliteration or the translation to
“treat” were the most common words used. But subjects also
used “gift”, “bene�t”, “bonus”, and some other terms.

Another example is shown in Fig. 2. In this case the
scenario was a mouse looking for cheese in a maze, and
the question was to name the data structure representing
the maze. This time two separate English descriptions were
used: one using the word “maze”, and the other using
“labyrinth”. The results show a strong accessibility effect,
including when the descriptions was in Hebrew, where the
Hebrew word “mavoh” was nearly universally translated
to “maze”. The most diverse results were obtained for the
English description using “labyrinth”, including quite a few
subjects who chose to simplify and use “maze”.

In other cases the differences were not as extreme as in
these two cases. The distributions of the number of different
words used for the main concept in the 36 questions on
naming variables are shown in Fig. 3. Comparing the equiv-
alent Hebrew and English questions, in 9 cases responses
to the Hebrew one used more different words, in 4 cases
the English version led to using more words, in 2 cases the
same number was used, and in 1 the results were mixed
(there were 2 English versions, and the Hebrew result was in
the middle). Thus the Hebrew descriptions indeed typically
led to a larger diversity in word choice, or conversely, the
English descriptions led to more focus on fewer words.
We conclude that accessibility may be an issue, and using
Hebrew descriptions (or another foreign language) may
reduce this effect.

Figure 4. Histogram of name lengths for variables and functions. Un-
derscores separating words are not counted.

3.3.2 Name Structure and Length

Names are often formed be combining multiple words.
Moreover, an empirical study performed by Holzmann
identi�ed a trend where function and variable names are
becoming longer [22]. To answer RQ3, we now characterize
the given names in terms of their structure.

The distribution of the name lengths is shown in Fig.
4. Function names tend to be slightly longer than variable
names (2.43 characters longer on average, p<0.0001 using t
test). The distribution of variable name lengths is bimodal.
Names that are composed of one word are typically 4–
5 characters long, and rarely exceed 9 characters. Names
that are composed of 2 or more words are typically 8–16
characters long. Longer names are typically composed of 3
or more words.

As indicated in the �gure, the vast majority of names
given were composed of multiple words (78% of variable
names and 89% of function names). This also re�ects the
number of different concepts included in names, which is
discussed later.

RQ1.2 concerned the interesting question of whether
demographic variables interact with name lengths. We �rst
checked the effect of experience. Following Falessi et al.

5

Figure 5. The cumulative distribution of name lengths given by inexpe-
rienced and experienced developers. N refers to the number of names
given.

[14] this was not a simple classi�cation into students and
professionals; rather, we de�ne experienced developers to
be those with at least 5 years work experience (even if they
are currently also students), and inexperienced ones to be
1st or 2nd year BSc students provided they have at most 2
years experience. In our dataset, there were 100 experienced
developers according to this de�nition, 43 inexperienced
students, and 75 participants that fell in between (an ad-
ditional 12 did not provide all the required data).

Fig. 5 shows the distributions of name lengths chosen
by inexperienced vs. experienced developers. The result
is that the distribution of names chosen by experienced
developers dominates the distribution of names chosen by
inexperienced students. This means that for every name
length, the probability for experienced developers to use a
name of this length or more is higher than the corresponding
probability for inexperienced ones. The difference is that
on average experienced developers use names that are 1.75
characters longer (p<0.0001 using t test). This difference is
largely the result of experienced developers using names
with more words (and by implication, more concepts): 26.2%
of the names by inexperienced developers have only 1 word
and the average length is 2.03 words, as opposed to only
16.7% and 2.29 words for experienced ones.

We also checked the effect of sex, and found no differ-
ence in the lengths of names given by males and females:
the distributions of name lengths given by the two sexes
were practically on top of each other.

3.3.3 The Probability of Using the Same Name
The results in Sect. 3.3.1 above are actually more about the
naming of concepts than the naming of variables. Variable
and function names tend to be more varied than the words
used to denote a concept, for two reasons. First, there can
be variations on using the same word, such as using it
in the singular or in plural. Second, variable and function
names are often actually multi-word phrases, and these
components can be strung together in different ways. As a
result, complete names given by different subjects are often
unique.

We now return to RQ1. Table 1 summarizes the results re-
garding the variability of names. The distribution of names
given as answers to a given question can be characterized
by two related attributes:

� diversity: the degree to which they are diverse. The
number of different names is shown in column dif. The

Figure 6. Cumulative distribution of focus and diversity of names given
in the Hebrew questions.

diversity is de�ned by normalizing this by the total
number of responses received (column div).

� focus: The degree to which names are focused. Column
max gives the number of times that the most popular
name was used. The fraction of responses that used the
same most popular name is shown in column Pmax.

Fig. 6 shows the distribution of the diversity and focus.
We use the results of only the Hebrew versions of questions,
to reduce the accessibility effect. As can be seen, in 80%
of the questions the most popular name was used in only 5-
20% of the answers. And in half of the questions the number
of different names given was equivalent to at least 3/4 of the
number of answers. As may be expected, focus and diversity
are inversely correlated (Pearson correlation of � 0.817 on 21
Hebrew questions).

The �nal column of Table 1 estimates the probability
of two developers to use the same name (answering RQ1).
Note that this is not the probability that any other respon-
dent happened to give the same name, as this obviously
depends on the number of respondents (the birthday para-
dox). Rather, we are interested in the probability that a
speci�c developer reading the code would have chosen the
same name as the speci�c developer who wrote it in the
�rst place. Assuming we observe k distinct names, and
using the relative popularity of name i as an estimate for
the probability of choosing it pi , the probability of two
developers choosing the same name is simply1

P2hit =
kX

i =1

p2
i (1)

In our results this ranges from 2.5% to 64.6%, with a median
of 6.9%.

3.3.4 Understanding Names

As opposed to active naming, which often led to very
diverse results as reported above, interpreting given names
led to more uniform results. This answers RQ2. In these
questions respondents were asked to interpret given names,
function signatures, or function parameters. In most cases
nearly all of them agreed on the meaning. However, they

1. The same formula is used in similar circumstances in other �elds,
to wit the Simpson diversity index in ecology, where pi represents
the proportional abundance of species i , and the Har�ndahl Index
measuring market concentration, where pi is the market share of �rm
i .

6

Table 1
Results of name reuse in all versions of questions concerned with giving names. Note that these results are for the complete names, not for
concepts. N : number of answers to this question version; dif : number of different names given; div=dif/N : diversity of names; max: maximal

answers giving the same name; Pmax=max/N : probability of most popular name (focus); P2hit: probability of two respondents using the same
name.

Scenario Question Version N dif div max Pmax P2hit
bene�ts function checking if balance of bene�ts is positive Eng 54 38 0.703 8 0.148 0.0459
card Heb 41 40 0.975 2 0.048 0.0255

constant with value 4 (max bene�ts per month) Eng 55 26 0.472 14 0.254 0.1266
Heb 44 35 0.795 3 0.068 0.0340

constant with value 2000 (shekels per bene�ts point) Eng 55 45 0.818 5 0.090 0.0300
Heb 44 42 0.954 2 0.045 0.0247

variable with entitled bene�ts this month Eng 55 44 0.800 3 0.054 0.0267
Heb 44 41 0.931 2 0.045 0.0258

elevator variable with requested �oor Eng 41 26 0.634 6 0.146 0.0577
Heb 49 28 0.571 8 0.163 0.0645

variable with current elevator location Eng 41 17 0.414 21 0.512 0.2861
Heb 49 19 0.387 21 0.428 0.2161

variable with number of �oors to move Eng 41 29 0.707 5 0.121 0.0505
Heb 49 37 0.755 5 0.102 0.0362

variable with state of elevator doors Eng 40 18 0.450 12 0.300 0.1312
Heb 49 17 0.346 11 0.224 0.1303

�le function checking if there is enough disk space to extend a �le Eng 44 35 0.795 4 0.090 0.0361
system Heb 54 47 0.870 3 0.055 0.0240

�eld in �le object describing �le size Eng 44 11 0.250 21 0.477 0.3336
Heb 56 7 0.125 26 0.464 0.4164

bubble constant specifying work hours per week Eng 42 36 0.857 3 0.071 0.0328
gum Heb 43 35 0.813 5 0.116 0.0416
factory variable holding hourly wage during overtime Eng 42 24 0.571 10 0.238 0.0941

Heb 43 37 0.860 3 0.069 0.0319
ice cream function calculating how many sandwiches can be produced Eng 41 36 0.878 2 0.048 0.0303
sandwich Heb 47 44 0.936 2 0.042 0.0239
maze variable with location of the cheese today Eng-maze 27 18 0.666 8 0.296 0.1193

Eng-labyrinth 44 20 0.454 13 0.295 0.1363
Heb 35 24 0.685 5 0.142 0.0628

data structure tracking where the mouse has visited Eng-maze 27 13 0.481 9 0.333 0.1550
Eng-labyrinth 43 21 0.488 13 0.302 0.1346
Heb 35 26 0.742 7 0.200 0.0693

data structure describing the maze Eng-maze 27 10 0.370 17 0.629 0.4128
Eng-labyrinth 43 16 0.372 21 0.488 0.2742
Heb 35 8 0.228 28 0.800 0.6457

mine- function calculating game's dif�culty level Eng 45 25 0.555 8 0.177 0.0706
sweeper Heb 52 25 0.480 7 0.134 0.0680

variable with game's time Eng 47 22 0.468 11 0.234 0.1027
Heb 51 29 0.568 7 0.137 0.0588

data structure indicating mine or number of adjacent mines Eng 43 33 0.767 5 0.116 0.0416
Heb 52 42 0.807 6 0.115 0.0340

tic-tac-toe function to display the game board Eng-board 40 15 0.375 16 0.400 0.1950
Eng-grid 27 15 0.555 4 0.148 0.0864
Heb 28 16 0.571 5 0.178 0.0943

data structure describing current state of game board Eng-board 40 25 0.625 8 0.200 0.0737
Eng-grid 26 16 0.615 4 0.153 0.0857
Heb 28 12 0.428 16 0.571 0.3443

sometimes differed regarding technical details. The results
are shown in Table 2.

As an example, we asked about the function pay(hours,
rate) in a factory setting. The consensus was that this refers
to paying for work done. But 49 thought that it calculates
the sum to pay, while 36 others thought it actually transfers
the funds. Only one mentioned both possibilities, and one
came up with a third possible meaning, suggesting that the
function de�nes an employee's rate and required hours.

Another example concerned the function arrangeFilesBy-
Name(�les) . When asked what the function does, 98 of 100
agreed that it sorts a list of �les, with 72 saying it is ordered
lexicographically, and 10 specifying ascending order. When
asked about the role of the parameter, all but one agreed
that it represents the �les to sort. But when asked about the
expected return value, opinions differed. The most common

response (69 respondents) was that the function returns a
sorted list of �les, but there were differences of opinion on
whether this was a list of �le names, �le references, or �le
indices. 29 said it could be void, with 15 speci�cally men-
tioning in-place sorting. 7 expected a Boolean or numeric
return code (one suggested the number of �les reordered).

These results are encouraging in the sense that even if
different developers tend to come up with different names
for things, they generally understand names chosen by
others. However, this may hide different assumptions re-
garding the technical details underlying this general under-
standing, which can lead to bugs.

Anticipating that understanding may be affected by am-
biguity, we speci�cally designed two of the questions about
the meaning of names to be ambiguous, but without be-
ing unrealistic. And indeed survey respondents understood

7

Table 2
Results of how variable names or function signatures are understood. N : number of answers; fractional numbers indicate that an answer included

two options. Percentages may not sum to 100 when irrelevant answers (e.g. “unclear”) were ommitted.

Hebrew English
Scenario Code Interpretation N percent N percent
�le arrangeFilesByName(�les) returns ordered list of �les 53 96.4% 44 97.8%
system show sorted list of �les 1 1.8% 0 –

sort in place 0 – 1 2.2%

role of �les parameter �les to sort 23 88.5% 24 92.3%
path/reference to �les 2 7.7% 2 7.7%
�le sizes 1 3.8% 0 –

bubble pay(hours, rate) returns amount to pay 19.5 45.3% 30 68.2%
gum transfers funds to employee 22.5 52.3% 14 31.8%
factory set employee's rate & hours 1 2.3% 0 –

role of hours parameter number of work hours 38 90.5% 37 86.0%
work hours since last paid 0 – 1 2.3%
work hours per month 3 7.1% 2 4.7%
work hours per week 1 2.4% 0 –
work hours per pay period 1 2.4% 2 4.7%

ice cream pro�t(units, cost, price) calculate pro�t from selling 46 95.8% 40 97.6%
sandwich calculate pro�t from buying 1 2.1% 0 –

total cost given unit cost 1 2.1% 0 –
pro�t per unit 0 – 1 2.4%

role of units parameter sandwiches produced/sold 44 93.6% 33 91.7%
amount of each ingredient 3 6.4% 3 8.3%

role of cost parameter producing cost per unit 35.5 77.2% 34.5 93.2%
total producing cost 5.5 12.0% 2.5 6.8%
producing cost 5 10.9% 0 –

role of price parameter selling price per unit 43 97.7% 38 100%
total seling price 1 2.3% 0 –

mine- expose(row, col) expose a tile 29 58.0% 24 55.8%
sweeper expose tile & execute game rules 10 20.0% 13 30.2%

expose tile & return its value 2 4.0% 0 –
update the GUI 1 2.0% 1 2.3%
execute game logic for move 1 2.0% 0 –
return tile value (has mine) 5 10.0% 2 4.7%
return list of neighboring mines 0 – 1 2.3%

tic-tac-toe make_turn(int row, int col) update board with mark at position 27 93.1% 63 92.6%
play the turn 2 6.9% 2 2.9%
move to given position 0 – 1 1.5%
initialize for input 0 – 1 1.5%

role of row parameter row index to be updated 29 100% 66 100%

role of col parameter column index to be updated 29 100% 66 100%
add return value of add([1,2,3], [4,5,6]) [5,7,9] 78 70.9%

[1,2,3,4,5,6] 23 20.9%
[6,15] 1 0.9%
21 1 0.9%
error / Boolean 5 4.5%

resize apply resize(factor) to an image resize the image 64 61.0%
enlarge the image 32 30.5%
shrink the image 3 2.9%
change pixel values 1 1.0%

them in different ways.
The �rst ambiguous question concerned a library func-

tion add(a,b), and asked what would be the result of calling
add([1,2,3],[4,5,6]). The most common response by far was
to understand the add operation applied to vectors as an
element-wise addition, leading to a result of [5,7,9] (some
making an arithmetic error). Others understood the add
operation as a concatenation, and said the result would be
[1,2,3,4,5,6]. Only four noted the ambiguity and gave both
options.

The second ambiguous question concerned a function
with the signature resize(factor) applied to an image. When
asked to describe what this function does, 58% of respon-
dents just said it resizes the image. But 30% speci�cally
said it enlargesthe image, and three said it shrinks it. In

addition, we requested respondents to write the line of code
that updates the width of the image. The result was that
60% multiplied the width by the factor, while 5% divided
it. An additional 4% multiplied by the square root of the
factor, indicating that they understood the factor as applying
to the area instead of to the individual dimensions. An
unanticipated popular response was to simply set the width
to the factor (22% of respondents).

4 ANALYSIS AND MODEL OF NAME FORMATION

A model is the concise conceptual description of a system or
process. Scienti�c models are used to improve understand-
ing of observed phenomena by focusing attention on salient
features and explaining the relationships between them. We

8

Table 3
The number of instances of names for the constant 4 (maximal bene�ts
per month) in the bene�ts card scenario, where names are presented
as combinations of using a mold with a concept word. In the molds, X
stands for the concept word (bene�t, treat, etc.), which could appear in

singular or plural.

Mold be
ne

�t
tre

at
gi

ft
bo

nu
s

pe
rk

po
in

t
re

w
ar

d
pr

iz
e

pa
m

pe
r

pi
nu

k

X 2 1 1 - - - - - - -
max_X 16 2 1 1 2 - - 1 - 6
max_X_per_month 13 2 3 1 - 1 1 - 1 1
X_per_month 2 - - - - - - - - -
max_monthly_X 3 2 1 - - - - - - -
max_month_X 1 - - - - - - - - 1
max_X_num 3 - - - - - - - - -
X_max_num 1 - - - - - - - - -
max_number_of_X 1 1 - - - - - - - -
max_num_of_X 2 - - - - - - - - -
max_X_amount 1 - - - - - - - - -
max_acc_X 1 - - - - - - - - -
max_allowed_X 1 - - - - - - - - -
monthly_X_limit 1 1 - - - - - - - -

therefore analyzed the names produced by experimental
subjects in the experiment described above, in order to try
and model the process by which they were formed.

4.1 Initial Observations: Name Molds

The multi-word phrases used to create names are not all
different. In fact, many different names fall into the same
pattern, with only slight variations. These patterns can
be viewed as molds into which a chosen concept word
is embedded (which contributes to answering RQ3). Thus
the multiplicity of different names is largely the result of
using multiple molds in combination with multiple concept
words.

An example is given in Table 3. This shows the molds
that were identi�ed in the names suggested for the constant
4 in the bene�ts card scenario (both Hebrew and English
versions). This constant represents the maximal number
of bene�ts that may be accrued in any single month. For
each mold, the number of times it was used with each
concept word is shown. The most popular molds by far
were max_X and max_X_per_month, and the most popular
concept word was “bene�t”. And while the combinations of
these molds and concept word dominate the table, another
26 combinations were used by at least one subject.

Note, however, that the molds themselves can also be
viewed as containing additional concepts. This leads to a
multi-dimensional view of the names instead of the 2D
view of Table 3. In particular, each of these names can be
viewed as being based on a combination of choices from the
following dimensions:

� Object: we are concerned with credit card bene�t points.
This is what we identi�ed as the concept word above.
Many different words were used in our experiment,
with a strong accessibility effect related to the descrip-
tion.

� Operation: we are counting the number of points ac-
crued. This is re�ected by words like number (or num)
or acc (accumulated).

� Quali�er : speci�cally, this constant concerns the maxi-
mal number of points. As this is the central function of
this constant, nearly all names included the word max.

� Time: the counting is reset periodically. This is re�ected
by including month or monthly.

A closer observation shows that these dimensions do not
all have the same standing. The “object” and “quali�er”
dimensions are nearly universal, being present in nearly all
the names. But the “operation” and “time” dimensions are
alternates: each of the observed name molds used either one
or the other. Thus is appears that developers differed in their
opinions on whether it was worth while to extend the name
and include these concepts.

The above analysis is not unique to this speci�c example,
and in fact we claim it is fairly common. Another example
is the following. The scenario presented was of a mouse
looking for cheese in a maze, where the location of the
cheese was changed each day. The question was to name
the variable representing the location of the cheese today.
The answers can be dissected according to the following
dimensions:

� Location: this is obviously the main concern of this
variable. It was also the dimension with the widest
variability, employing the words location (or loc), co-
ordinates (or coord), position (or pos), place, target, room,
and index.

� Object: a very focused dimension, with only one concept
word, cheese.

� Time: a dimension with 3 main representations: current
(or cur), today, and daily.

In this case, all 3 dimensions were nearly universal.

4.2 Analyzing Name Structures

Given the observation that names are composed of words
representing different concepts arranged in molds, we
wanted to analyze the number of concepts involved in each
name and the diversity of words used to represent each
concept. To collect this data we designed an interactive tool
that helps in the manual analysis of name structures.

The tool allows the analyst to select the question being
analyzed, and loads all the names given as answers to this
question. The names (normalized to lower-case with words
separated by _) are displayed in the rows of a table. The
analyst can then add columns to the table to represent
different concepts that appear in the names. For each name,
the analyst identi�es words representing different concepts,
and copies them to the appropriate columns (creating new
columns if needed). The tool then scans all the following
names, and if these words appear in them too it automati-
cally classi�es them in the same way. Thus the manual work
is much reduced, and each word has to be classi�ed into a
concept only once. The tool then tabulates the distribution
of the number of concepts used in the variable names, and
the distributions of the words used for each concept.

The classi�cation of words to concepts was performed
by two analysts independently. In cases of disagreement a
third analyst selected which classi�cation to use. Finally, a
fourth analyst (the PI) reviewed all the classi�cations. Such
a manual oversight was thought to be needed because a

9

Figure 7. Words used for different concepts in a variable represent-
ing the time playing minesweeper (Hebrew description, out of 51 re-
sponses).

mechanical classi�cation into words may miss their mean-
ing in context. For example, when naming the pay rate
for overtime work, two names that were suggested were
overtime_hourly_rate_addition and additional_hours_rate. We
classi�ed the additional_hours phrase from the second as
belonging to the same concept as overtime from the �rst,
and further noted that the second name did not contain
words representing the concepts of “additional pay” and
“per hour” (as a quali�er of “rate”). This is contrary to a
mechanistic identi�cation of “hourly” with “hours” and of
“addition” with “additional”.

Note that essentially the same word may appear in dif-
ferent forms, e.g. abbreviated or in plural. When classifying
words one has to decide whether to retain this variability or
not. We decided to focus on the semantic level and not on
the lexical level, so we normalized all variants of the same
word to one basic form. In addition, if answers included
more than one optional name, we used only the �rst one.

An example of the results is shown in Fig. 7. The context
is the well-known minesweeper game, and the variable
being named represents the playing time. The most popular
concept included in the names was “time”, and the most
popular word to represent it was also “time”, but several
other words were also used. Other concepts were the fact
that we are timing a “game”, and an emphasis on the
fact that we are interested in the “length” of time. A few
also noted what the time applied to, usually that it was
“current”.

Tables with identi�ed concepts and words representing
them are included in the experimental materials.

4.3 Fashioning a Model

To model the process of selecting (or rather inventing)
names we pored over the above results, and noted the
following phenomena:

� The repeated use of certain molds
� That different molds may contain the same concepts
� The repeated use of speci�c words to represent concepts

in the same or across different molds

We then asked what process could lead to these observa-
tions?

Taking the results into account, we believe the following
conceptual operational model is a good starting point for
understanding how developers choose names. We suggest
that name selection involves three choices:

1) Decide what concepts should be embedded into the
name.

2) Decide what word to use to represent each concept.
3) Decide on the structure of the name and the order of

the chosen words.

The decision of what concepts to include can be formu-
lated as the identi�cation of the dimensions that should
be characterized. These dimensions are case speci�c, and
the decision on which dimensions to include is perhaps
the major decision in naming. The main consideration is
to include information regarding the intent behind using
this variable — what information it holds, and what it is
used for. As a practical matter, if it is felt that a comment
is needed to explain the variable's objective, wording from
the comment should probably be included in the variable
name. In certain situations it may be prudent to also in-
clude an indication of what kind of information this is, e.g.
that a length is in the horizontal or rather in the vertical
dimension, or that a buffer contains user input and should
therefore be considered unsafe2. After the input is checked,
it can be stored in another variable, with a name indicating
that it is safe.

The second decision is what word to use to represent
each dimension. In many cases some dimensions are very
focused, with one speci�c word being the obvious choice.
This can be the result of simplicity or of an accessibility
effect, where the vocabulary used to describe the situa-
tion guides developers to use the same terms. But in our
experiments there was often at least one dimension that
was highly variable, with many different contending words.
Such diversity may cause problems down the road, if devel-
opers become confused whether synonyms actually mean
the same thing or represent nuanced differences. Agreeing
on a project lexicon and avoiding the use of synonyms can
help [12]; nuances are better replaced with an additional
word providing explicit distinctions. Additional consider-
ations when choosing words include that they be easily
distinguished from each other, not too long, memorable, and
pronounceable [23]. Adhering to such suggestions makes
the resulting names easier to work with.

The decision regarding the structure of a name can be
formulated as selecting a mold. A possible consideration
is to follow (English) language rules, e.g. that adjectives
come before nouns (which would suggest max_points over
points_max). One can perhaps even add a preposition to
make the name into a phrase [26]. Another obvious con-
sideration is to abide by a project's naming conventions.

The model does not necessarily imply that these 3 steps
are cognizant choices made by the developers, nor that they
are done serially one after the other. Thus there may be sig-
ni�cant interplay between say the choice of concepts and the
choice of a mold. But the model provides a way to analyze

2. This is a variation on Hungarian notation; see https://www.
joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/.

10

Figure 8. Cumulative distribution of p2hit for all questions.

common behaviors by multiple developers in hindsight.
And it explains the commonalities between names given in
our experiment.

Conversely, the model also explains the large variability
that is observed in names chosen for the same task: this is a
result of multiplying the number of options to make each of
the three choices. When there are many reasonable options,
the probability that two developers would select the same
name is low. This is the common case, and indeed the distri-
bution of this probability for all 47 questions listed in Table
1 shows that in 80% of the questions the probability was less
than 15% (Fig. 8). But when there is one dominant concept,
and one dominant word to represent it, this probability can
become signi�cant. In our experiments there were two such
cases: usingmaze for a data structure describing a maze,
and using size for the �eld describing the size of a �le.

5 USING THE MODEL

As noted, we do not claim that the above model is indeed
used in a cognizant manner by developers. But what if it
was? Can the model guide developers in choosing names?
Will the names generated with the help of the model be
superior over names that are chosen without it? A second
experiment was performed to answer these questions. This
experiment is essentially a replication of the �rst experi-
ment, with the difference that subjects are �rst introduced
to the model and asked to use it when they choose names.

5.1 Research Questions

More formally, the research questions for the second exper-
iment were
RQ4) Does being cognizant of the name formation model

affect the names produced by developers?
RQ5) Are names produced with the model superior over

names produced without it?

5.2 Methodology

5.2.1 Changes to the Survey

The goal of the second experiment was to check the possible
effect of using the naming model on the actual choice of
names. To accomplish this we �rst introduce the subjects to
the model. This is done by providing a brief description of
the 3 steps, followed by an example of using it. The example
involved a new scenario — creating a display to show scores
in a bowling alley — that was not part of the original

survey. The example concerned naming a variable holding
the display shown to experienced players, and included a
comment about the option of dropping one of the concepts
leading to a different name.

In the interest of being able to compare the results, the
questions used in the second experiment were identical to
those in the �rst experiment. But given that the focus is on
giving names and not on understanding names, we used
only 7 of the original 11 scenarios. 5 of these scenarios had
English and Hebrew versions, and the other 2 had 2 English
versions and a Hebrew version. While we were interested
only in the questions regarding naming (and not those about
understanding), we decided to retain all the questions as
in the original experiment. The reason was that answering
seemingly redundant questions can nevertheless affect how
the naming questions are answered. Each scenario was
preceded by a 2-line reminder of the steps in the model.

A small pilot study with 3 subjects indicated that using
the model is time consuming, with subjects actually using
paper to write down concepts and words. We therefore
toned down the wording urging subjects to use the model,
and reduced the number of scenarios given to each subject
to 3. As in the �rst experiment, the scenarios were chosen
at random, and subjects were never given more than one
version of the same scenario.

The survey was conducted again using the Qualtrics
platform, in May 2019 (one year after the �rst experiment).
100 subjects participated. 62% of the respondents were
male, and 34% female. The mean age was 25.4 years, the
average programming experience was 3.6 years, and 77%
were students. The full listing of the survey, including the
introduction of the model, is available in the experimental
materials.

5.2.2 Assessing the Quality of Names

After collecting the results of the survey, the structure of the
chosen names was analyzed as in the �rst experiment. But
to answer RQ5 we need to assess the quality of the names
given in the second experiment relative to the names given
in the context of the same scenarios in the �rst experiment.
To do this we devised the following protocol.

1) First, we recruited two 3rd year students to serve as
external judges. We required two in order to com-
pare their judgments with each other. Importantly, the
judges did not know about the experiment or the
model, thus eliminating the danger of unintentional
bias. The judges worked independently, but performed
exactly the same tasks.

2) The judges judged all 7 scenarios. For each scenario,
they �rst read the description of the scenario to learn
the required background.

3) For each question in the scenario,
a) The judges read the question to understand what was

required.
b) Each judge independently reviewed 60 pairs of vari-

able names, and chose which one they thought was
the better name, based on their familiarity with the
question and their experience in programming. In
each pair one name was from the �rst experiment and
one from the second experiment, selected at random

11

Figure 9. Comparison of the average number of concepts used in vari-
able names in questions with Hebrew descriptions in the two experi-
ments.

uniformly with repetitions from all the names given
by subjects. Pairs that happened to be the same name
were discarded. The order of the names in each pair
was randomized.

We used 23 questions in total from all the scenarios together.
Viewing and judging 60 pairs of variable names for each
question led to a sum total of 1380 pairs, of which 24
were removed as in retrospect we found they included
non-names that should have been excluded. Reading the
scenarios and questions and judging all these pairs took
about 7–8 hours of work. The judges were paid 500 NIS
for their effort (approximately $140).

The end result was a dataset of 60 pairs of names for
each of the 23 questions, with the following attributes:

1) Which name came from the original experiment and
which from the experiment with the naming model.

2) Which name was presented �rst to the judges.
3) The judgments of the two judges as to which name was

better.

5.3 Results

5.3.1 Name Structure

To answer RQ4 we need to compare the names produced
by subjects in the second experiment with the names pro-
duced by subjects in the �rst experiment. This is done
on a question-by-question basis. Our main concern is with
the structure of the names, and speci�cally, the number of
concepts that subjects chose to include.

Naturally, not all subjects used the same number of
concepts (or the same speci�c concepts) in their names. In
particular, a few subjects chose to include unique concepts
that nobody else thought were important. And the more
subjects you have, the higher the probability that someone
will add a new concept. As the number of subjects was
different in the two experiments, we needed to normalize
the results.

We perform the normalization by repeated random sam-
pling from the larger group. Let N1 denote the number of
respondents in the �rst experiment, and N2 in the second.
Assume N1 > N 2. for experiment 2, we simply report the

Figure 10. Classi�cations of the results of judging the quality of variable
names.

average number of concepts used by the N2 respondents.
But for experiment 1, we use a bootstrap-like procedure. We
sample N2 respondents out of the N1 available respondents,
and calculate the average number of concepts used by this
sample. We then repeat this 100 times. The average of the
100 repetitions is taken as the average number of concepts
in experiment 1.

The results are shown in Fig. 9. In this scatter plot,
each dot represents a question. The dots coordinates are the
average number of concepts used in the requested variable
name (corrected for sample size as described above). The
results indicate that in the second experiment, when subjects
were coached on using the model, they tended to use names
with more concepts. Focusing on the questions with Hebrew
descriptions, this happened in 10 cases and the names were
0.20 concepts longer on average. In 6 other cases the names
from the �rst experiment were longer, by an average of 0.14
concepts.

5.3.2 Name Quality

We now turn to RQ5. The results of judging the quality
of variable names are shown in Fig. 10. The left-most bar
shows that the judges were largely unaffected by the order
in which names were presented: they preferred the �rst
name 52% of the time, and the second name in the remaining
48%. Given the large number of judgments performed this
deviation from a 50–50 split is large, but it is still not
statistically signi�cant (p=0.075 using binomial test).

The next bar shows that in 70% of the trials the two
judges agreed on the preferred name. In 30% they disagreed.
Using Cohen's kappa to assess the degree of agreement
yields � = 0 :366 which is considered a fair level of agree-
ment.

Focusing on the 950 cases in which the judges agreed,
in 67% of them they judged the name chosen by subjects
using the model to be superior. Thus names chosen when
explicitly using the model were favored over names that
were chosen with no such framework by a ratio of 2:1.
This and the following results are all highly signi�cant
(p<0.0001).

12

When looking at the characteristics of the names, we
found that longer names were preferred in 74% of the cases
in which there was a difference in length (in 7% the names
were the same length). When considering concepts, in 36%
of the cases both names had the same number of concepts.
But of the cases where there were different numbers, the
names with more concepts were preferred in 83% of the
cases. These results agree with the previous results on the
effect of using the model. They indicate that the model helps
by encouraging subjects to create longer names, and to do
so by including more concepts. Note that this is different
from creating longer names just by being verbose.

5.3.3 Subjective Opinion

At the end of the survey we added two questions regarding
the model. The �rst simply asked whether the model was
used by the subject taking the survey. The second asked
whether the subject felt that the model helped in choosing
names. The results were that 52 respondents reported that
they used the model and 16 reported that they did not. Of
those that used the model, 35 reported that it helped and
the remaining 17 that it did not.

Using the data from respondents who claimed not to
have used the model implies that the results presented
above regarding the bene�ts of the model should be consid-
ered as conservative. We did not exclude such respondents
from the analysis to avoid reducing the number of samples,
and the issue of what to do with respondents who did not
answer this question. We further note that even if they did
not use the model explicitly, reading about it might have
affected their work.

6 THREATS TO VALIDITY

Construct validity refers to the degree to which we can be
sure we are measuring what we set out to measure. One of
our goals was to measure spontaneous name choice, but this
may suffer from bias due to accessibility. We therefore used
Hebrew descriptions to avoid enhancing the accessibility
of English words. However, bilingual subjects may still
translate the Hebrew terms so some accessibility effect may
remain. This may also be affected by subjects' differences in
English language knowledge. Lack of sensitivity to English
nuances can also affect the understanding of names. For
example, we speculate that native English speakers would
not think that in a call to resize(factor) the parameter is the
new size.

Another threat exists in analyzing the structure the
names. We used a conservative approach to splitting a name
into words, which may miss some cases [19]. A harder
problem is identifying concepts. For example, do the terms
full_time and normal refer to the same concept in the context
of working hours? We used a protocol in which 2 ana-
lysts independently coded the structure, another reconciled
differences of opinion, and a fourth reviewed the results.
Still, other analysts may prefer a different coding and this
may lead to different results. This can be resolved only by
replication studies.

In addition, using an online survey may also lead to
threats to construct validity. Respondents to a survey may
answer immediately without thinking it through, whereas

when actually programming they may spend more time
to consider things. Also, they may skip the longish story
introducing the questions, and guess the context from the
questions themselves.

Internal validity is concerned with causation, i.e.
whether the results can indeed be attributed to differences
between treatments. In the �rst experiment, we are mainly
concerned with variation emanating from differences be-
tween subjects, so the issue is moot. However, differences
between treatments also exist, e.g. when descriptions are
given in Hebrew as opposed to in English. One threat in
this context is that differences in English pro�ciency may
also affect the results.

In the second experiment, we change the treatment by
introducing the model of name formation. Except for this
difference, the experiment is identical to the previous one,
so differences are indeed expected to be an outcome of this
change. However, we can not be sure that the differences
are due to using the model we had suggested. It is possible
that by suggesting the model we caused subjects to think
more about the naming, but the model itself had no effect.
Settling this threat would require a new set of experiments,
as mentioned below under suggestions for future work.

External validity refers to the generalizability of the re-
sults, namely whether they can be expected to hold beyond
the speci�c experimental conditions that were used. A pos-
sible issue is the use of bilingual subjects, in our case native
Hebrew speakers for whom English is a second language.
While this enabled us to mitigate the accessibility effect,
it exposes us to the risk that the results do no represent
the behavior of native English speakers. On the other hand,
we note that many developers in the world are not native
English speakers.

Another well known risk to external validity is the
question of the experience of the subjects, and, speci�cally,
whether students can be used in lieu of professional de-
velopers. This concern was mitigated to some degree by
using both, and ensuring that these labels indeed re�ected
differences in experience. While we presented initial results
showing that naming is affected by experience, this issue
certainly deserves additional work.

In a related vein, we only used a modest number of ex-
ample scenarios, and found a diverse set of results. We make
no claim that our scenarios are necessarily representative,
and cannot infer any statistics on how common they are.
Such issues require extensive replications and variations by
other researchers in different contexts [15].

Finally, a major question concerns the validity of our
model. This is merely a conceptual model, and our only
claim is that it may be useful in understanding and perhaps
also in guiding naming. At the same time, other models are
certainly possible.

7 CONCLUSIONS

7.1 Summary of Results

Returning to our research questions, our results suggest the
following answers. For RQ1 the probability that different
developers would suggest the same name in the same situa-
tion is very low. Our analysis suggests that this divergence is
the result of a multiplicative combination of possible choices

13

at the three steps of name creation: deciding what concepts
to include in the name, how to represent each concept, and
how to structure it all together.

Leading up to this result, for RQ1.1 we found that the
choice of words can be strongly affected by the wording
used in describing the scenario. A practical implication of
this finding is the importance of using a consistent vocab-
ulary, and perhaps even the desirability of maintaining a
project lexicon to guide programmers towards the use of
mutually-agreed names [11]. In RQ1.2, we also found that
experienced programmers tend to choose slightly longer
names.

For RQ2, we found that the divergence in choosing
names does not necessarily harm one’s ability to under-
stand existing names. But there are cases where names are
misunderstood, or when assumptions regarding technical
details differ. It is hard to anticipate when this will happen.
Thus, the only way to find and improve problematic names
is to check. This implies that developers should include
naming issues explicitly in code reviews: make sure review-
ers understand names the same way, and make the same
assumptions about the named entities.

Regarding RQ3, we found that names tend to be multi-
word with an average of about 5 letters per word. Analyzing
the words used showed that they can typically be classified
into separate concepts. This led to the model of name
formation, in which the first two steps are to decide on the
concepts to include in the name and on the words that will
represent each concept.

RQ4 took the 3-step model of naming as its starting
point, and asked whether coaching programmers on using
this model would affect the variable names they choose.
The results were that indeed such an effect exists, and
respondents who were coached with the model tended to
use longer names with more concepts. In RQ5, we then
found that these names were generally also judged to be
superior over names chosen by respondents who had not
been exposed to the model.

7.2 Future Work

While the reported experiments provide interesting new
information about how names are chosen and how the
process of choosing names may be improved, they also
suggest several venues for future work.

The most immediate are experiments to verify whether
the suggested model was indeed instrumental in creat-
ing better names. For example, one could conduct an ex-
periment in which subjects are just asked to spend time
thinking about names, without any mention of the model.
Alternatively, one can instruct the subjects explicitly on the
advantages of using longer names with more concepts. If
these experiments also produce superior names, this may
suggest easier ways to affect naming by practitioners.

Assuming the model is accepted, additional experiments
can be designed to try to influence each step. However,
these would probably require work on a larger scale on real
projects, and not just on scenarios. Possible ideas include:

• Providing project-level documentation, and checking
whether the explicit identification of central concepts
encourages use of these concepts in names.

• Providing a project vocabulary and checking how it
affects word choice in names.

• Checking the effect of guidelines for name structures on
name choices and on name consistency.

Digging deeper, we note that naming may depend on
mindset. In a question about naming a variable that rep-
resents the state of an elevator door, one answer included
the comment that, if it was a Boolean, the name would be
is_open, but, if it was an enumerated type, the name would
be door_state. Hence understanding the considerations that
go into naming requires more detailed information to be
collected. This can be done with think-aloud studies, where
subjects are asked explicitly to explain why they chose each
name, or by using follow-up questions asking about the
rationale for names after-the-fact.

A related issue is that today many software developers
are not native English speakers, but programming — and
naming — are done in a predominantly English setting. Non
English speakers may choose sub-optimal names because
they are unaware of certain words’ connotations. Assessing
the prevalence of such problems and suggesting ways to
mitigate them are important research directions.

An especially intriguing issue is the relative importance
and quality of names: which of them convey the most
meaning. This has been investigated in the context of code
summarization tasks, where developers have been observed
to use names in their summaries [18], [33]. It would be
interesting to see whether the selected names have any
structural features in common, and whether they can serve
to educate how to instill meaning into names.

Our study is thus just a first step. We achieved a super-
ficial description of name structure, and a possible model of
how names are formed. We also showed that it is possible
to affect and improve the process of naming. These results
should be followed by research on the interaction of naming
with cognitive processes in the brain [39]. For example,
how are names understood, and why are names with more
concepts better? And all told, do longer names increase the
cognitive load (you need to remember more) or reduce it (by
providing more information)? Answering such questions
will provide a scientific basis on which software engineering
practices can be built.

EXPERIMENTAL MATERIALS

The experimental materials and results are available at http:
//bit.ly/names2019.

REFERENCES

[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names”. In 10th Joint ESEC/FSE, pp.
38–49, Sep 2015, DOI: 10.1145/2786805.2786849.

[2] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq: Generating
sequences from structured representations of code”. In 7th Intl.
Conf. Learning Representations, May 2019.

[3] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipat-
terns: What they are and how developers perceive them”. Empirical
Softw. Eng. 21(1), pp. 104–158, Feb 2016, DOI: 10.1007/s10664-014-
9350-8.

[4] E. Avidan and D. G. Feitelson, “Effects of variable names on
comprehension: An empirical study”. In 25th Intl. Conf. Program
Comprehension, pp. 55–65, May 2017, DOI: 10.1109/ICPC.2017.27.

14

http://bit.ly/names2019
http://bit.ly/names2019

	Introduction
	Related Work
	Experiment on Name Selection
	Research Questions
	Methodology
	Survey Structure
	Survey Execution
	Analysis of Results

	Results
	The Effect of Accessibility
	Name Structure and Length
	The Probability of Using the Same Name
	Understanding Names

	Analysis and Model of Name Formation
	Initial Observations: Name Molds
	Analyzing Name Structures
	Fashioning a Model

	Using the Model
	Research Questions
	Methodology
	Changes to the Survey
	Assessing the Quality of Names

	Results
	Name Structure
	Name Quality
	Subjective Opinion

	Threats to Validity
	Conclusions
	Summary of Results
	Future Work

	References

