
The Effect of Information Content and Length
on Name Recollection

Asaf Etgar∗
asafetgar@gmail.com
The Hebrew University

Jerusalem, Israel

Ram Friedman∗
ram.friedman@mail.huji.ac.il

The Hebrew University
Jerusalem, Israel

Shaked Haiman∗
shakedhaiman@gmail.com
The Hebrew University

Jerusalem, Israel

Dana Perez∗
danaperez2891@gmail.com
The Hebrew University

Jerusalem, Israel

Dror G. Feitelson
feit@cs.huji.ac.il

The Hebrew University
Jerusalem, Israel

ABSTRACT
Memorable function and variable names are useful for developers:
they reduce the need to re-check how objects are named when
one wants to use them, and they enhance comprehension when
encountered when reading code. We look at the possible interplay
between the information contained in names and how memorable
they are.We show in two independent experiments involving a total
of 190 subjects that informative names are usually easier to recollect
than similar-length names which contain less focused information.
Interestingly, we find that less-experienced and female participants
are better at remembering the less informative names. We also
find that short names, which are not just abbreviated but actually
contain less information, are significantly more memorable. Hence
a good choice would be to use the the shortest name that includes
the most focused and pertinent information.

CCS CONCEPTS
• General and reference → Experimentation; • Software and
its engineering→ Software organization and properties.

KEYWORDS
Variable names, function names, name recollection, code compre-
hension

ACM Reference Format:
Asaf Etgar, Ram Friedman, Shaked Haiman, Dana Perez, and Dror G. Feitel-
son. 2022. The Effect of Information Content and Length on Name Recollec-
tion. In 30th International Conference on Program Comprehension (ICPC ’22),
May 16–17, 2022, Virtual Event, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3524610.3529159

∗These authors contributed equally to the research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC ’22, May 16–17, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3529159

1 INTRODUCTION
Program comprehension is the dominant activity performed by
software developers: two recent studies have found that developers
spend no less than 58% and 70% of their time on average on com-
prehension, and only some 5% actually editing [30, 43]. And names
are the most important facilitators of comprehension — without
them it is very hard to create a picture of what the code does [35].
Moreover, in large open source projects about a third of the tokens
are identifiers, and they account for about two thirds of the charac-
ters in the source code [13]. These statistics explain why so much
emphasis is placed on using meaningful names for variables, data
structures, and functions.

However, it is hard to pin down exactly what makes names
“meaningful”, and how this can be measured. While there has been
significant work on this issue (see Related Work below), our focus
is on the possible interplay between information content and mem-
orability. Studies of what developers do in practice indicate that
names are becoming longer over the years [19, 24]. But this may
involve an implicit tradeoff:

• Names are important for understanding. Longer names,
which contain more relevant information and present it in a
more readable form can be expected to promote the under-
standability of code [37].

• Working memory is limited [12], so longer names may be
harder to remember. This means that developers will need
to check the names of objects they use, which may cause
reduced productivity. It has therefore been suggested that
good names should have limited length [9].

However, suggested approaches to creating good names seem to
place a premium on understanding, and do not consider length as
a constraint [11, 17].

Note that the actual information content of names can be changed
in two ways:

• By adding or removing words, which reflects the selection
of concepts to include in the name [17].

• By using focused or more general words, which reflects the
decision of how to represent these concepts [13].

This allows us to directly study the tradeoff alluded to above, and
investigate whether using a long and detailed name will help devel-
opers remember the name and recall it when needed, or perhaps this
is counterproductive and the extra words in long names actually

https://orcid.org/0000-0002-2733-7709
https://doi.org/10.1145/3524610.3529159
https://doi.org/10.1145/3524610.3529159

ICPC ’22, May 16–17, 2022, Virtual Event, USA Asaf Etgar, Ram Friedman, Shaked Haiman, Dana Perez, and Dror G. Feitelson

make such names harder to recall. We do this with two independent
controlled experiments, which adds to the validity of the results.
The experiments required subjects to recall names they had seen
before, under experimental treatments that differ in the choice of
words and in one experiment also in their number. The results indi-
cate that focused and informative names tend to be remembered
better than similar names with more general words, but shorter
names with fewer words are much easier to recall.

In summary, the contributions of this paper are:

(1) To identify a distinction between name length and informa-
tion content;

(2) To show that among similar-length names, those with more
focused information tend to be more memorable;

(3) To show that short variable names are significantly more
memorable despite having a lower information content;

(4) To suggest that comparison metrics used in name recollec-
tion studies should discount word order changes.

2 RELATEDWORK
A large amount of research recognizes the importance of names for
conveyingmeaning and enabling code comprehension. For example,
method names have been evaluated based on their consistency with
what the methods actually do [1, 27]. For variables, the equivalent
approach is to look for inconsistencies between their definition
and use [3, 14]. The renaming of variables has also been studied
[4, 33]. If the developers of the software take the trouble to refactor
the names, it means that they thought that the names were not as
good as they can be. Analyzing the names can then shed light on
what the differences mean. There has also been significant work on
the structure of names, meaning their composition and the parts
of speech used in them, as well as the metaphors they represent
[8, 10, 26, 31].

Of special relevance to our work are studies concerned with
the length of names and whether this affects comprehension. As
in our work, the underlying hypothesis is usually that longer and
more detailed names convey more information, and therefore aid
comprehension; however, they may also cause clutter and take
longer to read, which may have detrimental effects. Several studies
have considered the use of abbreviations as a compromise which
attempts to convey information but keep it short [6, 18, 22, 23, 36,
41]. In many cases the results were that there was no meaningful
effect, but in some it was found that full words indeed lead to better
understanding. However, it is hard to compare the different studies,
as they use diverse conditions.

A few studies have specifically considered what factors affect the
ability to remember names. Lawrie at el. used name recall as an addi-
tional metric for the effect of abbreviations [23]. The results indicate
that well-chosen abbreviationsmay be preferable in some situations,
as they are easier to remember. Single-letter names, on the other
hand, were found to be less memorable despite being the shortest.
Binkley et al. also consider the effect of limits on short-term mem-
ory [9]. However, their experimental materials are based on chained
method calls (e.g. Thread.currentThread().getName().substring(3)),
and their references to length refer to the lengths of the chains,
not the individual named components. While technically the whole
chain indeed identifies the final method being called, we feel that

it is wrong to call it “the method’s name”. And when studying
how well components of such chains are remembered, noting the
dependence on the length of the chain rather than the length of
the component itself shifts the focus from the name to the context
in which it is embedded. Jones provides an especially extensive
discussion of names in his commentary on the C language standard,
and includes memorability as one of the most important features
[21]. Uniquely, this is discussed in relation to natural language and
cognitive processes, including for example being pronounceable.

Note that remembering names is not necessarily the same as
learning information. In Bloom’s taxonomy of educational objec-
tives, “knowledge”—namely being able to recall facts—is the lowest
level. “Comprehension”, which reflects actual understanding, is
the next level up. But in the case of variables we are concerned
with remembering names as labels for code entities (variables and
functions). This is closer to the “recognize” activity in the adapted
taxonomy used by Oliveira et al. [32]. However, Oliveira et al. actu-
ally mean a mastery of the vocabulary of the domain, e.g. being able
to identify and name an algorithm, not the vocabulary in which the
code is expressed, like variable names. Such names are not learned
per se; they are a tool.

An alternative view on the relation between comprehension
and memory is that remembering reflects comprehension. The jus-
tification for this view is the seminal work of Simon and Chase,
who showed that expert chess players can easily memorize mean-
ingful chess positions, but are not good at memorizing random
placements of chess pieces [40]. Some software engineering stud-
ies (from around 40 years ago) therefore also used the ability to
memorize and recite a program as a metric for the code’s compre-
hensibility [28, 29, 38, 39]. However, this refers to complete sections
of code and not only to names.

3 RESEARCH QUESTIONS
The overarching research question we are concerned with is what
makes names good, and what exactly do we mean when we talk
about “meaningful names”. In this paper we focus on a more con-
crete question which is what makes names memorable. In this
context, our experiments were designed to answer the following
research questions:

(1) Are names containing more relevant information more mem-
orable?

(2) Are shorter names more memorable?
(3) Does name recollection depend on demographic factors such

as sex and experience?
These questions are applied to the specific cases of variables’ and/or
functions’ names.

4 METHODOLOGICAL CONSIDERATIONS
We start by noting some general methodological considerations.
The specific design of each experiment is discussed below in the
context of that experiment.

4.1 Experimental Materials
Variable and function names are elements of code. There are many
considerations regarding the code to use in experiments [16]. We
selected functions that are self-contained and reasonable, in the

The Effect of Information Content and Length on Name Recollection ICPC ’22, May 16–17, 2022, Virtual Event, USA

sense that they do not perform some contrived operation that is
useful only as a programming exercise. Likewise we made an effort
to use reasonable names that could occur in real code.

As indicated in our research questions, we are interested in the
interplay between two attributes of names, and how they affect
developers’ ability to recollect these names. These attributes are

• The length of the names. Names in computer programs tend
to be composed of multiple words. Obviously, the longer the
name the more you need to remember.

• The information content of the names. It has been conjec-
tured that meaningful names (that is, names that accurately
reflect their role in the context of the code) are easier to
remember.

The question is how to distinguish between these two effects in
experiments. Our approach has two parts. The first, used in both
experiments, is to compare pairs of long names of similar length
which differ in their information content: one contains focused
semantic information, while the other is more general and therefore
not as informative. In this our discrimination is less extreme than
that used by Binkley et al., who used names either tied to the domain
or completely general names with no specific ties [9]. The second
part of the approach, used in only one experiment, was to also
compare with short names. Importantly, the short names are not
derived by abbreviating the words in the long names, but rather by
dropping or replacing words. As a result the short names do not
just change how information is represented, but explicitly contain
less information. If they are found to be more memorable this may
imply that adding information and making names longer is not a
good way to make them more memorable.

Note that we avoid completely meaningless or irrelevant names,
as those may create a standout effect. For example, if we used the
name small_pink_elephant as an alternative to a 3-word infor-
mative name, this would be so strange as to be very memorable.
Instead, we attempt to use reasonable names, just not focused on
the concrete semantics. In addition, we require subjects to recall
the names rather than giving them multiple choice questions. This
avoids the need to invent alternative wrong answers which might
be too transparent. For example, in Binkley et al.’s landmark pa-
per on naming style, the alternatives to the name start_time were
smart_time, start_mime, and start_tom [7]. These served to limit
the difference to the beginning, middle, or end of the name, but
suffered from the confounding factor of being nonsense names.
Subjects could then pick start_time not because they remembered
it but because it was the only one that made sense.

4.2 Name Similarity Metric
Our experiments are concerned with recalling names. So the de-
pendent variable we need to measure is the degree of similarity
between the original name and the name as recalled by the experi-
mental subjects. This is better than using multiple choice questions,
where the experimental result is only a right/wrong bit with no
indication of degree of recollection, and there is a risk of reminding
the subjects of the names.

The most commonly used metric for name similarity, which we
also use in experiment 2, is the Levenshtein distance [25]. This is an
edit-distance metric, which counts the number of single-character

Table 1: Comparison of experiments

Factor Experiment 1 Experiment 2
Language Python C++
Naming style under_score camelCase
Named objects functions variables
Total functions 5 3
Names to remember 5 6 (2 each)
Number of treatments 2 3
Buffer before recall unrelated text and 2 comprehension

question questions
Recall test from description cloze test
Recall metric Ratcliff-Obershelp edit distance
Compared treatments between subjects within subjects

add, delete, or change operations that need to be performed to
change one name into the other. It provides a crisp mathematical
definition of the distance between two names which is intuitive
and easy to understand.

However, the Levenshtein distance does not necessarily reflect
the distance between the names as perceived by human developers.
For example, some letters are often confused, while others are
very distinct. As a result switching among similar letters can go
unnoticed (e.g. simple vs. sinple), but switching among distinct
letters would be immediately identified as wrong (e.g. complex
vs. compfex). As a possible alternative, we use the default pattern
matching algorithm in Python in experiment 1. This is based on the
Ratcliff-Obershelp algorithm, which was designed in the context of
educational software to be “forgiving and understanding of simple
typing mistakes, and allow intelligent responses to erroneous input”
[34]. Its score is the relative length of the longest subsequence of
identical letters, starting with the longest contiguous subsequence
and continuing recursively. However, as there can be more than
one such subsequence with the same length, the result depends on
the order of the input strings, namely which is first and which is
second1. To counter this, we use the maximum of both orders.

Another issue is related to the fact that long names are composed
of multiple words. One of our findings was that a common form of
mistakes in recalling names was to remember the words but change
the order in which they appear. For example, if a subject writes the
name numElemDiff when the correct name was numDiffElem, the
edit distance is 8 (delete 4 letters and re-insert them at a different
location), as if only 3 of 11 letters were right. This seems excessively
harsh, and we think such an answer should count as “almost right”.
To accommodate this, we reorder the words manually to the correct
order, to see what difference this makes.

4.3 Independent experiments
An important aspect of our methodology is the use of two indepen-
dent experiments. These experiments were designed and conducted
by separate groups of students, working in different contexts, with
no interactions or knowledge of each other. This led to multiple
methodological differences, as detailed in Table 1. Thus the second

1As explained in https://stackoverflow.com/questions/35517353/how-does-pythons-
sequencematcher-work.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Asaf Etgar, Ram Friedman, Shaked Haiman, Dana Perez, and Dror G. Feitelson

experiment is not a reproduction of the first one, but rather can be
considered a corroborative experiment [15].

The fact that the two groups came up with similar frameworks,
used diverse methodologies, and obtained similar results, strength-
ens our belief in these results. For example, they decided to use dif-
ferent metrics for the quality of the recall: one group used Python’s
default pattern matching library, and the other used Levenshtein’s
edit distance. We could discuss the differences between these ap-
proaches and what effect they may or may not have. But if the
results turn out to be similar, we can simply say that apparently it
does not matter very much which metric we use, because the final
results are similar. This removes the threat to validity incumbent
in relying on a single metric.

However, the differences also mean that the experiments are not
directly comparable to each other. For example, this is why results
for some of the factors, notably the comparison with short names,
come from only one of the experiments.

5 EXPERIMENT 1
In this experiment subjects were presented with 5 functions. They
were then distracted by a short text, and then asked to recall the
function names.

5.1 Function Selection
As our goal in this project is not to assess comprehension itself,
we aimed to make the functions’ purpose relatively easy to com-
prehend without requiring additional context. In this experiment
we decided to use implementations of various algorithms from a
Python algorithms collection on GitHub2. However, we did not
want study participants to be able to use auxiliary knowledge of
the common names for canonical well-known functions (e.g. bi-
nary_search). Therefore we did not choose functions that are well
known, but more unusual algorithms with no conventional naming
schemes. Additional criteria were that the functions would not be
too long, and also that they do not use esoteric external packages,
again so that understanding them would not be too challenging.

The functions we chose are listed in Table 2. All the participants
were presented with the same 5 functions.

5.2 Choosing Functions Names
In this experiment we needed to give each function two alternative
names of similar length. The more informative names were selected
as one would write in real life — fully related to the function’s goal,
descriptive, possibly with some common abbreviations (e.g. “diff”
instead of “difference”). As for the alternative names, we performed
two pilots before we were satisfied with the results. Our first at-
tempt used completely meaningless names, such as my_function
and do_something. In the pilot we found that these names stand
out on the background of the code and look suspicious, in that
they are obviously not names anyone would use. Our second at-
tempt was therefore to reduce the information in the names by
using only the single main concept out of the informative names:
name the function multiply instead of multiply_digits, diff instead
of sum_square_diff, and so on. However, the results were near
perfect recollection, and we realized that these names introduce a
2https://github.com/TheAlgorithms/Python

confounding factor which might influence memorability, in that
they are much shorter. So for the final version we took the good
names and stripped them of important information by replacing
specific words with more ambiguous words, for example replacing
“count” with “process”. As a result of this methodology the length
of each function’s name stayed approximately the same, but the
relation to the function’s intent was less obvious.

The final informative and more general names we chose for
each function are shown in Table 2. In retrospect, some answers
we received in the experiment provide testimony that our choices
were reasonable. For example, in one case the informative name
sum_square_diff was mis-remembered as calc_square_diff, and
in another as square_sum_alg. In both cases the participants had
unknowingly used the same more general words we had used in
the other version of the function name, which was calc_diff_alg.

In the interest of uniformity we created two separate versions of
the experiment: one in which all the function names are informative,
and another in which all the function names are not indicative of
the function’s intent. We are interested in the difference in accuracy
of recalling functions’ names between these two variants. This is
therefore a between-subjects comparison. All function names were
fully compliant to programming conventions in Python (PEP8),
with lowercase letters, words separated by underscores, etc.

5.3 Experiment Execution
The experiment was executed using the Google Forms platform. It
consisted of four parts:

(1) An explanation of the experiment, ending with an explicit
consent question. This was followed by demographic ques-
tions about age, gender, and experience.

(2) Presentation of five different functions. As mentioned above,
we have two versions: the first version uses function names
that are closely related to the function, and the second ver-
sion usesmore general function names. The functions always
appear in the same order. The participants were asked to
read the functions carefully. They did not know that we will
ask only about their names.

(3) Presentation of a short 3-paragraph text about a casual topic
(we selected the lovely topic of penguins!) followed by a
comprehension question (why do they waddle?). The goal
was to cause an interception in the respondents’ thought
process between reading the functions and being asked to
recollect their names.

(4) An active recall task. The respondents were presented with
5 task descriptions (specifically, the descriptions given in
Table 2), and asked to type in the name of the function that
performed each task. They were also asked not to go back
to previous pages. Note that each respondent is asked about
all the functions. The order of the questions was always
the same, but it was different from the order in which the
corresponding functions were presented.

The experiment was initially distributed by asking friends who
are experienced programmers working in the industry to participate
and pass it along to more people, in order to expand and diversify
the backgrounds of the respondents. Later we also advertised it on

The Effect of Information Content and Length on Name Recollection ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 2: Function names used in experiment 1

Informative name General Name Description Lines
multiply_digits digits_calc Find the product of the digits of a given number 8
indices_sum_to_target find_right_numbers Given an array of integers, return the places of two of them that add

up to a specific value
8

words_counter words_process Counts words occurrence in a given sentence, and returns a dictionary
with these values

6

sum_square_diff calc_diff_alg Returns the difference between the sum of the squares of the first 𝑛
natural numbers and the square of the sum

7

sum_exp_digits compute_exp_sum Return the sum of the digits of the number 2power 8

LinkedIn, with a pledge to donate $1 to either of two environmen-
tal causes for each filled response we received. The causes were
planting trees or cleaning the oceans, and participants could vote
which they preferred3. There were a total of 131 responses, and
about half of them were randomly presented with each version. 82%
of the respondents were male. 8% had up to a year of programming
experience, 35% had 2 to 4 years, and 57% had 5 or more years of
experience. Ages ranged from 20 to 58, with 68% being between 26
and 36 years old.

5.4 Data Processing
All the data entered by the experiment participants was checked
manually and classified into two groups:

• Potential names of functions, and
• Non-names, including entries of “I don’t know” or equivalent,
or nonsense like “yes” or “6”.

Names were further subject to the following processing:
• All names were normalized to lower case with words sepa-
rated by underscores.

• We extracted partial names when participants were unsure
of themselves and explained their situation. For example, if
a participant wrote “It started with ‘count’” we replaced this
with just “count”. If they wrote “exp_something” we erased
the “something” and left only “exp_” (note that underscores
were retained, as they were part of the name matching). This
was done to avoid losing the answer altogether, and reflect
what the participants did remember.

• We corrected the spelling in simple obvious cases. For ex-
ample, “coubt_words” was changed to “count_words”. The
justification is that we are interested in name recollection,
and not in typing errors.

• Re-ordering words to match the original name had to be
done carefully, taking the treatment the participant saw into
account. For example, the alternative names of the last func-
tion in Table 2 are sum_exp_digits and compute_exp_sum.
Consequently the correct order of exp and sum depends on
the treatment. We also changed the order to retain word
sequences and words that were either the first or the last in
the name.

This whole process was performed by one of the authors and then
verified by another.

3Due to a technical problem all the donations were eventually made to planting trees.

After processing the results as described above we measured the
similarity between the given names and the correct answers, using
the Python SequenceMatcher class. The distributions of results
under the different treatments were then compared to see if they
were different from each other. We first used the Shapiro-Wilk
test of normality on each distribution. As shown below, all the
distributions have strong modes at various places, especially at 0
and at 1, and they therefore failed this test. Consequently we used
the Mann-Whitney non-parametric test to test the null hypothesis
that the distributions are equal. While we expect the similarities
when names are informative to be higher, we nevertheless used the
two-sided test, as we cannot be sure our expectation is correct. This
was applied separately to the similarities of the original names and
the reordered names for each function. The significance level used
was 𝛼 = 0.05.

5.5 Results
The similarity results derived by the procedure described above are
shown using solid lines in Figure 1. These are CDF plots (cumulative
distribution functions). The horizontal axis is the score, where 0
means the answer is completely unrelated to the original name, and
1 means that they are identical. The vertical axis is the cumulative
fraction of answers up to a certain score. A CDF that is below and
shifted to the right relative to another indicates that the distribution
tends to include higher score values.

As can easily be seen, in 4 of the 5 functions using informative
names led to a score distribution with higher values than when us-
ing more general names. This indicates that the informative names
were easier to recollect correctly. In 3 of them the difference was
statistically significant according to the Mann-Whitney test, with
𝑝 < 0.001 for the words_counter and sum_square_diff functions,
but only 𝑝 = 0.043 for the multiply_digits function. The result for
sum_exp_digits was 𝑝 = 0.088, which is pretty low but not enough
to qualify under a two-sided test.

Only in one function, the one that finds the indices of two array
elements that sum to a given target, the distributions are overlap-
ping. We note that his function has a longer name and involves a
task that is more specific and more complex than those featured in
the other functions. Therefore we posit that the difference in name
recollection might be a result of longer names’ length, difference in
the number of words in the name, and complexity of the function.
Further research is needed to settle these hypotheses.

Some of the graphs in Figure 1 contain large steps in the CDF.
Such steps correspond tomodes in the distribution of scores, namely

ICPC ’22, May 16–17, 2022, Virtual Event, USA Asaf Etgar, Ram Friedman, Shaked Haiman, Dana Perez, and Dror G. Feitelson

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

words_counter
Informative
General
Inf-reorder
Gen-reorder

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

indices_sum_to_target

Informative
General
Inf-reorder
Gen-reorder

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

sum_square_diff
Informative
General
Inf-reorder
Gen-reorder

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

sum_exp_digits

Informative
General
Inf-reorder
Gen-reorder

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

multiply_digits

Informative
General
Inf-reorder
Gen-reorder

Figure 1: CDFs comparing the distributions of scores achieved with the different names for the 5 functions.

many answers that received exactly the same score, probably be-
cause they made exactly the same mistake. The biggest such step
occurs in the words_counter function (informative version), where
a common mistake was to reverse the order and think that the
name was count_words. The same thing happened in digits_calc
(general version of multiply_digits), which was mistakenly recalled
as calc_digits.

To investigate the influence of word order, we also checked the
scores of answers with the words reordered to match the original
names. The results are shown with the dashed lines of Figure 1. In
all cases but one such reordering led to higher scores, as may be
expected. But in all cases the advantage of informative names over
the more general names was retained. In other words, informative
names were remembered better whether or not word order was
considered. For two functions,words_counter and sum_square_diff,
the difference was statistically significant under the Mann-Whitney
test, with 𝑝 < 0.001 (as had been the case for the similarities of the
original names without reordering of words). For sum_exp_digits
we got 𝑝 = 0.100, and for multiply_digits it was 𝑝 = 0.208, which is
far from significance. This is not surprising given the distribution
shown in Figure 1, as one can see that the reordering removed a
large mode in the distribution of scores for the more general names,
thereby making it much closer to the distribution of scores for the
informative names.

The single case in which reordering did not make a difference is
the general name of the indices_sum_to_target function. The more
general name we had chosen was find_right_numbers, and none
of the experiment participants recalled these words in an incorrect
order. This is probably due to the fact that alternative orders just
do not sound right. Consequently this suggests another rule for
good naming: strive for word orders that can not be confused.

Considering the previous examples in which reordering did occur,
it seems that projects may also benefit from explicit naming rules
concerning the order in noun-verb combinations.

The end points — a score of 0 or a score of 1 — were also sig-
nificant modes in all cases. The bigger mode is at 0, that is, the
participants did not remember the names at all (or “remembered”
names that were completely wrong). In two of the questions this
was 20–50% of the responses, and in the other three is was 50–60%.
In all cases the non-informative general names suffered more from
such forgetfulness. But the high rates of not being able to recall
anything may imply that the task of remembering 5 names you
only saw once, after being distracted by penguins, may be too hard.

Another way to look at the results is to pool all the results from
all 5 functions, and consider the effect of demographic variables.
The results of doing so are shown in Figure 2, for gender and self-
reported years of experience. As may be expected, within each
demographic group higher scores were obtained when informative
function names were given. But the gap between the scores for
informative names and for more general names differed. When
considering gender, we see that the gap for males was much larger
than the gap for females; for females the two CDFs even coincide for
the top scores.When considering experience, we see that the gap for
experienced participants, those with 5 or more years of experience,
was much bigger than the gap for inexperienced participants, who
had up to 4 years of experience.

In other words, we observe an interaction between the treat-
ments and the demographic variables. Focusing on the more infor-
mative names (the blue lines in Figure 2), we see that in both cases
— females vs. males, or inexperienced vs. experienced — the differ-
ences are rather slim. But wider differences are observed for the

The Effect of Information Content and Length on Name Recollection ICPC ’22, May 16–17, 2022, Virtual Event, USA

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
pr

ob
ab

ilit
y

CDF of scores for Gender
Male Inf.
Male Gen.
Female Inf.
Female Gen.

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

CDF of scores for Experience

Four_or_less Inf.
Four_or_less Gen.
Five_or_more Inf.
Five_or_more Gen.

Figure 2: CDFs comparing the distributions of scores
achieved by different demographic groups.

more general names. Consequently, when we say that females rec-
ollect names better than males, most of the difference comes from
their ability to recollect the lower-quality general names better than
males. The same holds for inexperienced participants compared
with more experienced ones. This is supported by the statistical
tests applied to the distributions of scores. Statistically significant
differences were found between the distributions of scores for the
two name types for males and for experienced developers, and also
between the sexes and between the experience groups for the more
general names, with 𝑝 = 0.036 for the difference between sexes and
𝑝 < 0.001 in the 3 other cases.

The observed differences mean that it is not the case that females
and inexperienced participants just work more diligently, or that
males and experienced participants just paid less attention to names.
It is that female and inexperienced participants were specifically
better at recalling the more general names. We do not have an
explanation for this effect, but note that differences between reading
patterns of men and women have been observed in other contexts,
e.g. code reviews [20].

6 EXPERIMENT 2
In this experiment subjects were presented with 3 functions. For
each one they were then requested to answer 2 comprehension-
related questions, and to recall 2 variable names.

6.1 Function and Names Selection
The functions used in the second experiment were C++ functions
selected from leetCode.com. This site allows programmers to exer-
cise their coding skills and prepare for job interviews. It contains a
few thousand problems with dozens of contributed solutions for

each. The advantage of functions implementing solutions to such
problems is that they are self-contained, and do not need any con-
text. This makes them more comprehensible in an experimental
setting.

We initially chose 10 functions which solve diverse program-
ming problems. An important criterion was that the functions solve
a realistic challenge, and not a contrived one that was just made
up as an exercise. For example, we rejected a function calculating
the distribution of candies to children according to some strange
rule, because it would be hard to understand why the function does
what it does even if the calculation is actually straightforward. In
addition we required functions to be from easy or medium difficulty
questions (as classified by the site), 8–15 lines long, and with 3–4
variables. Next, we filtered out functions that did not have interest-
ing variables that could justify a longer informative name, as well as
functions that could be easily identified as canonical programming
problems (e.g. binary search). This left us with 6 functions. However,
a pilot study with 3 participants indicated that the average time to
answer the questions on all 6 functions was 27 minutes, which was
too tedious. We therefore decided to limit the experiment to only 3
functions. Each subject received all 3 functions, but with 3 different
treatments.

The variable names in the different treatments were designed
to investigate what has a stronger effect on a name’s recollection:
its length (it is harder to recall a long name) or its content (it is
easier to recall a meaningful name). Unlike in experiment 1, in
this experiment we also used short names. This led to a total of 3
treatments, as shown in Table 3. The difference between the short
and long informative names was added words that add information
to the name. The Long general names were used as a control. These
were the hardest to derive, as we needed to add words that match
the context but do not add pertinent information.

The functions and treatments were organized using a Graeco-
Latin square design, so that each function and each treatment had
equal probabilities to appear first, second, or third independent of
each other. As each subject saw functions in all 3 treatments, the
results had an element of within subjects comparison.

6.2 Experiment Execution
The experiment proceeded along the following steps:

(1) The first page explained that this is an experiment with ques-
tions about C++ functions, requested subjects to participate
only if they have programming experience, requested them
not to go back to look at the functions when answering the
questions, and notified them that advancing to the questions
constitutes informed consent.

(2) The next two pages presented an example function followed
by two questions, one about what it does and the other about
one of the variables in it. This example was the same for all
subjects.

(3) Then came the 3 blocks of the experiment itself. Each block
started with a page showing one of the experiment functions
in one of the treatments. Then came a separate page with 4
questions, 2 about the function and 2 about variables.

Questions about the functions were multiple choice questions about
their functionality, the return value, the number of loops in it, or

ICPC ’22, May 16–17, 2022, Virtual Event, USA Asaf Etgar, Ram Friedman, Shaked Haiman, Dana Perez, and Dror G. Feitelson

Table 3: Functions and variable names used in experiment 2

Variable names
Function signature and description Informative General Short Lines
int removeDuplicatesFromSortedArray(vector<int> &nums) numOfUniqElements selectionOfObjects ans 15
Remove duplicates from a sorted array; returns new array size totalArraySize objectMaxPoint size

int maxSubArray(vector<int> &arr) currSubArraySum dataOfArgument curr 13
Sum elements in all subarrays and return the maximum maxSubArraySum resOfArgument sum

int firstOccurrence(string string1, string string2) subStrIdx uniqueInt index 10
Return index of first occurrence of second string in first string currSubString withinElement subStr

which comparison operator was used in a condition. Questions
about variable names were presented as short code snippets with
the variable name removed (cloze test). This approach identifies the
variable in question without giving away any information about it,
thereby avoiding a threat to validity that existed in experiment 1,
where using a verbal description of the variable’s role might give
an unfair advantage to informative names that attempt to capture
exactly that role. The time to read the functions and answer the
questions was not limited, to avoid the possible confounding effect
of wrong answers due to lack of time. The questions about the
function always appeared before the name recollection questions.
Thus they served as a buffer between reading the function and
needing to recollect the names.

In total 59 subjects participated in the experiment. Subjects were
recruited using invitations in relevant groups, and were either work-
ing in the high-tech industry or students majoring in a computing-
related area. However, due to an error, no precise demographic data
was collected.

6.3 Data Processing
Names were normalized to lowercase with words separated by
underscores, and word order was corrected manually, as described
above.

As a metric we did not use the edit distance directly, but rather
the relative similarity. Edit distance counts the number of letters
that need to be changed to transform the given answer to the
original name. This naturally handicaps longer names as there are
more letters that can change relative to short names. Denoting the
edit distance by 𝑒𝑑𝐷𝑖𝑠𝑡 , and the length of the original name by
len(𝑜𝑟𝑖𝑔𝑁𝑎𝑚𝑒), we therefore define the relative edit distance as
𝑒𝑑𝐷𝑖𝑠𝑡/len(𝑜𝑟𝑖𝑔𝑁𝑎𝑚𝑒) — that is, the fraction of letters that need
to change4. We also invert the scale by subtracting the relative edit
distance from 1 so that high values reflect greater similarity. Note,
however, that the edit distance may be larger than the original
name length, for example when a subject adds a long word that
was not present in the original name. This leads to a relative edit
distance above 1, and a negative similarity score. To avoid this we
define the similarity score according to the following formula:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −min
(
1,

𝑒𝑑𝐷𝑖𝑠𝑡

len(𝑜𝑟𝑖𝑔𝑁𝑎𝑚𝑒)

)
4This is different from Tashima et al.’s normalization [42] in that we give a special role
to the original name.

The distributions of results using the different names were then
compared to see if they were different from each other. We again
used the Shapiro-Wilk test of normality on each distribution. As
in experiment 1, all the distributions have strong modes, and they
therefore failed this test. We then used the Kruskal-Wallis test,
which is the generalization of the Mann-Whitney test when more
than 2 distributions are being compared. The significance level used
was 𝛼 = 0.05.

6.4 Results
The distributions of similarity scores for the names in all treatments
and all functions are shown in Figure 3. As in the first experiment,
these are CDFs. The horizontal axis is the similarity score, calculated
as described above. The vertical one is the cumulative fraction of
answers up to a certain similarity score. Recall that in each function
there were questions about the names of 2 variables. The results
for both variables are shown together.

In the two left-most graphs we see that the red lines, representing
long general (non-informative) names, go up faster than the others.
This means that the similarity scores for these names had lower val-
ues, like in experiment 1. In the third function, in contradistinction,
the general names got higher similarity scores. However, in this
case the distance between the distributions was relatively slim. In
all cases where there was a difference, the CDFs of the results after
reordering the words (represented by the dashed lines) are lower
than those for the original results (solid lines), indicating slightly
higher similarity scores as expected.

As the number of participants in this experiment was relatively
low we analyzed all the results from all the variables in all the
functions together. We made two 3-way comparisons: one compar-
ing the achieved similarity to the short names with the achieved
similarity to the original informative and more general names, and
the other comparing the achieved similarity to the short names to
that of the reordered informative and more general names. All the
differences between all the compared versions were statistically
significant. The differences between the distribution of similar-
ity to short names to the other distributions was very significant,
with 𝑝 < 0.001 in all 4 cases. The differences between the distri-
butions of similarity to the informative and more general names
had 𝑝 = 0.016, and after reordering the significance was slightly
better, with 𝑝 = 0.011. Both these results remain significant after
Bonferroni correction for making 3 comparisons.

The gap between the point where each line hits the right end of
the graph and the top indicates the fraction of responses that were

The Effect of Information Content and Length on Name Recollection ICPC ’22, May 16–17, 2022, Virtual Event, USA

removeDuplicatesFromSortedArray maxSubArray firstOccurence

Figure 3: CDFs comparing the distributions of scores achieved with the different variable names in the 3 functions.

Table 4: Descriptive statistics of results in experiment 2

Questions Names Names
correctness average completely

Function rate similarity correct
Short names
removeDuplicates 88.2% 0.826 79.4%
maxSubArray 85.2% 0.918 85.9%
firstOccurence 85.7% 0.937 86.4%
Long informative names
removeDuplicates 78.6% 0.728 40.0%
maxSubArray 88.8% 0.779 32.5%
firstOccurence 96.4% 0.697 31.6%
Long general names
removeDuplicates 69.2% 0.504 22.5%
maxSubArray 75.6% 0.660 30.0%
firstOccurence 73.3% 0.768 41.7%

100% correct (also shown in the rightmost column of Table 4). For
the short names (the green lines) this is around 80–86% in the dif-
ferent functions. For the long names it is in the range 22–42%. Thus
short names enjoy a much higher fraction of completely correct
recollections (as was also observed in one of the pilot studies of
experiment 1). This could be simply because there was so little room
for failure — if you remember such short names, you remember
them fully and correctly.

The above results focus on the name recollection. But we also had
2 comprehension-related questions about each function. We can
therefore check for a possible relationship between variable naming
and comprehension. The results are shown in Figure 4 (and the data
in Table 4). This is a scatter plot. The horizontal axis represents
the average similarity score. The vertical axis represents the rate of
correct answers to the comprehension questions. Each function is
represented by three points, for the three treatments. Interestingly,
these points appear to cluster according to the treatment and not
according to the function. The red dots, representing general non-
informative names, had slightly lower correctness and also slightly
lower similarity. The informative names and the short names led to

Figure 4: Scatter plot showing relation of recollection and
comprehension results.

slightly higher correctness, and the short ones had higher similarity
than the informative ones.

7 THREATS TO VALIDITY
Construct Validity refers to the degree we can be sure we are
measuring what we set out to measure. We were testing the ability
to recall the name of a variable or function. In experiment 1 we
described the functions and asked the participants to recall the
name of each function, so it could be that we were testing their
ability to deduce the function’s name from its description. Also,
we were testing short-term memory. It may be that the distraction
paragraph in experiment 1, and the comprehension questions in
experiment 2, were not long enough to achieve their purpose.

Another potential problem is that some of the functions were too
similar to each other, so there were a few cases where the subjects
were confused and mixed the names. For example, multiply_digits
and sum_exp_digits both operate on digits of a number. So one
subject gave the answer multiply_digits_exponent when asked to
recall the function that finds the sum of the digits of an exponent.
We had not anticipated such cross-function confusion when we
selected the functions and their names.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Asaf Etgar, Ram Friedman, Shaked Haiman, Dana Perez, and Dror G. Feitelson

In experiment 1 we also found that male participants and ex-
perienced participants performed particularly badly on the more
general names. This could be at least partly because they simply
paid less attention to the function names, and preferred to focus on
their bodies.

Finally, the platform we used does not prevent participants from
going back to look at the names they saw previously. We asked
them not to do so, but we cannot be sure they complied. However,
the wide distribution of mistakes made testifies that it is unlikely
that they looked back.

Internal Validity refers to the degree to which we can be sure
our conclusions follow from the measurements. We conducted
controlled experiments, and attempted to change only one factor
between treatments. However, it is not possible to truly control
everything. Numerous additional factors can influence the ability
to remember names, including, among others, mood, tiredness, and
health at the time of the experiment. Since the experiment was
conducted remotely we could not make sure that all participants
were focused while answering it or took sufficient time to actually
understand the functions.

More concretely, our goal was to study names with different
lengths and different information content. There can be no de-
bate regarding the length, namely that the short names are indeed
shorter. However, we cannot be so sure about the information con-
tent. We tried to distinguish between focused informative names
andmore general names. However, names canmean different things
to different people [5]. Consequently, it may be some other factor
which causes the effect. Note, too, that in some of the results we
failed to see the main effects. This may testify to differences in
the actual characteristics of the names in those instances of the
experiments.

The opposite problem can also occur. In experiment 1 we provide
text descriptions as a prompt to elicit the function names. While
we attempted to keep these descriptions neutral, they may still be
closer to the informative names than to the general names, thus
giving an unfair advantage to the informative names. However,
experiment 2 used a different methodology which does not suffer
from this problem and produced similar results, suggesting that
this threat did not in fact affect the results. This is an example of
how using two experiments with different designs helps improve
validity.

Scope may also have an effect. Our experiments involved func-
tions with a relatively short scope, so maybe that is why short
variable names were found to be better than long ones. To check
this we need to repeat the experiment with a larger scope, for
example using class data members.

External Validity refers to the degree to which the research
can be generalized, namely whether the results can be expected to
hold beyond the specific experimental conditions that were used.
We only had 190 subjects in both experiments, which is not a very
high number.

In addition, our recall task deals with short term memory, so
the result might not be relevant for long term memory of variable
and function names. The functions we used also appeared without
context and without documentation. Such a setting might not be
representative of a “real-life” scenario for software-engineers.

8 DISCUSSION AND CONCLUSIONS
To summarize, our main result is that detailed names with informa-
tion that is focused on an object’s essence appear to be remembered
better than more general names of approximately the same length.
This was the case for 4 of 5 function names in experiment 1, and for
the variable names in 2 of 3 functions in experiment 2. However,
in experiment 2 we also found that short names are remembered
much better, despite the fact that they contain less information. In
addition, in experiment 1 we found that female and inexperienced
participants remember names better than male and experienced
participants, and the difference is especially pronounced for long
general names.

An interesting question is whether naming presents the devel-
oper with a tradeoff. Does piling more information on a name,
thereby making it longer and harder to remember, nevertheless
help to comprehend the code? And conversely, if we want a name
to be easy to remember, and strip it from information to make it
shorter, does this impair comprehension? Our experiments were
not explicitly designed to investigate the effect of the names on
comprehension. All we have at present is the comprehension ques-
tions of experiment 2, which suggest that there is no significant
difference between the comprehension of codes that employ in-
formative long or short names. If true, this would imply that we
are not facing a tradeoff: short names are easier to remember, and
do not jeopardize comprehension. However, substantial additional
work, using diverse code and comprehension metrics, is needed to
better support this tentative result.

In any case, the finding that short names are better remembered
implies the need to carefully choose what to include in a name.
Heaping additional words may have a cost associated with it. Thus
the addition of information to a name should be balanced with
other considerations, like long names causing clutter, and the scope
where the name is used [2]. The recommendation to developers
is that they should prefer focused names over general ones, and
if they are concerned with memorability, they should prefer short
names.

The effect of information content on name memorability ap-
pears to be more subtle than the effect of length. We gave initial
results on the importance of conciseness, namely that names be
precise and focused. More work like this is needed, using memo-
rability as as additional perspective to consider when measuring
comprehension and identifier name quality in varying ways (e.g.,
considering linguistic anti-patterns, grammar patterns, or word
usage consistency).

The most interesting future research would be to investigate the
link between memory and comprehension. Memorability can prob-
ably help comprehension efficiency — if you remember things you
do not need to re-check them, so comprehension will be faster and
less tedious. Checking this is hard and will require well-designed
experiments. One initial idea is to use eye tracking to see how often
people look back at declarations as a function of the names’ quality.

EXPERIMENTAL MATERIALS
Complete experimental materials and results are available online
using the following link:

https://doi.org/10.5281/zenodo.6387422

The Effect of Information Content and Length on Name Recollection ICPC ’22, May 16–17, 2022, Virtual Event, USA

ACKNOWLEDGMENTS
This research was supported by the ISRAEL SCIENCE FOUNDA-
TION (grant no. 832/18).

REFERENCES
[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate

method and class names”. In 10th Joint ESEC/FSE, pp. 38–49, Sep 2015, DOI:
10.1145/2786805.2786849.

[2] H. Aman, S. Amasaki, T. Yokogawa, andM. Kawahara, “A large-scale investigation
of local variable names in Java programs: Is longer name better for broader scope
variable?” In 14th Quality of Inf. & Commun. Tech., pp. 489–500, Sep 2021, DOI:
10.1007/978-3-030-85347-1_35.

[3] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns: What they
are and how developers perceive them”. Empirical Softw. Eng. 21(1), pp. 104–158,
Feb 2016, DOI: 10.1007/s10664-014-9350-8.

[4] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol, and Y.-G.
Guéhéneuc, “REPENT: Analyzing the nature of identifier renamings”. IEEE Trans.
Softw. Eng. 40(5), pp. 502–532, May 2014, DOI: 10.1109/TSE.2014.2312942.

[5] E. Avidan and D. G. Feitelson, “Effects of variable names on comprehension: An
empirical study”. In 25th Intl. Conf. Program Comprehension, pp. 55–65, May 2017,
DOI: 10.1109/ICPC.2017.27.

[6] G. Beniamini, S. Gingichashvili, A. Klein Orbach, and D. G. Feitelson, “Meaningful
identifier names: The case of single-letter variables”. In 25th Intl. Conf. Program
Comprehension, pp. 45–54, May 2017, DOI: 10.1109/ICPC.2017.18.

[7] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To CamelCase or under_score”.
In 17th Intl. Conf. Program Comprehension, pp. 158–167, May 2009, DOI:
10.1109/ICPC.2009.5090039.

[8] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informativeness using
part of speech information”. In 8thWorking Conf. Mining Softw. Repositories, pp.
203–206, May 2011, DOI: 10.1145/1985441.1985471.

[9] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length and limited
programmer memory”. Sci. Comput. Programming 74(7), pp. 430–445, May 2009,
DOI: 10.1016/j.scico.2009.02.006.

[10] S. Butler, M. Wermelinger, and Y. Yu, “A survey of the forms of Java reference
names”. In 23rd Intl. Conf. Program Comprehension, pp. 196–206, May 2015, DOI:
10.1109/ICPC.2015.30.

[11] B. Caprile and P. Tonella, “Restructuring program identifier names”. In Intl. Conf.
Softw. Maintenance, pp. 97–107, Oct 2000, DOI: 10.1109/ICSM.2000.883022.

[12] N. Cowan, “The magical mystery four: How is working memory capacity limited,
and why?” Current Directions Psychological Sci. 19(1), pp. 51–57, Feb 2010, DOI:
10.1177/0963721409359277.

[13] F. Deissenboeck and M. Pizka, “Concise and consistent naming”. Softw. Quality J.
14(3), pp. 261–282, Sep 2006, DOI: 10.1007/s11219-006-9219-1.

[14] S. Fakhoury, D. Roy, Y. Ma, V. Arnaoudova, and O. Adesope, “Measuring the
impact of lexical and structural inconsistencies on developers’ cognitive load
during bug localization”. Empirical Softw. Eng. 25(3), pp. 2140–2178, May 2020,
DOI: 10.1007/s10664-019-09751-4.

[15] D. G. Feitelson, “From repeatability to reproducibility and corroboration”. Oper-
ating Syst. Rev. 49(1), pp. 3–11, Jan 2015, DOI: 10.1145/2723872.2723875.

[16] D. G. Feitelson, “Considerations and pitfalls in controlled experiments on code
comprehension”. In 29th Intl. Conf. Program Comprehension, pp. 106–117, May
2021, DOI: 10.1109/ICPC52881.2021.00019.

[17] D. G. Feitelson, A. Mizrahi, N. Noy, A. Ben Shabat, O. Eliyahu, and R. Sheffer,
“How developers choose names”. IEEE Trans. Softw. Eng. 48(1), pp. 37–52, Jan
2022, DOI: 10.1109/TSE.2020.2976920.

[18] J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names take
longer to comprehend”. Empirical Softw. Eng. 24(1), pp. 417–443, Feb 2019, DOI:
10.1007/s10664-018-9621-x.

[19] G. J. Holzmann, “Code clarity”. IEEE Softw. 33(2), pp. 22–25, Mar/Apr 2016, DOI:
10.1109/MS.2016.44.

[20] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and W. Weimer, “Biases
and differences in code review using medical imaging and eye-tracking: Gen-
ders, humans, and machines”. In 28th ESEC/FSE, pp. 456–468, Nov 2020, DOI:
10.1145/3368089.3409681.

[21] D. M. Jones, “The new C standard: An economic and cultural commentary”, 2009.
URL http://www.knosof.co.uk/cbook/cbook1_2.pdf.

[22] D. Lawrie, H. Feild, and D. Binkley, “Quantifying identifier quality: An analysis of
trends”. Empirical Softw. Eng. 12(4), pp. 359–388, Aug 2007, DOI: 10.1007/s10664-
006-9032-2.

[23] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “Effective identifier names for
comprehension and memory”. Innovations in Syst. & Softw. Eng. 3(4), pp. 303–318,
Dec 2007, DOI: 10.1007/s11334-007-0031-2.

[24] O. A. L. Lemos, M. Suzuki, A. C. de Paula, and C. Le Goes, “Comparing identifiers
and comments in engineered and non-engineered code: A large-scale empirical
study”. In 35th ACM Symp. Applied Computing, pp. 100–109, Mar 2020, DOI:
10.1145/3341105.3373972.

[25] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals”. Soviet Physics – Doklady 10(8), pp. 707–710, Feb 1966.

[26] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role of naming
in computer programs”. In 18th Psychology of Programming Workshop, pp. 53–67,
Sep 2006.

[27] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim, and Y. Le Traon,
“Learning to spot and refactor inconsistent method names”. In 41st Intl. Conf.
Softw. Eng., May 2019, DOI: 10.1109/ICSE.2019.00019.

[28] T. Love, “An experimental investigation of the effect of program structure on
program understanding”. Softw. Eng. Notes 2(2), pp. 105–113, Mar 1977, DOI:
10.1145/390019.808317.

[29] K. B. McKeithen, J. S. Reitman, H. H. Reuter, and S. C. Hirtle, “Knowledge organi-
zation and skill differences in computer programmers”. Cognitive Psychol. 13(3),
pp. 307–325, Jul 1981, DOI: 10.1016/0010-0285(81)90012-8.

[30] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer: An
investigation of how developers spend their time”. In 23rd Intl. Conf. Program
Comprehension, pp. 25–35, May 2015, DOI: 10.1109/ICPC.2015.12.

[31] C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik, M. W.
Mkaouer, and E. Hill, “On the generation, structure, and semantics of grammer
patterns in source code identifiers”. J. Syst. & Softw. 170, art. 110740, Dec 2020,
DOI: 10.1016/j.jss.2020.110740.

[32] D. Oliveira, R. Bruno, F. Madeiral, and F. Castor, “Evaluating code readability and
legibility: An examination of human-centric studies”. In Intl. Conf. Softw. Mainte-
nance & Evolution, pp. 348–359, Oct 2020, DOI: 10.1109/ICSME46990.2020.00041.

[33] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “Contextualizing
rename decisions using refactorings, commit messages, and data types”. J. Syst.
& Softw. 169, art. 110704, Nov 2020, DOI: 10.1016/j.jss.2020.110704.

[34] J. W. Ratcliff and D. E. Metzener, “Pattern matching: The gestalt approach”. Dr.
Dobbs J. Jul 1988. Https://www.drdobbs.com/database/pattern-matching-the-
gestalt-approach/184407970?pgno=5.

[35] F. Salviulo and G. Scanniello, “Dealing with identifiers and comments in
source code comprehension and maintenance: Results from an ethnographically-
informed study with students and professionals”. In 18th Intl. Conf. Evaluation &
Assessment in Softw. Eng., art. 48, May 2014, DOI: 10.1145/2601248.2601251.

[36] G. Scanniello, M. Risi, P. Tramontana, and S. Romano, “Fixing faults in C and
Java source code: Abbreviated vs. full-word identifier names”. ACM Trans. Softw.
Eng. & Methodology 26(2), art. 6, Oct 2017, DOI: 10.1145/3104029.

[37] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and M. Beigl,
“Descriptive compound identifier names improve source code comprehen-
sion”. In 26th Intl. Conf. Program Comprehension, pp. 31–40, May 2018, DOI:
10.1145/3196321.3196332.

[38] B. Shneiderman, “Exploratory experiments in programmer behavior”. Intl. J.
Comput. Inf. Sci. 5(2), pp. 123–143, Jun 1976, DOI: 10.1007/BF00975629.

[39] B. Shneiderman, “Measuring computer program quality and comprehension”.
Intl. J. Man-Machine Studies 9(4), pp. 465–478, Jul 1977, DOI: 10.1016/S0020-
7373(77)80014-X.

[40] H. A. Simon and W. G. Chase, “Skill in chess”. American Scientist 61(4), pp.
394–403, Jul-Aug 1973.

[41] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of comments and
identifier names on program comprehensibility: An experimental investigation”.
J. Prog. Lang. 4, pp. 143–167, Sep 1996.

[42] K. Tashima, H. Aman, S. Amasaki, T. Yokogawa, and M. Kawahara, “Fault-prone
Java method analysis focusing on pair of local variables with confusing names”.
In 44th Euromicro Conf. Softw. Eng. & Advanced Apps., pp. 154–158, Aug 2018,
DOI: 10.1109/SEAA.2018.00033.

[43] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring program
comprehension: A large-scale field study with professionals”. IEEE Trans. Softw.
Eng. 44(10), pp. 951–976, Oct 2018, DOI: 10.1109/TSE.2017.2734091.

	Abstract
	1 Introduction
	2 Related Work
	3 Research Questions
	4 Methodological Considerations
	4.1 Experimental Materials
	4.2 Name Similarity Metric
	4.3 Independent experiments

	5 Experiment 1
	5.1 Function Selection
	5.2 Choosing Functions Names
	5.3 Experiment Execution
	5.4 Data Processing
	5.5 Results

	6 Experiment 2
	6.1 Function and Names Selection
	6.2 Experiment Execution
	6.3 Data Processing
	6.4 Results

	7 Threats to Validity
	8 Discussion and Conclusions
	Acknowledgments
	References

