
1

Identifying Lines and Interpreting Vertical Jumps
in Eye Tracking Studies of Reading Text and Code

Mor Shamy Dror G. Feitelson

Department of Computer Science
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract—Eye tracking studies have shown that reading code,
in contradistinction to reading text, includes many vertical jumps.
As different lines of code may have very different functions (e.g.
variable definition, flow control, or computation) it is important
to accurately identify the lines being read. We design experiments
that require a specific line of text to be scrutinized. Using the
distribution of gazes around this line, we then calculate how
the precision with which we can identify the line being read
depends on the font size and spacing. The results indicate that,
even after correcting for systematic bias, unnaturally large fonts
and spacing may be required for reliable line identification.

Interestingly, during the experiments the participants also
repeatedly re-checked their task and that they are looking at the
correct line, leading to vertical jumps similar to those observed
when reading code. This suggests that observed reading patterns
may be “inefficient”, in the sense that participants feel the
need to repeat actions beyond the minimal number apparently
required for the task. This may have implications regarding the
interpretation of reading patterns. In particular, reading does not
reflect only the extraction of information from the text or code.
Rather, reading patterns may also reflect other types of activities,
such as getting a general orientation, and searching for specific
locations in the context of performing a particular task.

Index Terms—Eye tracking, reading order, behavior model

1. Introduction
Eye trackers are increasingly being used by researchers in

software engineering to gain insights into what developers—
or experiment participants—are actually doing and thinking
[3, 19, 33, 42, 47, 48]. A recurring result is that code, unlike
natural language texts, is not read in a largely linear fashion.
Rather, participants seem to repeatedly scan the code, and to
jump from one place to another.

When analyzing reading behavior, it is important to cor-
rectly identify exactly what part of the code the participants
are looking at at each instant. We set out to perform a method-
ological study of how accurately this can be done. Specifically,
we were interested in the trade-off between realism (trying to
be as close as possible to normal working conditions, with
many coding elements crowded on the screen) and accuracy
(which can be improved by using unrealistically large fonts
and spacing). We did this by designing experiments that
require participants to focus on only one specific line of text.
As we know exactly where they are supposed to be looking,
we can analyze the distribution of gazes around this target,
and calculate the probability of misidentifying it.

Interestingly, these simple experiments led to reading pat-
terns similar to those observed for code. In particular, the
participants often jumped from the target line to the question

specifying what they were supposed to look for, and back
again. In other words, their reading appeared to be inefficient,
repeatedly focusing on things that they had just focused on
previously (similarly to the repeated scanning sometimes seen
in code reading [13, 20, 53]). This suggests that the patterns
observed when people perform a task can be inherently differ-
ent from the patterns they use when reading. When reading,
one needs to go over the whole text, which is presented in the
order in which it should be read. So reading text is largely
linear in “story order”. But to perform a given task which is
different from just reading the information in the text other
orders may be used. In particular, the order may reflect the
need to orient oneself in the text, and to search for the parts
which are relevant for the task. In our case this sometimes
included repeated verification of the line involved in the task
and the precise details of the task. We also observe that
participants probably use their peripheral vision to home in
on targets with visual cues.

We therefore suggest “task order” reading, specifically
including orientation and search activities, to generalize the
“story order” and “execution order” previously suggested by
Busjahn et al. [8]. In addition, we suggest that simple experi-
ments such as ours can be embedded into larger experimental
settings, both as a simple recalibration to compensate for
drift during an experiment, and to provide objective exclusion
criteria for participants who achieve low accuracy.

2. Background and Motivation
Eye tracking has been used in reading research for many

years. Extremely detailed information about reading is now
known, including the distribution of saccade lengths (the
distance the eye moves from one fixation to the next), the
perceptual span (how much can be seen in a single fixation,
typically about 8 letters), and the prevalence of regressions
(looking back at previously read text, around 10–15% of
saccades) [6, 39, 40]. Importantly, such attributes of eye
movement change to reflect the difficulty of the text being
read [41].

Eye tracking was first used to study code reading by Crosby
and Stelovsky [13]. One of their findings was that reading code
often involved multiple scans of the code. In addition, they
found wide differences between participants—for example,
employing different numbers of scans. Both findings indicate
a departure from reading in a largely linear order, as one may
expect for, say, a newspaper story. Subsequent studies have
also found that reading code is different from reading text [5,



2

tracker
accuracy

distance

line
spacing

size
font

field
of view

Fig. 1. Factors affecting the ability to correctly identify the line of text being
read.

10, 43]. For one thing, reading code is slower, perhaps due
to its complexity. In addition, different code elements receive
different levels of attention, depending on their function and
location [36]: for example, more emphasis is given to identi-
fiers relative to keywords [9].

Significant research has been focused on the issue of reading
order. Regressions in reading natural-language text typically
involve the previously fixated word, and rarely go to previous
lines [6]. But practically all studies of code reading have
noticed vertical scans of the code as identified by Crosby
and Stelovsky. According to Uwano et al., such scans are
a prerequisite for efficient finding of locations of interest in
the code [53]. Busjahn et al. found that the reading order
also depends on experience: reading by experts is less linear
than reading by novices [8]. This result was replicated by
Peitek et al. [35]. In addition to scans, a whole catalog of
reading patterns has been identified, including jumps back
to previously read parts of the code, and jumps forward
to preview what is coming [10, 20]. Sharafi et al. show
that different reading patterns are used in distinct phases of
performing a task, for example when looking for relevant code
locations, learning about the code, and editing it [46].

It is important to note that in computer program code
different lines often have completely different functions: a
variable declaration, an assignment, a branching instruction,
a function header, etc. Identifying exactly which line is being
read is therefore extremely important in order to understand
what the reader is doing. The ability to distinguish between
reading of adjacent lines in eye tracking studies depends on
the interaction of four important factors (Fig. 1) [32]:

1) The angular discrimination of the eye tracker. Most
trackers claim an accuracy of 0.5–1◦.

2) The distance to the screen, which translates the angular
discrimination into an uncertainty regarding the location
on the screen.

3) The characteristics of the target line, and especially the
line spacing used (which might relate to the font size).
This dictates the differences in screen locations that must
be discriminated.

4) The vertical deviation between the center of the target
line and where the eye is actually focused. The high-
resolution center of the field of view, corresponding to
the fovea in the eye’s retina, is about 2◦, which may span
more than one line [39, 51]. It is therefore not really
necessary to focus exactly on the target line to read it.

In addition, deviations may arise from small movements
and drift during a fixation [39].

In addition, measurements always include noise. Data from
reading 25-line pages of text, which were shown line-by-line
to obtain a ground truth for the assignment of fixations to
lines, indicates that the combined view paths exhibit erratic
behavior and many overlaps [7].

To improve tracking accuracy, experimental recommenda-
tions typically suggest that the font used be “large enough” to
provide good discrimination, say around a size of 18 pt [47];
one recent study on the parsing of URLs even used a font size
of 64(!) [38]. But even 18 pt is larger than what developers
usually use in routine work. This reduces the realism of the
study, and also limits the amount of code that can be displayed
in one screen.

If the font and spacing are not large enough, studies will
exhibit data quality problems [16]. These sometimes cause
uncertain assignments of fixations to lines, leading to apparent
fluctuations between adjacent lines (see, for example, [5, 20,
53]). The detrimental effects of such problems have been
recognized previously also in the context of reading natural
language texts, and a number of studies have specifically
considered the issue of assigning fixations to lines [7, 11, 30,
49, 58]. However, the developed heuristics are based, at least
to some degree, on the assumption that the text consists of
lines that are read sequentially. This assumption is often not
valid in the context of reading code.

Our initial goal was to study this problem more system-
atically. We set out to design experiments in which we can
measure the vertical distribution of gaze points, as measured
by an eye tracker, around a known target. This would enable
a precise calculation of the probability to misinterpret the line
being looked at as a function of the font size and line spacing.
But the results also included unanticipated reading patterns
with vertical jumps. These allow us to make some observations
on why reading code may be different from reading normal
text.

3. Line Focus Experiments
As noted above, under normal viewing conditions the ver-

tical resolution may not be adequate to correctly and consis-
tently identify the line being read. This obviously depends on
the font size and line spacing. Our experiments were designed
to systematically study this effect in practice. The approach
was to design tasks that require experiment participants to
focus on one specific line in the text. We then collect data
on how they find this line, and on how focused they appear
to be, given the experimental apparatus and the parameters of
displaying the text. We do this in a real experimental setting,
as opposed to using an artificial eye [16], as our goal is to
characterize what can be achieved in practice and not to assess
an eye tracking apparatus.

3.1. Texts and Tasks
Eight English texts were used. They come from different

categories, such as songs (“Yesterday”), plays (“All the world’s
a stage”) and short descriptions of nature or leaders around the
world. All texts were 10 or 11 lines long.



3

Fig. 2. Examples of texts and questions used in the experiment, as shown to participants (except for scale). Note that lines are not numbered.

The texts were displayed in different ways:

• Font size – four texts differed in their font sizes: 10 pt,
13 pt, 16 pt, and 20 pt. All had a standard line spacing
of 1.2.

• Spacing – four texts with a standard font size of 13 pt
differed in their spacing: 1, 1.2, 1.5, and 2.

• Text and background colors – either black lettering on
a white background or the other way around. A dark
background is considered better for eye tracking, and is
not uncommon also in programming environments.

The first two variations form the heart of our study. Given
that we know where participants are supposed to look, we can
see what fraction of fixations is indeed assigned to the correct
line, and how many are mis-assigned to adjacent lines.

Two tasks were used to make participants focus on a specific
line:

• Count the number of times a given letter appears in the
line.

• Verify whether a set of three letters all appear in the line.

The question appeared after the text. A couple of examples
are given in Fig. 2.

We decided not to use questions regarding the meaning
of the texts, even if they are about information contained in
a specific line. The reason was that participants might still
read other lines, thinking they may be relevant. In addition,
participants may answer from memory without even looking
at the target line. This is not expected to happen for questions
about letters that appear in the line.

The target line was specified in either of two ways:

• A line number. We chose either the second line or the
seventh line of the text. The reason for choosing them
was that the second line can be identified at a glance,
but the seventh most probably requires counting. We
avoided the first and last lines so that adjacent lines would
exist in both directions. Note that the text lines were
not numbered—the participants had to count to find the
seventh line, but could probably guess the second line.

• Using visual cues to identify the line. Two alternative cues
were used: being indented, or being set in boldface.
The goal was to see whether participants would be able

TABLE I
COMBINATIONS OF PARAMETERS USED IN THE EXPERIMENTAL PLAN.

target
No. Text Size Space Line Indication Look for
1 Shakespeare quote 10 pt 1.2 2 number e× 8
2 Yesterday (Beatles) 13 pt 1.2 7 bold y, w, l
3 Facts about giraffes 16 pt 1.2 7 indent f× 4
4 History of Yemen 20 pt 1.2 7 number n, p, k
5 Fidel Castro bio 13 pt 1 2 number a× 4
6 Facts about stars 13 pt 1.2 6 indent s, c, b
7 Bear in Vancouver 13 pt 1.5 7 bold e× 6
8 Facts about sharks 13 pt 2 7 number w, g, d

to home in on the target line rapidly (presumably using
their peripheral vision) without scanning all the lines.

To enable fair comparisons, the target line indicated by the
visual cues was the sixth or seventh line, similar to the case
of counting down to the seventh line—that is around 2

3 of the
way down the text. But of course the participants did not know
that the targets are always in the same area. This was further
obscured by the two texts where the target was the second
line.

The experimental plan with the combinations that were used
is described in Table I. To reduce variability all the experiment
participants received the same 8 texts with the same attributes,
so this is not a full factorial design. In particular, we do not
consider the text itself to be a relevant factor. However, the
order of the texts was randomized so as to avoid systematic
fatigue and learning effects. Each participant was presented
with one of the coloring options: either all texts appeared in
black on a white background, or the other way around.

3.2. Experimental Setup
The experiments were conducted using a Gazepoint GP3

eye tracker operating at 60 Hz. This is a remote eye tracker
[31], which is typically placed below the display used in the
experiment. It employs an infra-red light source and a video
camera focused on the face of the experiment participant. By
analyzing the reflection of the light source from the cornea
of the participant’s eyes the tracker can estimate where the
participant is looking. This analysis is parameterized by a
calibration procedure executed before the experiment begins,
in which the participant is asked to look at various points on
the screen (typically 5 or 9 points).



4

Fig. 3. Experimental setup. The eye tracker is positioned below the display.

While the GP3 is one of the most low-cost remote eye track-
ers available today, a recent study shows that its performance
is comparable to that of more expensive eye trackers [50];
previous work has also found no appreciable advantage to
more costly trackers [49].

In our setup the eye tracker was positioned just below a 24”
Dell flatpanel P2419H LED-based display with a resolution of
1920×1080 pixels. The texts were presented at the center of
the screen, in fullscreen mode. There were no other distracting
elements on the screen. This setup is shown in Fig. 3.

Data exported from the tracker included (X,Y) locations,
pupil diameter, and validity for each eye. A separate output
contained fixations computed from the raw data by the Gaze-
point software.

The experiment was conducted at a desk situated far from
the window, at a right angle, and behind an open-space
partition, to reduce ambient light from outside and prevent it
from interfering with the eye tracking. We checked the option
of performing the experiments in the evening when it was dark
outside, but saw no significant effect. Participants were seated
in a wheel-less chair to reduce movement.

3.3. Experiment Execution
The participants were 17 students from the Hebrew Uni-

versity, 11 females and 6 males. The average age was 24.5
years (SD = 1.54). They were paid 20 Shekels for their par-
ticipation. The whole procedure (including obtaining consent,
explanations, and calibration) took about 15–20 minutes.

The experimenter initially gave a general overview about
the experiment and the eye tracker. Participants were told that
the experiment is about testing the reliability of the eye tracker
device.

On average, participants sat at a distance of 69 cm from
the screen (range of 55–85 cm). After confirming that they
were sitting comfortably, they were asked to perform a nine-
points calibration. We decided in advance that only results of
participants who achieved a perfect score (9/9) in both eyes,
in two tries, will be considered. Luckily, all 17 participants
met this criterion.

After the calibration, the eight texts appeared in a random
order one after another. Participants were instructed to read

Fig. 4. Example of participant gaze results, showing vertical position (in
screen dimension from 0 at the top to 1 at the bottom) as a function of time.
Raw gaze data is in gray, and estimated fixations in black. The locations
of lines of text are indicated by pairs of lines, the bottom one being the
baseline and the other indicating the x-height (that is, the top of a lowercase
‘x’). Ascenders (as in ‘f’, ‘h’, etc.) go above the x-height, and descenders
(as in ‘g’ or ‘y’) hang below the baseline. The sequence of fixations shows
the reading of the text (indicated by the gray lines), followed by reading the
question (red lines), counting the text lines from the top, and focusing on
the target line (the seventh line, in blue). [participant 8, text 4 – 20 pt at 1.2
spacing]

the text and then to answer the question. Answers were given
verbally, so no physical touch with mouse or keyboard was
needed. After an answer was received, the experimenter moved
to the next text.

One participant was disqualified because she moved toward
the screen to read better during the experiment. Two of the
results of another participant were disqualified for the same
reason.

4. Data Cleaning and Adjustment
The collected data required some cleaning and adjustments

before it could be used. All our analysis is based on the
average of data from the left and right eyes [17]. As noted
above, fixations were computed by the tracker software. We
observed no difference between the color options, so the
following presentation is based on both together and we do
not distinguish between them.

We plotted the gaze and fixation data relative to the lines
of text, using time for the horizontal axis and the screen Y
coordinate as the vertical axis. In this display the screen X
coordinate is not shown, which matches our focus on the
vertical dimension. An example is shown in Fig. 4.

Initial observations revealed that some data was extremely
noisy, and no period of focus on the target line could be
identified (Fig. 5). Both authors independently reviewed the
graphs depicting each participant/text combination, and judged
which were unusable. There was complete agreement on ex-
cluding one participant altogether. Apparently this participant
had narrow eyes so the pupils were partly obscured, and
the tracker could not identify them reliably; perhaps she was
squinting. In addition, six specific texts of other participants
were also excluded. While this exclusion rate is high, it is not



5

Fig. 5. Example of noisy results that were excluded, as no focus on the target
line could be identified. [participant 9, text 8 – 13 pt at 2.0 spacing]

unprecedented, and much higher exclusion rates of up to 60%
have been reported in eye tracking studies [32].

The heart of the experiment is to measure the distribution
of gazes when the participants are supposed to be focusing
on the target line. But participants also spend time reading
the question and finding the target line. To identify the time
period when they are focused on the target line we recruited
an external judge. This judge had previously participated in
the experiment, so she had first-hand experience with it and
understood the meaning of focusing on the target line. The
first author and this judge independently viewed the graphs of
all texts for all participants, and noted when they thought the
participant focused on the target line. In most cases they agreed
to within 3 seconds, which we consider to be an immaterial
difference. There were 11 cases of larger disagreements; in
these cases the second author acted as arbiter.

Given the identification of periods in which it was believed
that the participants were focused on the target line, it was ob-
vious that many of the observations suffered from systematic
bias. For most participants, the fixations appeared to be located
above the target line, sometimes by a considerable margin. For
a few, the fixations appeared below the line. We note that this is
not unusual, and such bias has also been noticed in the context
of developing the iTrace tool for eye tracking when using an
IDE [45]. Palmer and Sharif have suggested a methodology
for the automatic correction of such a bias, based on creating
clusters of fixations, and trying to adjust them so that they fit
likely areas of interest in the stimuli [34]. Other algorithms
have also been proposed [11, 49, 58].

As we know exactly where the participants are supposed to
be looking, we can use a simple and effective strategy. For each
displayed text, we find the median height of all the fixations
in the focus period, and compute the deviation of this height
from the center of the target line—similar in principle to the
task-embedded calibration suggested by Pi and Shi [37]. We
then average these deviations for all the texts displayed to each
participant. This produces a participant-specific correction that
can be applied to all texts. An example is shown in Fig. 6.

We elected to make the correction per participant, because

it was obvious that different participants had different biases,
which could be the result of their individual physiology or
posture. The alternative would be to make a separate correction
for each text, but it is less obvious why there could be different
biases for different texts displayed one after the other using
the same device in the same session.

After correcting the systematic bias, we can finally study
the distribution of fixations around the target line.

5. Results
Our main goal from the outset was to characterize the

distribution of fixations around the target line. We want to
know, during the periods when the experiment’s participants
are focused on the target lines, what fraction of the fixations
indeed identify the target line.

5.1. Deviations from the Focus
The vertical distribution of fixations during the focus period

can be visualized using an ECDF (empirical cumulative distri-
bution function) of the screen Y coordinate of these fixations,
as shown in Fig. 7. The first panel shows all the fixations in
the experiment and the identified focus period (delimited by
the two vertical lines). The second panel shows the ECDF.
As one can see, many of the fixations are indeed distributed
around the target line, although a few are actually closer to or
on adjacent lines. In addition, a few deviate to the question
line. It seems that the participant took a couple of quick looks
at the question during the focus period, to make sure he is
counting the right thing.

This behavior is not unique to this example. Given the
simplicity of the questions (count appearances of a letter, or
verify that three letters appear at least once) we expected
participants to focus exclusively on the target line to answer
them. But surprisingly, in many cases they interrupted the
execution of the task to re-check the question. In a few cases
they also re-checked the line they were looking at. As a result
the distribution of fixations could be bimodal or stretched, in
a way that does not represent focusing on the target line.

To counter such behavior, in the following analysis we
exclude fixations to locations below the bottommost line. This
filters out instances of glancing down at the question. We
return to this behavior in Sect. 5.3 below.

5.2. Distribution of Focus
Given the data on fixations on the target line, we can analyze

the effect of font size and spacing on our ability to identify
the line being read. We start by defining a fixation during the
focus time as “indicative” if it can be assigned to the target
line, namely if the fixation’s Y coordinate is closer to the
center of the target line than to any other line. In other words,
indicative fixations are those that fall between two imaginary
lines: one half way between the center of the target line and
the center of the line above it, and the other half way between
the center of the target line and the center of the line below
it.

We use this definition to find the fraction of fixations that
are indicative as a function of the text parameters. The results
are shown in Fig. 8. Interestingly, the fraction of indicative



6

Fig. 6. Example of correction of bias (left: original; right: after correction of shifting down by 0.1024). The identified focus period is marked by vertical
lines. Note that the correction is based on an average of all the texts viewed by the participant, so it may be sub-optimal for any specific text. [participant 6,
text 4 – 20 pt at 1.2 spacing]

Fig. 7. Example of the distribution of fixation heights during the focus
period (seconds 39–50). ECDF: empirical cumulative distribution function.
[participant 13, text 6 – 13 pt at 1.2 spacing]

fixations does not exceed 56% even for the most permissive
settings checked—double space or a 20 pt font.

The implication is that the fixations are distributed quite
widely around the target line. Looking at the plots depicting
the fixations in each case, we find that some of these deviations
represent random glances at other places or an uncorrected

Fig. 8. Effect of display parameters on how many of the fixations are
identified as focusing on the target line (indicative fixations).

Fig. 9. Effect of display parameters on how many participants had at least
50% of their fixations on the target line (indicative fixations).

systematic bias. But others just reflect a wide distribution
which includes adjacent lines.

As these problems were more typical of some experiment
participants than others, we perform a second analysis in



7

Fig. 10. Distributions of deviations from the target line based on all
participants.

which we find the fraction of experimental participants for
whom the majority of fixations are indicative (i.e. at least
50%). The results are shown in Fig. 9. As we can see, when
the font or the spacing are too small none of the experiment’s
participants meet this criterion. Using near-conventional view-
ing conditions (text size of 13 pt with 1.2 spacing) only about
10% of the participants meet it. The majority of experimental
participants meet the criterion only with the largest font (20
pt) or the largest spacing (double space).

These poor results are in line with those of Špakov et al.
[49], which is the only other analysis of this kind of which
we are aware. In their study all the participants had 90%
correct identification only when the screen was divided into
just 2 horizontal bands. With 10 bands 77 pixels high each
this dropped to around a third of the participants.

Another way to look at the results is to check whether
the distribution of fixations depends on the text parameters.
In other words, when the font and spacing are large, do
participants “allow themselves” to be more lax, and let their
eyes wander farther away from the center of the target line?

To check this we create combined ECDFs of the fixation
Y values across the participants. Thus we get 8 lines, one for
each experimental setting, each of which includes all of the
results for all participants. The results are shown in Fig. 10.
These distributions are all centered on the target line, which
is expected given that we correct for bias. But in addition, the
distributions are all rather similar to each other in terms of
spread. This leads to the conclusion that the distribution of
gazes is not affected by the font and spacing settings.

5.3. Regressions to the Question
Looking back at text you have already read is called

a “regression” in eye tracking reading studies. For normal
text this may refer to lines above the current one. In our
experiments, a common form of regression was looking again
at the question. As the question appeared at the bottom of the
screen, these are regressions to a line below the current line.

Jumping back to the question was most probably done for
verification, and may reflect the limits of working memory
capacity [12]. We identified these regressions as sequences
of consecutive fixations that are below the bottommost line.

Fig. 11. Example of multiple regressions to the question line. [participant 12,
text 2 – 13 pt at 1.2 spacing]

TABLE II
REGRESSIONS TO THE QUESTION LINE DURING FOCUSING ON THE

TARGET LINE. (SEM=STANDARD ERROR OF THE MEAN)

Regressions
Question type n avg±sem
Count letter appearances 54 0.44±0.08
Verify 3 letters exist 58 1.50±0.25

For example, at the extreme right end of Fig. 11 there are
3 consecutive fixations on the question, that count as one
regression. In the experiments, such regressions occurred in
exactly half of the cases. In some cases not one but several
such regressions occurred (up to 5, Fig. 11).

Interestingly, a clear distinction was found between question
types (Tab. II). When participants needed to check the presence
of three different letters, there were more than 3 times as many
regressions on average. This corroborates the conjecture that
the regressions are related to a need to verify that the correct
letters are being counted.

5.4. Finding the Target Line

In many cases it appeared that participants found the target
line effortlessly: They read the question, and immediately
moved to the target line—presumably being able to identify
it using their peripheral vision [21]. But when directed to
the seventh line by number, as opposed to by a visual cue,
the fixation pattern usually indicated that they moved to the
first line and then counted the lines. However, the number of
fixations on the way was typically less than 7: The field of
view was large enough to count without fixating on every line.

Also, similarly to the regressions to the question, in many
cases the participants counted more than once (Fig. 12). Fig.
13 summarizes the average number of times that the lines
above target line were scanned. Recall that when visual cues
were used (target line set in boldface or indented) the target
line was also the 6th or 7th line, so this is a fair comparison.
Cases where the target line was the second line are excluded,
because it was impossible to decide whether any counting took
place. Counting to the seventh line was done at least once and
often more, leading to an average of 1.24 times. Indented lines



8

Fig. 12. Example of counting lines multiple times, presumably to ascertain
the target line. [participant 13, text 4 – 20 pt at 1.2 spacing]

Fig. 13. Participants counted lines on average more than once when they
needed to get to the seventh line, but seldom scanned previous lines when
the target line was identified by a visual cue. Error bars indicate standard
error of the mean.

TABLE III
ANGLE BETWEEN ADJACENT LINES FOR DIFFERENT EXPERIMENTAL

SETUPS. LINE PITCH WAS MEASURED DIRECTLY ON THE SCREEN.

Line ◦ at distance
Size Space pitch 60cm 75cm
10 pt 1.2 0.49cm 0.47◦ 0.37◦
13 pt 1.2 0.66cm 0.63◦ 0.50◦
16 pt 1.2 0.77cm 0.73◦ 0.59◦
20 pt 1.2 1.04cm 0.99◦ 0.79◦
13 pt 1.0 0.54cm 0.52◦ 0.42◦
13 pt 1.5 0.82cm 0.79◦ 0.63◦
13 pt 2.0 1.10cm 1.05◦ 0.84◦

were apparently the easiest to identity, and there was only one
(questionable) case of looking at previous lines.

6. Discussion
6.1. Assigning Fixations to Text

We set out to measure the accuracy with which fixations can
be assigned to lines of text. The results reported in Sect. 5.2 are
rather disappointing: in most cases the discrimination between
adjacent lines was quite poor. This was not so unexpected,
as quantified in Table III. We chose to study font sizes and
line spacings that are not too far removed from those used
in conventional work conditions. But with these settings the

Fig. 14. Time till participants started to read the question, as a function of
text serial number. Each line represents one participant in the experiment. The
dark line is the median.

pitch of the lines on the screen was in the range of 0.5–1.1
cm. When viewed at a distance of 60 cm, the difference in
viewing angle of adjacent lines ranged from 0.47◦ to 1.05◦.
Such angles are at the resolution limit of the eye tracker, and
fall within the field of view of the eye. Therefore it is not
surprising that they are hard or impossible to distinguish.

Given that the resolution of eye trackers is around 1◦ [50],
and the coverage of the fovea is about 2◦ [39, 51], the limiting
factor is the fovea. To be completely sure which line is being
looked at, the separation between the lines should be at least
2◦. At a distance of 60 cm this means a pitch of 2.1 cm on the
screen, which can be achieved with a 20 pt font at a spacing
of 2.6—more than double space. At a distance of 75 cm a
pitch of 2.6 cm is required, implying a triple-spaced 20 pt
font. Placing the experiment’s participants closer to the screen
reduces the requirements, but they are still quite far from what
developers normally use in their work.

In an experiment like ours, where the only relevant target
is one predefined line, this is not a problem. But in a reading
study where the line being read needs to be identified without
ambiguity it is. In some cases it may be possible to identify
the line by using the horizontal dimension, provided adjacent
lines have different indentations and lengths. However, given
our result that counting lines required fewer fixations than the
number of lines, one cannot in general exclude the possibility
that adjacent lines can be read during the same fixation.

6.2. Human Behavior
Our experiment was not designed to study human behavior.

However, the participants did behave in diverse and inter-
esting ways. Two contrasting forms of behavior were easily
discerned: avoiding unnecessary work, and repeating work
unnecessarily.

The results concerning avoiding unnecessary work are
shown in Fig. 14. The instructions given to the participants
were to initially read the texts, and then to read the question
and figure out the answer. But they soon learned that they
do not really need to read the whole text in order to answer
the questions. So they started to skip the text and go straight



9

to the question. As shown in Fig. 14, initially nearly all the
participants read or at least skimmed the text. From the second
text, half already skipped it. After the 4th text, only one
participant continued to read the text each time.

This result resonates with the literature on code compre-
hension. While reading and understanding code takes up the
majority of developers’ time [29, 57], there have been many
observations implying that they may not really “read” the code
in the conventional sense of the word. Instead, they employ the
“as-needed” comprehension strategy of Littman et al. [27], use
the opportunistic approach of Letovsky [25], or perform fact
finding activities as suggested by LaToza et al. [24]. Rather
than trying to understand the code, they may look for shortcuts
which enable them to complete the task without investing the
effort required to achieve actual understanding [26, 44].

The results concerning unnecessary work were described
above in Sect. 5.3 and 5.4. The term “unnecessary” is of course
subjective. We use it because of the extreme simplicity of our
tasks: they require only to remember the line number and 1
to 3 letters. So we expected that participants would exhibit an
efficient viewing pattern, where they read the question, find
the target line, and focus on it. Instead some of them returned
to the question multiple times, or counted the lines multiple
times. Presumably this was done to ascertain the line number,
and to ascertain the letters that need to be looked for. This
behavior is somewhat surprising given the simplicity of the
tasks, as noted above. Nevertheless, some of our participants
needed to reassure themselves during the execution of the tasks
that they were doing the right thing.

6.3. Reading Order
The phenomena discussed above have an effect on reading

order. In the context of reading code, Busjahn et al. suggested
two possible reading orders: “story order” (top-to-bottom, left-
to-right) and “execution order” (tracing the execution of the
program, including function calls and loops) [8]. Importantly,
these possible orders were studied in the context of code
comprehension tasks, where participants need to summarize
the code or determine the value of a variable.

When performing code comprehension research we need
to be punctilious regarding the distinction between compre-
hension in the sense of understanding what the code does
(it’s functionality), and comprehension in the sense of under-
standing how the code does it, that is, the code’s structure
and the inter-relationships between different parts of the code.
Reading patterns for these diverse goals may be completely
different. Academic research often emphasizes the first, e.g. in
studies of code summarization [1, 42]. But in real-life work
developers are typically more interested in the second, e.g.
when performing code maintenance tasks.

As we see it, both “story order” and “execution order”
are just simple and easy-to-define special cases of what we
may call “task order”: the reading order needed to perform a
given task. If the task is syntactic, for example to find all the
instances of a certain variable name (what Binkley et al. call
a “where’s Waldo” problem [4]) “story order” may be used.
If the task is to trace the execution of the code and record the
values assigned to a certain variable, the code will be read in

“execution order”, including re-reading loop bodies multiple
times the way they would be executed.

But it is questionable whether either “story order” or
“execution order” reflect developer behavior when performing
other tasks. When we read a story for fun, we most probably
indeed read it in “story order”—from beginning to end, passing
through all the words on the way. When we read a news story
we might do the same, or we might skim some paragraphs
that seem less interesting [15]. But we rarely just read a piece
of code, let alone a whole module or system. Usually we
have some specific goal in mind, like fixing a bug or adding
a feature. This requires a different approach: we first need
to understand the structure of the code, and then to use this
understanding to find the relevant location to perform the task
[53]. Consequently, the reading order need not be directly
related to the way the code is written or executed, and in
particular, need not be linear.

Trying to characterize “task order” in general may be futile,
as different tasks may require very different reading patterns.
However, many tasks probably include the following three
components (foreshadowed by [46, 53]):

• Orient yourself to get a feel for the structure of the code.
This may involve scanning the visible code.

• Search for the specific part of the code you need to
work on to complete the task. This may include skipping
complete blocks of the code based on using peripheral
vision to identify beacons.

• Focus on the relevant code to complete the task. This
may combine repeated reading as one learns the details
of the code, and then modifying it by performing editing
operations, which leads to different reading patterns [46].

What we saw in our experiment is apparently this sort
of orient-search-focus task order, for the task of counting
letters in a line of text. At a minimum, the participants in
the experiment needed to scan the page to identify and read
the question, search for and find the target line, and then
focus on the target line to count the desired letters. The same
conceptualization can be applied when interpreting observed
patterns of reading code.

But our experiments also showed that this “task order” may
be tainted by personal conditions and attitudes. For example,
some people may be confident in their actions, while others
are unsure about how to approach the task. People may also
require constant validation during their work. This may explain
the actions of our experimental participants who regressed to
the question to re-check the letters, or re-counted the lines
leading to the target line.

Moreover, in some cases the task may be too hard or ill-
defined, and participants may be unable to cope. This may
lead to unorderly reading with many skips and reversals. Such
reading patterns have indeed been observed in the past, where
they were called “thrashing” or “fumbling” [10, 20, 46].

Due to such differences in approach and attitude, the specific
reading patterns employed by different developers may be
quite different. However, it may still be fruitful to look for
commonalities between these reading patterns. This is because
the commonalities can be expected to reflect the core activities



10

that need to be performed to complete the task—namely, those
that constitute the actual “task order”.

At the same time, we should stay mindful of the fact
that variations are expected to exist. And indeed, one of
the repeated results in the code eye tracking literature is the
diversity of scan paths of different experimental participants
performing the same task (e.g. [13, 20, 53]). These variations
are also interesting, as they reflect the differences between
participants. Studying the differences can help uncover the
effects of knowledge, experience, and attitude. This includes
both minor variations, such as random small regressions to
ascertain the last word read, and major variations, such as
either initially scanning the whole text or else not doing so.

6.4. Navigation and Peripheral Vision
In our experiment, once the question was read, the partic-

ipants needed to find the relevant line. The results show a
difference between counting and using visual cues. It appears
that visual cues can be noted using peripheral vision, and there
is no need to fixate on each line to check them.

The implication for code is that the importance of inden-
tation and color-coding keywords is not as a direct aid for
comprehension, but that they provide beacons for navigation.
Crosby and Stelovsky frown upon the practice of printing
keywords in boldface, saying that “keywords are the least
observed portions of a program’s text” [13]. But this misses
the point that clear visual identification of the keywords allows
them to be identified at a glance, and helps developers to
easily focus on the code between these keywords. Bauer et
al. claim that indentation has no effect on gaze pattern [2].
However, they consider only aggregate metrics such as fixation
duration, fixation rate, and saccade amplitude, and did not
analyze gaze paths. We need to design experiments that involve
navigation, and specifically navigation that can be aided by the
code’s block structure and indentation, to really see whether
indentation has an effect. Results by Talsma et al. indicate
that, at least for beginning students, highlighting the block
structure of code helps them focus their attention and leads to
more linear reading [52].

6.5. Additional Uses of the Experiment
While the experiment was designed to measure the accuracy

of identifying the line being read, it turns out that it can
actually have wider uses as a component in other studies.

One use is for validation. It is very common to assume
that the output of an eye tracker and the fixation locations
computed from it are valid. But such data may suffer from
inaccuracies and systematic bias. As a result, counting fixa-
tions in a predefined area of interest may include fixations that
actually represent looking at something else, and vice versa
(called “gaze uncertainty” by Wang et al. [56]). Embedding a
simple experiment like ours as a step in a larger experiment
can provide independent testimony that the data is indeed valid
(or not).

Another use is for recalibration. Given that our experi-
ment requires the participants to focus on one specific line,
performing this task in the context of a larger experiment
can be used to check the calibration and measure the bias

between the eye tracker output and the actual target. This
can be used to compensate for drift during an experiment
without having to resort to a disruptive full recalibration—
essentially a realization of Hornof and Halverson’s “required
fixation location” [18].

Finally, it should be noted that the accuracy of line iden-
tification can depend not only on the physical attributes of
the stimuli (font size and line spacing) but also on the
experimental participant. For some participants, certain sizes
can be adequate, while for others a larger size may be needed.
Thus focus experiments like ours can also be used as a
criterion for excluding certain participants. By requiring the
ratio of fixations that are assigned to the target line correctly
to be above a certain threshold, the criterion becomes both
quantifiable and directly relevant to reducing threats to the
validity of the actual study.

7. Threats to Validity
As we set out to characterize the accuracy of eye tracking

in the vertical dimension, a major threat is whether our setup
is optimal and representative. One specific concern is that we
use a low-cost eye tracker. While this tracker is apparently
not inferior to more expensive models [50], it is still desirable
to replicate the experiment with a range of trackers and
experimental conditions.

A related concern is dealing with drift and the need for
recalibration. Our experiments were not very long, so we
decided to settle for correction for systematic bias at the
level of individual experimental participants. But this issue
too deserves additional research, including the option of using
the knowledge of the target line to perform the adjustment per
experiment.

Some specific elements in the experiments also suffer from
threats. For example, when we study the distribution of the
focus around the target line (Sect. 5.2), there is a risk that some
of the fixations represent intentional glances at other locations
in the text. We excluded glances at the question using the
technical criterion of being below the bottom line of text, but
there is no easy way to identify other such glances. So the
results concerning the fraction of “indicative” fixations may
not correctly reflect all what the participants were doing.

Another major threat is posed by the need to identify the
focus period, when the participants are looking at the target
line. We tried to mitigate this by devising a protocol involving
both authors and an external judge. However, the judgment of
when the focus period starts and ends is still subjective.

Finally, our experimental materials were based on regular
text and not code, and on completely synthetic tasks. Using
text to learn about code has been done before (e.g. by Marter
et al. [28]). In our case it is justified by the fact that using
normal text and such tasks is actually appropriate for the
study of the distribution of gazes around a target line. And
it enabled us to make observations and theorize about the
causes of reading patterns. However, focusing on lines of code
may be different due to variability in length and indentation;
text, in contradistinction, tends to have a “block shape” with
lines that are all similar to each other. Also, our conjectures
regarding reading patterns need to be validated in the context



11

of code comprehension, using carefully designed experiments
with more realistic tasks, and also by soliciting intent from
the participants.

In addition, contemporary code development is done using
integrated development environments (IDEs), which affects
the way code is accessed. This adds a whole new level
of complexity to code reading studies [45], similar to the
difference between online and physical reading of news [15].
This is a major undertaking which we leave to future work.

8. Conclusions
Eye tracking studies of code reading are promoted as a

window to the mind of the reader (e.g. [3, 13]). They are
thought to be useful for identifying mental models used for
code comprehension—and specifically whether a top-down
or bottom-up approach is being used [1, 3, 9]. Our work
indicates that such interpretations should be done with care.
We note that analyzing what readers are doing requires a
precise identification of the lines they are focusing on, because
adjacent code lines may have completely different functions.
But this is difficult to achieve with reasonably sized fonts.
Moreover, we observe that reading patterns may reflect human
behaviors such as the need to reassure yourself in what you
are doing, and may not necessarily reflect more significant
cognitive processes.

In practical terms, this paper makes two immediate con-
tributions. The first is to show that conventional settings of
font sizes and line spacing lead to very small angles between
adjacent lines, which do not allow for adequate identification
of which line is being read. A font size of at least 20
pt and a wide spacing are apparently needed in order to
guarantee that most fixations are assigned correctly, at least
for our setup. However, additional research is needed to derive
recommendations that are suitable for different eye tracking
devices. The second is to devise a simple experiment that
can be embedded into larger experimental frameworks. This
can be used for two purposes: to augment the conventional
calibration procedure and correct accumulated bias, and to
provide objective exclusion criteria for participants.

In future work, we intend to design experiments on actual
code reading. These experiments will employ different tasks,
which require different levels of comprehension [14], and use
code with different levels of readability—e.g. employing vari-
ables with concise abbreviated names or long verbose names.
Such experiments will expose whether the reading patterns
change depending on the task and the code characteristics.
We will also debrief the participants after they perform the
task, and ask them to explicitly explain their reading pattern
as reflected in the scanpath generated by the eye tracker.
Independently, we will also analyze the scanpath data to
identify different phases of perception, such as exploratory
scanning vs. focused study [54, 55]. Such analysis can use
Krejtz et al.’s K coefficient, which is based on the ratio of
fixation durations to saccade lengths [22, 23].
Experimental Materials

The full experimental materials (texts used in the exper-
iment, raw results from the eye tracker, and analyses) are
available from Zenodo at DOI 10.5281/zenodo.7464051.

Acknowledgments
This research was supported by the ISRAEL SCIENCE
FOUNDATION (grant no. 832/18).

References
[1] N. J. Abid, J. I. Maletic, and B. Sharif, “Using developer eye movements

to externalize the mental model used in code summarization tasks”.
In 11th Symp. Eye Tracking Res. & Apps., art. 13, Jun 2019, DOI:
10.1145/3314111.3319834.

[2] J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel, “Inden-
tation: Simply a matter of style or support for program comprehension?”
In 27th Intl. Conf. Program Comprehension, pp. 154–164, May 2019,
DOI: 10.1109/ICPC.2019.00033.

[3] R. Bednarik and M. Tukiainen, “An eye-tracking methodology
for characterizing porgram comprehension processes”. In 4th Symp.
Eye Tracking Res. & Apps., pp. 125–132, Mar 2006, DOI:
10.1145/1117309.1117356.

[4] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif,
“The impact of identifier style on effort and comprehension”. Empirical
Softw. Eng. 18(2), pp. 219–276, Apr 2013, DOI: 10.1007/s10664-012-
9201-4.

[5] T. Blascheck and B. Sharif, “Visually analyzing eye movements on natu-
ral language texts and source code snippets”. In 11th Symp. Eye Tracking
Res. & Apps., art. 14, Jun 2019, DOI: 10.1145/3314111.3319917.

[6] R. W. Booth and U. W. Weger, “The function of regressions in reading:
Backward eye movements allow rereading”. Memory & Cognition 41(1),
pp. 82–97, Jan 2013, DOI: 10.3758/s13421-012-0244-y.

[7] S. Bottos and B. Balasingam, “Tracking the progression of reading
through eye-gaze measurements”. In 22nd Intl. Conf. Information Fu-
sion, Jul 2019, DOI: 10.23919/FUSION43075.2019.9011436.

[8] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte,
B. Sharif, and S. Tamm, “Eye movements in code reading: Relaxing the
linear order”. In 23rd Intl. Conf. Program Comprehension, pp. 255–265,
May 2015, DOI: 10.1109/ICPC.2015.36.

[9] T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of code reading
to gain more insight in program comprehension”. In 11th Koli Call-
ing Intl. Conf. Computing Education Res., pp. 1–9, Nov 2011, DOI:
10.1145/2094131.2094133.

[10] T. Busjahn, C. Schulte, B. Sharif, Simon, A. Begel, M. Hansen, R. Bed-
narik, P. Orlov, P. Ihantola, G. Shchekotova, and M. Antropova, “Eye
tracking in computing education”. In 10th Intl. Computing Education Re-
search Conf., pp. 3–10, Aug 2014, DOI: 10.1145/2632320.2632344.

[11] J. W. Carr, V. N. Pescuma, M. Furlan, M. Ktori, and D. Crepaldi,
“Algorithms for the automated correction of vertical drift in eye-tracking
data”. Behavior Res. Meth. 54(1), pp. 287–310, Feb 2022, DOI:
10.3758/s13428-021-01554-0.

[12] N. Cowan, “The magical mystery four: How is working memory capacity
limited, and why?” Current Directions Psychological Sci. 19(1), pp. 51–
57, Feb 2010, DOI: 10.1177/0963721409359277.

[13] M. E. Crosby and J. Stelovsky, “How do we read algorithms? a case
study”. Computer 23(1), pp. 24–35, Jan 1990, DOI: 10.1109/2.48797.

[14] D. G. Feitelson, “Considerations and pitfalls for reducing threats to the
validity of controlled experiments on code comprehension”. Empirical
Softw. Eng. 27(6), art. 123, Nov 2022, DOI: 10.1007/s10664-022-
10160-3.

[15] K. Holmqvist, J. Holsanova, M. Barthelson, and D. Lundqvist, “Reading
or scanning? a study of newspaper and net paper reading”. In The
Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research,
J. Hyönä, R. Radach, and H. Deubel (eds.), chap. 30, pp. 657–670, North
Holland, 2003, DOI: 10.1016/B978-044451020-4/50035-9.

[16] K. Holmqvist, M. Nyström, and F. Mulvey, “Eye tracker data quality:
What it is and how to measure it”. In Symp. Eye Tracking Res. & Apps.,
pp. 45–52, Mar 2012, DOI: 10.1145/2168556.2168563.

[17] I. T. C. Hooge, G. A. Holleman, N. C. Haukes, and R. S. Hessels,
“Gaze tracking accuracy in humans: One eye is sometimes better than
two”. Behavior Res. Meth. 51(6), pp. 2712–2721, Dec 2019, DOI:
10.3758/s13428-018-1135-3.

[18] A. J. Hornof and T. Halverson, “Cleaning up systematic error in eye-
tracking data by using required fixation locations”. Behavior Research
Methods, Instruments, & Comput. 34(4), pp. 592–604, Nov 2002, DOI:
10.3758/BF03195487.

[19] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and W. Weimer,
“Biases and differences in code review using medical imaging and eye-
tracking: Genders, humans, and machines”. In 28th ESEC/FSE, pp. 456–
468, Nov 2020, DOI: 10.1145/3368089.3409681.



12

[20] A. Jbara and D. G. Feitelson, “How programmers read regular code: A
controlled experiment using eye tracking”. Empirical Softw. Eng. 22(3),
pp. 1440–1477, Jun 2017, DOI: 10.1007/s10664-016-9477-x.

[21] M. Kean and A. Lambert, “Orienting of visual attention based on
peripheral information”. In The Mind’s Eye: Cognitive and Applied
Aspects of Eye Movement Research, J. Hyönä, R. Radach, and H. Deubel
(eds.), chap. 2, pp. 27–47, North Holland, 2003, DOI: 10.1016/B978-
044451020-4/50003-7.

[22] K. Krejtz, A. Çöltekin, A. T. Duchowski, and A. Niedzielska, “Us-
ing coefficient K to distinguish ambient/focal visual attention during
cartographic tasks”. J. Eye Movement Res. 10(2), art. 3, 2017, DOI:
10.16910/jemr.10.2.3.

[23] K. Krejtz, A. Duchowski, I. Krejtz, A. Szarkowska, and A. Kopacz,
“Discerning ambient/focal attention with coefficient K”. ACM Trans.
Applied Perception 13(3), art. 11, May 2016, DOI: 10.1145/2896452.

[24] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding”. In 6th ESEC-FSE, pp. 361–370, Sep
2007, DOI: 10.1145/1287624.1287675.

[25] S. Letovsky, “Cognitive processes in program comprehension”. J.
Syst. & Softw. 7(4), pp. 325–339, Dec 1987, DOI: 10.1016/0164-
1212(87)90032-X.

[26] O. Levy and D. G. Feitelson, “Understanding large-scale software
systems — structure and flows”. Empirical Softw. Eng. 26(3), art. 48,
May 2021, DOI: 10.1007/s10664-021-09938-8.

[27] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance”. J. Syst. & Softw. 7(4), pp. 341–355, Dec
1987, DOI: 10.1016/0164-1212(87)90033-1.

[28] T. Marter, P. Babucke, P. Lembken, and S. Hanenberg, “Lightweight pro-
gramming experiments without programmers and programs: An example
study on the effect of similarity and number of object identifiers on the
readability of source code using natural texts”. In Onward!, pp. 1–14,
Oct 2016, DOI: 10.1145/2986012.2986020.

[29] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last
summer: An investigation of how developers spend their time”. In
23rd Intl. Conf. Program Comprehension, pp. 25–35, May 2015, DOI:
10.1109/ICPC.2015.12.

[30] A. Mishra, M. Carl, and P. Bhattacharya, “A heuristic-based approach
for systematic error correction of gaze data for reading”. In 1st Workshop
Eye-Tracking & Natural Language Processing, pp. 71–79, Dec 2012.

[31] F. B. Narcizo, J. E. R. de Queiroz, and H. M. Gomes, “Remote eye track-
ing systems: Technologies and applications”. In 26th Conf. Graphics,
Patterns and Images, pp. 15–22, Aug 2013, DOI: 10.1109/SIBGRAPI-
T.2013.8. (tutorial).

[32] M. Nyström, R. Andersson, K. Holmqvist, and J. van der Weijer, “The
influence of calibration method and eye physiology on eyetracking data
quality”. Behavior Res. Meth. 45(1), pp. 272–288, Mar 2013, DOI:
10.3758/s13428-012-0247-4.

[33] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey on the usage
of eye-tracking in computer programming”. ACM Comput. Surv. 51(1),
art. 5, Jan 2018, DOI: 10.1145/3145904.

[34] C. Palmer and B. Sharif, “Towards automating fixation correction for
source code”. In 9th Symp. Eye Tracking Res. & Apps., pp. 65–68, Mar
2016, DOI: 10.1145/2857491.2857544.

[35] N. Peitek, J. Siegmund, and S. Apel, “What drives the reading order of
programmers? an eye tracking study”. In 28th Intl. Conf. Program Com-
prehension, pp. 342–353, Oct 2020, DOI: 10.1145/3387904.3389279.

[36] C. S. Peterson, N. J. Abid, C. A. Bryant, J. I. Maletic, and B. Sharif,
“Factore influencing dwell time during source code reading: A large-scale
replication experiment”. In 11th Symp. Eye Tracking Res. & Apps.,
art. 38, Jun 2019, DOI: 10.1145/3314111.3319833.

[37] J. Pi and B. E. Shi, “Task-embedded online eye-tracker calibration for
improving robustness to head motion”. In 11th Symp. Eye Tracking Res.
& Apps., art. 8, Jun 2019, DOI: 10.1145/3314111.3319845.

[38] N. Ramkumar, V. Kothari, C. Mills, R. Koppel, J. Blythe, S. Smith,
and A. L. Kun, “Eyes on URLs: Relating visual behavior to safety
decisions”. In Symp. Eye Tracking Res. & Apps., art. 19, Jun 2020,
DOI: 10.1145/3379155.3391328.

[39] K. Rayner, “Eye movements in reading and information processing: 20
years of research”. Psychological Bulletin 124(3), pp. 372–422, Nov
1998, DOI: 10.1037/0033-2909.124.3.372.

[40] K. Rayner, “Eye movements and attention in reading, scene perception,
and visual search”. Quarterly J. Experimental Psychology 62(8), pp.
1457–1506, Aug 2009, DOI: 10.1080/17470210902816461.

[41] K. Rayner, K. H. Chace, T. J. Slattery, and J. Ashby, “Eye movements as
reflections of comprehension processes in reading”. Sci. Stud. Reading
10(3), pp. 241–255, 2006, DOI: 10.1207/s1532799xssr1003 3.

[42] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-

tracking study of Java programmers and application to source code
summarization”. IEEE Trans. Softw. Eng. 41(11), pp. 1038–1054, Nov
2015, DOI: 10.1109/TSE.2015.2442238.

[43] P. Rodeghero and C. McMillan, “An empirical study on the pat-
terns of eye movement during summarization tasks”. In Intl. Symp.
Empirical Softw. Eng. & Measurement, pp. 11–20, Oct 2015, DOI:
10.1109/ESEM.2015.7321188.

[44] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” In 34th Intl. Conf. Softw. Eng., pp.
255–265, Jun 2012, DOI: 10.1109/ICSE.2012.6227188.

[45] T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and
B. Sharif, “iTrace: Enabling eye tracking on software artifacts within the
IDE to support software engineering tasks”. In ESEC/FSE, pp. 954–957,
Aug 2015, DOI: 10.1145/2786805.2803188.

[46] Z. Sharafi, I. Bertram, M. Flanagan, and W. Weimer, “Eyes on code: A
study on developers’ code navigation strategies”. IEEE Trans. Softw. Eng.
48(5), pp. 1692–1704, May 2022, DOI: 10.1109/TSE.2020.3032064.

[47] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and
M. Crosby, “A practical guide on conducting eye tracking studies in
software engineering”. Empirical Softw. Eng. 25(5), pp. 3128–3174, Sep
2020, DOI: 10.1007/s10664-020-09829-4.

[48] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature review
on the usage of eye-tracking in software engineering”. Inf. & Softw. Tech.
67, pp. 79–107, Nov 2015, DOI: 10.1016/j.infsof.2015.06.008.

[49] O. Špakov, H. Istance, A. Hyrskykari, H. Siirtola, and K.-J. Räihä,
“Improving the performance of eye trackers with limited spatial accuracy
and low sampling rates for reading analysis by heuristic fixation-to-word
mapping”. Behavior Res. Meth. 51(6), pp. 2661–2687, Dec 2019, DOI:
10.3758/s13428-018-1120-x.

[50] L. Spitzer and S. Mueller, “Using a test battery to compare three remote,
video-based eye trackers”. In Symp. Eye Tracking Res. & Apps., art. 28,
Jun 2022, DOI: 10.1145/3517031.3529644.

[51] H. Strasburger, I. Rentschler, and M. Jüttner, “Peripheral vision and
pattern recognition: A review”. J. Vision 11(5), art. 13, Dec 2011, DOI:
10.1167/11.5.13.

[52] R. Talsma, E. Barendsen, and S. Smetsers, “Analyzing the influence of
block highlighting on beginning programmers’ reading behavior usig eye
tracking”. In 9th Comput. Sci. Education Research Conf., art. 9, Oct
2020, DOI: 10.1145/3442481.3442505.

[53] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Analyz-
ing individual performance of source code review using reviewers’ eye
movement”. In Symp. Eye Tracking Res. & Apps., pp. 133–140, Mar
2006, DOI: 10.1145/1117309.1117357.

[54] B. M. Velichkovsky, M. Joos, J. R. Helmert, and S. Pannasch, “Two vi-
sual systems and their eye movements: Evidence from static and dynamic
scene perception”. In 27th Proc. Ann. Meeting Cognitive Science Soc.,
pp. 2283–2288, 2005.

[55] B. M. Velichkovsky, A. N. Korosteleva, S. Pannasch, J. R. H. V. A.
Orlov, M. G. Sharaev, B. B. Velichkovsky, and V. L. Ushakov,
“Two visual systems and their eye movements: A fixation-based event-
related experiment with ultrafast fMRI reconciles competing views”.
Modern Technologies in Medicine 11(4), pp. 7–16, 2019, DOI:
10.17691/stm2019.11.4.01.

[56] Y. Wang, M. Koch, M. Bâce, D. Weiskopf, and A. Bulling, “Im-
pact of gaze uncertainty on AOIs in information visualizations”.
In Symp. Eye Tracking Res. & Apps., art. 60, Jun 2022, DOI:
10.1145/3517031.3531166.

[57] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measur-
ing program comprehension: A large-scale field study with profession-
als”. IEEE Trans. Softw. Eng. 44(10), pp. 951–976, Oct 2018, DOI:
10.1109/TSE.2017.2734091.

[58] A. Yamaya, G. Topić, and A. Aizawa, “Vertical error correction using
classification of transitions between sequential reading segments”. J. Inf.
Proc. 25, pp. 100–106, 2017, DOI: 10.2197/ipsjjip.25.100.


