
Noname manuscript No.
(will be inserted by the editor)

Understanding Large-Scale Software Systems –
Structure and Flows

Omer Levy · Dror G. Feitelson

Received: date / Accepted: date

Abstract Program comprehension accounts for a large portion of software de-
velopment costs and effort. The academic literature contains mainly research
on program comprehension of short code snippets, but comprehension at the
system level is no less important. We claim that comprehending a software sys-
tem is a distinct activity that differs from code comprehension. We interviewed
experienced developers, architects, and managers in the software industry and
open-source community, to uncover the meaning of program comprehension
at the system level; later we conducted a survey to verify the findings. The
interviews demonstrate, among other things, that system comprehension is
largely detached from code and programming language, and includes scope
that is not captured in the code. It focuses on one hand on the structure
of the system, and on the other hand on the flows in the system, but less
on the code itself. System comprehension is a continuous, unending, itera-
tive process, which utilizes white-box and black-box approaches at different
layers of the system depending on needs, and combines both bottom-up and
top-down comprehension strategies. In summary, comprehending a system is
not just comprehending the code at a larger scale, and it is not possible to
comprehend large systems at the same level as comprehending code.

Keywords Program comprehension · System comprehension · Code
structure · Program flows

Dror Feitelson holds the Berthold Badler Chair in Computer Science. This research was
supported by the ISRAEL SCIENCE FOUNDATION (grants no. 407/13 and 832/18). This
paper is an invited extended version of a paper from ICPC 2019.

Authors’ affiliation:
Department of Computer Science
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
Tel.: +972-2-5494555
E-mail: lomer1978@gmail.com, feit@cs.huji.ac.il



2 Levy & Feitelson

1 Introduction

Software maintenance is responsible for the majority of the development costs
of a software system [6]. There is a well-established direct relationship between
the ability to comprehend the software and the cost of software maintenance
[9]. Program comprehension is therefore a key element in the software devel-
opment life cycle. Indeed, many tools and practices that were developed in
the software development world over the last few decades—from modern pro-
gramming languages, through UML architecture diagrams, and on to design
patterns and coding practices—are all targeted also at improving the com-
prehensibility and maintainability of software, and thus reducing maintenance
costs [5,66].

Research in program comprehension focuses on how developers understand
code, by analyzing the impact of code elements on comprehension [27,28,1,
46], suggesting tools and methodologies to improve code comprehension [30,
22], and analyzing the cognitive models that are employed in code compre-
hension [13,37,61]. Such studies typically employ short code segments. When
considering comprehension of a single function with an average complexity, it
is expected that an expert may be able to evaluate every possible code path,
understand the meaning of each variable, and successfully predict the output
of the function given a particular input.

Yet due to the volume of code in a large software system, it is not possible
for one person to understand the entire system in the same way one under-
stands a single function. The key to understanding a function is understanding
the programming language’s syntax and the semantics created by the devel-
oper. But the key to understanding larger volumes of code is understanding
abstractions and concepts. This requires understanding that is not necessarily
reflected in the code itself. Von Mayrhauser and Vans write in this context
about “understanding software, rather than merely programs (code)” [71].

Large complex software systems are planned, developed, and maintained
regularly in the software industry. However, it is not clear how software systems
are comprehended based on the existing software comprehension literature. Do
the developers of these systems really understand the entire system? To what
extent do they understand it? What aids do they use to better understand
the system? More generally, what is the meaning of the term “program com-
prehension” in this context, and how does it differ from the comprehension of
smaller segments of code?

We try to answer these questions through a series of in-depth interviews
with experienced developers. We asked about the different levels of compre-
hension at different granularities of code, the comprehension strategies that
are required for different tasks, the role of documentation in comprehension,
and the special skills required for system comprehension. Some of our main
findings are:

– System understanding is largely detached from code and programming lan-
guage, and includes scope that is not captured in the code. Understanding
a system is not just understanding more code.



Understanding Large-Scale Software Systems 3

– Understanding at a larger scope shifts focus from the code to its structure
(architecture): the components, their connections, data flow, and also the
considerations that led to this design.

– There are different levels of comprehension. In particular, there is a signif-
icant difference between black-box and white-box comprehension.

– Understanding a software system is a lengthy and iterative process, which
includes a mix of several levels of comprehension and several comprehension
strategies.

– There is a mutual interplay between software comprehensibility and qual-
ity. Comprehensibility is an element of software quality. Conversely, quality
improves comprehensibility and may alleviate the need to understand.

– Understanding a system requires a different skill-set compared to the skills
required for programming.

This paper is an extended version of a paper from the 27th International
Conference on Program Comprehension [38]. The original paper focused on
the hierarchical structure of systems. This version extends the discussion to
include flows as well, adds a survey of experienced developers to validate the
results, and also adds multiple examples and observations from a repeated
analysis of the interviews.

1.1 Software System Model

Throughout the paper we discuss a hierarchical model of a software system
that includes the following layers:

– Function: as common in most modern programming languages (such as
C/C++/Java).

– Class: as common in most modern object oriented languages (such as
C++/Java). We use a simplified model where a class consists of a col-
lection of functions (methods) and common state variables (data mem-
bers), with a differentiation between public methods that can be used from
outside the class and private methods which are internal. This simplified
definition, which does not require inheritance, includes many non-object-
oriented programming languages with similar constructs (such as modules
in C modular programming).

– Package: we use the term “package” to loosely refer to a collection of
classes that provide a cohesive functionality. Some of the research partici-
pants objected to this term and proposed other terms or definitions. The
term is meant to provide an additional hierarchical level between a class
and a full system. Packages are the basic unit of reuse in that they are
self-contained.

– Subsystem: a part of the system that is an independent deployable unit,
when parts are deployed in different places. For example, a distributed
system may have a client subsystem and a server subsystem; an embedded
system may have multiple controllers communicating with one-another,
where each controller is a separate subsystem.



4 Levy & Feitelson

system

control flow function call TCP/IP

sub−systemsub−system

package

bb

bb bb

bb

package

package

function

class

class

class

function

function

Fig. 1 Flows at different levels of a system’s structure hierarchy. bb: basic block.

– System: we use the term “system” to refer to an entire software system.
The exact definition of a system is debatable and its boundaries may also
be understood in different ways.

In parallel to this hierarchy of layers that describes the system structure,
we also consider a description of the system through its flows—that is, the
way the system control shifts between different parts of the code over time.
Importantly, this description of the system through flows directly relates to
describing the system via use cases. Each flow starts with an entry point to
the system.

The two different views of the system are related in that flows can be
described among subsystems at the system level, among packages in the sub-
system or system level, among classes at the package level, among functions
in the class level, and even between basic blocks within a single function (see
Fig. 1).

In many cases a flow that is described at the system level can be “zoomed
into” to be viewed at the subsystem, package, or class level. The passing of
control between packages is accomplished by a function belonging to a certain
class in one package calling a function belonging to some class in another
package—most probably a function that is part of the package’s API. But
flows between subsystems are different, as they typically involve the definition
of a communications protocol. Likewise, control flow within a function in also
different.

Interestingly, several common complexity measures are tightly related to
this type of analysis of a system through flows. For example, the McCabe
Cyclomatic Complexity metric (MCC) [44] characterizes the paths of control
flow within a function. The Fan-in/Fan-out metric [25] characterizes the call



Understanding Large-Scale Software Systems 5

graph between functions. This suggests that flows embody complexity, and
one must understand the flows in order to understand the system.

1.2 Related Work

Controlled experiments have been used to study code complexity and compre-
hension for a long time. In early work Weissman identified multiple possible
factors affecting comprehension, including aspects of readability, control flow,
and data flow, and developed the experimental methodology to study them
[74]. Several recent works measured code comprehension in quantitative ex-
periments using short code snippets. Ajami et al. [1] measured the time it
took experimental subjects to answer questions related to code snippets, and
showed, among other results, that loops are harder to understand than condi-
tional statements. Other studies performed controlled experiments to measure
the impact that trace visualization [18], reactive programming [59], the naming
of variables [10,7], or UML object diagrams [67] have on program comprehen-
sion.

In a related vein, Störrle [65] performed a controlled experiment on UML
comprehension, and derived guidelines for UML diagram layout and diagram
size. He shows a negative correlation between the experiment score and the
diagram size. This may be related to the complexity of the architecture con-
veyed by the UML diagram, implying that larger more complex systems are
harder to understand.

There have been several works focused on understanding large-scale soft-
ware. Petersen et al. performed a case survey on selection of components
to integrate into a system [53]. This topic is a particular facet of system
comprehension—it requires understanding an unknown software component
and how it relates to the system requirements. In 9 of the 22 cases, the final
decision was perceived negatively. This may point to the difficulty in system
comprehension and the decisions in that area. Kulkarni and Varma also dis-
cuss problems with package reuse practices and the importance of structured
decisions [35].

Feng et al. present a tool they call Sage to aid developers in comprehend-
ing code [22]. This tool analyzes execution traces to identify frequent behaviors
at different levels of granularity, and label them with comprehensible names.
Note, however, that it assumes that a high-level understanding of the func-
tionality of the system is known apriori. It’s goal is to map this understanding
to the code.

Brunner and Porkoláb, on the other hand, note that understanding legacy
software is especially hard. They suggest to incorporate information from the
source control system in addition to looking at the code [14]. This can help
identify diverse code elements that were developed together, and therefore are
parts of the implementation of a specific feature.

Kozaczynski et al. take a systematic approach to design a tool to aid in
software systems comprehension [31]. They start by mapping the questions



6 Levy & Feitelson

developers need to answer, and design the tool to have capabilities needed to
answer each one of them. This is based on parsing and analyzing the code base
to create a system model, which is stored in an accessible repository.

Alomari et al. suggest that visualizations can be important for understand-
ing large systems [2]. They propose a tool to visualize slices, for example using
bipartite graphs to visualize the definition-use coupling due to different vari-
ables. This is expected to aid in impact analysis when contemplating a change
to the code. Similarly, Moonen and Yazdanshenas developed a tool to visual-
ize the flows between the constituents of a component-based system [49]. Both
these works testify to the importance of flows for understanding.

Maletic et al., in contradistinction, suggest a tool they claim is scalable for
visualizing the structure of the code [42]. Wettel and Lanza, in a series of pa-
pers, suggest the city metaphor to visualize the structure of a software system
[76,75]. In this visualization classes are represented by buildings, where the
dimensions of the building reflect code metrics such as the number of methods
or data members. Packages are represented by city blocks. This allows for an
overview of the system structure, and draws attention to special cases: inter-
face classes with numerous methods stand out as skyscrapers, whereas parsers
that set numerous variable look like parking lots. But there is no indication
of what the system does or how. Panas et al. also use a city metaphor, but at
a finer granularity (buildings are functions) with additional attributes shown,
which can become somewhat cluttered [50]. Maletic et al. have analyzed soft-
ware visualizations with a focus on their use for understanding [41].

The need for tools that aid comprehension is a result of the difficulty to
understand large code bases. Hwa et al. consider the hierarchical structure of
object-oriented systems (modules, classes, and the inclusion and referencing
relationships between them) [26]. They postulate a set of metrics for system
understandability based on accepted concepts like size, encapsulation, cou-
pling, and cohesion. However, they do not address the basic issue of what does
it mean to understand a system.

Zhang et al. suggest that the complexity of a system’s structure can be
quantified based on the networking concept of k-cores [79]. This also defines a
hierarchy on the system’s components, but in this case the hierarchy is based
on how central a component is. They show that diverse systems may have
common characteristics in terms of their structure, but do not make explicit
connections between these characteristics and the difficulty of understanding
the systems.

A possible approach to alleviate the need to understand code is to provide
code summaries. Several tools that generate such summaries automatically
have been proposed [3,24,55]. Using eye tracking to see where developers focus
during the execution of a summarization task helps identify what they find
the most important elements of the code in terms of comprehension.

Turning to case studies of understanding real systems, Xia et al. [78] mea-
sured the different computer-mediated activities related to program compre-
hension, finding they account for 58% of the time in real-life environments.



Understanding Large-Scale Software Systems 7

They also show that senior developers spend less time on program compre-
hension than juniors.

Kulkarni undertook the comprehension of a 500,000 lines software system
for the purpose of reuse. He used a mix of top-down and bottom-up approaches
to eventually locate about 25,000 lines of code that were critical to understand-
ing the entire system [34]. Other works also provided methods for identifying
the most important parts of a large software system as a means for system
comprehension [58,62].

The academic discussion of cognitive models of software comprehension has
a long history, mostly circling around two well-known main models mentioned
above: the “top-down” model [13] and the “bottom-up” model [37]. Several
combinations or variations of these models have also been proposed [64,70,
21].

The most significant body of work on understanding software systems is
by von Mayrhauser and Vans from the 1990s [68,69,70,71,73,72]. Importantly,
their work is based on analyzing maintenance sessions of professionals working
on large-scale full systems. For example, in [71] they report in detail on the
protocol analysis of a 2-hour session comprising a maintenance task to port
client programs to a new operating system. In [73] they report on two 2-hour
program enhancement sessions by two different developers in the context of
different projects. One of them was debugging the new code he had added to
the system, while the other was trying to identify the correct location to add
his code.

The gist of von Mayrhauser and Vans work was to suggest and demonstrate
the integrated model of program comprehension, which includes top-down and
bottom-up components [68,70]. Their findings indicate that “understanding is
built at all levels of abstraction simultaneously rather than level by level. This
necessitates frequent switches between code, design, and application domain
knowledge during the cognition process” [68]. However, our work indicates
that actual practice is nearly entirely focused on the code. Design documents
often do not exist, and even when they do exist, they may be considered to
be outdated and untrustworthy. The underlying difference between our results
and those of von Mayrhauser and Vans is that they postulate a continuum
from understanding short code snippets to full systems. We favor a view in
which system comprehension is inherently different from code comprehension.

We have not found any focused discussion of what comprehension actually
means at the system level, and possible differences between understanding
code and understanding a system. Kruchten’s 4+1 model of architecture is a
way to achieve a comprehensive description of a system [32]. It includes the
system’s structure and behavior, and also its logic and its layout, all unified by
how they serve the system’s use cases. This may be used as a guideline to what
should be understood to claim a full understanding of the system. Razavizadeh
et al. [54] also suggest aiding comprehension by providing multiple viewpoints
to the architecture. However, it seems that developers tend to focus exclusively
on the structure, and this is what is typically meant when discussing program
comprehension.



8 Levy & Feitelson

2 Methodology

The concept of comprehension is difficult to measure. Several methods for mea-
suring different possible aspects of comprehension exist, and have been used
in controlled experiments on small-scale code comprehension. However, the
meaning of “comprehension” at the software system level is not well-defined.
Clarifying this is the main objective of our work. Given that this question
concerns human understanding, and since some of the basic terminology re-
quired to describe system comprehension is missing from software engineering
research, we take an initial approach of exploratory qualitative research. Such
an approach is targeted to establish basic models, and seed future empirical
and more quantitative research efforts.

After defining our own perceived model of system comprehension, we con-
structed a semi-structured one-on-one interview plan. This was intended to
uncover the participants’ existing thoughts on system comprehension, while
allowing further discussion beyond the interview plan in case the participant
raised thoughts and ideas that we found to be important to system-level com-
prehension.

Since we are interested in software system comprehension as it is commonly
practiced in the field, we performed interviews with 11 experienced develop-
ers, managers, architects, and entrepreneurs from different companies with
different company profiles. This is usually called “expert interviews” in the
social sciences literature, and is considered an efficient way to gather data in
exploratory research [11]. A potential problem with expert interviews is a pos-
sible imbalance between the interviewees and the interviewer. This may lead
to reduced cooperation and inefficiency. However, in our case the interviewer
was also an experienced software professional, and as a result the interviewees
appear to have considered the interviews as a discussion among peers.

The interviews, each about an hour long, were recorded. They were then
transcribed by an office services company. Finally, the text was corrected by
the interviewer in cases the transcribers didn’t understand technical jargon.

We followed common basic procedures of text analysis. Both authors care-
fully read each interview transcript, separately. Each one of us highlighted any
quote that was related to system comprehension, specific activities used for
comprehension, ideas about measuring and proving comprehension, or connec-
tions between different aspects of comprehension. This method of duplicate,
separate analysis is called “analyst triangulation”, and is used in order to in-
crease research validity [15]. Inspired by the grounded theory approach [23], we
searched for common themes that arose in several places in a single interview
or in multiple interviews, including contradictions between those instances. We
also looked for thoughts that supported or contradicted our initial perceived
model. Finally, we compared our notes and discussed them at length in order
to arrive at a joint analysis of the texts. We ended up with a refined model
for system comprehension, which was somewhat different from the model we
started with.



Understanding Large-Scale Software Systems 9

It should be noted that unlike common text analysis methodology, we are
not necessarily seeking common ground such as ideas that are widely agreed
upon. We found that outliers should not be discarded, quite the contrary. Ex-
perienced developers develop their own models of system comprehension, but
rarely discuss them. In some cases, a participant used wording that shed light
on ideas that were latent in our original model and in other interviews. Thus
ideas that are expressed by a single individual sometimes inspire a modification
in the model and allow us to view things differently.

For this extended version of the paper we performed a second round of
analysis of the interviews. This second analysis revealed that some aspects of
system comprehension were missing or not emphasized enough in the original
model. Examples include the identification of the subsystem structural level,
and the flows comprising a different viewpoint on the system. In the following,
these new findings are integrated with the original ones.

The interviews were conducted in Hebrew. The citations from the inter-
views quoted in the following are translations of the original quotes into En-
glish, with minimal rephrasing for readability and flow. Note that these quo-
tations were selected to illustrate the results and the utterances from which
they were derived, but they are not a comprehensive list of all supporting
utterances. The conclusions derive from the entire analysis process, not only
from these quotations.

2.1 The Interview Plan

We used a semi-structured interview plan designed to take about an hour. It
included the following discussion topics:

– Brief introduction.
– The participant’s professional experience and programming-related history.
– Introduction of the hierarchical view of a software system (function, class,

package, and system) as defined in Section 1.1. We solicited feedback on
this definition.

– Definition of “comprehension” in the context of the various layers—what
does it mean to understand a function? What does it mean to understand
a class? etc.

– The various levels of comprehension required for different programming
tasks in the different software layers—can you use a function/class/package
without understanding it? What level of understanding is required to use a
function/class/package? What level of understanding is required to debug
or maintain a function/class/package?

– Inter-dependencies between the comprehension of different layers: does one
need class level understanding in order to understand a method in the class?

– Comprehension process for the different layers—how do you go about un-
derstanding a function/class? What is the first thing you look at when you
evaluate a package?



10 Levy & Feitelson

– Proof of comprehension in the different layers: how do you test one’s com-
prehension of a function/class/package/system? What methods from the
research literature resonate with actual ways of testing comprehension?

– Importance of various aids for comprehension in the different layers (dif-
ferent types of documentation, source code, usage samples, etc.).

– Roles in the company that are related to software comprehension: who
are the people that have a system level comprehension? What is their
percentage in the development group? What are their roles?

– Definition of system architecture—how would you define system architec-
ture? We provided some general statements on architecture and solicited
feedback.

– The development process of system architecture—is this an individual ef-
fort or a group effort? Are there documents or any other forms to commu-
nicate the architecture?

– Importance of system architecture understanding and its relation to system
comprehension.

The full plan is available online at http://tiny.cc/interview-plan.

2.2 The Participants

We interviewed 11 experienced participants from different companies and roles:

– [AK], a developer and architect with 20 years of experience, mostly in C
in embedded programming and system applications; works for an interna-
tional corporation of 10,000+ employees (company A).

– [MN], a developer and architect with 20 years of experience, mostly in C
in embedded programming and system applications, also experienced in
C++ and Java; works for company A.

– [GA], a software team manager with 23 years experience, including pro-
gramming experience in C and C++ and managerial experience with em-
bedded programming and algorithms teams; works for company A.

– [ES], a software team manager with 20 years experience and programming
experience in C, C++, and C#, mostly in desktop and web applications;
works for an international corporation of 10,000+ employees (company B).

– [AO], a developer and architect with 20 years of experience, mostly in C++
and C# desktop and web applications; works for company B.

– [SN], a developer with 8 years of experience, mostly in C in system appli-
cations; works for company B.

– [YI], a software manager with 6 years of experience, founder and CTO of
a start-up company of 100-200 employees developing mobile applications
(company C).

– [DL], a team leader with 13 years of experience, mostly in C, C++ and
python; works for company C.

– [BY], a team leader with 4 years of experience, mostly in C and objective
C; works for company C.

http://tiny.cc/interview-plan


Understanding Large-Scale Software Systems 11

– [BG], a developer with 17 years of experience, works at a small start-up
company of 10-20 employees and is also a renowned developer in the open-
source community.

– [AR], a university professor and researcher with 28 years of experience, and
industry experience as founder and CTO of multiple start-up companies;
also taught a course centered on understanding a large-scale open source
system.

We opted to interview developers on the more senior end of the scale, assuming
senior developers have experience with large-scale systems and a perspective
on the comprehension process. The relatively low number of participants is
acceptable in this type of research [20], especially given that the interviewer
(the first author) had a close association with them being an architect with
20 years experience himself.

2.3 Validation Survey

As part of extending the study we set out to ratify the model using a valida-
tion survey. The survey was designed to reflect some of the findings from the
interviews, and the model for software comprehension that arose from those
findings. It consisted of 32 questions, where each question is a statement that
reflects the system comprehension model we developed based on the original
interviews.

We asked the participants to rate their agreement with these statements on
a 7-point scale. The scale points were designated as strongly disagree, disagree,
tend to disagree, neutral, tend to agree, agree, and strongly agree. In addition
a don’t know / no opinion option was given. The survey was expected to take
about 10–15 minutes to complete.

Following the content questions we added some general demographic ques-
tions, such as job title, professional experience, employment country, and
whether or not they participated in the original study. No additional personal
information was collected.

The survey was implemented on the SurveyMonkey platform. A link to
the survey was sent out to experienced professionals based on personal ac-
quaintance, with a request to forward it to other experienced professionals as
well.

56 participants responded to the survey, 8 of whom had also been inter-
viewed in the original study. 23 of the participants self-identified as “Software
Developer / Software Engineer”, and the rest identified as software architects,
team leaders, managers, or other. All participants had 4+ years of professional
experience in the software world, with a median of 15 years; more than a third
had 20+ years of experience. 81% of them were from Israel.



12 Levy & Feitelson

3 Depth of Comprehension

We now begin the presentation of our findings regarding the understanding of
large-scale software systems.

3.1 Levels of Comprehension

Almost all participants indicated that there are several levels to the compre-
hension of a software component. The participants distinguished between at
least the following two levels of comprehension:

– Black-Box Comprehension: this is the basic level of comprehension. At
this level the subject comprehends what is the functionality of the given
component. At the function level, this equates to comprehending the func-
tion’s prototype, its arguments (inputs) and the expected output of the
function given a certain input. At the class level, this comprehension level
is equivalent to comprehending the class’s public interface. This notion can
be extended to a package or a system black-box comprehension in a similar
manner.

– White-Box Comprehension: at this level of comprehension, the subject
would comprehend how the component implements its functionality. They
would be able to describe the flow that leads from the input to the output.
In a function, this level of comprehension is equivalent to comprehending
the code of the function. In a higher layer, such as in a package, this level
of comprehension is equivalent to describing the classes in the package that
are involved in the implementation of a particular package API, the role
of each class, and how data flows among these classes.

[MN] explained this distinction as an issue of viewpoint and scope: “You draw
a [UML] sequence diagram where [module name] is a single line. The fact that
internally A talks with B, opens a file, [etc.] ... keeps us busy and keeps us
awake at night, but actually it may not interest someone who is building a
bigger story, where [the module] just performs some task, and how it performs
the internal division of the work is not interesting”.

The difference between these two levels of comprehension strongly relates
to the concepts of modularization and information hiding [51]. A well-designed
component that employs proper information hiding can be well-comprehended
for most common uses using black-box comprehension only. White-box com-
prehension would be required only for maintenance or refactoring.

Some participants also noted that white-box comprehension itself has sev-
eral levels. It may be possible to fix simple bugs with only a superficial level
of comprehension—for example, a null pointer exception can in many cases be
easily traced and fixed without really understanding the code of the function.
According to [BG] such cases are even common. For non-trivial bugs, a deeper,
more complete level of white-box comprehension is needed. But being able to
extract the needed information to trace bugs is also a unique skill: “there were



Understanding Large-Scale Software Systems 13

people in organizations I managed, that could very easily debug systems that
they knew very little about” [GA].

A few participants suggested additional levels of comprehension. [ES] pointed
to a level where you would comprehend “implicit and explicit assumptions that
whoever wrote the function had, that are related to some broader context”.
[BG] gave an example of a file system, where the implementation can be based
on blocking or on non-blocking system calls, and it might be important to know
the considerations leading to a specific choice. More generally, this may relate
to required domain knowledge: “If you are writing a financial system, ... you
can’t say you understand the system if you don’t understand the financial pro-
cesses that it implements” [MN]. At a deeper level, Ko claims that the value
proposition of the system also deeply affects the code, but is hard to articulate
and is largely hidden from view. But engineers need to know what generates
value and use it as a guideline in their daily decisions, else the system will fail
in the marketplace [29].

We call the level of comprehension represented by these examples the
Unboxable Comprehension. Such comprehension cannot be reconstructed
from the code itself, and requires some other source of knowledge—typically
a documentation of intent, or a chat with the original code developer. In the
common case where documentation is outdated, low-quality, or missing, this
level of comprehension is what is lost when a developer leaves a project. “There
are parts in the code that nobody knows very well today. [...] If there are bugs
you can still fix them, but nobody has the understanding [...] of the philosophy
of this specific module” [BG]. But this level of comprehension may be required
in common scenarios, especially to avoid introducing new bugs when changing
or adding to the code. However, its role as part of the comprehension process
is often overlooked.

While the static hierarchy of the system (function, class, package, and sys-
tem) is evident in the code, the flow description of the system is not easily
visible in the code, and is therefore also part of the unboxable comprehen-
sion of the system. A common example of such an unboxable attribute is
concurrency—the way different threads in the system interact. “We are still
in a situation where in many cases you cannot guarantee thread safety by
just looking at a function, and knowing whether it executes synchronously or
asynchronously... so you must still have this documentation” [YI]. Another
common example is system flows related to memory management. “Obviously
it is more convenient that you allocate something and return it because you
need less to handle someone else’s memory... but due to memory consumption
considerations which is something that is typically not a module’s responsi-
bility but a system responsibility... suddenly it could be important to define
some pool that enforces that you have to pass pointers to buffers” [YI]. Indeed
issues of concurrency and memory management are considered topics that are
hard to understand in a system (see for example [19]).

[AO] pointed to a level of comprehension concerning the external interac-
tions of a function beyond the code itself: “There’s the comprehension of how
it is built from below. The classic example in C++, is that given a class with



14 Levy & Feitelson

virtual functions, how the memory layout looks. This doesn’t always sound
very important. Once you try to understand really how it works, and use this
understanding for optimization, memory efficiency, performance, etc., this be-
comes a very important understanding”. We call this level of comprehension
Out-of-the-Box Comprehension. It is needed in rather rare conditions
where the required level of optimization justifies it.

The different levels of comprehension are required for different tasks, and
they drive different strategies that developers apply to comprehend unfamiliar
code, depending on the task they need to perform. When one wants to use a
function or a class that they did not write themselves, they would typically
strive for black-box comprehension only. If the black-box is properly built
(meaningful name, clear arguments, header documentation if needed), this
is, in many cases, all that is needed. If not, they would defer to white-box
comprehension.

If the task at hand is a maintenance task like debugging or refactoring,
white-box comprehension is required. In non-trivial cases a deep, complete
level of white-box comprehension is needed to actually understand the flow
and how it provides the desired functionality.

Unboxable comprehension is not always available, but it is desirable when
the developer needs to make significant changes in the component, refactor it,
or solve more complex bugs. Finally, optimization tasks, and especially more
complex optimizations, might call for comprehending the external dependen-
cies as mentioned in the context of the out-of-the-box level of comprehension.

3.2 The Desire Not to Comprehend

While the goal of the interviews was to discuss the processes required to com-
prehend software, in many cases the subjects mentioned a desire not to com-
prehend. Comprehending a software component is a hard task, and developers
prefer to avoid comprehending as much as possible. The whole reason for APIs
is to allow use without knowing—let alone understanding—the implementa-
tion details. In addition, achieving full comprehension may just be impossible.
Comprehending a complete software system, including all of its flows and cor-
ner cases, becomes impractical when the system grows beyond a certain volume
of code, or when there are more than a few developers of the system.

Similar observations have been made in the past. More than 50 years ago,
Sackman et al. observed that one of the benefits of the shift to on-line work
(as opposed to batch processing) was the acceleration due to using a trial and
error approach [57]. More than 30 years ago, Littman et al. identified the “as-
needed” program comprehension strategy as an alternative to the “systematic”
strategy [40]. Roehm et al. specifically state that trying to avoid comprehension
is common practice in the industry [56]. Design concepts such as information
hiding and modularity were created specifically to shield the developer from
having to know about other software components [52]. And even within a
component, one can make do with comprehending only what is needed for



Understanding Large-Scale Software Systems 15

the task [72]: “for certain bugs, you need to understand at least the pertinent
flow” [AK].

Code quality and design quality are measured, inter alia, by the ability to
understand them with minimal effort: “The more understanding it is a more
trivial task, I consider it a better function” [GA]. “A good architecture is
one that you do not need to understand the architecture to do things, and the
system drives me to the right thing that I need to do” [BG]. Understandability
is effectively part of the definition for quality.

The subjects also mentioned the futility of trying to comprehend given the
rate of changes: “Things are usually so fluid, and projects [progress] in such
a pace such that it is meaningless to study [them] deeply” [AK]. “Our world
is a very dynamic world with systems that change all the time. Also if it’s a
system you develop with 50 other people and they all change parts, so you
need to learn on demand and dig deep [only] as needed” [AO].

An interesting contrast between industrial software development and the
open source community arises at this point. Industry software it often pres-
sured in its development schedule, and the developers have to compromise
and reconcile their desire to comprehend with the schedule constraints. Open
source developers are relieved from that pressure: “At work you want to pro-
vide value and be practical, when you write open source many times you can
indulge yourself, you want to dig deep and understand really why things are
as they are” [BG].

The interviews included a discussion on evaluating and integrating ex-
ternal software packages into a system. A few subjects mentioned reliability
indicators—stars on github, popularity of the package [BG], or the identity
of the package developer [SN]—as factors in such an evaluation. [SN] also
explained that “If it is a source that I trust, that is, for example, open source
code, it has a relatively high level of reliability. Why? Because many people
look at it, in many cases libraries that are standard libraries are used by lots
and lots of people and then you know that the reliability of this thing is high.
[...] So as the reliability of the code is higher, you can trust it blindly and what
you are interested in is the interface”. So the perceived quality is also used as a
justification to avoid comprehension. In other words, the reliability indicators
serve as a proxy to the quality of the software package, and this allows the
developer to skip parts of the understanding process.

Another way to avoid understanding is using unit tests. A good set of unit
tests allows an outsider developer to debug and modify the code without fully
understanding it: they just modify the code as they think needed, and then run
the unit tests to make sure nothing else was broken. As put by [AO], unit tests
can provide an “automation of understanding”. While a few of our interviewees
said this is not considered a recommended method ([YI], [BY]),this approach
is in fact promoted by software engineering gurus, especially for refactoring
tasks [47,43]. In the words of Sandi Metz, “You want to get to the point where
you have confidence that you can safely refactor, and then it means that you
never have to understand that code”.



16 Levy & Feitelson

3.3 Top-Down vs. Bottom-Up

The academic discussion of cognitive models of software comprehension has a
long history, mostly circling around two well-known main models: the “top-
down” model [13] and the “bottom-up” model [37]. Several combinations or
variations of these models have also been proposed [64,70,21]. In particular, it
has been shown that when a software developer tries to comprehend a larger
software component (a package or an entire system), a combination of the two
approaches is useful (e.g. [34]).

The interviews confirm this conclusion, and show a pattern of usage of the
two approaches. Activities related to comprehending functions or classes were
mostly associated with the “bottom-up” approach. But when asked about
comprehending a package or a system, the participants described activities
that are more related to a “top-down” approach.

A typical system comprehension effort would start with the “top-down”
approach—get an overview of the system, run sample code, read the archi-
tecture documentation, trace the code from the main loops, and review the
interfaces of the first level of classes or modules. But this approach has its
limitations. “We build systems that are very involved and very complicated,
and working top down on a large system does not hold water” [AO]. The
amount of new information for a newcomer may be overwhelming, and it is
hard to understand without spending some time “in the trenches”, developing
and debugging code.

The participants therefore suggested to take up a small “bottom-up” task
related to some sub-component—fixing a bug, adding a small feature, or study-
ing a piece of code and generating appropriate documentation. “It is when
people work with their hands that somehow this mechanical memory causes
the information to be assimilated” [YI], reflecting the Confucian saying “I do
and I understand”. By performing a task, they develop familiarity with the
sub-component and its related sub-components, and gradually comprehend
that sub-component and its place in the system. In an iterative fashion, the
developer then gets familiar with more components and combines this with
the “top-down” comprehension of the system.

A few participants made statements implying that there is an element of
personal inclination between the approaches. As [AO] described it: “Some
people tend to dive deeper. [...] They tend to open the hood and understand
how the engine works. Others prefer to sit behind the steering wheel and
drive”.

Following the above discussion, it appears that developers that have a ten-
dency towards a “top-down” approach have a better chance to comprehend
large volumes of code. The “bottom-up” capabilities are basic capabilities that
are required for everyday programming tasks, but tasks related to larger vol-
umes of code, such as package comprehension or system architecture, require a
combination of those “bottom-up” capabilities with “top-down” capabilities.
This is related to the amount of details: “bottom-up” is based on understand-
ing the details, and when the volume of code gets larger, the amount of details



Understanding Large-Scale Software Systems 17

Fig. 2 Example rankings of comprehension aids for functions (left) or classes (right).

exceed what can be digested by a single person. The “top-down” approach al-
lows a developer to avoid understanding many of the details by understanding
abstractions. As described by [MN], “it is more likely that a person knows all
the execution possibilities, all the possible runtime states of a function, and
achieves full understanding, while a single person is not likely to reach the
same level of comprehension in an entire system that has a million lines of
code. Then he needs to deal with abstractions”.

3.4 Aids to Comprehension

In one of the interview questions the participants were given 6 slips of paper
denoting elements that may aid in comprehension: Source code, API docu-
mentation, Sample code demonstrating use, Inline and function header docu-
mentation, Training materials, and Design documents. The participants were
asked to organize the paper slips in a way that shows the relative importance
of each element for understanding a function, understanding a class, under-
standing a package for the purpose of using it (as part of package evaluation),
and understanding a package for the purpose of maintaining it. Examples are
shown in Figure 2. The cumulative distribution functions for the rankings of
each element in each of the questions is shown in Figure 3.

For understanding a function, the elements that appeared most at the top
of the list were Source code and Inline documentation. This is not surpris-
ing and matches the notion that for a single function, a bottom-up approach
to comprehension is more efficient. The general assumption is that in order
to comprehend a single function, everything is there in the code itself, and
whatever is missing from the code is expected to be documented inline in the
function.

For understanding a class, the most significant elements the participants
noted were API documentation and Sample code demonstrating use. Here
we see that the class is mostly defined by the API and methods’ contracts,
implying that understanding these contracts is the most important part of
class comprehension.



18 Levy & Feitelson

Fig. 3 Cumulative distribution functions for the rankings provided for each comprehension
aid in different contexts. The X axis is the ranking, normalized to [0,1] because participants
sometimes used different numbers of distinct ranks. Lower X values indicate a higher ranking.
An aid appearing above and to the left of others (e.g. the yellow line for “sample code” in
the bottom right diagram) was ranked higher than other aids; one appearing below and to
the right (e.g. the green line for “design doc” in the top left diagram) was ranked lower.

When moving on to a package, we see a higher diversity in the answers.
When asked about understanding a package for maintenance purposes, the
most significant element is Design document, followed by API documentation
and Source code. We see that when approaching a larger volume of code, the
participants opt for a top-down approach and prefer a well-written design doc-
ument. When asked about understanding a package for evaluation purposes,
the most significant element was Sample code demonstrating use. Far behind
it come API documentation, Training materials, and Design document. Here
we see that the task at hand has an impact on the comprehension process.

Additional elements were also mentioned in the interviews as aids to com-
prehension:

– Naming (especially in functions): a meaningful name for a function is one
of the first things developers look for.

– Coding and naming conventions: consistent conventions can help pars-
ing and provide context to the code.



Understanding Large-Scale Software Systems 19

– Minor maintenance tasks: when discussing the training of new mem-
bers in a development team, a few participants recommended giving them
tasks such as fixing a simple bug or adding a simple feature to help them
focus on the important parts of the code. Creating missing documenta-
tion or explaining the code to others are also considered tasks that build
understanding.

– Asking others: involving other members of the team in the understand-
ing process, including asking questions, sharing thoughts, or reviewing the
code, can be helpful.

– Exercising the code: single-stepping through the code using a debugger
exposes flow and behavior of code, as opposed to a static view. One partic-
ipant mentioned adding “throw” statements in the code in order to pause
the execution and examine the call stack [BG]. Adding tests is also a way
to exercise the code.

– Drawing analogies to familiar things: as part of understanding a large
amount of code.

The role of documentation in the comprehension process generated am-
bivalent sentiments by the participants. On one hand, participants acknowl-
edged the difficulty of understanding a software system from the code alone.
Many assumptions made by the developers are not exposed in the code, and
documentation is the best source for understanding those assumptions. This
includes architecture documentation providing a system-wide overview, or low-
level design documentation for a single class or function. Even at the code level,
inline documentation is largely considered crucial in understanding non-trivial
hidden assumptions and developers’ intents that cannot be gleaned from the
code itself. “When you use a function without reading its documentation, it is
mostly guessing that something behaves as you want, meaning you make up
some reality for yourself and hope for the best. Even in functions that could
be terribly trivial like arithmetic operations, you always have corner cases”
[YI].

On the other hand, documentation may quickly become stale and not in
sync with the actual code. “My attitude to comments is respect them and sus-
pect them” [ES]. Many of the participants therefore refrain from depending
on the documentation, and a few of them prefer to avoid reading documen-
tation altogether. This relates to previous work that identified face-to-face
communication as preferred over documentation [56].

In contrast, sample code that compiles and demonstrates how a software
component should be used is in effect live documentation of the code. However,
“it is very hard to generate good sample code when [demonstrating use of a]
class, unless it is a lot of sample code” [AO]. Sample code demonstrates a use
case, and a class, especially when it is complex, participates in many use cases,
making it harder to demonstrate.

A particular type of sample code is test code, and in particular, tests that
are part of a package’s continuous integration test suite, which gates updates
to the code repository. “The documentation may be maintained or may not be



20 Levy & Feitelson

maintained, the tests are surely maintained to the most recent state because
otherwise the continuous integration [tests] wouldn’t pass” [BG]. Continuous
integration tests are therefore the highest form of live documentation—it is
code that compiles and is in absolute synchronization with the system’s code.

3.5 Proof of Comprehension

The participants were presented with the question of how is it possible to
test whether one has comprehended a function. They were then presented
with the following ways to test function comprehension, which are taken from
academic writing on code comprehension: using the function; adding a feature;
debugging; rewriting code from memory; describing function flow; describing
the function interface; describing how it is used; fill in the blanks (cloze test).
The participants were asked which methods resonate with their experience.

Most participants resonated with the functional methods to prove com-
prehension. But in doing so they consistently differentiated between black-box
comprehension (describing how a function is used, describing its interface) and
white-box comprehension (adding a feature, debugging it, and describing its
flow). A recurring theme was that it shouldn’t be too trivial—you need to
select the code and the task for the test to be meaningful. Some participants
also specifically suggested asking about edge cases.

Two of the methods offered—rewriting the code from memory and filling in
the blanks—stem from cognitive psychology research [60,17] as known meth-
ods to measure comprehension. They are based on the claim that these actions
are much easier if one understands the code, as opposed to trying to perform
them mechanically. However, these approaches did not strike a chord with
most of the participants (other than in extreme cases: “If I send someone to
space and I want to make sure that if need be that person could maintain the
function, I would probably make him rewrite the function [...] but [otherwise I
wouldn’t do it] to test their knowledge. It is a return-on-investment question –
it is a very serious overkill but I can imagine situations where I would choose
even this overkill” [GA]). Perhaps some of the resistance was also due to not
knowing the theory behind these tests: “I personally don’t connect to... try to
reconstruct exactly what was in the original function like a parrot” [SN], and
“that you can remember things by heart still doesn’t mean you understand
something” [YI].

Additional methods and refinements were proposed by a few participants.
One was to suggest what could be improved in the function and how [GA].
Another was to suggest how the function should be tested [AO], the idea being
that a good test plan should reflect the potential weaknesses of a function, and
being able to identify such trouble spots reflects deep understanding.

The participants were then asked to propose methods to test one’s com-
prehension of a package or a system. Descriptive “top-level” approaches (“de-
scribe the system functionality“) were prominent, however in many cases the
participants wanted to test “bottom-up” understanding as well, such as “fix



Understanding Large-Scale Software Systems 21

a bug” or “describe in depth a particular component”. Of course the partici-
pants acknowledged that it is impossible to cover the entire system and prove
complete system comprehension with this approach, however it ratifies that
system comprehension includes understanding at multiple levels.

In addition, participants expressed reservations regarding the concept of a
general test of comprehension, saying that it depends on the level of compre-
hension you want. This also depends on the level of code: for a function you
may want to understand the dark corners, but “as you go up the hierarchy it
is more important to understand some model, some concepts that hopefully
exist in the code” [MN]. Also, “it becomes less and less binary. Maybe you
understand some part better, and you don’t understand so well another part”
[AK]. Finally, [BG] said that the best way to know if someone understands
something is to just ask them. If the situation is not adversarial, they will
most probably admit to not understanding things they do not understand.

4 Hierarchy of Comprehension

We will now break down the meaning of comprehension to the different levels—
function, class, package, and subsystem. Although several concepts are similar
at all the levels, such as the distinction between black-box and white-box
comprehension, there are important differences that help shed a light on the
meaning of system comprehension. These are summarized in Table 1 towards
the end of the section. Flows and system-level comprehension will be addressed
later.

4.1 Function

The participants were asked to define what does it mean to understand a
function. A few participants pointed out that this is an artificial situation,
because in practice understanding a function is always part of a larger context,
and that understanding a function outside of any context resembles “a job
interview situation” [DL], [ES]. “A function [...] is part of some whole. It affects
the [class’s] state and is affected by the [class’s] state, so you need some more
general understanding of the class” [ES]. On the other hand, [BG] mentioned
that in a code-review situation—common in open source development—you
sometimes do consider a function in isolation outside of its context.

Most participants defined understanding a function as understanding its
“contract”: its parameters, its return values [AK], its name, and its func-
tionality [SN]. Others mentioned the function’s prerequisites, how it works in
different conditions, what is the system state before and after the function.
This is what was earlier referred to as black-box comprehension, and is tightly
coupled with the idea of information hiding and Meyer’s contracts [51,48].

The participants described white-box comprehension as the “deeper” level
of comprehension. This means “understanding how the function does what it



22 Levy & Feitelson

does” [SN], “understanding how it works and does what it is supposed to do”
[AK] or “actually understanding the logical order of operations and why this
is the order” [DL].

The level of understanding that is required depends on the task at hand,
what one is planning to do with the function. Most participants agreed that it
is very possible to use a function without “fully” understanding it—i.e., black-
box comprehension is required, but not necessarily white-box comprehension.
[DL] gave an example of a face recognition function: most developers who use
the function do not have any understanding of how the function works.

Unfortunately, functions may have properties that impact their black-box
behavior, but are in many cases overlooked as being part of the function’s
contract. This forces developers wanting to use the function to dive deeper
into the implementation details and to defer to white-box comprehension. Such
properties include:

– Side effects: a situation in which the function changes a state that is
outside its local environment. The participants identified this as a pain
point in function comprehension: “The difficulty in functions is side effects”
[MN]. Indirect side effects can be even harder to track, such as when a
function depletes resources from a global resource pool.

– Reentrancy or thread synchronization: The developer of a function
may not be aware, at the point of writing the function, what are the syn-
chronization requirements of the function, or those might change later.

– Performance: Consider for example a function that implements a core
algorithm. The function’s asymptotic complexity or actual performance
become a critical property of the function, and one might consider them
part of the function’s contract. However, these cases are rare. In most cases
the runtime of the function is considered part of the function’s implementa-
tion details (white-box) [YI], and not part of the function’s contract. “The
understanding and the need to understand the function depends on what
you are looking for, what your constraints are. If you care about perfor-
mance you need to understand the performance of the function. If you care
about [...] communication bounds then you care about that” [BG]. “The
level of understanding will change depending on the level of optimization
you need to perform” [AO].

4.2 Class

A class is a collection of functions (methods) and data members (which hold
each instance’s state). “When you work with a function that is part of a class,
[...] the object itself provides you with context and a translation of the problem
to entities that are part of the problem’s solution” [YI].

The participants once again distinguished between a black-box compre-
hension and a white-box comprehension of the class. But they mentioned
various aspects of black-box comprehension that are related to understanding
the wider context of the system and the place of the class in the system, beyond



Understanding Large-Scale Software Systems 23

its public interface. For example, how the class integrates with other classes
in terms of inheritance and implementing design patterns. “Understanding a
class is actually understanding the abstract concept that it represents, and
when can I use it or when is it the right thing for me to use this concept”
[DL], “its limitations—when can it not be used” [DL], “why is it there, why
isn’t it part of some other object, why isn’t it split into two” [YI]. As [YI]
coined it, this is all part of the intent of the developer that is reflected in
the class design. The intent is not part of the code. Ideally it would be part
of a design document. This is a particular example of what we earlier called
“unboxable comprehension”.

It is interesting to look at the effect of the class on the comprehension of its
methods. Assuming a class has cohesion, its components are not independent:
methods and data members know of each other and interact. Thus a method
is related to the class’s state, and cannot be comprehended by the contract
alone, without the context of the class.

Finally, as we go up to the level of a class and beyond, it may be impossible
to maintain complete abstraction of the interfaces from the details. This is Joel
Spolsky’s “Law of Leaky Abstractions” [63]. “From some level of complexity
abstractions always leak. [...] there is always a situation where the abstraction
is supposed to tell you, you don’t care what’s inside, but it would actually
break and you would care” [ES]. To some extent this conclusion contradicts
the “black-box” vs. “white-box” distinction: you need to understand the de-
tails in order to understand the abstractions. This might explain why system
comprehension is hard, and why it requires a combination of a top-down view
of the system with a bottom-up understanding of the details and how they
impact the system and its breakdown.

4.3 Package and Subsystem

This level of the hierarchy was meant to represent a first breakdown of the
system into software components, some significantly large volume of code that
is not the entire system. We originally used the term “package” to loosely refer
to a collection of classes that provide a cohesive functionality. For example,
this could describe the use of dynamic link libraries (DLLs) in a Windows
environment. A few of the participants expressed objections to this definition.
[MN] mentioned that the term “package” has a specific technical meaning
in the Java programming language [77]. He preferred the use of “deployment
package” for the context of application servers. [SN] pointed out the fluidity
of the term: for example, in one system it may refer to services in the system,
and in another it may refer to individually compiled executables.

[AO] suggested that “package” should be augmented with “subsystem”, in
the sense that in a distributed system, multiple subsystems may be commu-
nicating with each other, while internally they may each be structured using
software packages. In the following we adopt this distinction (which was also
used above in Fig. 1).



24 Levy & Feitelson

Table 1 High-level summary of the main elements of comprehension at different levels of
the system hierarchy. See text for detailed discussion.

Level Essence Black-box White-box
Function Provide

functionality
How to use based
on function
signature

How functionality
is implemented

Class Provide state and
encapsulation

How to use based
on API

Data flow between
functions

Package/
subsys-
tem

Independent and
exchangeable units

How to use based
on API

Design patterns
and interactions
between classes

A distributed system with several deployable components or subsystems
is in fact a “system of systems”. Each subsystem can be comprehended sepa-
rately, and viewed with its own function/class/package hierarchy. In addition,
there is another layer of the larger system, and flows that exist between the
subsystems.

Typically, the communication between layers of a system is done via a
programming API. But communication between subsystems in a distributed
system is done using a communication protocol. While conceptually similar,
a communication protocol is typically outside the scope of a programming
language, and cannot be simply defined within the scope of the code. This
might represent a disadvantage, in that it is harder to understand a protocol
without looking outside the code. On the other hand, it might serve as an
advantage, in that a strict protocol documentation is more likely to exist and
define the protocol characteristics. Communication protocols are free from
issues such as memory management and concurrency between the two sides,
issues that are commonly harder to understand in API definitions.

Returning to packages, we define a package as an “atomic unit of reuse”.
While classes and interfaces are intended to be reusable, the reality is that
in many cases functionality is divided between inter-dependent classes that
each have a single responsibility—and as such they cannot really be used
independently of supporting classes or related classes. For example, this is at
the center of the concept of design patterns. The package is the smallest unit of
code that can be extracted and reused in a different context. This is especially
true for packages that are developed with the intention to be reused, such as
open-source libraries or services or their commercial counterparts.

In the context of comprehension, this means that a package can be compre-
hended outside the context of the system. “Third-party packages are perhaps
the best example. There is a company that develops the package so that it
would not be dependent of the system, and so usually it is really independent
of the system. [...] I think of packages in our system that we developed, there
we created more dependencies to other things, whether we intended to do so
or not” [ES].



Understanding Large-Scale Software Systems 25

Under this definition, a package is the only level that can really be com-
prehended as a black-box. If the reuse is “as is”, with no modifications to
fit the specific system, this reduces the comprehension effort as the package
is comprehended at a black-box level only. This is especially true when the
package performs a complex functionality that requires an expertise that is
not available in the hosting system’s development team, such as an algorithm
implementation. “If you need a library that will implement ‘zip’ or ‘unpack’
[...] it is a black box, you don’t care how it works. It just needs to have the
right interface and then you just use it” [SN].

In the context of evaluating packages to be reused, factors such as reliability
and popularity become significant as proxies to the quality of the code, and
therefore to the need to comprehend them, as previously discussed in Section
3.2.

5 Flows: Understanding System Dynamics

The hierarchical layers in the previous section define a static structure: it
describes the components of the system and how they are encapsulated in
one another. However, in order to understand the system, it is required to
also understand the dynamic aspects of the system—its behavior. “I think
that describing a function’s flow fits the definition of understanding how it
does things, and describing the function fits what it does” [BY]—the flow
comprehension is related to the deeper white-box understanding of “how”.
Littman et al. put it slightly differently, saying that the flows represent the
causal interactions between the functional components [40]. Flows are also
important with regard to non-functional requirements, such as reliability or
performance.

Understanding system flows has several distinct but related aspects:

– The flow of the control during execution;
– The flow of data from one component to another;
– The system state and how flows change it.

System states are often used to analyze system properties, e.g. to show that
certain states will occur repeatedly (liveness) or will never happen (safety) [4].
As each system state is a combination of the states of all the system elements,
the number of states is exponential in the size of the system. Brooks notes the
myriad possible states of a system as a major reason why software development
is hard [12].

While system states and state transitions describe flows in the system, this
seems to be a higher level of abstraction that is more distant from the code.
The alternative is to describe the system’s functionality using use cases, with
details given in the form of entry points and flows. A few participants in the
interviews indeed described the product they work on through its use cases
(for example [YI]). [BG] mentioned studying a flow—not a component—as
a way to start learning about a new open source system you want to join.



26 Levy & Feitelson

[AO] described a project where the division of labor was based on scenarios
or features rather than on components. This was claimed to have two major
advantages. First, it is more interesting to the developers. Second, it produces
better developers, because they need to know all the different components they
work with and need to have a level of system-wide understanding. As a result
they become more independent and more interdisciplinary.

At the bottom level, the highest level of understanding a function is “the
level of understanding every flow” [MN]. This is also why debugging is a good
way to learn about code: “in debug you see everything: you see the code, but
you also see the flow, because when you put a breakpoint you can see the
whole stack and then you see how this thing behaves completely” [SN].

For a class, flows are combined with states: this “is something that has a
lifecycle and you have to understand its lifecycle. Instantiation, destruction,
and all the possible sequences” [MN]. System state may be a concern in re-
entrant code. “The function does not do all its work in one call. ... you need
to cope if maybe between [calls] the state of the system has changed” [MN].
More generally, [AK] mentioned state as an element of comprehension at the
system level, but not at lower levels.

While we did not delve into the topic of flows in the interviews, in ret-
rospect some interesting observations can be made. Flows may be described
at different levels of the hierarchy (see Fig. 1): between subsystems, packages,
classes, or functions. Within each level, flows may define a “service hierarchy”
of components. This is related to the direction of function calls. Typically
newly written software calls many utilities and depends on them. But under-
standing the software does not require a deep understanding of the utilities.
Compare this with single-stepping in a debugger, when looking at a high-level
function and skipping over service functions that are not part of the flow being
debugged. And these utilities often call and depend on still other utilities. This
happens at all levels of the structure hierarchy:

– Functions that implement use-cases call service routines;
– User-facing front-end classes call on classes that implement business logic

and back-end functionality;
– Packages that constitute the system being built use external packages from

third-party vendors.

The exception to this directionality is callbacks, used in event-driven program-
ming. We did not explicitly raise this issue in our interviews.

It is also interesting to note that some of the most complex elements of
software comprehension are related to flows in the system:

– Memory management: coordinating the allocation and freeing of memory
and avoiding memory leaks.

– Recursion: where a function (perhaps indirectly) calls itself.
– Concurrency: multithreading, obtaining and freeing locks, and avoiding

deadlocks.

As part of the flow analysis of the system, these elements are typically not
visible in the code, and are part of the “unboxable” comprehension of the



Understanding Large-Scale Software Systems 27

system. This on its own may be part of the difficulty in understanding these
elements. [DL] gave an example of a networking package with a function they
had to debug that was hard due to asynchronous interactions of two threads
and accessing unallocated memory.

6 System Comprehension

Given all the above, we can now focus on the issue of understanding software
at the system level.

6.1 What is a Software System?

In the interviews we presented the definition for a “software system” as follows:

We define a software system as a collection of packages that create an
end-user product or end-user experience. A company may be creating a
system that contains packages that are developed within the company,
or imported from other companies. Alternatively, a company may be
developing packages to be integrated into customer systems.

While overall the participants agreed with the gist of this definition, some
of them challenged it. First, not all participants agreed that every software
system creates an end-user experience, or at least suggested that in some
cases this end-user experience is hidden. A recurring example of such a system
was a network router or network firewall, that are software systems that have
impact on the end-user, but this impact is hidden and even transparent.

Second, a few participants challenged the hierarchical approach defining
a software system as a collection of packages. This feedback stems to some
extent from the disagreement on the term “package” as discussed in Section
4.3, and the fact that some systems are distributed systems where there are
several “subsystems” or “deployment packages” in the system and each of
those subsystems is a separate executable that might be comprised of software
packages.

Third, a few participants pointed to the fact that software systems interact
with each other, such that the boundaries of the “system” becomes unclear. If
several software systems interact with each other, are they really subsystems
in a larger software system? Or is there a larger concept such as “system
of systems”? This point is tightly related to the previous comment and the
concept of “deployment packages”.

Fourth, the dynamic nature of a system is not reflected in the definition.
In addition to the packages that comprise the static structure of the system,
the system does not have meaning without discussing the use cases, the entry
points, and the flows.

Finally, [AR] challenged the fact that the term needs to be explicitly de-
fined. “A software system is source, any system that has software. It does not



28 Levy & Feitelson

need to be defined in a more complicated fashion.“ To the follow-up question
asking what is the distinction between a software library and a system he re-
sponded: “These are distinctions that do not need to be defined. One cannot
define such a thing because ‘system’ is just a word. [...] If you ask most people
they will say that a single line of code is not a system and a million lines is a
system, and as happens with anything related to words, the boundary cannot
be accurately defined”. Likewise, [BG] said “I think that these things, it’s very
hard to define them. And also when you define them usually there isn’t a lot
of benefit in a precise definition.” And when [MN] discussed what should be
defined as a package he mentioned “not getting in trouble with [philosopher]
Bertrand Russell”.

We conclude that indeed it is difficult to provide a precise definition of a
“software system”. But despite the above feedback, we believe that the defi-
nition we provided, possibly with some adjustments to clarify the “end-user”
aspect and the “package” definition, will be acceptable by most as capturing
the essence of a software system.

6.2 What is System Comprehension?

We asked our interviewees what does it mean to comprehend a system. Many
participants described the structure of the system as the key to comprehen-
sion: “Intuitively, comprehending a system is [...] its modules and how they
communicate with each other, what is the role of each one, and how they play
together to create something” [BY]. This definition includes both the static
structure and the key flows in the system (the flow of data between modules):
“In a system you look at how the objects come together, it is more a view of
pipes of how the data flows from here to there. [...] Something comes in from
one side, it splits into three copies here, it goes through some processing, the
processing is synchronous or asynchronous [...] and what comes out from the
other side” [YI] ; “We talk not only about input and output, but more about
data flow” [AO].

Beyond the structure and data flows, system understanding means a deep
understanding of the interactions and inter-dependencies between components.
[GA] gave an example of a tracking system that did not perform as well as
the requirements demanded. Investigating the root cause of the problem led to
inadequate adjustment to varying lighting conditions. So the solution was not
to improve the tracking, but to improve the exposure subsystem. Similarly,
[AO] mentioned a client server system where the communication latency af-
fected the user experience. The problem was not in the client software or in
the server software, it was the latency—and by implication, the architecture.

Beyond the inter-dependencies among components, there may also be a
dependence on the system’s deployment environment. [AO] described a web-
based application, and said that “in a distributed system world, looking at the
software system without considering the underlying hardware and its topology,
its capabilities, its limitations is not enough. ... The hardware stack is not just



Understanding Large-Scale Software Systems 29

hardware... to start to understand the service [in the application] you need
to start by understanding how data centers work, where they are connected,
what the parameters of the communication network are. Moreover, there are
parameters of billing what costs me. In a world of service cogs it becomes
something you can’t ignore when you consider software design.”

Another common reference made in the interviews was to intent. This
could refer to the intent of the system as a whole: “Understanding a software
system is first and foremost understanding its grand objective, what service
it provides” [DL]. But it could also refer to the intent behind the structure
of the system, the considerations that led to this particular structure: “I also
want to understand all sorts of considerations why, [...] why are these the
system’s modules” [DL]. Important considerations at the system level are the
system’s non-functional requirements. “Non functional considerations start to
be part of the comprehension. As the system is larger and more complex, the
need to understand its non functional aspects grows—if it’s regarding where
this system is vulnerable, where are its reliability parameters, its performance
behavior” [AO].

These two traits of system comprehension—understanding the structure
and flows of the system, and understanding the rationale for this design—are
completely unrelated to the code. An example of this observation is the teach-
ing of operating systems to computer science undergraduates. While early
academic work on Unix was based on the source code [39], later textbooks
supported a good understanding of this system—including processes, schedul-
ing, the file system, and memory management—at the conceptual level, with
little or no reference to the underlying code [45,8].

In the interviews, [AR] went as far as to claim “to understand a system
you don’t have to know to program at all.” This conclusion is contrary to the
comprehension of lower layers of the system hierarchy, where the code and
related elements, such as the contract, were critical to the comprehension. As
we go higher in the system hierarchy, the focus of comprehension moves away
from code and contracts, and towards discussion of general structures and data
flows. An architect that is developing the structure of the system does not
necessarily need to be familiar with the code to develop it. Similarly, a person
trying to understand the structure of the system might not need the code to
do so. As a result this comprehension level is also completely independent of
the programming language used to create the system, and may be described
in terms that are independent of the programming language.

One reservation to the above is the law of leaky abstractions (section 4.2):
that the details at lower layers tend to leak into the abstractions made at
higher layers. This is inevitable as the system gets more complex, and may
affect the system level [36]. The meaning in this context is that sometimes
implementation details of a certain function or class may lead to a particular
design of the system structure. If this happens the system structure cannot be
fully understood without appreciating the leaks that affected it.

As part of understanding the reasoning behind the system structure, the
system’s history and evolution also play an important part. “If you observe



30 Levy & Feitelson

Thunderbird, you first need to understand why they developed this project.
It is very important to understand [...] the original objective, what need they
tried to address. Would anyone today start this project? [...] You can read
your email in a browser, why do you need a desktop client? It is debatable,
but you need to understand why they did this in order to understand the
system” [AR].

In fact, the history and evolution of a system is one of the reasons under-
standing the system is difficult. The current structure of the system may reflect
intentions, constraints, and choices that are no longer relevant. Systems that
were originally well-designed may be modified to address unexpected needs
and usages in such a way that makes them convoluted (reflecting Lehman’s
second law of software evolution [36]). Understanding the architecture may
also be confounded by out-of-date documentation, which reflects the original
design and not the design that evolved.

To summarize, understanding a software system appears to be profoundly
different from just understanding its code. It even includes more than just
understanding the design decision and the considerations that led to these
decisions. The system level is where you see the big picture: the interactions,
the dependencies, and how it all falls together.

6.3 System Comprehension Specialization

Based on the above, it appears that comprehension at the system level is a
unique specialization, distinct from the baseline specialization of a software de-
veloper. It combines top-down system understanding with relevant low-level
details that impact the high-level breakdown. It lives in the realms of docu-
mentation and block diagrams, and may be detached from the code itself and
even from a particular programming language.

One extreme example is a participant who introduced himself as follows:
“I do not have a very strong background in development [...] My industry
background is mostly as an entrepreneur, I started a software company [...] but
I was not involved in the development of code, I was the CTO [...] The original
idea was in fact an architectural idea” [AR]. So, the main product of the
company was an architectural innovation, by a person that was not involved
in the development and does not have a strong programming background. The
architecture was completely detached from the code itself.

The interviews included an explicit section about personnel: how many
develop a package or a system, and how many of them have a deep under-
standing. One participant described a project where the developers worked in
a “feature crew” model, where each team was responsible for development of
a suit of features across all system packages [ES]. In such a mode of work,
most developers are familiar with all system components and have a basic sys-
tem understanding. Nevertheless, when complex system-wide issues are being
handled, the number of developers that are capable of handling such issues
decreases to about 50%.



Understanding Large-Scale Software Systems 31

When a more traditional component-based code ownership model is used,
the reported numbers were lower. But it also depended on the size of the
component and team. In teams of a few people (for a package) up to dozens of
people (for a system) the most common estimate was that about 20% of them
have a good understanding of the package or system. But in small teams of
up to 4 developers it was thought that 2 or more of them may have a good
understanding, which can be over 50%. The people that have such a high level
of comprehension were identified as architects, technical leads, or just more
senior developers.

Unfortunately, the skills required for system comprehension—advanced de-
sign principles, a top-down approach to systems, managing a large software
system—are not always taught in higher education software engineering pro-
grams, even though they are critical skills for every software team to have.
[BG] blamed this, together with the notion that architecture can’t be com-
pletely defined in advance, for cases where teams avoid doing any architecture
at all.

The bottom line is that the difference between system comprehension and
code development engenders a distinction between those who have the apti-
tude for system comprehension and those who don’t. In addition, practices
such as confining developers to work on specific modules limit their ability
to appreciate the intricacies of the full system. Taken together the result is
that in large systems only a fraction of the personnel achieve good system
comprehension.

6.4 Architecture

The term “architecture” is widely used in the context of system description,
but its meaning may differ depending on context, organizational culture, and
personal preferences. We presented the participants with statements related to
architecture, and asked them to rate their agreement with these statements.
The scale is -3 to 3, where -3 means “strongly disagree” and 3 means “strongly
agree”. The results are shown in Table 2.

All the participants agreed that every system has an architecture, whether
it was designed by a conscious set of decisions or not. In other words, the
architecture exists independently of the architecture definition process. The
documents and diagrams that support the architecture (hopefully) reflect the
implemented architecture, but do not define it. There was strong agreement
that the architecture is the system’s structure, but that a UML description of
the system is not architecture.

Most participants agreed that having a design phase is important to an
effective development process and that the architecture reflects the design de-
cisions. However in many cases, as part of the system’s evolution, architecture
“happens” and does not entirely reflect conscious decisions. It is also harder to
maintain documents that reflect the architecture as it evolves over time. The
constant drift between the conscious decisions and the actual architecture, and



32 Levy & Feitelson

Table 2 Results regarding the Architecture Statements, in order of general agreement (not
the order in which they were presented to participants); µ is the average of all responses

Every system has an architecture µ = 2.00

−3 −2 −1 0 1 2 3
0
1
2
3
4
5
6
7

Architecture reflects design decisions µ = 1.55

−3 −2 −1 0 1 2 3
0
1
2
3
4
5
6

Architecture is the product of a design process µ = 1.30

−3 −2 −1 0 1 2 3
0
1
2
3
4

Architecture is the structure of the system µ = 1.27

−3 −2 −1 0 1 2 3
0
1
2
3
4
5
6
7

Implementation changes over time as a result
of architecture changes

µ = 1.18

−3 −2 −1 0 1 2 3
0
1
2
3
4

Architecture defines internal interfaces be-
tween components in the system

µ = 0.77

−3 −2 −1 0 1 2 3
0
1
2
3
4

Architecture reflects the company’s organiza-
tional structure

µ = 0.00

−3 −2 −1 0 1 2 3
0
1
2
3
4
5

Architecture defines internal interfaces be-
tween teams in the development group

µ = −0.10

−3 −2 −1 0 1 2 3
0
1
2
3
4

Architecture changes over time as a result of
implementation changes

µ = −0.44

−3 −2 −1 0 1 2 3
0
1
2
3
4

Everyone in the development groups is familiar
with the architecture

µ = −0.78

−3 −2 −1 0 1 2 3
0
1
2
3
4
5

Architecture is defined in documents µ = −0.91

−3 −2 −1 0 1 2 3
0
1
2
3
4
5

Architecture defines only the externally visible
properties of the system

µ = −1.64

−3 −2 −1 0 1 2 3
0
1
2
3
4

Architecture is a UML description of the sys-
tem

µ = −2.18

−3 −2 −1 0 1 2 3
0
1
2
3
4
5

Architecture defines only the internal structure
of the system

µ = −2.27

−3 −2 −1 0 1 2 3
0
1
2
3
4
5
6



Understanding Large-Scale Software Systems 33

between the design documents and the actual code, may be reasons for the
difficulties in comprehending the architecture.

[BG] in particular lamented the rush to write code without thinking about
the architecture and considering alternatives. He recalled giving a talk about
a popular open-source library that he maintains, where he demonstrated how
to write a front-end app using this library. “And all the questions I got after
the lecture were, ‘so I should use Y instead of X for my architecture?’ Like
it was really hard for people ... to understand like that they need to sit and
think about their system.”

The architecture includes both the internal decomposition of the system
and data pathways, and externally visible attributes of the system1. Architec-
ture consists mostly of design decisions, and the considerations that led to the
decisions [33]. The considerations and decisions could be conditioned upon the
philosophy that drives the system goals [BG]. In many cases the design deci-
sions are trade-offs between conflicting considerations, such as performance,
physical resources, cost, or development effort [AO]. Elements that are not part
of the designed system but surround it—such as the operating system, the un-
derlying network, the selection of programming language and compiler—are
all factors that impact the system design decisions and the architecture.

Most participants acknowledge that there is some relationship between
the architecture and the organizational structure (a soft version of “Conway’s
Law” [16]). In some cases the system is decomposed to teams based on the
teams’ location or expertise. The architecture may also put special emphasis on
internal interfaces that reflect interfaces between teams, especially if they are
geographically or organizationally distant. There are also instances in which
the architecture drives the organizational structure (instead of the other way
around).

This discussion on architecture highlights the relationship between sys-
tem comprehension and architecture. Many elements discussed as part of the
definition of system comprehension (as discussed above) appear in the def-
inition of architecture. The structure of the system—the main components
and the communication paths between these components—plays a significant
role in understanding the system, and is also a key part of the architecture.
Understanding the intent of the system, of its main components, through un-
derstanding the system usages and the system’s history and evolution, are also
significant in both system comprehension and the architecture.

Yet most participants indicated that understanding the system is more
than understanding the architecture: it also includes understanding some of the
important low-level details of the system. Those details may have an impact
on the larger structure of the system, or may not—and therefore are not part
of the architecture definition—but they are significant in understanding the
system. Thus, system comprehension requires both views of the system: the

1 In the hardware world there is a distinction between the terms ‘architecture’ and ‘micro-
architecture’, reflecting the externally visible attributes of the system vs. its internal design.
Software organizations in hardware corporations sometimes adopt this terminology. However
in the software world the term ‘architecture’ usually refers mainly to the internal design.



34 Levy & Feitelson

top-down view provided by the architectural elements, and the bottom-up view
provided by the low-level details. Obtaining both views takes time and requires
a combination of architecture tasks, such as reading documentations and API
definition, and maintenance tasks, such as fixing bugs or adding features.

Another difference between architecture and system understanding con-
cerns domain knowledge. [BG] gave an example of deep learning. “I can un-
derstand the whole architecture and not understand at all what the system
does. [...] Really understand how each layer talks with another layer in my
network, ... [that] there is marshaling and unmarshaling and things that run
on the GPU and all those things, and still I will not have a clue what my code
does.” In other words, even if you understand the technicalities, this is not a
real understanding of the essence.

To recap, architecture plays a key role in system comprehension. It can be
said to encompass the top-down structural design aspects, with an emphasis
on the technical side. But full system comprehension is wider then that.

7 Validation Survey Results

Most of the questions in the validation survey were designed to reflect our
observations and conclusions from the interviews, so high scores may be ex-
pected. However, in some cases the answers reveal that our conclusions are
not universal.

Table 3 shows the answers we received to questions about comprehension in
general. Survey participants strongly agreed that there are different possible
levels of comprehension, and that it is important to understand the system
components and flows.

Participants also agreed that information required for understanding may
exist outside of the code (what we called unboxable comprehension above).
Specifically, they tended to agree that the assumptions of whoever wrote the
code are important, and that this makes concurrency and memory manage-
ment hard.

Concerning the distinction between black-box and white-box comprehen-
sion, participants agreed that white-box reflects deeper understanding. They
also generally agreed that components can be used with little understanding
of their internals. But at the same time, the tended to agree with statements
implying that understanding is more than APIs. Interestingly, the explicit
question on whether white-box reflects a deeper understanding than black-
box was the only one that elicited multiple “don’t know” responses.

Interestingly, participants were somewhat reluctant to admit that they
themselves try to understand only as much as is needed to complete a task.
And they tended to disagree with the statement that one can be an excel-
lent developer without understanding the complete system. This may be a
difference between an online survey and an interview. In the interviews such
controversial statements were often discussed, and the interviewees sometimes



Understanding Large-Scale Software Systems 35

Table 3 Results to questions about comprehension in general; ? shows “don’t know” or no
response; µ is the average of all other responses

There are different levels of understanding of
a software component

µ = 2.45

-3 -2 -1 0 1 2 3 ?
0

10

20

30

When understanding a software system, it is
important to understand the main flows of the
system

µ = 2.31

-3 -2 -1 0 1 2 3 ?
0

10

20

When understanding a software system, it is
important to understand the main components
of the system

µ = 2.21

-3 -2 -1 0 1 2 3 ?
0

10

20

When understanding code, there may be in-
formation outside the code that is required for
understanding

µ = 1.86

-3 -2 -1 0 1 2 3 ?
0

10

20

A well designed software component can be
used with little understanding of its internals

µ = 1.75

-3 -2 -1 0 1 2 3 ?
0

10

20

White-box comprehension reflects deeper un-
derstanding than black-box comprehension

µ = 1.45

-3 -2 -1 0 1 2 3 ?
0

10

20

From my experience, I can use a software com-
ponent without understanding how it works

µ = 1.27

-3 -2 -1 0 1 2 3 ?
0

10

20

To understand code one needs to understand
the assumptions of whoever wrote it

µ = 1.20

-3 -2 -1 0 1 2 3 ?
0

10

20

Source code is not needed in order to evaluate
a package, if you just want to use it

µ = 1.18

-3 -2 -1 0 1 2 3 ?
0

10

20

Topics such as concurrency and memory man-
agement are hard to understand because they
are not clear from just reading the code

µ = 1.13

-3 -2 -1 0 1 2 3 ?
0

10

20

Understanding classes and packages means un-
derstanding their APIs

µ = 1.02

-3 -2 -1 0 1 2 3 ?
0

10

20

One can understand a software system without
knowing much about the structure of its code

µ = 0.53

-3 -2 -1 0 1 2 3 ?
0

10

20

Before integrating a component I didn’t de-
velop, I learn only what I need for the purpose
of integration

µ = 0.49

-3 -2 -1 0 1 2 3 ?
0

10

20

When fixing a defect, I learn the code only as
much as needed to perform the task

µ = 0.34

-3 -2 -1 0 1 2 3 ?
0

10

20

One can be an excellent developer without
good understanding of the complete system

µ = −0.35

-3 -2 -1 0 1 2 3 ?
0

10

20



36 Levy & Feitelson

Table 4 Results to questions on aids to comprehension; ? shows “don’t know” or no re-
sponse; µ is the average of all other responses

Good names are important for understanding
code

µ = 2.59

-3 -2 -1 0 1 2 3 ?
0

10

20

30

40

Usage examples are very useful for understand-
ing a class

µ = 2.43

-3 -2 -1 0 1 2 3 ?
0

10

20

30

In-line documentation is useful for understand-
ing code

µ = 1.86

-3 -2 -1 0 1 2 3 ?
0

10

20

When understanding a software system, I com-
bine reading the architecture documentation
with reading the code

µ = 1.54

-3 -2 -1 0 1 2 3 ?
0

10

20

A good suite of unit tests can help with under-
standing a software component

µ = 1.48

-3 -2 -1 0 1 2 3 ?
0

10

20

30

Design documents are useful for understanding
packages and systems

µ = 1.41

-3 -2 -1 0 1 2 3 ?
0

10

20

To really understand a function I read the code µ = 1.11

-3 -2 -1 0 1 2 3 ?
0

10

20

I do not always trust documentation µ = 0.74

-3 -2 -1 0 1 2 3 ?
0

10

20

Design documents are not useful for under-
standing code [note inverted scale]

µ = −0.88

-3 -2 -1 0 1 2 3 ?
0

10

20

pointed out intricacies that confound the issue or even changed their minds.
but in a survey what you get is typically the subject’s initial reaction.

Table 4 shows questions related to comprehension aids. The survey re-
spondents gave their strongest support to good names. We also see very high
support for usage examples, relatively high support for inline documentation,
and medium support for test suites as comprehension aids.

The attitude towards documentation was somewhat ambivalent, as was ex-
pected. On the one hand respondents reported that they read the architecture
documentation together with reading the code when they need to understand
a software system. They also agreed that design documents are useful for un-



Understanding Large-Scale Software Systems 37

Table 5 Results to questions on comprehension strategies; ? shows “don’t know” or no
response; µ is the average of all other responses

Understanding large volumes of code requires
a ”top-down” approach

µ = 1.31

-3 -2 -1 0 1 2 3 ?
0

10

20

To understand a system one needs to combine
”top-down” and ”bottom-up” approaches

µ = 1.08

-3 -2 -1 0 1 2 3 ?
0

10

20

System understanding is achieved top-down,
starting from documentation and verifying
that the code complies with it

µ = 0.56

-3 -2 -1 0 1 2 3 ?
0

10

20

”Bottom-up” comprehension helps under-
standing the system by generalizing from un-
derstanding the code

µ = 0.02

-3 -2 -1 0 1 2 3 ?
0

10

20

Table 6 Results to questions related to flows; ? shows “don’t know” or no response; µ is
the average of all other responses

When understanding a software system, it is
important to understand the main flows of the
system (repeated from Table 3)

µ = 2.31

-3 -2 -1 0 1 2 3 ?
0

10

20

Flows can be difficult to understand from just
reading the code

µ = 1.73

-3 -2 -1 0 1 2 3 ?
0

10

20

The dynamics of a system are best understood
using the system’s states and state transitions

µ = 0.87

-3 -2 -1 0 1 2 3 ?
0

10

20

The dynamics of a system are embodied by its
flows

µ = 0.86

-3 -2 -1 0 1 2 3 ?
0

10

20

Flows are best understood using documenta-
tion

µ = 0.69

-3 -2 -1 0 1 2 3 ?
0

10

20

derstanding packages and systems. But they also agreed that they don’t always
trust documentation. Note the reversed scale in last question: the disagreement
essentially means that design documents are indeed useful for understanding
code. Interestingly, the statement “To really understand a function I read the
code” received only moderate support.

Table 5 shows answers to questions concerned with the comprehension
strategy. There was relatively high uncertainty about these concepts, especially
the common definition of bottom-up as a comprehension strategy based on
generalizing from the code. Still, respondents tended to agree that a top-down
strategy is required in order to understand large volumes of code, and that it
is beneficial to combine this with a bottom-up approach.



38 Levy & Feitelson

Finally, Table 6 presents the answers to questions about flows. As noted
above, there was strong agreement that flows are important to the comprehen-
sion process. However, respondents also agreed that flows can be difficult to
understand. This may be related to the two questions which indicate that de-
velopers are somewhat unsure about how to deal with system dynamics: there
was only weak agreement with the claims that dynamics are best understood
based on system states and their transitions, or that they are embodied in
flows.

8 Threats to Validity

The participants interviewed in this research are not a representative sample.
Their number is small, 10 out of 11 are male, and all are from a small set
of companies in one country. However, in exploratory qualitative research a
representative sample is not necessarily required, and in fact the target pop-
ulation may not be well defined. The goal of the research was to raise the
appropriate questions and terminology in order to seed future experimental
research (see Section 9). The participants are highly experienced profession-
als, many working in multi-national companies, who interact with developers
from other cultures. Some of their responses were common enough to lead us
to believe they can be reproduced in a larger, more representative sample. The
validity check survey indeed shows some indication to this fact and increases
the validity of those results. Nevertheless we believe wider studies must be
performed to ratify the results of this research.

The first author (and interviewer) is an experienced professional in the field
of system architecture. This is an advantage in terms of being familiar with
the terminology and the work processes of the participants. However, a valid
concern to the research validity is whether preconceived notions and personal
biases were mixed with the interview and the analysis. We addressed this
concern by using general, open-ended questions and allowing the participants
to challenge whatever definitions or constructs were proposed in the interview.
In the analysis phase, we both performed the interview analysis separately
and reached conclusions only after a joint discussion (“analyst triangulation”,
a known method to increase research validity). The analysis was based on
the textual analysis of the interview audio recording transcripts, rather than
on personal impressions (an “audit trail”, also a known method to increase
validity). Nevertheless and as aforementioned, replication studies are required
to ratify the results of the research.

9 Conclusions

Program comprehension accounts for a large portion of any software devel-
opment effort. We attempt to understand the processes that are related to
comprehension of a software system as a whole, as opposed to most existing



Understanding Large-Scale Software Systems 39

Table 7 Levels of understanding in relation to code.

Black box Understanding what the code
does (its functionality), as re-
flected by its API

Needed to use the code

White box Understanding how the code per-
forms its function

Needed to change the
code

Out-of-the-box Understanding the intricate in-
teractions of given code with
other parts of the system

Needed for specific op-
timizations

Unboxable Understanding the assumptions
and considerations that led to
designing the code this way

Needed for non-funct-
ional requirements and
to avoid introducing
new defects

research which focuses on program comprehension on a small scale. Through
a series of semi-structured interviews with experienced software developers,
architects, and managers, we drew the distinction between system compre-
hension and code comprehension.

The analysis of the interviews demonstrates that such a distinction in-
deed exists, and that code comprehension and system comprehension are in
fact separate and distinct activities. System comprehension requires different
skills and experience compared to code comprehension. System comprehension
involves both top-down and bottom-up comprehension strategies, and devel-
opers apply different strategies depending on the tasks they need to perform.
System comprehension shifts focus from the code to its structure, and to con-
siderations that are not reflected in the code at all. It is a continuous, iterative
effort. Not all skilled software developers have the skills required for system
comprehension, but these skills are highly required by at least a portion of the
development team.

One of our results was to extend the conventional distinction between
black-box and white-box comprehension. Based on the interviews, we iden-
tify two additional levels of comprehension as summarized in Table 7. The
“unboxable” comprehension, in particular, is especially relevant to system un-
derstanding, as it refers to knowledge that cannot be extracted from the code
itself. Additional interesting insights are listed in Fig. 4.

As an exploratory research, we offer models that can be used in future
quantitative research. For example, in the context of code comprehension,
it would be interesting to investigate unboxable comprehension. One aspect
of this is the assessment of the detrimental effects (if any) of not knowing
implicit assumptions. Future research could suggest better programming lan-
guage constructs to make such assumptions explicit, or methods for identifying
explicit assumptions and documenting them in order to improve effectiveness.
Likewise, to gain a better focus on code comprehension per se, it is needed to



40 Levy & Feitelson

– Comprehension is not a goal but a means for performing a task.
Comprehension has a context.

– Low-level code (methods and classes) is not stand-alone, and can-
not be fully understood without its program context.

– In reality, black boxes often leak. Code may have unintended de-
pendencies.

– Understanding flows provides a deeper level of comprehension than
knowing the code’s structure.

– Regression tests can serve as “live” documentation: they are always
up to date.

– Comprehensive unit tests can save the need to fully understand
changed code.

– Trust in the source of imported code can replace the need to un-
derstand it.

– Three main levels of understanding code are use, change, and op-
timize.

– Bottom-up comprehension can be used for small amounts of code,
but large scope requires top-down comprehension.

– There are things that are important to know that cannot be learned
from the code. Example: developer intent.

– Understanding a system does not necessarily require understanding
its code. However, code issues may affect the whole system design.

– A large-scale system cannot be fully understood.

Fig. 4 Top insights identified in the interviews with experienced developers. Note that these
are not necessarily universal, and may represent thought provoking opinions.

be able to distinguish between comprehension problems due to the code, and
comprehension problems due to lacking domain knowledge.

In addition, the identification of out-of-the-box comprehension (required
for optimization) opens the door for new empirical research on encapsulation.
Instances of maintenance that require out-of-the-box comprehension are indi-
cators of leaks, where the required knowledge is not properly encapsulated.
Assuming these are relatively rare, identifying and studying them can be in-
strumental for better understanding of encapsulation and its limitations.

Another possible research direction is to build controlled experiments that
measure some of the findings of this research, such as the effectiveness of
code samples for package-level comprehension. One could also explore what
attributes allow developers to circumvent the understanding process (like de-
veloper’s reliability or package popularity). Research in this direction could
suggest practical methods for package developers to increase the usability of
their packages.

The difference between system understanding and architecture also de-
serves further study. Our interviewees emphasized the understanding of struc-



Understanding Large-Scale Software Systems 41

tural aspects of the system. But Kruchten’s 4+1 model for viewing system
architecture suggests that system aspects even further removed from the code
should also be considered, including system states, development process man-
agement, and physical infrastructure. It would be interesting to survey active
developers about the relevance of all these additional aspects of the architec-
ture in their routine work. Ultimately this research direction could help stan-
dardize the ways architecture is developed, documented, and communicated
to programmers or users.

Finally, the world of open source is touched upon in this paper, indicating
that there may be differences in system comprehension compared to the in-
dustry. But further research is required to understand system comprehension
in the open source world. This is especially interesting given that open source
development is typically more evolutionary, less planned, and less documented
than industrial software. It therefore seems to present a greater challenge for
system comprehension.

Acknowledgements

Many thanks to Neta Kligler-Vilenchik who provided us with invaluable guid-
ance in the methodology of text analysis. Bareket Henle assisted with devel-
opment of the initial interview plan.

References

1. S. Ajami, Y. Woodbridge, and D. G. Feitelson. Syntax, predicates, idioms — what
really affects code complexity? Empirical Softw. Eng., 24(1):287–328, Feb 2019.

2. H. W. Alomari, R. A. Jennings, P. Virote de Souza, M. Stephen, and G. C. Gannod.
vizSlice: Visualizing large scale software slices. In IEEE Working Conf. Softw. Visual-
ization, pages 101–105, Oct 2016.

3. U. Alon, S. Brody, O. Levy, and E. Yahav. Code2seq: Generating sequences from
structured representations of code. In Intl. Conf. Learning Representations, number 7,
May 2019.

4. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Comput.,
2(3):117–126, Sep 1987.

5. E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche. The impact of UML documen-
tation on software maintenance: An experimental evaluation. IEEE Trans. Softw. Eng.,
32(6):365–381, Jun 2006.

6. M. A. Austin and M. H. Samadzadeh. Software comprehension/maintenance: An intro-
ductory course. In Proc. 18th Intl. Conf. Systems Engineering, pages 414–419. IEEE,
2005.

7. E. Avidan and D. G. Feitelson. Effects of variable names on comprehension: An empirical
study. In Intl. Conf. Program Comprehension, number 25, pages 55–65, May 2017.

8. M. J. Bach. The Design of the UNIX Operating System. Prentice-Hall, 1986.
9. R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig. Software complexity and

maintenance costs. Comm. ACM, 36(11):81–94, Nov 1993.
10. G. Beniamini, S. Gingichashvili, A. Klein Orbach, and D. G. Feitelson. Meaningful iden-

tifier names: The case of single-letter variables. In Intl. Conf. Program Comprehension,
number 25, pages 45–54, May 2017.

11. A. Bogner and W. Menz. The theory-generating expert interview: Epistemological
interest, forms of knowledge, interaction. In A. Bogner, B. Littig, and W. Menz, editors,
Interviewing Experts, pages 43–80. Palgrave Macmillan, 2009.



42 Levy & Feitelson

12. F. P. Brooks, Jr. No silver bullet: Essence and accidents of software engineering. Com-
puter, 20(4):10–19, Apr 1987.

13. R. Brooks. Towards a theory of the comprehension of computer programs. Intl. J.
Man-Machine Studies, 18(6):543–554, Jun 1983.

14. T. Brunner and Z. Porkoláb. The role of the version control information in code com-
prehension. In IEEE Intl. Sci. Conf. Informatics, number 15, pages 219–224, Nov 2019.

15. N. Carter, D. Bryant-Lukosius, A. DiCenso, J. Blythe, and A. J. Neville. The use
of triangulation in qualitative research. Oncology Nursing Forum, 41(5):545–547, Sep
2014.

16. M. E. Conway. How do committees invent. Datamation, 14(4):28–31, 1968.
17. C. Cook, W. Bregar, and D. Foote. A preliminary investigation of the use of the

cloze procedure as a measure of program understanding. Information Processing &
Management, 20(1-2):199–208, 1984.

18. B. Cornelissen, A. Zaidman, and A. van Deursen. A controlled experiment for program
comprehension through trace visualization. IEEE Trans. Softw. Eng., 37(3):341–355,
May/Jun 2011.

19. B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A systematic
survey of program comprehension through dynamic analysis. IEEE Trans. Softw. Eng.,
35(5):684–702, Sep/Oct 2009.

20. M. Crouch and H. McKenzie. The logic of small samples in interview-based qualitative
research. Social Science Information, 45(4):483–499, Dec 2006.

21. A. Fekete and Z. Porkoláb. A comprehensive review on software comprehension models.
Annales Mathematicae et Informaticae, 51:103–111, 2020.

22. Y. Feng, K. Dreef, J. A. Jones, and A. van Deursen. Hierarchical abstraction of execution
traces for program comprehension. In Intl. Conf. Program Comprehension, number 26,
pages 86–96, May 2018.

23. B. Glaser and A. Strauss. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Sociology Press, 1967.

24. S. Haiduc, J. Aponte, and A. Marcus. Supporting program comprehension with source
code summarization. In Intl. Conf. Softw. Eng., volume 2, pages 223–226, May 2010.

25. S. Henry and D. Kafura. Software structure metrics based on information flow. IEEE
Trans. Softw. Eng., SE-7(5):510–518, Sep 1981.

26. J. Hwa, S. Lee, and Y. R. Kwon. Hierarchical understandability assessment model for
large-scale OO system. In Asia-Pacific Softw. Eng. Conf., number 16, pages 11–18, Dec
2009.

27. A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu. Meaningful variable
names for decompiled code: A machine translation approach. In Intl. Conf. Program
Comprehension, number 26, 2018.

28. A. Jbara and D. G. Feitelson. On the effect of code regularity on comprehension. In
Intl. Conf. Program Comprehension, number 22, pages 189–200, Jun 2014.

29. A. J. Ko. A three-year participant observation of software startup software evolution.
In Intl. Conf. Softw. Eng., number 39, May 2017.

30. T. Kosar, S. Gaberc, J. C. Carver, and M. Mernik. Program comprehension of domain-
specific and general-purpose languages: replication of a family of experiments using in-
tegrated development environments. Empirical Software Engineering, 23(5):2734–2763,
2018.

31. W. Kozaczynski, S. Letovsky, and J. Ning. A knowledge-based approach to software sys-
tem understanding. In Ann. Knowledge-Based Software engineering Conf., number 6,
pages 162–170, Sep 1991.

32. P. Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–50, Nov 1995.
33. P. Kruchten. An ontology of architectural design decisions in software-intensive systems.

In Groningen Workshop on Software Variability Management, number 2, pages 54–61,
Dec 2004.

34. A. Kulkarni. Comprehending source code of large software system for reuse. In Intl.
Conf. Program Comprehension, number 24, pages 1–4. IEEE, 2016.

35. N. Kulkarni and V. Varma. Perils of opportunistically reusing software module. Soft-
ware: Practice and Experience, 47(7):971–984, 2017.

36. M. M. Lehman. Programs, life cycles, and laws of software evolution. Proc. IEEE,
68(9):1060–1076, Sep 1980.



Understanding Large-Scale Software Systems 43

37. S. Letovsky. Cognitive processes in program comprehension. J. Syst. & Softw., 7(4):325–
339, Dec 1987.

38. O. Levy and D. G. Feitelson. Understanding large-scale software – a hierarchical view.
In Intl. Conf. Program Comprehension, number 27, pages 283–293, May 2019.

39. J. Lions. Lions’ Commentary on UNIX 6th Edition, with Source Code. Annabooks,
1996.

40. D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental models and software
maintenance. J. Syst. & Softw., 7(4):341–355, Dec 1987.

41. J. I. Maletic, A. Marcus, and M. L. Collard. A task oriented view of software vi-
sualization. In Intl. Workshop Visualizing Software for Understanding and Analysis,
number 1, pages 32–40, Jun 2002.

42. J. I. Maletic, D. J. Mosora, C. D. Newman, M. L. Collard, A. Sutton, and B. P. Robinson.
MosaiCode: Visualizing large scale software. In Intl. Workshop Visualizing Software for
Understanding & Analysis, number 6, Sep 2011.

43. R. C. Martin. Expecting professionalism. https://youtu.be/BSaAMQVq01E?t=2102. Ac-
cessed: 2020-05-15.

44. T. McCabe. A complexity measure. IEEE Trans. Softw. Eng., SE-2(4):308–320, Dec
1976.

45. M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design and
Implementation of the 4.4BSD Operating System. Addison Wesley, 1996.

46. F. Medeirios, G. Lima, G. Amaral, S. Apel, C. Kästner, M. Ribeiro, and R. Gheyi.
An investigation of misunderstanding code patterns in C open-source software projects.
Empirical Softw. Eng., 24(4):1693–1726, Aug 2019.

47. S. Metz. All the little things. https://www.youtube.com/watch?v=8bZh5LMaSmE. Ac-
cessed: 2018-08-11.

48. R. L. Meyers III and D. A. Perelman. Risk allocation through indemnity obligations in
construction contracts. SCL Rev., 40:989, 1988.

49. L. Moonen and A. R. Yazdanshenas. Analyzing and visualizing information flow in
heterogeneous component-based software systems. Inf. & Softw. Tech., 77:34–55, Sep
2016.

50. T. Panas, T. Epperly, D. Quinlan, A. Sæbjørnsen, and R. Vuduc. Communicating
software architecture using a unified single-view visualization. In IEEE Intl. Conf.
Engineering Complex Comput. Syst., number 12, pages 217–228, Jul 2007.

51. D. L. Parnas. On the criteria to be used in decomposing systems into modules. Comm.
ACM, 15(12):1053–1058, Dec 1972.

52. D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of complex
systems. IEEE Trans. Softw. Eng., SE-11(3):259–266, Mar 1985.

53. K. Petersen, D. Badampudi, S. M. A. Shah, K. Wnuk, T. Gorschek, E. Papatheocharous,
J. Axelsson, S. Sentilles, I. Crncovic, and A. Cicchetti. Choosing component origins for
software intensive systems: In-house, COTS, OSS, or outsorcing? — a case survey. IEEE
Trans. Softw. Eng., 44(3):237–261, Mar 2018.

54. A. Razavizadeh, S. Cimpan, H. Verjus, and S. Ducasse. Software system understanding
via architectural views extraction according to multiple viewpoints. In On the Move to
Meaningful Internet Systems: OTM 2009 Workshops, pages 433–442. Springer, 2009.
LNCS vol. 5872.

55. P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan. An eye-tracking study of
Java programmers and application to source code summarization. IEEE Trans. Softw.
Eng., 41(11):1038–1054, Nov 2015.

56. T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional developers
comprehend software? In Intl. Conf. Softw. Eng., number 34, pages 255–265, Jun 2012.

57. H. Sackman, W. J. Erikson, and E. E. Grant. Exploratory experimental studies com-
paring online and offline programming performance. Comm. ACM, 11(1):3–11, Jan
1968.

58. M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta. Scenario-driven dynamic anal-
ysis for comprehending large software systems. In Proc. 10th European Conf. Software
Maintenance & Reengineering, pages 10–pp. IEEE, 2006.

59. G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini. On the positive effect
of reactive programming on software comprehension: An empirical study. IEEE Trans.
Softw. Eng., 43(12):1125–1143, 2017.

https://youtu.be/BSaAMQVq01E?t=2102
https://www.youtube.com/watch?v=8bZh5LMaSmE


44 Levy & Feitelson

60. B. Shneiderman. Exploratory experiments in programmer behavior. Intl. J. Computer
& Information Sciences, 5(2):123–143, 1976.

61. J. Siegmund, A. Brechmann, S. Apel, C. Kästner, J. Liebig, T. Leich, and G. Saake. To-
ward measuring program comprehension with functional magnetic resonance imaging.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering, page 24. ACM, 2012.

62. I. Şora. Helping program comprehension of large software systems by identifying their
most important classes. In International Conference on Evaluation of Novel Approaches
to Software Engineering, pages 122–140. Springer, 2015.

63. J. Spolsky. The law of leaky abstractions. https://www.joelonsoftware.com/2002/11/
11/the-law-of-leaky-abstractions/. Accessed: 2018-09-26.

64. M.-A. Storey. Theories, tools and research methods in program comprehension: Past,
present and future. Softw. Quality J., 14(3):187–208, Sep 2006.

65. H. Störrle. On the impact of layout quality to understanding UML diagrams: Size
matters. In International Conference on Model Driven Engineering Languages and
Systems, pages 518–534. Springer, 2014.

66. W. Tichy. The evidence for design patterns. In A. Oram and G. Wilson, editors, Making
Software, pages 393–414. O’Reilly Media Inc., 2011.

67. M. Torchiano, G. Scanniello, F. Ricca, G. Reggio, and M. Leotta. Do UML object
diagrams affect design comprehensibility? results from a family of four controlled ex-
periments. Journal of Visual Languages & Computing, 41:10–21, 2017.

68. A. von Mayrhauser and A. M. Vans. Comprehension processes during large scale main-
tenance. In Intl. Conf. Softw. Eng., number 16, pages 39–48, May 1994.

69. A. von Mayrhauser and A. M. Vans. Dynamic code cognition behaviors for large scale
code. In Workshop Program Comrehension, number 3, pages 74–81, Nov 1994.

70. A. von Mayrhauser and A. M. Vans. Program comprehension during software mainte-
nance and evolution. Computer, 28(8):44–55, Aug 1995.

71. A. von Mayrhauser and A. M. Vans. On the role of hypotheses during opportunistic
understanding while porting large scale code. In Workshop Program Comrehension,
number 4, pages 68–77, Mar 1996.

72. A. von Mayrhauser and A. M. Vans. Program understanding behavior during adaptation
of large scale software. In Workshop Program Comrehension, number 6, pages 164–172,
Jun 1998.

73. A. von Mayrhauser, A. M. Vans, and A. E. Howe. Program understanding behavior
during enhancement of large-scale software. J. Softw. Maintenance: Res. & Pract.,
9(5):299–327, Sep/Oct 1997.

74. L. Weissman. Psychological complexity of computer programs: An experimental
methodology. SIGPLAN Notices, 9(6):25–36, Jun 1974.

75. R. Wettel and M. Lanza. Program comprehensionthrough software habitability. In Intl.
Conf. Program Comprehension, number 15, pages 231–240, Jun 2007.

76. R. Wettel and M. Lanza. Visualizing software systems as cities. In IEEE Intl. Workshop
Visualizing Software for Understanding & Analysis, number 4, pages 92–99, Jun 2007.

77. Wikipedia. Java package. https://en.wikipedia.org/wiki/Java_package. Accessed:
2018-10-31.

78. X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring program com-
prehension: A large-scale field study with professionals. IEEE Trans. Softw. Eng.,
44(10):951–976, Oct 2018.

79. H. Zhang, H. Zhao, W. Cai, J. Liu, and W. Zhou. Using the k-core decomposition to
analyze the static structure of large-scale software systems. J. Supercomput., 53(2):352–
369, Aug 2010.

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://en.wikipedia.org/wiki/Java_package

	Introduction
	Methodology
	Depth of Comprehension
	Hierarchy of Comprehension
	Flows: Understanding System Dynamics
	System Comprehension
	Validation Survey Results 
	Threats to Validity
	Conclusions



