
Accelerating Multi-Media Processing by Implementing Memoing inMultiplication and Division Units�Daniel Citron Dror FeitelsonDepartment of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, IsraelE-mail:citron,feit@cs.huji.ac.il Larry RudolphLaboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139E-mail:rudolph@lcs.mit.eduAbstractThis paper proposes a technique that enables performingmulti-cycle (multiplication, division, square-root ...) com-putations in a single cycle. The technique is based on thenotion of memoing: saving the input and output of previouscalculations and using the output if the input is encounteredagain. This technique is especially suitable for Multi-Media(MM) processing. In MM applications the local entropy ofthe data tends to be low which results in repeated operationson the same datum.The inputs and outputs of assembly level operations arestored in cache-like lookup tables and accessed in parallelto the conventional computation. A successful lookup givesthe result of a multi-cycle computation in a single cycle, anda failed lookup doesn't necessitate a penalty in computationtime.Results of simulations have shown that on the average,for a modestly sized memo-table, about 40% of the oatingpoint multiplications and 50% of the oating point divisions,in Multi-Media applications, can be avoided by using thevalues within the memo-table, leading to an average com-putational speedup of more than 20%.1 IntroductionMany of the time-consuming machine instructions in Multi-Media-based applications are repeatedly applied to the sameoperands, and so they can be eliminated by recording theresults of these operations the �rst time they are performedand replacing the operation with a table-lookup. Instruc-tions such as multiplication, division, and square-root thatusually complete in multiple cycles can be made to completein a single cycle when certain conditions are met.Many mathematical functions are computed in hardwareusing iterative algorithms[1] that by their nature are timeconsuming. Table 1 show the cycle times for oating point�Funding for this work is provided in part by the Advanced Re-search Projects Agency of the Department of Defense under the Ft.Huachuca contract DABT63-95-C-0150, for work done at Lab for CSat Massachusetts Institute of Technology and in part by the IsraeliMinistry of Science for work done at Hebrew University.

multiplication and division on several processors. It is im-portant to note that these numbers are the latencies for thegiven instructions; the multiplication unit is pipelined itself,which leads to a throughput of one cycle for consecutivemultiplication instructions. However, since none of theseprocessors pipeline their division units, their execution can\throw a wrench" in the execution pipeline by introducingstructural and data hazards and by resulting in out-of-ordercompletion[1]. Multiplication DivisionPentium Pro [2] 3 39Alpha 21164 [3] 4 31MIPS R10000 [4] 2 40PPC 604e [5] 5 31UltraSparc-II[6] 3 22PA8000 [7] 5 31Table 1: Cycle times of leading microprocessorsWe propose to mitigate the e�ect of oating point di-visions by reducing their frequency via a memoing[8] tech-nique: The input (operands) and output (result) of partic-ular instruction types are stored into a cache-like lookuptable. The table is accessed in parallel to the conventionalcomputation. A successful lookup gives the result of a multi-cycle computation in a single cycle, and a failed lookupdoesn't necessitate a penalty in computation time. Figure1 shows a schematic layout of the idea. The operands areforwarded in parallel both to a division unit and its adjacentmemo-table.This paper restricts its attention to Multi-Media due tothe low local entropy of values displayed in the data sets ofthese applications and the nature of Multi-Media applica-tions where computations are performed on local areas ofan image or signal.The rest of this section will overview related work (1.1).The next section describes the memo-table. Section 3 sum-marizes the experimental results that supporting the use ofmemoing. Section 4 summarizes the results and suggestssome future directions.1.1 Related WorkThe concept of memoing was introduced by Michie[8]. Theidea is to save the inputs and results of side-e�ect-free func-tions in a table and reuse the results for matching inputs.Since then it has been used mainly in the context of declar-ative languages like Prolog, Lisp, and ML [9, 10, 11].

Result

DIVISION

UNIT

MEMO

TABLE

MUX

hit/miss lineoperation

completed

line

Operand 1

Operand 2

Figure 1: A division unit using a memo-tableIn computer arithmetic \Look Up Tables" are used in di-vision and square-root [12]. For instance high-radix SRT[13]division uses a static table with prede�ned values to \guess"the next bits of the quotient (in fact this table caused the in-famous \Pentium fdiv bug"). Our work isn't directly relatedto computer arithmetic in the sense that we don't proposeany new algorithms or techniques for accelerating arithmeticcomputations. Where successful, our technique enables theprocessor to bypass these computations altogether.The idea of exploiting redundant computation was in-troduced by Stevens [14] and further expanded by Flynnand Oberman [15]. Their simulations were performed onthe SPEC, Perfect and NAS benchmarks [16, 17]. Our testsrevealed that other families of applications produce betterresults, speci�cally Multi-Media with an emphasis on appli-cations utilizing Image Processing.Sodani and Sohi have introduced the concept of DynamicInstruction Reuse[18], where all instructions executed areinserted into a table called the Reuse Bu�er (RB). If theaddress of the instruction being fetched matches the addressof an instruction in the RB and the operands stored matchthe current operands, the instruction isn't executed and thevalues in the RB are used instead (except in the case ofmemory stores). Our scheme di�ers in several ways. First,we only record certain types of instructions, thus it is lesslikely for multiple-cycle instructions to be bumped out ofthe RB by single-cycle instructions. Second, we do not careabout the address of the instruction, rather the instructionitself. Thus, if the compiler unrolls a loop, our scheme willhave more hits.2 Accelerating Computations Using memo-tablesThis section describes how the memo-tables acceleratesmulti-cycle operations. A stand-alone memo-table is �rstpresented and followed by a description of how a memo-table can work in tandem with a Computation Unit (CU).

The section ends with showing how an enhanced CU can beincorporated into an execution pipeline and a small discus-sion of the cycle time and die size of a memo-table.2.1 The memo-tableA memo-table is a cache-like Look Up Table (LUT), thatreceives an index into the table and returns the value in thatposition. The likeness to a cache is due to the fact that thevalues in the LUT change over time with the most recentlyused values present in the memo-table.Just like in a conventional cache when a value is for-warded to the memo-table, a subset of its bits are used toform an index into the LUT. The remaining bits (or somesubset of them) are compared to a tag that is sitting inthe indexed entry. If they match, we say that we have a\hit" and the value sitting in the entry is returned. If theydo not match, we say that we have a \miss" and no valueis returned. Other cache-like properties like overwriting anentry that has returned a miss and having an input valuecompared to more than one entry (using associative sets) areused in the design of memo-tables. Speci�cally we suggestmemo-tables of 32 entries and 4-way associativity.Unlike a conventional cache where each line containsmore than one word and relatively small associated tag, thememo-table contains a large tag and just the one word re-sult in each line. To emphasize this distinction, we shall useentry instead of the traditional line. In most cases the tagwill be larger than the value stored (the entry) due to thefact that our input values are the two operands of a binaryfunction while the output value is its unary result.We have studied two variations. First, it is not necessaryto enter the full oating point value of the operands into amemo-table. Since oating point computations are com-puted separately on the mantissa and exponent, one alter-native is to just store the mantissa of the operands. Second,it isn't necessary to store all instances. Trivial operationslike multiplying by 1 or 0 and dividing by 1 or dividing 0need not be computed at all, the memo-table can detectthem and forward the result immediately.2.2 memo-tables in the Computation UnitsThe execution stage (EX) of the CPU pipeline is performedby various units. The opcode of the instruction de�neswhich execution will be used, such as the integer ALU, theinteger multiplier, the oating point adder etc. Instructionsthat execute in more than one cycle stay in the EX stageuntil the computation is completed.A memo-table is added to each computation unit thattakes multiple cycles to complete. The Instruction Decode(ID) stage forwards the operands to the appropriate com-putation unit and in parallel, to the corresponding memo-table. If there is a hit in the memo-table, its value isforwarded to the next pipeline stage (the write back (WB)stage), the computation unit is aborted and signals it is freeto receive the next set of operands. If there is a miss fromthe memo-table, the computation is allowed to complete,the result obtained forwarded to WB stage and in parallelentered into the memo-table.The memo-table does not increase latency along thecritical path: The calculation and the lookup are performedin parallel. Updating the memo-table with the new resultin the case of a miss is also done in parallel with the for-warding of it to the WB stage. Thus on the next cycle anew lookup/computation can be performed.

In the cases where a CU computes a commutative op-eration (addition, multiplication) the lookup in the memo-tablemust compare the operands both in the order as spec-i�ed in the instruction and in their reverse order. Althoughthis waste of space could be avoided by, say, �rst sortingthe operands, this extra computation would introduce extralatency.2.3 The memo-table in the pipelineThe use of memo-tables in the CUs that implement theEX stage of the pipeline can greatly accelerate the speed inwhich multi-cycle instructions complete, and thus reduce thenumber of occurrences of out-of-order completions. Unfortu-nately, a compiler or run-time scheduler sometimes expectsan instruction to complete in multiple cycles. Since withour technique it may complete much sooner than expected,there is no instruction that uses the same CU that is readyto be issued. This problem is compounded in multiplicationunits which are themselves pipelined in order to achieve highthroughput. New compiler design and run-time schedulingis beyond the scope of this work.In the case where a processor implements several in-stances of the same CU, having a memo-table adjacent toeach CU could degrade performance. Recurring calculationsmight be dispatched to di�erent CUs and thus be calculatedmore than once and reside in more than one memo-table.The solution is to create a larger multi-ported memo-tablethat will be shared by the above CUs enabling one CU totake advantage of work performed by another.It is possible to extend this concept and use memo-tables not only in tandem with computation hardware butas CUs themselves. Instead of having, for instance, twooating point dividers, only one will be integrated and thesecond will be an interface to a multi-ported memo-tablein the division unit. In the case where two fp divisions areissued together, the second one is issued to the memo-tableinterface. In the case of a miss it will be stalled until thedivider is free and then issued to it. Since a memo-tableis much smaller than a divider that incorporates the high-radix SRT [13] technique, it is possible for VLIW and super-scalar processors to increase their issue rate by using memo-tables.2.4 Cycle time & Die sizeThe cycle time of a memo-table lookup is comparable tothat of a cache lookup. An 8K cache with a line size of32 bytes contains 256 entries, �rst level on-chip caches arereaching sizes of up to 64K[4, 5]. Our experiments show thatjust a 32 entry memo-table is su�cient and so addressingan entry should take less time than in a conventional cache.However, the size of a tag in a cache is smaller than the sizeof a memo-table tag. While a cache's tag can be up to64 bits a memo-table tag is composed of 2 double precisionnumbers, 128 bits. But due to the fact that the memo-tablecomparator performs its operand comparisons in parallel, weassume that a memo-table lookup should take one cycle,on par with most on-chip caches.The size of a memo-table can be compared to the size ofa conventional cache. A 32 entry memo-table holds 32�3 =96 double precision values which is 96 � 8 = 768 bytes.With second-level caches being integrated on-chip[3], addingseveral memo-tables should be possible without drainingresources meant for other units.The size of a memo-table is even smaller than the sizeof some computation units. For instance the SRT divisor on

the Pentium has a 2048 entry lookup table (although only1066 of them are used), each entry can be any of 5 values sothe lookup table alone takes up one KiloByte.3 Experiments and ResultsTo verify the usefulness of the memo-table technique, weperformed a series of experiments with an architecturallydetailed simulator: Shade [19] a SPARC (versions 8 & 9)instruction level simulator. Shade receives as input a binaryexecutable and executes it natively on a SPARC compatibleprocessor. Statistics are collected by breaking on speci�c in-structions and storing register values in software simulatedmemo-tables. Statistics of all multiplication (both integerand fp) and division instructions were collected. In additionthe frequency breakdown of all instructions in the bench-marks were collected.The two indicators that measure the success of the memo-table technique are:Hit Ratio The hit ratio of a memo-table will show howmany multiple cycle operations were avoided. A higherhit ratio implies that less instances of multiple cycleoperations are performed. This ratio is measured bythe simulations in Section 3.1 and the results are shownin Section 3.2.Speedup The end goal of using memo-tables is to accel-erate processing; if the enhancement has no impact onperformance, the extra complexity of adding it isn'tworth the e�ort. Section 3.3 measures the speedup ofapplications using memo-tables.Naturally, the hit-ratio and speedup depend on the speci�cdesign of the memo-table. The larger the LUT, the betterthe expected hit-ratio & speedup.3.1 Simulations & TracesThe hit ratio is a function of the size of the memo-table,its associativity, and the number of bits stored (full valueor mantissa in fp numbers). We have simulated memo-table with as its size varying from 8 to 8K entries andthe spectrum of associativity from direct mapped to 8-wayassociativity. We have also ran the benchmarks through an\in�nitely" large fully associative memo-table for compar-ison.The oating point memo-tables are simulated both withthe whole value and with only the mantissa. Integer operandsare hashed by by performing an exclusive or (XOR) on then least signi�cant bits of the two operands (where n is thenumber of sets in the memo-table). For oating point op-erations, the n most signi�cant bits of the mantissas of bothoperands are XORed in order to receive an index into thememo-table.ADM Air Pollution, uid dynamicsQCD Lattice gauge, quantum chromodynamicsMDG Liquid water simulation, molecular dynamicsTRACK Missile tracking, signal processingOCEAN Ocean simulation, 2-D uid dynamicsARC2D Supersonic reentry, 2-D uid dynamicsFLO52 Transonic ow, 2-D uid dynamicsTRFD 2-electron transform integrals, molecular dynamicsSPEC77 Weather simulation, uid dynamicsTable 2: Description of the Perfect Benchmark applications

tomcatv Vectorized mesh generationswim Shallow water equationssu2cor Monte-Carlo methodhydro2d Navier Stokes equationsmgrid 3d potential �eldapplu Partial di�erential equationsturb3d Turbulence modelingapsi Weather predictionfpppp Gaussian series of quantum chemistrywave5 Maxwell's equationTable 3: Description of the SPEC CFP95 applicationsThe simulated system consists of memo-tables adja-cent to the integer multiplier, fp multiplier and fp divider.The traces were taken from three sources: The �rst twoare the Perfect Benchmarks and SPEC CFP95 benchmarks(the oating point component of the SPEC CPU95 suite)[16, 17] These applications are described in tables 2 and3. The third is the Khoros development environment [20]that consists of a suite of Image Processing (IP) and DigitalSignal Processing (DSP) applications. These applicationsshowed much higher hit ratios than the other applications,thus our targeting of Multi-Media applications. The speci�capplications are described in table 4. Each application wasrun on 8 to 14 inputs.vspatial Statistical spatial feature extractionvcost Surface arc length from a given pixel.vslope Slope and aspect images from elevation data.vsqrt Square root of each pixel.vdi� Di�erentiation using two N�N weighted ops.vdetilt Best-�t plane subtracted from the image.vgauss Generates Gaussian distributions.venhance Local transformation (mean & variance).vgef Edge detection.vwarp Polynomial geometric transformation (warp).vrect2pol Conversion of rectangular to polar data.vmpp 2-D information from COMPLEX images.vbrf Band-reject �ltering in the frequency domain.vbpf Band-pass �ltering in the frequency domain.vsurf Surface parameters (normal and angle).vkmeans Kmeans clustering algorithm.vgpwl Two dimensional piecewise linear image.venhpatch Stretches contrast based on a local histogram.Table 4: Description of MM applications3.2 ResultsThe basic con�guration of a memo-table that we have cho-sen is one with 32 entries arranged in 8 rows with set associa-tivity of 4. Floating point numbers are stored fully. Tables5 and 6 show the results of the general scienti�c benchmarksand Table 7 shows the results of the Multi-Media applica-tions. We compare the results of using an \in�nitely" largefully associative memo-table to the results of using a muchsmaller 32 entry 4-way associative memo-table. All suitesshow a large potential for data reuse but only the MM suitecan scale down to a size and associativity that are practical.The numbers exclude all trivial operations.The low hit ratios on the Perfect and SPEC suites may beexplained by the work of Franklin and Sohi [21]. A registerinstance is de�ned as each time a datum is written into aregister. Reads to that register use that register instance.Franklin and Sohi show that for the SPEC [16] benchmarks,a large number of register instances are used only once and

the average use being about 2. Most of the register instancesare replaced with a new datum within 30-40 instructions.On the other hand, the much higher hit ratios of MMapplications can be understood by considering the entropyof the data values of the images. Table 8 describes the inputimages along with some of their characteristics (size, type,number of bands), their entropies and the averages of the hitratios for the applications that used the image as an input.The lower the entropy, the higher the hit-ratio.The entropy of an image is related to the amount ofinformation it contains. An image can be described usingfewer bits when its entropy is lower. The entropy of an imageis calculated by the following equation:E = ��Lk=1pk � log2(pk)Where L is the number of possible values of each pixel andpk is the probability of the value appearing in the image.This probability is calculated by the histogram of the image.Thus, an image in which each pixel represents a level ofgrey between 0 to 255 and the values are evenly distributedthroughout the image will have an entropy of:��256k=11=256 � log2(1=256) = �256k=11=256 � �8 = 8In most cases the distribution is not evenly distributed,yielding an entropy of less than 8. When looking at smallimages or at windows of an image (16�16 and 8�8 pixelsper window) most values have a probability (pk) of 0 so theentropies are even smaller. Thus the number of di�erentpixel values in a small area is low, this leads to our beliefthat the same calculations are being performed over again.Figure 2 shows the relationship between hit-ratio andentropy [22]. Speci�cally, the hit-ratios of oating point di-vision and multiplication are plotted against a parameterof the entropies of 8�8 windows and of whole images. Al-though the actual points are all over the graphs, we havealso drawn a best-�t line (nonlinear least squares �tting us-ing the Marquardt-Levenberg Algorithm) to show that, onaverage, for each bit of entropy a 5% decrease in the hit-ratio is observed. In other words the lower the entropiesthe higher the hit ratios, this indicates that the same cal-culations are being performed over and over in a localizedarea.Storing only the mantissas of oating point numbersraises the hit ratios, albeit not by much (Table 10). Onthe other hand, in order to store only mantissas, the memo-table has to be capable of computing the results' expo-nent and normalize the results' mantissa if necessary. Thistradeo� between simplicity of design and enhanced hit-ratiohas to be made when implementing a memo-table. In allour subsequent experiments, the full oating point value isstored in the memo-table.In our experiments, we di�erentiate between \trivial"and \non-trivial" operations. Although entering trivial op-erations into the memo-table might raise the hit ratio,these operations can complete in a few cycles anyhow. Onthe other hand, more calculations are being entered into thememo-table which can lower the hit-ratio. Table 9 showsexamples of both these behaviors. Trivial operations usuallyhave shorter latencies so not entering them into the memo-table enables non-trivial computations with long latenciesto reside longer in the memo-table and have a better chanceof being reused.In order receive the best results, trivial operations shouldbe detected before being forwarded to a memo-table and

application 32 entries \in�nite"int mult fp mult fp div int mult fp mult fp divADM .98 .13 .15 .99 .41 .56QCD .02 .00 .00 .07 .04 .00MDG - .00 .02 - .04 .03TRACK .98 .17 .09 .99 .46 .89OCEAN .15 .03 .03 .99 .30 .99ARC2D .94 .15 .23 .99 .45 .26FLO52 .86 .02 .06 .97 .11 .20TRFD .60 .18 .85 .99 .59 .99SPEC77 .06 .28 .01 .97 .37 .15average .57 .11 .16 .70 .31 .45Table 5: Hit ratios for the Perfect benchmarks, LUT has 32 entries in sets of 4, or is in�nitely large and associative (a '-'indicates operations that don't appear in this application).application 32 entries \in�nite"int mult fp mult fp div int mult fp mult fp divtomcatv .14 .01 .00 .99 .16 .00swim - .16 .00 - .93 .74su2cor .26 - - .99 - -hydro2d .15 .75 .78 .98 .97 .97mgrid .83 .00 - .99 .01 -applu .97 .25 .25 .99 .66 .64turb3d .80 .16 .03 .99 .86 .99apsi .95 .16 .13 .99 .39 .57fpppp .53 .29 .15 .99 .55 .62wave5 - .05 .02 - .11 .16average .58 .20 .17 .99 .52 .59Table 6: Hit ratios for the SPEC CFP95 benchmarks, LUT has 32 entries in sets of 4, or is in�nitely large and associative.application 32 entries \in�nite"int mult fp mult fp div int mult fp mult fp divvdi� (sobel) .49 .54 - .96 .99 -vcost .99 .34 .44 .99 .81 .93vgauss - .50 .79 - .87 .95vspatial .61 .62 .94 .92 .99 .99vslope .34 .15 .25 .99 .60 .83vgef .37 .33 - .99 .99 -vdetilt - .23 - - .46 -vwarp .27 .57 .38 .99 .63 .68venhance - .57 .12 - .96 .47vrect2pol - .42 .61 - .97 .80vmpp - .41 .56 - .89 .98vbrf .72 .01 .05 .99 .64 .88vbpf .72 .54 .52 .99 .52 .80vsurf .48 .25 .33 .93 .65 .83vgpwl - .50 .58 - .99 .99venhpatch .99 .68 - .99 .99 -vkmeans - .39 .58 - .99 .97average .59 .39 .47 .95 .82 .85Table 7: Hit ratios for Multi-Media applications, LUT has 32 entries in sets of 4, or is in�nitely large and associative.their results returned immediately. Table 9 shows that inte-grating this technique within a memo-table gives the high-est hit-ratios. We decided to focus on non-trivial operationsas it isn't clear what speedup is obtained by not performingtrivial operations. So except for the experimental results inTable 9, all the experiments cached only non-trivial opera-tions.The �nal two experiments performed test the attributesof the LUT itself, its size and associativity. Figure 3 showsthe average hit-ratios (min-max results shown by the verti-cal lines at each LUT size) of the MM applications when thesize of the LUT ranges from 8 to 8192 entries, and its asso- ciativity is 4. Figure 4 shows the average hit-ratio (min-maxresults shown by the vertical lines at each set size) when theassociativity ranges from direct mapped to 8-way associa-tivity. In both these experiments �ve sample Multi-Mediaapplications were used (vcost, venhance, vgpwl, vspatial &vsurf).Figure 3 shows that it is possible to use di�erent sizememo-tables for di�erent Computing Units. While for afp division unit a size 8 memo-table may be su�cient, amemo-table adjacent to a fp multiplier must be of size 32at least. This shows that repeating division operations areperformed closer together and aren't \bumped" out of the

image characteristics entropy window size hit ratiossize type bands full 16�16 8�8 imul fmul fdivmandrill 256�256 BYTE 1 7.34 6.03 5.10 .31 .30 .29nature 256�256 BYTE 1 7.38 5.64 4.72 .31 .34 .35Muppet1 240�256 BYTE 1 7.04 4.78 4.16 .31 .45 .50guya 128�128 BYTE 1 6.99 4.77 3.91 .36 .76 .37star 158�158 BYTE 1 5.93 5.22 4.62 .96 .32 .33chroms 64�64 BYTE 1 4.82 4.04 3.29 .58 .43 .40airport1 256�256 BYTE 1 4.47 3.15 2.56 .31 .46 .45lablabel 243�486 INTEGER 1 3.37 0.93 0.84 .93 .66 .75fractal 450�409 BYTE 1 1.42 0.78 0.58 .88 .61 .82head 228�256 FLOAT 1 - - - .39 .29 .33spine 228�256 FLOAT 1 - - - .39 .27 .32lenna.rgb 480�512 BYTE 3 7.75 6.84 6.25 .19 .35 .58mandril.rgb 480�512 BYTE 3 7.75 6.22 5.64 .36 .36 .52lizard.rgb 512�768 BYTE 3 7.60 5.66 5.17 .32 .40 .60Table 8: Description of the images used in IP applications.
0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7

fp division in 8x8 windows

actual points
best fit line

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8

fp division in the whole image

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7

fp multiplication in 8x8 windows

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8

fp multiplication in the whole image

Figure 2: Hit Ratios (vertical axis) of fp division and multiplication as a parameter of Entropy (horizontal axis) in 8�8windows and whole imagessuite fp mult fp divfull mant full mantPerfect .11 .11 .16 .17Multi-Media .39 .43 .47 .50Table 10: Comparison of storing only mantissa's or thewhole oating point number (averages of 32 entry 4-wayassociative memo-tables).memo-table as often as fp multiplication operations. The�gures show as well that performance improves up to about1024 entries. More entries hardly improves the hit ratio ascan be seen by the curve that attens out in the above inter-val. Many more entries are needed for further improvementsas shown using \in�nite" sized memo-tables.Figure 4 shows that both for fp division and multiplica-tion a set size of over 4 hardly improves the hit ratio. In
fact, a set size of 2 su�ces for division. These results showsthat a memo-table with 16 entries and an associativity of2 gives results almost as good as a 32/4 memo-table. In fpmultiplication a 32/4 is the minimum required. It would besimpler to let the memo-table be direct-mapped and saveon the space taken by a set of comparators but Figure 4shows that conict misses lower the hit ratio in both memo-tables. The conicts are caused by the hashing scheme,in some applications (vsqrt, vcost, vgauss) nearly identicalvalues are entered into the memo-table alternately causinga conict miss on every lookup. A set size of 2 avoids thisproblem.3.3 SpeedupAmdahl's law [1] states that the speedup obtained by usingan enhancement depends on two factors:

application int mult fp mult fp divtrv hit ratios trv hit ratios trv hit ratios% all non intgr % all non intgr % all non intgrvdi� .34 .48 .49 .67 .62 .63 .54 .81 - - - -vcost .66 .62 .99 .99 .20 .30 .34 .43 .00 .44 .44 .44vgauss - - - - .23 .39 .50 .60 .00 .23 .23 .23vspatial .61 .71 .61 .87 .06 .57 .62 .65 .00 .94 .94 .94vslope .53 .54 .34 .70 .44 .22 .15 .50 .15 .28 .25 .30vgef .34 .43 .37 .58 .23 .41 .33 .48 - - - -vdetilt - - - - .04 .26 .23 .27 - - - -venhance - - - - .15 .52 .57 .57 .00 .12 .12 .12average .50 .55 .56 .76 .25 .41 .41 .54 .03 .40 .40 .40Table 9: Hit ratios for several Multi-Media applications, LUT has 32 entries in sets of 4. This table shows:trv the ratio between trivial operations and all operationsall the hit ratio when all operations (trivial and non-trivial) are stored in a memo-tablenon the hit ratio when ony non-trivial operations are stored in a memo-tableintgr the hit ratio when checking for trivial ops is integrated into the memo-table, and onlynon-trivial operations are stored in the memo-table(trivial operations are counted as \hits")
10

0.70

0.10

0.90

0.50

0.30

H
it

R
at

io

Number of LUT Entries

FP Division

23 24 25 26 27 28 29 2 213 infinite

10

0.70

0.10

0.90

0.50

0.30

H
it

R
at

io

Number of LUT Entries

FP Multiplication

23 24 25 26 27 28 29 2 213 infiniteFigure 3: Hit ratios of oating point division and multiplication in MM applications as a function of the LUT size (set sizeis 4).1. The fraction of computation time in the original ma-chine that can use the enhancement. This is calledFraction Enhanced (FE), it is always smaller than 1.2. The improvement gained if only the enhancement modecould be used. This is called the Speedup Enhanced(SE),it is always greater that 1. The new execution time when using the enhancement is:Tnew = Told � ((1� FE) + FE=SE):Taking fp division as an example, SE is equal to:dc(1� hr)dc+ hr

H
it

R
at

io

0.100.10

0.30

0.50

0.70

0.90

0.30

0.70

0.90

FP MultiplicationFP Division

Set Associativity Size

1 2 4 8 1 2 4 8

0.50Figure 4: Hit ratios of MM applications as a function of the LUT associativity (LUT size is 32 entries).app hit ratio 13 cycles 39 cyclesFE SE Speedup FE SE Speedupvenhance .12 .036 1.12 1.00 .101 1.13 1.01vbrf .05 .062 1.05 1.00 .180 1.05 1.01vsqrt .54 .017 1.99 1.01 .049 2.11 1.03vslope .25 .074 1.30 1.02 .204 1.32 1.05vbpf .52 .089 1.92 1.04 .226 2.02 1.13vkmeans .58 .094 2.15 1.05 .237 2.30 1.15vspatial .94 .101 7.55 1.10 .252 11.89 1.30vgauss .79 .150 3.69 1.12 .346 4.34 1.36vgpwl .58 .208 2.15 1.13 .440 2.29 1.33average .48 .092 2.85 1.05 .226 3.16 1.15Table 11: Speedup of applications when fp division is memoized (division takes 13 or 39 machine cycles).app hit ratio 3 cycles 5 cyclesFE SE Speedup FE SE Speedupvenhance .57 .061 1.61 1.02 .101 1.84 1.05vbrf .01 .021 1.00 1.00 .052 1.01 1.00vsqrt .39 .015 1.36 1.01 .025 1.45 1.01vslope .15 .111 1.11 1.01 .147 1.14 1.02vbpf .54 .026 1.56 1.01 .038 1.76 1.02vkmeans .39 .101 1.35 1.03 .133 1.45 1.04vspatial .62 .050 1.70 1.02 .071 1.98 1.04vgauss .50 .125 1.50 1.04 .172 1.67 1.07vgpwl .50 .071 1.50 1.02 .083 1.67 1.03average .28 .057 1.40 1.02 .091 1.55 1.03Table 12: Speedup of applications when fp multiplication is memoized (multiplication latency is 3 or 5 machine cycles).where dc is the number of machine cycles it takes to per-form a division and hr is the hit ratio in the memo-table.FE is equal to the number of cycles used by division in-structions divided by the cycle count of the application. Inorder to compute the total cycle count of an application vs.the number of cycles of multiplication and division instruc-tions the simulator was enhanced to incorporate a memoryhierarchy of two caches and take into account annulled in-structions in the pipeline. Thus the indicator of speedupis total cycle count executed by all instructions. Enhance-ments like multiple issue and pipelining aren't taken intoconsideration at this point. This enables us to bypass theproblem of compiler changes that have to be made in orderto take advantage of memo-tables and focus on the numberof superuous cycles avoided.
Table 11 shows the memo-table hit ratio, Speedup En-hanced, Fraction Enhanced and Speedup for the nine MMapplications that use a fdiv memo-table (32 entries in setsof 4). It is assumed that each division instruction takes 13machine cycles or 39 machine cycles. A look at table 1 showsthat no modern microprocessors even comes close to com-pleting a double precision division instruction in less that 13cycles and that on at least one processor it takes more that39 cycles. The table shows an average speedup of between5% to 15%.Table 12 shows the same information for applicationsusing a fmul memo-table (32 entries in sets of 4). It is as-sumed that each multiplication instruction has a latency of3 or 5 machine cycles. It is possible that some of the cyclesavoided by using a memo-table would be avoided in anycase due to a pipelined multiplication unit. In our simu-

app 3(fmul), 13(fdiv) cycles 5(fmul), 39(fdiv) cyclesFE SE Speedup FE SE Speedupvenhance .097 1.42 1.03 .201 1.49 1.07vbrf .083 1.03 1.00 .232 1.04 1.01vsqrt .032 1.69 1.01 .074 1.88 1.04vslope .185 1.19 1.03 .351 1.24 1.07vbpf .115 1.83 1.06 .264 1.98 1.15vkmeans .195 1.73 1.09 .370 1.99 1.23vspatial .151 5.61 1.14 .323 9.71 1.41vgauss .275 2.70 1.21 .518 3.45 1.58vgpwl .279 1.98 1.16 .523 2.19 1.39average .156 2.13 1.08 .317 2.77 1.22Table 13: Speedup of applications when fp multiplication and division are memoized (latencies are 3 and 13 or 5 and 39machine cycles).lations we didn't take into account the possibility that se-quential multiplication instructions will be pipelined, whichwill cause a throughput of one cycle for each instruction.So it is possible that the speedup �gures for fp multiplica-tion are somewhat biased in our favor. But as mentionedabove we focus on total cycles per application. Future workwill take into account multiple units, pipelined units andmultiple memo-tables. A look at table 1 shows that theselatencies are consistent with most modern microprocessors.The table shows an average speedup of between 2% to 3%.The fact that memoizing division gives better speedupsthan memoizing multiplication is due to the long latenciesof division instructions and the bene�t of avoiding some ofthem. This shows that future work should be integratingmemo-tables into other long latency functions such as sqrt,log and the trigonometric functions.Table 13 shows the speedups when both fdiv and fmul arememoized on two type of processors. The �rst has very fastoating point units that complete fp multiplication and divi-sion in 3 and 13 cycles respectively. The second is slower andcompletes fp multiplication and division in 5 and 39 cyclesrespectively. The table shows an average speedup of between8% to 22%. Even taken at its face value a 8% speedup iscomparable with the speedups attained by enhancing branchprediction and cache & TLB hit ratios [23, 24, 25].4 ConclusionsThis paper investigates a technique to reduce the averageCPI of multiplication and division instructions by using theconcept of memoing. Previous computations are stored inlook up tables and access in parallel to computing an oper-ation. If the result of a computation already resides in thetable, it is obtained in a single cycle as opposed to the mul-tiple cycles needed to perform multiplication and division.The technique is based on the temporal locality of thedata used in computations. Unfortunately not all applica-tions show such locality. A suite of \general" benchmarkstested have shown poor hit ratios on the memo-tables. Butapplications that do display this locality bene�t from thememoing. Image Processing & Digital Signal Processingthat are used in Multi-Media applications show high hit ra-tios and are clearly candidates for enhanced execution usingmemo-tables. Our tests show that an average of 59% of theinteger multiplications, 43% of the oating-point multiplica-tions and 50% of the oating-point divisions in MM appli-cations can be performed in a single cycle using small lookup tables. These hit ratios lead to an average speedup of upto 22% in Multi-Media applications using memo-tables.

A 32 entry, 4-way associative memo-table is comparablein size to 1KB of on-chip cache, and no machine cycles arelost in the case of an unsuccessful lookup. Thus memo-tables can be implemented in general purpose processorsand not only in dedicated MM processors.Future work will be to extend the memo-table techniqueto sqrt, log, trigonometric and other mathematical functionsbased on the success and promise of this work. Anotheravenue of research is to quantify the bene�ts of using severalmemo-tables instead of duplicating functional units.It might be said that we are \throwing hardware" at theproblem and that is indeed so. The scales of integrationmentioned above enable putting in the excess of 7 milliontransistors on chip. A large amount of these transistors arededicated to on-chip caches which are becoming larger andlarger. The R10000 and PPC 604e both have 64K of on-chip cache with the Alpha 21164 having 112K of cache intwo levels on-chip. This large amount of hardware is usedto bridge the growing gap between levels of the memoryhierarchy. A fraction of this transistor space can be divertedto the memo-tables and enable the bridging of the gapbetween the cycle times of di�erent instructions.References[1] Hennessy J. L. and Patterson D. A., \Computer Archi-tecture: A Quantitative Approach,"Morgan KaufmannPublishers, San Mateo CA, 1990.[2] http://www.intel.com/design/[3] http://www.digital.com/info[4] http://www.sgi.com/MIPS/products/r10k[5] http://www.mot.com/SPS/PowerPC/products[6] http://www.sun.com/microelectronics/datasheets[7] http://www.hp.com/wsg/strategies[8] Michie D., \Memo Functions and Machine Learning,"Nature 218, pp 19{22, 1968.[9] L. Sterling and E. Shapiro, \The Art of Prolog, 2ndEd.", MIT Press Cambridge MA, 1992.[10] Abelson, H. and Sussman, G.J. Structure and Interpre-tation of Computer Programs. MIT Press, Cambridge,Mass. 1985.[11] R. Milner, M. Tofte, R. Harper, and D. MacQueen,The De�nition of Standard ML (Revised) .MIT Press,Cambridge, Mass. 1997.

[12] P. Soderquist and M. Leeser, \An area/performancecomparison of subtractive and multiplicative di-vide/square root implementations," Proc. 12th IEEESymp. Computer Arithmetic, pp. 132{139, July 1995.[13] Atkins, D.E. \Higher-radix division using estimates ofthe divisor and partial reminders," IEEE Trans. onComputers C-17:10, 925{934,1968.[14] S. Richardson, \Exploiting Trivial and RedundantComputation", Proc. of the 11th Symp. on ComputerArithmetic, pp. 220{227, July 1993.[15] S. Oberman, M. Flynn, \Reducing Division Latencywith Reciprocal Caches", Reliable Computing, Vol 2,no. 2, pages 147{153, April 1996.[16] Price W.J. , \A Benchmark Tutorial," IEEE Micro, pp.28{43, October 1989.[17] http://www.netlib.org/benchweb[18] A. Sodani, G. Sohi, \Dynamic Instruction Reuse",Proc. of the 24th Int. Symp. on Computer Architecture,June 1997.[19] Cmelik R. and Keppel D., Shade: A Fast Instruction-Set Simulator for Execution Pro�ling, Sun Microsys-tems Laboratories.[20] D. Argiro and C. Gage, \Khoros User's Manual," U. ofNew Mexico, 1991.[21] M. Franklin and G.Sohi, \Register Tra�c Analysis forStreamlining Inter-Operation Communication in Fine-Grain Parallel Processors," Proc. of Micro 25, pp 236{245, 1992.[22] A. K. Jalin, \Fundamentals of Digital Image Process-ing," Prentice Hall, Englewood Cli�s NJ, 1989.[23] T. Yeh and Y. Patt, "A Comparison of Dynamic BranchPredictors that Use Two Levels of Branch History,"Proc. of the 20th Int. Symp. on Computer Architecture,pp 191{201, 1993.[24] N. Jouppi, "Cache Write Policies and Performances,"Proc. of the 20th Int. Symp. on Computer Architecture,pp 191{201, 1993.[25] J. Chen, A. Borg, N. Jouppi, \A Simulation BasedStudy of TLB Performance," Proc. of the 18th Int.Symp. on Computer Architecture, pp 114{123, 1991.

