
1

The Paradox of Function Header Comments
Arthur Oxenhorn Almog Mor Uri Stern Dror G. Feitelson

Department of Computer Science
The Hebrew University, Jerusalem, Israel

Abstract
Perhaps the most widely used form of code documen-
tation is function header comments. We performed a
large-scale survey of 367 developers to catalog their
expectations from such documentation and to chronicle
actual practice. Paradoxically, we found that developers
appreciate the value of header comments and estimate
that they are worth the investment in time, but nev-
ertheless they tend not to write such documentation
in their own code. Reasons for not writing header
comments vary from the belief that code should be self-
documenting to concern that documentation will not be
kept up-to-date.

A possible outcome of this situation is that developers
may evade requirements to write documentation by
using templates to generate worthless comments that do
not provide any real information. We define a simple
metric for information-less documentation based on its
similarity to the function signature. Applying this to
21,140 files in GitHub Python projects shows that most
functions are undocumented, but when header com-
ments are written they typically do contain additional
information beyond the function signature.

Keywords: documentation, function headers, header
comments

1. Introduction
When faced with the task of understanding a computer

program, the two chief sources of information are the
program’s code itself and the documentation of this code.
The documentation in the code can be divided into two
main parts: class and function header comments, and inline
comments [14]. Function header comments in particular
are used to describe the algorithm implemented by the
function or to document its interface, in both cases with
the goal to eliminate or at least reduce the need to read
and comprehend the code itself. Thus they support a top-
down approach to code comprehension [32, 3, 24, 22].
Inline comments complement this by explaining elements
of the code that may not be obvious on their own right.
This is especially useful when trying to comprehend the
actual code, for example in the context of maintaining it.

The potential importance of comments is generally rec-
ognized, and writing header comments is often required

This research was supported by the ISRAEL SCIENCE FOUNDATION
(grant no. 832/18).

in coding guidelines. On the other hand, many have also
expressed concern regarding the quality and relevance of
comments [28, 29, 12, 30]. Berry et al. note the problem
that documentation is usually beneficial for its reader, not
its writer, thereby reducing the incentive to write good com-
ments [4]. A related issue is the need to update comments as
code evolves [17]; a possible solution is to only produce the
comments at the code review stage, when the code is being
finalized [12]. Other studies claim that documentation just
does not have a significant effect on code comprehension
[6].

Functions are the most-often commented code elements
[11]. The practice of function documentation depends on
the programming language used. In C and C++ a distinction
is made between comments in header files, which doc-
ument the interface, and comments in code files, which
document the implementation. In Java it is common to
format header comments for JavaDoc, which automatically
generates external documentation of APIs [15]. Python and
other languages support docstrings, that remain available
also during execution. These practices are intended to
support developers who need to use functions written by
others.

But in the last 20 years or so the notion that code should
be self-documenting has gained traction. This approach to
programming emphasizes the need to use clear variable
and function names, with the aim of not having to add
any comments at all. Steve McConnell, in a whole chapter
devoted to writing functions in Code Complete, does not
even mention header comments [21]. He does mention them
elsewhere as a first step in writing pseudocode leading to
an implementation. As for using documentation in general,
McConnell strongly opposes predefined enforced header
comment guidelines, preferring that documentation reflect
the complexity of the function. Parameters should only
be described if one is using an automatic documentation-
generation facility such as JavaDoc. Robert Martin, in
Clean Code — which also has a whole chapter on functions
— is more terse. His subsection on header comments
contains only two sentences: “Short functions don’t need
much description. A well-chosen name for a small function
that does one thing is usually better than a comment
header.”

Given such widely diverging views on the utility and
need of header comments, we turn to see what developers
do in practice, and how they perceive header comments
in their everyday work. What should function header com-
ments, and API documentation in general, contain? What
do developers need and want? And do they in fact act

2

according to what they say they want?
The contributions of this paper are the following:
1) We conduct a large-scale survey of developers, and

collect information on their practices concerning the
use and production of function header documentation,
what they find most useful in such documentation,
and what is most often missing;

2) We uncover paradoxical behavior, where developers
tend to use and value function header comments and
think they are worth the investment, but nevertheless
tend not to write them;

3) We refine the definition of a simple metric for
determining whether function header documentation
contains additional information beyond the function
signature;

4) We collect data about the use of function header com-
ments in Python projects, showing that most functions
are undocumented, but in most documented functions
the documentation does contain novel information
beyond the function signature.

2. Related Work
Documentation is widely accepted as an element of

programming, and there has been a significant amount
of work on how to write comments and on their effect.
Steidl at al. present a classification of comment types and
suggest simple metrics for their quality [28]. Aggarwal
et al. base their model of software maintainability on
three aspects of documentation: the percentage of com-
ment lines, the simplicity of the comments text, and the
correlation between documentation vocabulary and the code
vocabulary [1]. Other research indicates that documentation
complements the information contained in variable names
[5], and that it can compensate for low code quality
[16]. Even redundant documentation (for example explicitly
stating what design pattern is being used) may still help
somewhat [25]. Documentation’s utility may also depend
on experience: novices appear to focus on comments more
than experienced programmers [9].

Function header comments used to document APIs (Ap-
plication Programming Interfaces) have received special
attention. Liskov and Guttag suggest that functions need a
specification comment containing a pair of assertions: the
function’s precondition and its postcondition [19]. This is
part of the abstraction (and specifically procedural abstrac-
tion) that also supports formal verification and testing, and
is thought to be sufficiently informative to allow others to
use the function without looking at its body. Meyer makes
a similar suggestion, in the form of function contracts
[23]. In addition to documentation, the function name
itself if considered important for understanding what a
function does. Alsuhaibani el al. conducted a large survey
of developers, and found that there is large agreement on
the basic principles of function naming [2].

Other research has looked at how developers use API
documentation. This is usually based on surveys of devel-
opers, similar in spirit to our work [12, 22]. Watson et

al. complement surveys with collecting data from actual
practice in open source projects [31].

Research that uncovered problems in API documen-
tation can be especially revealing. Robillard found that
problematic or missing documentation is only one of the
problems in learning to use an API [27]. Other problems
include the API itself (e.g. if it is badly designed) and lack
of background knowledge. Moreover, deficiencies in API
documentation may cause the API to be abandoned and
another to be used in its place [29]. Watson et al. add
that having required elements is not enough for effective
documentation: issues like the writing style, visual design,
and ease of finding the documentation are also important
[31]. Curtis et al. found that using a restricted language
forces consistency that can be helpful [10].

Finally, in a survey of research on documentation, Rai et
al. note that a favorite topic is the generation of summaries
of functions [26]. For example, Huang et al. describe a
method that combines information retrieval with neural
networks for the purpose of generating a general description
of a function [13]. More recently large language models are
also being applied to this problem.

3. Research Questions
The general goal of our research was to learn whether

function header documentation indeed helps developers in
understanding functions’ usage, thereby saving the effort to
read and understand the actual code. If it turns out that this
is not the case, then the effort invested in writing comments
has been wasted, and doing so can be avoided.

To gain insights into this issue, we formulated the
following concrete research questions:

1) To what degree is function header documentation
used in practice? What fraction of functions have
such documentation? What fraction of developers rely
on such documentation, and what fraction actually
invest in writing header comments in their code?
These questions will show whether this topic is
important at all, and specifically how developers see
it.

2) Which parts of function header documentation (pa-
rameters, return value, examples) are the most use-
ful? How often are they actually included in header
comments? This may shed light on when developers
can make do with the documentation, and when they
also need to read the code.

3) What necessary information is most often missing
from function header documentation, thereby making
it ineffective? Answering this question can provide
guidance concerning how header comments can be
improved.

4) In general, does function header documentation add
meaningful information beyond the function’s signa-
ture? Or is it redundant? This will tell us whether
function and parameter names are meaningful enough
to eliminate the need for header comments.

3

To answer these questions we employed two method-
ologies: a survey and repository mining. The survey was
answered by 367 developers from around the world. It
had two main parts. In one we asked about perceptions
regarding header comments: how useful they were thought
to be, and which parts (e.g. the explanation of parameters,
return value, or internal structure) were more important
than others. In the other we asked about actual practice:
whether functions in the project they work on have header
comments, whether they themselves write such comments,
and why.

In the repository mining we scanned the code in 21,140
files from 68 top-ranked python projects hosted on GitHub.
We extracted the doc strings of the functions in these
files, and compared them with the function signatures. This
provides a simple measure of whether the documentation
contains any additional information beyond the function
signature itself.

4. Survey on Perception and Use of
Header Comments

We conducted a survey among developers from different
backgrounds and locations, to see what they think of header
comments and how they use them.

4.1. Survey Design
The survey was composed of the following sections:
1) Questions on how much developers read and rely on

function header documentation. This part included
questions on whether they read this documentation
first; if so, what do they most focus upon (explanation
of the parameters, the function’s inner methods, its re-
turn value, or usage examples), and does reading the
documentation suffice to understand the function’s
usage; if not, why not, and whether they return to
read it at a later stage.

2) Questions on how useful developers find the informa-
tion in header comments to be (even if they do not
actually read it for various reasons), and which parts
of it are the most useful ones. An additional question
concerned what information is usually lacking from
such documentation.

3) Questions about how much effort developers spend in
writing and updating function header comments, and
whether they feel it is worth the time this consumes.

4) Questions on the current practice of documenting
code in their workplace. For this we asked about
the existence of company and team guidelines for
documenting code.

5) Lastly, we asked some demographic questions: age,
gender, experience in programming, main program-
ming language used, original programming educa-
tion, and main programming activity today.

The survey was mostly based on multiple choice ques-
tions, on a scale of 1–5, where 1 means “not at all impor-
tant” or “strongly disagree” and 5 means “very important”

or “strongly agree”. In addition we used open questions
where participants could expand on issues that they found
missing in the multiple choice questions.

4.2. Survey Execution
The survey was implemented on the Google Forms plat-

form. Requests to participate in the survey were distributed
both locally and globally. Locally the survey was posted to
student WhatsApp groups and Facebook groups, and sent
directly to colleagues. Globally the invitation to participate
was posted to a few Reddit groups. Consent to participate
was explicitly implied by continuing from the introductory
page to the survey questions. No identifying information
was collected, and participants were not compensated for
taking the survey.

A total of 367 people responded to the survey. 89% were
men, 5.4% were women, and a similar fraction preferred not
to identify or gave a different answer. While this is highly
skewed, it appears to be representative of the developer
community as reflected by the Stack Overflow developer
survey1. Of the 265 who answered the question about where
they are from, 85 were from the United States, 41 from
Israel, 28 from the United Kingdom, 19 from Germany, and
8 each from the Netherlands and Australia. The rest came
from 34 other countries. The ages of three quarters of the
respondents were between 20 and 40, with 22% being in
the range 30–35. Another quarter were above 40, with 8%
even above 50.

Concerning programming experience, 51% had learned
to program in a university or college, and 31% studied
independently. 10% learned at work, in a bootcamp, or
during military service. 88% reported that their main pro-
gramming activity is done at work. 8% said it was done in
independent projects, and the rest programmed in a research
setting. Their years of experience were rather skewed: 36%
had 0–5 years of experience, and another 24% had 6-10
years. 13% claimed 21 years of experience or more. The
combination of programming at work and the years of
experience indicate that the vast majority of participants
are professional developers. The main programming lan-
guages used by participants were Python, TypeScript, and
JavaScript, with 24–27% naming them. C# was named by
18%, Java by 13%, and ten additional languages by 3–12%.

4.3. Survey Results
4.3.1. Use and Utility of Function Header Comments

We started the survey with a general question about
actual practice: does the participant’s current project have
documented functions? A bit more than a quarter of the par-
ticipants answered that no, functions are not documented.
A a bit less than half said that most functions do not have
header comments but some do, and a bit more than a quarter
said that most do.

1https://survey.stackoverflow.co/2022#developer-profile-demographics

4

Does the codebase/project you currently work on have
documented functions?

no documented
functions

26%most
functions
undocumented

47%

most functions
have documentation

27%

The next question was about their personal behavior, and
specifically where do they start from when they need to
use a function they did not write. More than half answered
that they first read the header documentation (including its
signature). More than a third said they first read the code.
Few said they turn to external documentation or mentioned
other options, such as tests.

When you need to use a function you didn’t write for the
first time, what do you read first in order to understand
the function usage?

external documentation
6%

header
documentation

56%

the code

36% tests
1% other1%

Based on these answers, we asked those who said they
start with the header comments whether this was enough.
The majority agreed that this was indeed the case, and that
it is not necessary to also read the code.

Usually, one does not need to
read the actual code to use
the function, and can read
only its header documentation
to use it [scale: 1=strongly
disagree to 5=strongly agree] 1 2 3 4 5

0

10

20

30

40

Pe
rc

en
ts

Alternatively, those who said they do not start with
the header documentation were asked why. More than
half chose the option that code gives better understanding.
Around 40% each selected criticisms of header documen-
tation (not good or not up to date — a concern that has
also been noted in other research [12, 18]) or that reading
the code was simpler. Few entered their own reasons —
that header documentation was missing, or that external
documentation was better.

Why do you start from the code/external documentation
and not the function header documentation?

0 10 20 30 40 50 60

Header docs often not up to date
Reading code is simpler

Header docs are not good
Code gives better understanding

Percents

In addition, they were asked whether they later do read
the header documentation. The answers indicate that about
a third sometimes do (answered 3), but half tend not
to (1 or 2). Only a small minority tend to read header
documentation later (4 or 5).
How often do you go back to
reading the function header
documentation in later stages
of understanding its usage?
[scale: 1=never to 5=always]

1 2 3 4 5
0

10

20

30

40

Pe
rc

en
ts

Finally, all the participants were asked about their per-
ception of the usefulness of function header documentation.
The majority thought they were useful.
How useful do you think
functions’ header
documentation is? [scale:
1=not at all to 5=very much]

1 2 3 4 5
0

10

20

30

40

Pe
rc

en
ts

4.3.2. The Elements of Function Header Comments

Header comments usually include several parts. We
specifically considered four: descriptions of the parame-
ters, of the return value, of the internal structure, and
usage examples. The justifications for choosing them are
as follows: Parameters and return value are universally
considered the basic requirement to define an API; Inner
functions represent implementation details; Examples are
known to be desirable from past work.

All the participants were asked: In your opinion, how
useful are the following parts of function header documen-
tation? The answers to these questions are shown in orange
in the following graphs, on a scale of 1=not useful to 5=very
useful.

Participants who had previously answered that they read
header comments first were also asked: When reading
function header documentation, how much do you focus on
[these parts]? The answers are shown in blue, on a scale
of 1=not at all to 5=very much.

The results indicate that a strong correlation exists be-
tween the perception of usefulness by all participants and
the focus by those participants who indeed read header
documentation first. The output definition and return value
are valued most, closely followed by usage examples.
Explanations of the function parameters are also thought
useful, but to a somewhat lesser degree. The function’s
internal methods, on the other hand, are not considered

5

useful or focused upon. This is as can be expected when the
header comments are used to learn how to use the function,
as opposed to maintaining it.

Orange: How useful are, and
blue: How much do you focus
on: Explanations of the
function’s parameters

1 2 3 4 5
0

10

20

30

40

Pe
rc

en
ts

Orange: How useful are, and
blue: How much do you focus
on: Output definition and
return value

1 2 3 4 5
0

10

20

30

40

50

Pe
rc

en
ts

Orange: How useful are, and
blue: How much do you focus
on: Explanation of the
function’s inner methods

1 2 3 4 5
0

10

20

30

40

Pe
rc

en
ts

Orange: How useful are, and
blue: How much do you focus
on: Examples of usage

1 2 3 4 5
0

10

20

30

40

50

Pe
rc

en
ts

Participants who said they read header documentation
were then asked what other parts of the documentation they
look for beyond the four we asked about explicitly. A bit
more than a third answered this question. About 20% each
(of those who answered) mentioned a general description of
the function and types. Several respondents also mentioned
other data items, such as exceptions, side effects, and more.

Finally, all participants were asked a follow-up open
question concerning information that is often lacking from
function header documentation. The most commonly cited
missing element by far was examples of usage, mentioned
by 42%. The next three issues, mentioned by 16% each,
were exceptions, side-effects, and being up to date.

What information is usually lacking in functions’ header
documentation? (open question)

0 10 20 30 40 50

Performance
Parameter descriptions

Description of return values
Types

Being up to date
Side effects
Exceptions

Example/usage

Percents

4.3.3. Writing Function Header Comments

The questions about writing header comments were
preceded by a note that participants who do not do so may
not answer this part. Nevertheless, 350 participants (95%)
did answer these questions.

The first two questions in this part of the survey exhibit
somewhat inconsistent behavior of the participants: most
of them think that writing function header documentation
is worth the time it requires, but many often do not
actually write such documentation. Note that the question
specifically noted that we are referring to functions that
might be used by other developers in the future, not internal
private functions.
Do you think writing function
header documentation is
worth the time it requires?
[scale: 1=not at all to 5=very
much]

1 2 3 4 5
0

10

20

30

40

Pe
rc

en
ts

How often do you write
documentation to your
functions that other people
might use in the future?
[scale: 1=never to 5=always] 1 2 3 4 5

0

10

20

30

Pe
rc

en
ts

Expecting that this may be the case, we asked those who
tend not to write function header documentation (identified
as those who answered 1 or 2) why they behave this
way. The most common answer given, by more than a
third of the participants, is that in fact they feel such
documentation is unimportant (we include here respondents
who mentioned alternatives like good names, especially for
short simple functions, or external documentation). Around
a sixth each answered that it requires too much time, that
self-explanatory code is more important, and that it is not
commonly done in their team. Of these, the answer that
self-explanatory code is more important was not suggested
by us, but written in under “other”. Additional answers
given under “other” include the code being for internal use
only, the danger of the documentation not being updated,
and that it interrupts the workflow and is then forgotten.
Why do you avoid writing function header documentation?

0 10 20 30 40

Other
Tests explain the code better [other]

The functions are for internal use [other]
Danger that it won’t be updated [other]

It’s important but uncommon in my team
Self explanatory code more important [other]

It’s important but requires too much time
I feel it’s unimportant

Percents

Those who answered 3–5 to the question of how often
they document functions were asked how much they elab-
orate on different elements in this documentation (using a
scale of 1=not at all to 5=a lot). The answers indicated

6

that there was some elaboration on parameters, and less
on examples — in both cases much less than reflecting
the perceived importance of these elements as reported
above. There was a strong tendency not to elaborate on
internal functions, which we saw are indeed not perceived
as important.

How much do you elaborate
in explaining the function’s
parameters in its header
documentation?

1 2 3 4 5
0

10

20

30

40

Pe
rc

en
ts

How much do you elaborate
in explaining the function’s
inner methods in its header
documentation?

1 2 3 4 5
0

10

20

30

40

50

Pe
rc

en
ts

How much do you elaborate
in explaining the function’s
examples of usage in its
header documentation?

1 2 3 4 5
0

10

20

30

Pe
rc

en
ts

Finally, we asked all participants how often they update
the documentation compared with updating the function’s
code. The answers indicate that developers tend not to
update the documentation as much as may be desired,
justifying the reservations reported above concerning doc-
umentation that may not be up to date. However, we note
that Malik et al. found that the fraction of comments that
were not updated in 3 of the projects they studied were
lower than would be expected by our survey, ranging from
18% to 33%; in only one project it was a high 62% [20].
Likewise, Chen et al., in a study on identifying comments
scope, estimated that only around 13% of the comments in
their sample were outdated [8]. This discrepancy might be
explained by code updates that do not require a change in
the header comment, for example because they just fix a
bug.

How often do you update the
function header
documentation, compared to
the updates in the function’s
code? [scale: 1=never to 5=in
every code update] 1 2 3 4 5

0

10

20

30

40

Pe
rc

en
ts

4.3.4. Using Tools and Documentation Templates

A couple of questions concerned the use of auto-
generated documentation and its quality. The first showed
that half the participants never use such tools.

How often do you use tools
for automatic documentation
generation (e.g. docstring
generation tools built into
IDEs)? [scale: 1=never to
5=very often]

1 2 3 4 5
0

10

20

30

40

50

Pe
rc

en
ts

The second question actually had two versions. All par-
ticipants were asked: How much do you think automatically
generated documentation should be changed? This is shown
in orange in the graph, on a scale of 1=not at all (useful as
it is) to 5=a lot (useful only if edited). The second version
was directed only to participants who do use automatic
generation, who were asked: How much do you edit or add
to the generated docstring? This is shown in blue, with a
scale of 1=I don’t edit anything to 5=I edit a lot. The result
show a wide spread of opinions, with a moderate correlation
between thinking generated documentation should be edited
and actually doing it.

Orange: How much should
auto-generated docstrings be
changed?
Blue: How much do you edit
or add to them?

1 2 3 4 5
0

10

20

30

40

Pe
rc

en
ts

4.3.5. Function Header Comments Guidelines

Finally, we asked participants whether they are required
to document the functions they write. Nearly two thirds
of the respondents said no, and a quarter said yes but
that there were no explicit guidelines. Less than 8% said
they had explicit guidelines to document functions. A few
participants added a comment to the effect that they are re-
quired to document only complex functions, or public/main
functions. Two said that documentation is forbidden.
Are you required by your team’s/company’s guidelines to
document the functions you write?

forbidden0.5%

no

62.3%

yes but not explicit

25.1%
explicit guidelines

7.7% if complex/public
2.5% other
1.9%

A follow-up question for those who said they have docu-
mentation guidelines asked what these guidelines included.
The most common elements were a summary or general
explanation of the function (86%), and an explanation of
its parameters (56%). Only 20% were required to provide
examples, which were identified above as a part that is often
missing.

7

If your group has guidelines, what do they require?

0 20 40 60 80 100

Explanation of function’s inner methods
Examples of usage

Using an automatic template/docstring
Explanation of parameters

Short summary/general explanation

Percents

Alternatively, those who did not have documentation
guidelines were asked why not (this was an open question).
The most common answer, given by 31%, was that code
should be self-documenting. 24% cited a startup culture,
including not having enough time or having a small team.
Many others had opposing opinions on the matter: 19%
noted that they do not want documentation, while 14%
were critical of the fact that documentation guidelines do
not exist. Some of these were downright disparaging of
the company, using “they” to describe managers who make
such decisions without understanding their consequences.

What is the reason your team/company does not require
writing function documentation?

0 10 20 30

Documentation is hard to maintain
Criticism on not requiring documentation

Don’t want documentation
Startup culture

Code should be self-documenting

Percents

For example, one of the detailed comments we received
was: “1. Concise and explanatory code is more readable
than documentation; 2. Documentation needs to be main-
tained. When it’s not maintained it can be harmful: it gets
out of sync and the docs turn to be unreliable. When
it’s unreliable people will ignore it altogether, and the
handful of functions that really need to be elaborated can’t
be documented anymore.” Another wrote: “Comments are
a last resort if you can’t make the code simple enough
to understand on its own. By making comments rarer
you know that if there’s a comment it’s probably worth
reading.”

4.4. Discussion: The Paradox
The above results include many interesting observations

and opinions about function header documentation. But the
most interesting and important in our mind is the following
paradox. On the one hand,

• When using a function for the first time, 56% turn to
header documentation

• There is general agreement (answers of 4 or 5 on a
scale of 1 to 5) that:

– Header documentation is useful (59.7%)
– One can read only the header documentation and

avoid reading the code (57.6%)
– Writing function header documentation is worth

the time it requires (56.8%)
But on the other hand

• In only 27% of the projects most functions have header
documentation, and in 26% none have

• Only 7.7% of projects have explicit guidelines re-
quiring header documentation, while 62.3% have no
guidelines of any kind

• Only 45.4% of developers often write header docu-
mentation (answers 4–5), while 33.4% often do not
(answers 1–2) — in functions that other people might
use

More specifically, the most significant disparity concerns
examples. 72.8% thought that usage examples are useful,
and 61.7% said they focus on usage examples when reading
header documentation. At the same time 42% said that
usage examples are usually lacking from function header
documentation, and only 18.7% had guidelines that require
usage examples. Likewise, 36.1% elaborate on explain-
ing usage examples when writing header documentation
(answers 4–5), but 44.1% do not (answers 1–2). These
results mirror those of Robillard from a survey of Microsoft
employees, which also found examples to be the number
one requirement from helpful API documentation [27].

Luckily, this also points to what can be done to improve
the situation. The two recommendations that stand out are:

1) Draft guidelines that require function header docu-
mentation to be written, especially for public and
complex functions.

2) Require that function header comments include ex-
amples of usage. This can be made easier using an
example synthesizing approach such as that of Buse
and Weimer [7]. according to Meng et al., this should
include both examples of simple use cases and recipes
for more special use cases [22].

5. Mining GitHub for Data on Useless
Header Comments

One of the responses to the survey question of why
do you not write header comments was “Most documen-
tation seems redundant given the naming and typing of
arguments/return values”. This identifies a major question
hounding our analysis of the perception of header com-
ments: are they in fact needed at all? maybe all the pertinent
information is already available in the function signature?

This also resonates with the practice of using documenta-
tion templates that include descriptions of parameters with
no added value. We’ve all seen examples such as this one
(used as an example of what to avoid in an Oracle tutorial
on using JavaDoc):

/**
* Sets the tool tip text.
*
* @param text the text of the tool tip
*/
public void setToolTipText(String text) {

Obviously, the comment just repeats words that make
up the signature. We use this as inspiration for how to
identify meaningless comments. Given an implementation
of this definition, we apply it to the files of multiple popular

8

Python GitHub projects, and extract the distribution of
“meaninglessness”. This shows the prevalence of writing
meaningless documentation, and conversely — the fraction
of header comments that in fact contain additional infor-
mation.

5.1. Defining “Meaningless” Header Com-
ments

Header documentation is not the same as summarization.
A key element in documenting APIs is to document the
interface itself (parameters and return values). This is
also what is required for contracts, and is implemented
in various tools. Our metric is aimed at this part of the
documentation.

The metric for meaningless documentation is based on
the idea that words that appear in the function signature do
not add information when they are repeated in the header
documentation. This is essentially similar to the “coherence
coefficient” suggested by Steidl et al. [28]. However, our
procedure to quantify it has several added features:

1) For each function, we start with the full function
signature (denoted Sig) and with its header docu-
mentation (denoted Doc).

2) We process the documentation string as follows:
a) First we partition it into words. This is done

in several steps. The first is to replace every
sequence of non-alphanumeric characters with
a space. Note that this already handles names
that are written in snake case style. We also
separate names written in camelCase into their
constituent words based on their internal cap-
italization. The result of this step is a list of
individual words in the documentation.

b) From the list of words created in the previ-
ous step we extract the potentially meaningful
words. These are words that satisfy two condi-
tions:
• They are longer than a single character, and
• They are not a stop word. The list of stop

words we used is ‘the’, ‘an’, ‘of’, ‘at’, ‘by’,
‘in’, ‘it’, ‘on’, ‘to’, ‘that’, ‘had’, ‘for’, ‘was’,
‘were’. Note that certain words that are com-
monly included in lists of stop words are not
included here, as they may be very meaning-
ful in the specification of functions. Examples
are ‘and’, ‘or’, ‘is’.

c) The list of extracted words is denoted WDoc,
and the number of these words is |WDoc|. Note
that this is a bag and not a set: words may
appear in it more than once.

3) We process the function signature as follows:
a) First we partition it into words. This is done

essentially in the same way as was done with
the documentation string.

b) We create a set of all the words that appear
in the signature, denoted WSig. Note that this

includes all of the following:
• Words that appear in the function name
• Words that appear in the function’s parame-

ters
• Words that appear in types of parameters and

in the return type (if specified)
This is a set. There is no need to retain repeti-
tions.

4) For each word in the documentation, we check
whether it appears in the signature, and if so declare
it to be meaningless. This is done in two steps:

a) For each word w ∈ WDoc we check whether
w ∈ WSig. This is straightforward inclusion of
the word.

b) If the word w is not found, we check the oppo-
site direction: for each word v ∈ WSig we check
whether v ⊂ w. This checks whether the signa-
ture includes shortened versions of words in the
documentation. For example, ‘information’ in
the docstring would be counted as meaningless
if ‘info’ appears in the signature.

The list of words from the documentation identified
as meaningless is denoted M , and their number is
|M |. This is a bag, with possible repetitions.

5) Finally, we define the meaningless score of the
function as |M |/|WDoc|, namely the fraction of
potentially meaningful words in the documentation
that were found in the signature and are therefore
actually meaningless. Thus, a large score (close to
1) indicates a rather meaningless documentation, as
the information it provides was already given in the
function’s signature.

Note that the above procedure defines “meaningless”
based on the matching of individual words, and does not
rely on semantics. Thus it is actually a rather crude and
preliminary definition. We leave the task of designing more
sophisticated metrics for the meaningful data provided by
documentation to future work.

5.2. The GitHub Dataset
To check the actual prevalence of meaningless header

documentation, 68 Python repositories were analyzed.
Repositories were chosen by popularity on GitHub, based
on the Github Ranking as reflected in the Top 100 Stars
in Python list2. This is a dynamic list and gets updated
frequently; the lists that were used are from December 2022
to January 2023.

Within each project we focused on the actual functional
code and avoided test code, as identified by “test” (includ-
ing plural or capitalized) or “e2e” appearing in the path.
A total of 21,650 files were analyzed. 510 of them (2.3%)
failed to be parsed (some because of encoding errors, some
because of errors in the docstring extractor library used in
the script). The presented results are based on the remaining
21,140 files.

2https://github.com/EvanLi/Github-Ranking/blob/master/Top100/Python.md

9

Fig. 1. Distribution of meaningless score for all functions that have
docstrings.

For each file we count the total number of functions in
the file and the number of functions without any header
documentation. In addition we extract the docstrings from
functions that do have one. This is done using the function
get docstrings from the docstring extractor Python library3.
In addition, we use Python’s ast (abstract syntax tree)
library to extract function parameters and their types (if
they exist). We then apply the procedure described above
to calculate the meaningless score of the docstring of each
function, and collect these results.

5.3. Results on Meaningless Header Com-
ments

We first calculate the average fraction of functions with
no documentation. To avoid giving more weight to large
files, we first find the fraction of such functions in each
file and then average over all the files from all the projects.
The resulting average fraction of functions with no doc-
umentation was 0.596. This means that most functions
are undocumented, as was also found in the survey. The
following results pertain to the other functions, which do
have docstrings.

Figure 1 shows the CDF (cumulative distribution func-
tion) of the meaningless score of all the functions from
all the projects. For every value of meaningless score on
the horizontal axis this shows the fraction of all functions
whose header documentation has a meaningless score up to
this value. The graph indicates that the central 80% of the
distribution of functions have a meaningless score in the
range 0.15–0.45. In other words, for the vast majority of
functions more than half the words in the header documen-
tation are novel and do not appear in the function signature.
This is similar to the result obtained by Steidl et al., who
found (in a sample of 5 projects) that 1–9% of the header
comments were “trivial”, which they defined as having at
least half of their words appear in the function signature.

3https://pypi.org/project/docstring-extractor/

Fig. 2. Distribution of meaningless score for the functions in different
projects.

To verify that these results are indeed representative we
plot the CDF of meaningless scores for each studied project
separately. All these graphs are shown together in Figure
2. As can be seen, the graphs for nearly all the projects
roughly follow the same shape as the previous graph.

However, some of the projects exhibit different be-
haviors. We manually checked two of them. The one
represented by the blue straight line at top left turned
out to have code that was partially generated automat-
ically from a .proto file (Google’s protocol buffer file).
These automatically generated functions all had the default
documentation string “Missing associated documentation
comment in .proto file”. As none of these words appeared
in the function signatures, they all got a meaningless score
of 0, despite actually being meaningless. The rest of the
functions were constructors which received one argument,
and had a header comment stating what this argument was.
These got a meaningless score of 0.4.

The project represented by the pink line below that had
34 functions called main with no arguments, which had
verbose documentation including many examples. They all
got a meaningless score of 0, because the word “main” did
not appear.

We conclude that the projects that exhibit strange be-
haviors indeed contain code that is not representative of
normal programming by human developers. However, there
are only a small number of such projects, so their presence
does not have a significant impact on the validity of the
general results.

6. Threats to Validity
Documentation is a wide-ranging topic. In the process

of recruiting participants on reddit we received several
comments to the effect that our survey did not and could
not cover them all adequately. For example, one participant
noted that API documentation can never be complete be-
cause it is impossible to anticipate all the needs users might
have. Another noted that the documentation requirements

10

in different languages could be different: in functional
languages types are important, while in object oriented ones
the parameter explanations are the most useful. There were
also reservations about the survey itself, e.g. that we did not
ask explicitly about side effects being the most important
thing missing in documentation. While some participants
added this and other considerations under “other”, it stands
to reason that more might have noted these considerations
had they been presented explicitly. The results are therefore
probably biased against such considerations. More gen-
erally, in various questions participants might have made
different assumptions concerning what exactly we were
asking about, leading to differences in answers.

Another concern is that our survey targeted developers
and not projects. While it would be surprising if we had
multiple participants from the same project, this could in
principle happen. In any case, we cannot assume that the
results are statistically representative of the whole industry,
and results on percents of projects may be biased. Likewise,
the empirical data collected from GitHub was limited
to projects in Python, and can not be assumed to even
represent all projects in this language.

Regarding the empirical evidence we collected, since we
used a very simple definition for “meaningless” score, it
might be biased, and not capture the real essence of mean-
ingless function header documentation. We believe that this
study showed the potential of this methodology, and thus
additional effort needs to be put in the construction of a
more sophisticated score for meaningless documentation.

As such, we see our results as indicative for the answers
to our research questions, but concede that these results may
be partial, as they might be biased by the projects we chose
and people that answered our survey. More participants in
the survey, and more projects to be analyzed, might show
a somewhat different picture, and are thus needed if one
wishes to draw general conclusions from this study.

7. Conclusions
Returning to our research questions, the answer to RQ1

is that header functions are not universally used. About a
quarter of our survey participants reported that most of the
functions in their project are documented, and a similar
fraction said that none are. But more than half said they
turn to header comments first when needing to understand
a new function. Concerning RQ2, the consensus was that
output definition, examples, and parameters are all useful
and important (in this order), while inner methods are
not. But in RQ3 we found that examples were most often
missing from the documentation. As for RQ4, based on our
GitHub sample we found that while most functions do not
have header comments, in those that do these comments do
not just repeat information that is already available in the
function signature.

To conclude, we believe that function header documen-
tation has an important role in helping new developers to
understand existing code, which is fulfilled only partially in
practice. This is due mainly to the large fraction of projects

and functions which do not have such documentation, and
to sub-par documentation which does not include examples.
Thus, programmers might tend to see header documentation
as not worth the time investment in practice, both when
reading it (in new functions they did not write) and when
writing it (in projects they lead). And indeed, we found a
mismatch between developers’ opinions that writing header
comments is worth the effort and their actual behavior of
not always doing so.

However, our results also indicate that this state of
affairs can be improved with relatively little investment.
A key observation is that not all functions should be
treated equally. It is important to apply judgment, and
only document functions that need it — either because
they are part of an API or because they are complex. An
easy test is to verify that you have what to say beyond
the obvious from the function declaration. In these cases,
it is important to apply documentation guidelines which
correspond to what developers want and need, especially
regarding the provision of examples of usage. In other
cases, where header documentation is not really needed,
it should be avoided, thereby reducing the overhead both
for writers and for readers, and at the same time focusing
attention on those functions that do have documentation —
presumably for good reason.

Experimental Materials
Experimental materials are available from Zenodo using

DOI 10.5281/zenodo.10480939.

References
[1] K. K. Aggarwal, Y. Singh, and J. Kumar, “An integrated

measure of software maintainability”. In Proc. Ann. Reliabil-
ity & Maintainability Symp., pp. 235–241, Jan 2002, DOI:
10.1109/RAMS.2002.981648.

[2] R. S. Alsuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and
J. I. Maletic, “On the naming of methods: A survey of professional
developers”. In 43rd Intl. Conf. Softw. Eng., pp. 587–599, May 2021,
DOI: 10.1109/ICSE43902.2021.00061.

[3] M. Arab, “Enhancing program comprehension: Formatting and doc-
umenting”. SIGPLAN Notices 27(2), pp. 37–46, Feb 1992, DOI:
10.1145/130973.130975.

[4] D. M. Berry, K. Czarnecki, M. Antkiewicz, and M. AbdElRazik,
“The problem of the lack of benefit of a document to its producer
(PotLoBoaDtiP)”. In IEEE Intl. Conf. Softw. Sci., Tech. & Eng., pp.
37–42, Jun 2016, DOI: 10.1109/SWSTE.2016.14.

[5] S. Blinman and A. Cockburn, “Program comprehension: Investi-
gating the effects of naming style and documentation”. In 6th Aus-
tralasian User Interface Conf., pp. 73–78, Jan 2005.

[6] J. Börstler and B. Paech, “The role of method chains and com-
ments in software readability and comprehension—an experiment”.
IEEE Trans. Softw. Eng. 42(9), pp. 886–898, Sep 2016, DOI:
10.1109/TSE.2016.2527791.

[7] R. P. L. Buse and W. Weimer, “Synthesizing API usage exampes”.
In 34th Intl. Conf. Softw. Eng., pp. 782–792, Jun 2012, DOI:
10.1109/ICSE.2012.6227140.

[8] H. Chen, Y. Huang, Z. Liu, X. Chen, F. Zhou, and X. Luo, “Auto-
matically detecting the scopes of source code comments”. J. Syst. &
Softw. 153, pp. 45–63, Jul 2019, DOI: 10.1016/j.jss.2019.03.010.

[9] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons
play in comprehension for novice and expert programmers”. In 14th
Workshop Psychology of Programming Interest Group, pp. 58–73,
Jun 2002.

11

[10] B. Curtis, S. B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D. A.
Boehm-Davis, “Experimental evaluation of software documentation
formats”. J. Syst. & Softw. 9(2), pp. 167–207, Feb 1989, DOI:
10.1016/0164-1212(89)90019-8.

[11] B. Fluri, M. Würsch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes”.
In 14th Working Conf. Reverse Eng., pp. 70–79, Oct 2007, DOI:
10.1109/WCRE.2007.21.

[12] A. Head, C. Sadowski, E. Murphy-Hill, and A. Knight, “When not to
comment: Questions and tradeoffs with API documentation for C++
projects”. In 40th Intl. Conf. Softw. Eng., pp. 643–653, May 2018,
DOI: 10.1145/3180155.3180176.

[13] Y. Huang, M. Wei, S. Wang, J. Wang, and Q. Wang, “Yet
another combination of IR- and neural-based comment genera-
tion”. Inf. & Softw. Tech. 152, art. 107001, Dec 2022, DOI:
10.1016/j.infsof.2022.107001.

[14] Z. M. Jiang and A. E. Hassan, “Examining the evolution of code
comments in PostgreSQL”. In Working Conf. Mining Softw. Reposi-
tories, pp. 179–180, May 2006, DOI: 10.1145/1137983.1138030.

[15] D. Kramer, “API documentation from source code comments: A case
study of JavaDoc”. In 17th Intl. Conf. Comput. Doc., pp. 147–153,
Oct 1999, DOI: 10.1145/318372.318577.

[16] O. A. L. Lemos, M. Suzuki, A. C. de Paula, and C. Le Goes,
“Comparing identifiers and comments in engineered and non-
engineered code: A large-scale empirical study”. In 35th ACM
Symp. Applied Computing, pp. 100–109, Mar 2020, DOI:
10.1145/3341105.3373972.

[17] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice”. IEEE Softw. 20(6), pp.
35–39, Nov/Dec 2003, DOI: 10.1109/MS.2003.1241364.

[18] O. Levy and D. G. Feitelson, “Understanding large-scale software
systems — structure and flows”. Empirical Softw. Eng. 26(3), art. 48,
May 2021, DOI: 10.1007/s10664-021-09938-8.

[19] B. Liskov and J. Guttag, Abstraction and Specification in Program
Development. MIT Press, 1986.

[20] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and A. E. Hassan,
“Understanding the rationale for updating a function’s comment”.

In Intl. Conf. Softw. Maintenance, pp. 167–176, Sep 2008, DOI:
10.1109/ICSM.2008.4658065.

[21] S. McConnell, Code Complete. Microsoft Press, 2nd ed., 2004.
[22] M. Meng, S. Steinhardt, and A. Schubert, “How developers use API

documentation: An observation study”. Commun. Des. Q. 7(2), pp.
40–49, Jul 2019, DOI: 10.1145/3358931.3358937.

[23] B. Meyer, “Applying “design by contract””. Computer 25(10), pp.
40–51, Oct 1992, DOI: 10.1109/2.161279.

[24] D. L. Parnas, “Software aging”. In 16th Intl. Conf. Softw. Eng., pp.
279–287, May 1994, DOI: 10.1109/ICSE.1994.296790.

[25] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F.
Tichy, “Two controlled experiments assessing the usefulness of
design pattern documentation in program maintenance”. IEEE
Trans. Softw. Eng. 28(6), pp. 595–606, Jun 2002, DOI:
10.1109/TSE.2002.1010061.

[26] S. Rai, R. C. Belwal, and A. Gupta, “A review on source code
documentation”. ACM Trans. Intelligent Syst. & Tech. 13(5), art. 84,
Jun 2022, DOI: 10.1145/3519312.

[27] M. P. Robillard, “What makes APIs hard to learn? answers from
developers”. IEEE Softw. 26(6), pp. 27–34, Nov/Dec 2009, DOI:
10.1109/MS.2009.193.

[28] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments”. In 21st Intl. Conf. Program Comprehension, pp.
83–92, May 2013, DOI: 10.1109/ICPC.2013.6613836.

[29] G. Uddin and M. P. Robillard, “How API documentation fails”. IEEE
Softw. 32(4), pp. 68–75, Jul/Aug 2015, DOI: 10.1109/MS.2014.80.

[30] C. Wang, H. He, U. Pal, D. Marinov, and M. Zhou, “Suboptimal
comments in Java projects: From independent comment changes to
commenting practices”. ACM Trans. Modeling & Comput. Simula-
tion 32(2), art. 45, Apr 2023, DOI: 10.1145/3546949.

[31] R. Watson, M. Stamnes, J. Jeannot-Schroeder, and J. H. Spyridakis,
“API documentation and software community values: A survey of
open-source API documentation”. In 31st Intl. Conf. Design of Com-
mun., pp. 165–174, Sep 2013, DOI: 10.1145/2507065.2507076.

[32] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of
modularization and comments on program comprehension”. In 5th
Intl. Conf. Softw. Eng., pp. 215–223, Mar 1981.

