
Deadlo
k Dete
tion Without Wait-For GraphsDror G. FeitelsonDepartment of Computer S
ien
eThe Hebrew University of Jerusalem91904 Jerusalem, IsraelAbstra
tDeadlo
k dete
tion is an important servi
e that the run-time system of a parallel environmentshould provide. In parallel programs deadlo
k
an o

ur when the di�erent pro
esses are waitingfor various events, as opposed to
on
urrent systems, where deadlo
k o

urs when pro
esses waitfor resour
es held by other pro
esses. Therefore
lassi
al deadlo
k dete
tion te
hniques su
h as
he
king for
y
les in the wait-for graph are unappli
able. An alternative algorithm that
he
kswhether all the pro
esses are blo
ked is presented. This algorithm deals with situations in whi
hthe state transition from blo
ked to unblo
ked is indire
t, as may happen when busy-waiting isused.1 Introdu
tionA major problem en
ountered by parallel programming novi
es, whi
h does not exist in sequentialprogramming, is that bugs may
ause parallel programs to deadlo
k. It is therefore important forthe run-time system to identify deadlo
k situations and to report them to the user.Deadlo
k dete
tion has been studied extensively in the
ontext of
on
urrent (time sharing)unipro
essor systems. Deadlo
k
an o

ur in su
h systems due to
y
li
 patterns of requests forex
lusive a

ess to system resour
es. Algorithms for deadlo
k prevention, dete
tion, and re
overyare standard material in operating systems textbooks (e.g. [8, 7℄). Su
h algorithms have also beenextended to distributed systems, where
ompeting pro
esses may exe
ute on di�erent pro
essors.The
entral issue in these extensions is the distributed maintenan
e of the wait-for graph, thatshows whi
h pro
ess is waiting for a resour
e held by whi
h other pro
ess [10, 9, 4℄. Deadlo
kdete
tion is redu
ed to �nding
y
les in this graph.The approa
h of maintaining a wait-for graph and sear
hing for
y
les in it does not generalizeto parallel programming. The reason is that in a parallel program it is possible for a pro
ess towait for an event, without knowing whi
h other pro
ess will
ause that event to happen. Thus it isimpossible to maintain a wait-for graph in the �rst pla
e. However, there is also a bright side. Asall the pro
esses in a given appli
ation
ooperate to a
hieve the same goal, the appli
ation is only
onsidered deadlo
ked if all of them are waiting. Hen
e it is possible to dete
t deadlo
k by simply
he
king if none of the pro
esses is in a runnable state.The only problem with this approa
h is that indire
t state
hanges do not ne
essarily take e�e
timmediately. For example, this may happen if busy-waiting is used to delay the pro
ess that iswaiting for an event. Thus when pro
ess A wakes suspended pro
ess B it is a
tually only settingthe value of a
ertain shared variable. If pro
ess A subsequently suspends itself, there may be a
ertain time when both are suspended be
ause pro
ess B did not
he
k the variable yet. This
ouldlead to false alarms. A global
omputation is needed to as
ertain that indeed all the pro
esses are1

waiting and none are about to resume exe
ution. The idea is to do this independently of the a
tualshared variables used by the appli
ation to implement busy-waiting. In other words, the run-timesystem should not have to keep tra
k of all the di�erent events and what pro
ess is waiting forwhi
h event.The rest of the paper is organized as follows. Se
tion 2 spe
i�es the
ontext of our work bydetailing the system model and assumptions. The deadlo
k dete
tion algorithm is presented inse
tion 3. A
ouple of examples of how this algorithm is in
orporated in the implementation ofsyn
hronization primitives are given in se
tion 4. The
on
lusions are drawn in se
tion 5.2 System Model and AssumptionsThe system under
onsideration is a tightly-
oupled shared-memory multipro
essor, that supports�ne-grain parallel
omputations. Bus-based systems su
h as the Sequent Balan
e and En
oreMultimax are possible examples. These systems en
ourage the use of shared memory to
oordinatethe a
tivities of pro
esses. When one pro
ess needs to wait for another, busy-waiting is often used[1℄. If more than one pro
ess is mapped to ea
h pro
essor, the busy-waiting loop may in
lude aninstru
tion to yield the pro
essor to another ready pro
ess. This prevents
omputation
y
les frombeing wasted without requiring extensive bookkeeping to keep tra
k of whi
h pro
ess is waiting forwhat event. It is important to note that a pro
ess that is waiting for an event is not suspendedfrom exe
ution | it
an still be s
heduled to run, but the run-time system knows that it is busywaiting.Shared memory ma
hines typi
ally support some sort of atomi
 operations in hardware, thusenabling the users to devise various syn
hronization s
hemes. Our deadlo
k dete
tion algorithmrequires the ability to set and reset a bit in a shared memory word atomi
ally. The implementationsdes
ribed in se
tion 4 require atomi
 lo
k and fet
h-and-add operations [6℄. Implementations basedon other primitives are also possible, but slightly more
ompli
ated.To simplify the presentation, it is also assumed that pro
esses are mapped to pro
essors upon
reation and do not migrate at run time. This assumption is reasonable in the
ontext of parallelpro
essing, where load-balan
ing is less bene�
ial than in distributed systems [5℄. However, thisassumption is not required and the algorithm is easily extended to deal with migration. In additionit is assumed that only one appli
ation is running at a time, and all the pro
esses belong to it. Thisassumption is also easily removed by performing the ne
essary bookkeeping for ea
h appli
ationindependently.Finally, it is assumed that the run time system is designed in a distributed style, with most ofthe data stru
tures maintained lo
ally on ea
h pro
essor independently. This assumption is in linewith the assumption that pro
esses only exe
ute on one pro
essor. However, it does not pre
ludethe use of shared memory by the run time system when ne
essary.3 Deadlo
k Dete
tion AlgorithmBy de�nition, deadlo
k o

urs if and only if all the appli
ation pro
esses are stu
k. Thereforedeadlo
k may be dete
ted by maintaining a
ount of the total number of pro
esses, and a
ount ofthe stu
k pro
esses, and
omparing the two.As pro
esses always exe
ute on the same pro
essor, it is easy to maintain both of these
ounters.The total
ounter is in
remented on pro
ess
reation and de
remented on pro
ess termination.2

time

?

pro
 A?waitstu
k++ppppppppppppwakestu
k--unstu
k--?

pro
 B
?event��������� unstu
k++
?Figure 1: Maintaining the stu
k and unstu
k
ounters.The stu
k
ounter is in
remented when a pro
ess enters a busy waiting loop and de
rementedwhen it exits from the loop. If the
ounters are equal, the run time system knows that all the lo
alpro
esses are stu
k. As the pro
essor
annot do useful work when all the pro
esses are stu
k, therun time system
an initiate a
he
k for deadlo
k without
ompromising the overall performan
e.The
he
k
onsists of verifying that all the pro
esses on the other pro
essors are also stu
k.Regrettably, the algorithm as presented so far is in
orre
t in that it may
ause false alarms,reporting a deadlo
k situation when a
tually there is no deadlo
k. The problem arises from thefa
t that pro
esses be
ome \unstu
k" impli
itly when some shared variable is set to some value,but the stu
k
ounter is only updated when the pro
ess is s
heduled and
he
ks the variable. Thusa situation in whi
h the
ounters show that all the pro
esses are stu
k does not ne
essarily implydeadlo
k, be
ause the
ounters may
hange when pro
esses are s
heduled.The problem is solved by adding a third
ounter,
alled unstu
k. This
ounter is used by ea
hpro
essor to maintain its net
ontribution to system-wide releasing of pro
esses from the stu
kstate. It is in
remented whenever an event that releases some pro
ess o

urs, and de
rementedwhenever a pro
ess noti
es that an event o

urred. This proto
ol is shown s
hemati
ally in �g. 1.Note that the pro
ess that
auses the event may exe
ute on a di�erent pro
essor than the pro
essthat is waiting for it. In this
ase the unstu
k
ounter on one pro
essor is in
remented, and the
ounter on another pro
essor is de
remented.The algorithm may be summarized as follows:1. The run time system maintains three lo
al
ounters on ea
h pro
essor:(a) total is in
remented on pro
ess
reation and de
remented on pro
ess termination,(b) stu
k is in
remented when a pro
ess begins to wait and de
remented when it noti
esthat the awaited event o

urred, and(
) unstu
k is in
remented when an event is
aused and de
remented together with stu
k.3

2. Whenever total = stu
k, a shared bit indi
ating that this pro
essor has nothing to do is set.If the
ounters
hange, the bit is reset. EÆ
ien
y and stability may be improved by periodi

he
king for equality, rather than every time that the
ounters are
hanged. However, this isjust an implementation detail.3. A pro
essor that �nds all the bits set initiates a syn
hronous
al
ulation of global state bysumming all the lo
al values of unstu
k. If the number of pro
essors is small enough so thatall the bits are in one word, they
an all be read together. Otherwise it is ne
essary to reada number of words. In either
ase, ea
h pro
essor veri�es that total = stu
k when it addsits lo
al value of unstu
k to the global sum. If some pro
essor �nds that total 6= stu
k, thealgorithm is aborted. If the sum is zero, deadlo
k is announ
ed.Corre
tness of this algorithm is established by the following sequen
e of
laims. P denotes thenumber of pro
essors in the system, and the
ounter values on the ith pro
essor are denoted bytotali, stu
ki, and unstu
ki.Claim 1 When deadlo
k is suspe
ted, i.e. 8i : stu
ki = totali, the following inequality holds:PXi=1 unstu
ki � 0:This is so be
ause when ea
h event o

urs it �rst
auses the
ounter on the pro
essor where ito

urred to in
rement, and only later when it is noti
ed it
auses the
ounter on another pro
essorto de
rement. It is true that in general the de
rement may take e�e
t before the in
rement.However, as long as the pro
ess that
aused the event does not in
rement unstu
k, it is itselfa
tive. Therefore on its pro
essor stu
k < total, and we do not suspe
t deadlo
k.The sum of the unstu
k
ounters represents the number of pro
esses that should be
onsideredas unstu
k, but are not re
e
ted yet in de
rementing the stu
k
ounters. Therefore we haveClaim 2 The number of pro
esses that are really stu
k isPXi=1(stu
ki � unstu
ki):Deadlo
k o

urs if and only if all the pro
esses are really stu
k, whi
h is expressed asPXi=1 totali = PXi=1(stu
ki � unstu
ki):As it is obvious that 8i : stu
ki � totali, and in fa
t when deadlo
k is suspe
ted we know that8i : stu
ki = totali, equality
an hold only if the sum of the unstu
k
ounters is zero. Thus wehaveClaim 3 A ne
essary and suÆ
ient
ondition for deadlo
k is8i : stu
ki = totali and PXi=1 unstu
ki = 0:4

/* barrier is initialized to the number of pro
esses n *//* flag is initialized to zero */if (F&A(barrier, -1) == 1) f /* last to arrive */flag = 1;F&A(unstu
k, n� 1);gelse f /* wait for someone to set the
ag */F&A(stu
k, 1);while (!flag)yield pro
essor;F&A(stu
k, �1);F&A(unstu
k, �1);gFigure 2: Implementation of barrier syn
hronization in C-like
ode. barrier and flag are shared.F&A is an atomi
 fet
h-and-add operation.Note that this
ondition has a lo
al part and a global part. For eÆ
ien
y reasons, the algorithm
he
ks the global sum only when the lo
al
ondition stu
ki = totali is satis�ed on all the pro
es-sors.The
ost of the algorithm is negligible. During normal operation, all the bookkeeping is donein a distributed and asyn
hronous manner, with no intera
tion between the pro
essors. As longas there is any a
tive pro
ess on the pro
essor, the bookkeeping only
onsists of in
rementing andde
rementing lo
al
ounters when events o

ur, so the overhead is low. The
omputation of globalstate is also simple | all that is needed is to sum a set of
ounters, one per pro
essor. Even thisis only done when all the pro
essors have reason to believe that all their pro
esses are not doinguseful work, but rather busy waiting.4 Implementation of Syn
hronization PrimitivesTo illustrate the algorithm,
onsider the following implementations of barrier syn
hronization andsemaphores. These examples show how the
ounters are maintained | the global summation isnot in
luded. As the
ounters are used by all the pro
esses that time-share on the same pro
essor,they are updated using an atomi
 fet
h-and-add operation (denoted F&A).The
ode for barrier syn
hronization is given in �g. 2. This is a straightforward use of busy-waiting on a shared
ag until all the pro
esses arrive. The last pro
ess to arrive releases n � 1waiting pro
esses, so it in
rements the unstu
k
ounter by this amount. The instru
tions addedfor deadlo
k dete
tion are emphasized by bold type.Semaphores are interesting be
ause they are used both for mutual ex
lusion and for eventsyn
hronization [3℄. The implementation is given in �g. 3. This
ode is somewhat tri
ky, as ituses two distin
t internal variables for the semaphore value: one is the value as it is seen by newlyarriving pro
esses that perform a P operation (sem->val in the �gure), and the other is the value5

stru
t fint val; /* semaphore value */int waiting; /* initially zero */int released; /* initially zero */lo
k t lo
k; /* initially unlo
ked */g semaphore;P(sem)semaphore *sem;f lo
k(sem->lo
k);if (sem->val > 0) f /* get in on �rst try */sem->val--;unlo
k(sem->lo
k);return;gelse f /* fail: mark that I'm stu
k */sem->waiting++;unlo
k(sem->lo
k);F&A(stu
k, 1);yield pro
essor;g/* here on se
ond try and later */while (TRUE) fif (sem->released == 0) f /* no lu
k yet */yield pro
essor;
ontinue;glo
k(sem->lo
k);if (sem->released > 0) f /* got in �nally */sem->released--;unlo
k(sem->lo
k);F&A(stu
k, �1); /* mark that I'm OK again */F&A(unstu
k, �1);return;gelse f /* missed this
han
e... */unlo
k(sem->lo
k);yield pro
essor;
ontinue;gggFigure 3: Implementation of semaphores: de�nition and P operation.6

V(sem)semaphore *sem;f lo
k(sem->lo
k);if (sem->waiting > 0) f /* need to release someone */sem->released++;sem->waiting--;unlo
k(sem->lo
k);F&A(unstu
k, 1); /* mark that someone is free */gelse f /* nobody is waiting */sem->val++;unlo
k(sem->lo
k);ggFigure 3 (
ont.): Implementation of semaphores: V operation.seen by pro
esses that are waiting for it to be
ome positive (sem->released). This distin
tion isneeded to keep the
ounters used for deadlo
k dete
tion
onsistent.If only one variable is used, a pro
ess performing a V operation when some other pro
ess iswaiting would in
rement the semaphore value and also in
rement the unstu
k
ounter, expe
tingthe waiting pro
ess to enter the semaphore. But if a new pro
ess now performs a P operation itmay \steal" the semaphore without waiting, thus preventing the waiting pro
ess from registeringthe event and de
rementing the unstu
k
ounter. As a result the sum of the unstu
k
ounterswould always be positive,
ausing the deadlo
k dete
tion algorithm to fail. To prevent this s
enario,pro
esses that busy-wait in the P operation indi
ate this be in
rementing the sem->waiting
ounter.A pro
ess that performs a V operation and �nds sem->waiting to be non-zero, releases one of thewaiting pro
esses by in
rementing sem->released rather than sem->val.5 Con
lusionsThe syn
hronization requirements of parallel programming are di�erent from those whi
h are typi
alin
on
urrent and distributed systems. For example, parallel programs often use event syn
hroniza-tion where is is unknown whi
h pro
ess will
ause the event. When the use of su
h syn
hronizationleads to deadlo
k, it is impossible to attribute the deadlo
k to a
y
le in a wait-for graph be
ausethere is no wait-for relation among pro
esses. Therefore new deadlo
k dete
tion algorithms areneeded.If events are used to
hange the state of a waiting pro
ess from blo
ked to ready dire
tly, thereis a simple solution; All that is needed is to
he
k if all the pro
esses are blo
ked at any givenmoment. If events e�e
t pro
esses indire
tly, e.g. by setting the value of a shared variable that issubsequently
he
ked by a busy-waiting pro
ess, the situation is somewhat more
ompli
ated. Adouble bookkeeping s
heme was devised to deal with su
h behavior, where the run time system on7

ea
h pro
essor
ounts the number of lo
al blo
ked pro
esses, and also
ounts its net
ontributionto the global number of blo
ked pro
esses. This allows for a global state to be
omputed whendeadlo
k is suspe
ted.The algorithm works if and only if it is guaranteed that the waiting pro
esses will eventuallynoti
e that the event has o

urred. This
ondition
an typi
ally be satis�ed through
areful
oding.However, situations in whi
h it
annot be satis�ed do exist. For example this might happen if itis possible for one pro
ess to kill other pro
esses. If a killed pro
ess was waiting for an event thathad already o

urred, but it had not noti
ed the event before being killed, the algorithm may failto report a real deadlo
k situation. Thus deadlo
k dete
tion is not possible if the system
ombinesindire
t transitions between blo
ked and unblo
ked states with the ability to kill other pro
esses.The only solution to this situation is to use event-spe
i�
 suspend and resume instru
tions, thatexpli
itly tell the run-time system what event ea
h pro
ess is waiting for. The run-time systemmust then perform its bookkeeping on a per-event basis.The deadlo
k dete
tion s
heme reported in this paper was developed as part of the run timelibrary for the ParC parallel language [2℄ implementation on the Makbilan resear
h multipro
essor.Referen
es[1℄ T. E. Anderson, The performan
e of spin lo
k alternatives for shared-memory multipro
essors,IEEE Trans. Parallel & Distributed Syst. 1 (1990) 6{16.[2℄ Y. Ben-Asher, D. G. Feitelson, and L. Rudolph, ParC | an extension of C for shared memoryparallel pro
essing, The Hebrew University of Jerusalem, submitted for publi
ation (1990).[3℄ E. W. Dijkstra, Co-operating sequential pro
esses, in: F.Genuys, ed., Programming Languages(A
ademi
 Press, New-York, 1968) 43{112.[4℄ A. K. Elmagarmid and A. K. Datta, Two-phase deadlo
k dete
tion algorithm, IEEE Trans.Comput. 37 (1988) 1454{1458.[5℄ D. G. Feitelson and L. Rudolph, Mapping and s
heduling in a shared parallel environmentusing distributed hierar
hi
al
ontrol, in: Intl. Conf. Parallel Pro
essing (1990) I-1{I-8.[6℄ A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. M
Auli�e, L. Rudolph, and M. Snir, TheNYU Ultra
omputer | designing an MIMD shared memory parallel
omputer, IEEE Trans.Comput. C-32 (1983) 175{189.[7℄ S. Krakowiak, Prin
iples of Operating Systems (MIT Press, Cambridge, 1988).[8℄ J. Peterson and A. Silbers
hatz, Operating System Con
epts (Addison-Wesley, Reading, 1983).[9℄ M. Roesler and W. A. Burkhard, Resolution of deadlo
ks in obje
t-oriented distributed sys-tems, IEEE Trans. Comput. 38 (1989) 1212{1224.[10℄ M. Singhal, Deadlo
k dete
tion in distributed systems, Computer 22 (Nov 1989) 37{48.
8

