
1

Exploiting Core Working Sets to Filter the L1

Cache with Random Sampling

Yoav Etsion and Dror G. Feitelson

Abstract

Locality is often characterized by working sets, defined by Denning as the set of distinct addresses referenced

within a certain window of time. This definition ignores the fact that dramatic differences exist between the usage

patterns of frequently used data and transient data. We therefore propose to extend Denning’s definition with that

of core working sets, which identify blocks that are used most frequently and for the longest time.

The concept of a core motivates the design of dual cache structures that provide special treatment for the core.

In particular, we present a probabilistic locality predictor for L1 caches that leverages the skewed popularity of

blocks to distinguish transient cache insertions from more persistent ones.

We further present a dual L1 design that inserts only frequently used blocks into a low-latency, low-power,

direct-mapped main cache, while serving others from a small fully-associative filter. To reduce the prohibitive cost

of such a filter, we present a content addressable memory design that eliminates most of the costly lookups using a

small auxiliary lookup table. The proposed design enables a 16K direct-mapped L1 cache, augmented with a small

2K filter, to outperform a 32K 4-way cache, while at the same time consume 70%–80% less dynamic power and

40% less static power.

Index Terms

Core Working Sets, Random Insertion Policy, Mass-Count Disparity, L1 Cache, Cache Insertion Policy, Dual

Cache Design, Cache Filtering

I. INTRODUCTION

Memory system performance places a limit on computation rates due to the large gap between processor

and memory speeds. The typical approach to alleviate this problem is to increase the capacity of L1 and L2

caches. This solution, however, also increases the power consumed by the caches. The problem is further

exacerbated by the shift towards using chip multiprocessors and the ensuing replication of L1 caches for

each core. These developments motivate attempts for better utilization of cache resources, through the

design of more efficient caching structures. This in turn relies on extensive analysis of memory workloads

and a deeper understanding of cache behavior.

The essence of caching is to identify and store those data items that will be most useful in the immediate

future. Denning formalized this using the notion of a working set, defined to be those items that were

accessed within a certain number of instructions [7]. We make the observation that memory workloads

are highly skewed, with a small “core” of the working set servicing the majority of references. At the

same time, many other cache blocks are only accessed a small number of times, in a bursty manner.

This means that the success of caches can be based not only on locality in space and time, but also on

exploiting the skewed popularity of different cache blocks.

The fact that memory references are highly skewed is well known. But our analysis reveals that the

skew in block popularity is more extreme than previously thought, and exhibits the statistical phenomenon

of mass-count disparity. This indicates that the majority of references are concentrated in the core, which

Y. Etsion is with the Electrical Engineering and Computer Science faculties, Technion - Israel Institute of Technology, Technion City.

Haifa 32000, Israel. E-mail: yoav.etsion@gmail.com

D. G. Feitelson is with the School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel. E-mail:

feit@cs.huji.ac.il

This work was done while Y. Etsion was with the Barcelona Supercomputing Center, Spain, and the Hebrew University of Jerusalem,

Israel.

2

Fig. 1. Fraction of accesses serviced by the most recently

used (MRU) block in the cache sets for various cache

sizes, with 4-way set associative caches and 64B cache

lines. Boxes indicate the 25
th to 75

th percentiles over

20 SPEC benchmarks, with whiskers extending to the

minimum and maximum.
 20

 40

 60

 80

 100

32
8K

64
16K

128
32K

256
64K

512
128K

M
R

U
 H

it
s

[%
]

Number of Sets / Cache Size

 Data Inst

therefore may dominate system performance. It may therefore be beneficial to use separate structures to

serve the core blocks in the most efficient manner possible.

The idea that blocks be classified according to access patterns suggests a need to maintain historical

data. But with strong mass-count disparity we find that stateless random sampling suffices to make useful

probabilistic classifications: since most memory references are serviced by a small fraction of the working

set, randomly selected references will likely identify very popular core blocks.

Given such a sampling-based predictor, we design a dual1structure in which popular blocks are handled

differently from the rest. Consider the data in Fig. 1. This shows that set-associative caches actually

service most of the references — namely those to the highly popular blocks — from the cache sets’ MRU

position2. These caches thus effectively function as direct-mapped caches, while incurring set-associative

latency and power consumption. But once we identify popular blocks, we can use a direct mapped structure

explicitly, reducing latency and power consumption. The rest of the references are serviced from a small

fully-associative auxiliary filter, thereby avoiding conflict misses in the direct-mapped cache. In addition,

we introduce the Wordline Look-aside Buffer (WLB), a small lookup table that harnesses temporal locality

to eliminate the vast majority of expensive lookups in the fully-associative filter, without affecting the

fully-associative semantics. The result is a win-win design, which both improves overall performance and

reduces power consumption.

This paper expands on the above ideas. Section II explains and quantifies mass-count disparity. Section

III reviews motivation and related work on dual structures. Section IV provides details of the probabilistic

predictor. Given all the above, Section V presents and evaluates our design for a filtered L1 cache. Lastly,

Section VI reviews related work and Section VII presents our conclusions.

II. THE SKEWED POPULARITY OF MEMORY LOCATIONS

Locality of reference is one of the best-known phenomena of computer workloads. This is usually

divided into two types: spatial locality, namely accesses to addresses that are near an address that was

just referenced, and temporal locality, which is repeated references to the same address. Temporal locality

is actually the result of two distinct phenomena. One is the skewed popularity of different addresses,

where some are continuously referenced over time, while others are only referenced a few times [15].

The other is correlation in time: accesses to the same address occur together in bursts of activity, rather

than being distributed uniformly through time. While the intuition of what “temporal locality” means

tends to the second of these, the first is actually the more important effect.

A. Cache Residency Length: A New Metric for Temporal Locality

The common block popularity metric rates memory blocks based on the number of times they are

accessed during a reference window of predetermined size. The major caveat of this metric is that it

considers all the references made to an address, whereas for caching studies references clustered in time

1We use the term dual cache to differentiate it from a split cache, used to split the data and instructions streams.
2Fig. 1 specifically emphasizes the effect of temporal locality, as repeated accesses to the same memory block were collapsed into a single

memory access.

3

Fig. 2. Histograms of residency lengths for select SPEC benchmarks (ref dataset).

may be more important. In addition, the arbitrary sized windows may or may not be aligned with program

phases, thus possibly amplifying inaccuracies.

We therefore propose not to use a predefined window, but rather to count the number of references

made between a block’s insertion into the cache and its subsequent eviction. This is denoted the cache

residency length. Thus, if a certain block is referenced 100 times when it is brought into the cache, is

then evicted, and then is referenced 200 times when brought into the cache again, we will consider this

as two distinct cache residencies spanning 100 and 200 references, respectively.

One deficiency of the cache residency length metric is its dependence on the specific cache configuration.

It is therefore important to remain consistent when comparing results. The results shown here are based

on a 16K direct-mapped configuration. We also consistently define memory objects to be 64 bytes long,

because this is the most common size for a cache line.

B. Mass-Count Disparity in L1 Workloads

Histograms of the distribution of residency lengths for a couple SPEC2000 benchmarks are shown in

Fig. 2 (for 16KB direct-mapped caches as specified above). These show the distribution of residency

lengths and the distribution of references to these residencies, up to residency lengths of 250 references,

using buckets of size 10. Longer residencies (and references therein) are bunched together in the last bar

on the right. This leads to characteristic bimodal distributions, where residencies are seen to be short

(seldom more than 50 references), but most references belong to residencies that are longer than 250

references. While not universal, this pattern repeats in many cases.

A better quantification is possible using mass-count disparity plots (Fig. 3) [13]. These plots superimpose

the cumulative distribution functions (CDF) of the two distributions in the above histograms. The first,

called the count distribution, is the distribution of cache residency lengths, and Fc(x) is the probability

that a residency is has x references or less. The second, called the mass distribution, describes how the

references are distributed among these residencies. Thus Fm(x) represents the probability that a reference

is part of a residency that has x references or less.

Mass-count disparity occurs when the two distributions diverge. a well-known example of this phe-

nomenon is the distribution of wealth [19]: most people are relatively poor, and only a few are very rich,

so the majority of wealth in the world belongs to a very small fraction of the population. Analogously,

most residencies are short and only a few are very long, so the majority of references are targeted at a

very small fraction of the residencies (and hence memory blocks).

Fig. 3 shows examples for the vortex and mesa benchmarks from the SPEC 2000 suite. The simplest

metric for quantifying the disparity is the joint ratio, which is the unique point where the sum of the two

CDFs is unity (if the CDFs have a discrete mode, as sometimes happens, the sum may be different) [13].

For example, in the case of the mesa benchmark data stream, the joint ratio is 10/90. This means that

10% of the cache residencies, and more specifically those that are highly referenced, service a full 90%

of the references, whereas the remaining 90% of the residencies service only 10% of the references —

a precise example of the proverbial 10/90 principle. Thus a typical residency is only referenced a small

4

255.vortex DL1

references

1 10 100 1000 10 4 10 5

p
ro

b
a
b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache
res.

references

joint
ratio
13/86

W1/2=2.97

N1/2=0.65

177.mesa DL1

references

1 10 100 1000 10 4 10 5 10 6

p
ro

b
a
b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

joint
ratio
10/90

W1/2=2.05

N1/2=0.2

Fig. 3. Mass-count disparity plots for memory accesses in select SPEC benchmarks (ref dataset).

Data Instruction

Benchmark W1/2 @ N1/2 @ JR @ W1/2 @ N1/2 @ JR @

164.gzip 3.80 1 0.60 230 13 / 87 8 2.20 16 0.00 7.2 e5 10 / 90 123

175.vpr 7.60 2 1.71 72 20 / 80 8 1.43 16 0.00 2.5 e7 7 / 93 144

176.gcc 11.68 8 0.27 3826 21 / 79 8 2.74 13 0.05 5.4 e4 11 / 89 59

181.mcf 24.77 1 16.79 3 33 / 67 1 6.50 1.46 e8 10.69 1.0 e9 26 / 74 2.5 e8

186.crafty 4.39 1 0.69 169 14 / 86 8 11.21 15 3.72 112 24 / 76 24

197.parser 4.48 2 0.67 336 15 / 85 9 3.16 16 0.00 7.2 e5 11 / 89 48

253.perlbmk 2.29 3 0.93 731 12 / 88 25 5.91 12 1.48 858 16 / 84 30

255.vortex 3.25 3 0.65 517 13 / 87 15 11.33 13 4.34 96 24 / 76 20

256.bzip2 1.83 1 0.10 3247 10 / 90 24 0.19 7.5 e4 5.22 1.2 e7 18 / 82 4.3 e6

300.twolf 7.34 3 4.39 42 22 / 78 9 6.32 16 1.91 416 19 / 81 64

168.wupwise 3.59 8 1.07 804 16 / 84 32 0.65 16 0.00 2.6 e7 5 / 95 512

171.swim 38.98 10 37.48 10 44 / 56 10 0.01 11 0.46 3.5 e6 1 / 99 6.7 e5

172.mgrid 5.34 2 10.41 30 23 / 77 17 0.00 11 1.03 1.8 e6 5 / 95 2.0 e5

177.mesa 2.01 3 0.20 3886 10 / 90 20 4.65 11 0.02 3.0 e4 13 / 87 32

178.galgel 11.12 2 6.44 20 22 / 78 8 0.06 2.7 e5 5.33 1.6 e8 12 / 88 8.6 e6

179.art 21.69 2 16.52 3 33 / 67 2 0.00 16 0.04 1.1 e8 3 / 97 6.4 e4

187.facerec 3.41 2 2.32 104 20 / 80 16 0.01 16 0.28 4.6 e6 3 / 97 1.8 e5

188.ammp 5.88 3 1.85 96 19 / 81 12 1.02 16 0.00 1.3 e7 6 / 94 448

189.lucas 18.24 8 11.44 8 33 / 67 8 0.00 20 3.94 8.4 e6 20 / 80 4.2 e6

301.apsi 4.81 1 0.26 396 11 / 89 6 7.57 32 1.41 384 21 / 79 86

Average 9.33 3.3 5.74 726 20 / 80 12.3 3.25 7.3 e6 2.00 7.0 e7 13 / 87 1.7 e7

Median 5.08 2 1.39 137 21 / 81∗ 9 1.82 16 0.75 2.7 e6 12 / 89∗ 296
∗ Median Joint-Ratio values are independent and thus may not sum up to 100%.

TABLE I

N1/2, W1/2, and joint ratio metric values for both data and instruction streams of the SPEC2000 benchmarks used.

number of times (up to 10 or 20 in this case), whereas a typical reference is directed at a long residency

(one that is referenced thousands of times).

Two other important metrics in the context of dual cache designs are W1/2 and N1/2. W1/2 assesses the

combined weight of the half of the residencies that receive the fewest references. For mesa, these 50%

of the residencies together get only 2.05% of the references. These represent blocks that are inserted into

the cache but hardly accessed, causing inefficient cache use. Instead, caches should preferably be used to

store longer residencies, such as those that together account for 50% of the references. As quantified by

the N1/2 metric, in mesa these are just 0.2% of the residencies.

Mass-count disparity metric values are listed in Table I for all 20 benchmarks analyzed. The table also

indicates the maximal residency length included in W1/2, the minimal residency length included in N1/2,

and the residency length where the joint ratio occurs (marked by the @ values). These results generally

indicate significant mass-count disparity. For data streams, the table reveals that half of the references are

serviced by less than 2% of all residencies, in 12 of the 20 benchmarks. The disparity is less apparent

5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

W
1

/2

[%

]

gzip
vpr

gcc
m

cf

 4
K

B
 8

K
B

1
6
K

B
3
2
K

B
6
4
K

B

crafty

parser

perlbm
k

vortex

bzip2

tw
olf

w
upw

ise

sw
im

m
grid

m
esa

galgel

art
facerec

am
m

p

lucas

apsi

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

N
1

/2

[%

]

gzip
vpr

gcc
m

cf

 4
K

B
 8

K
B

1
6
K

B
3
2
K

B
6
4
K

B

crafty

parser

perlbm
k

vortex

bzip2

tw
olf

w
upw

ise

sw
im

m
grid

m
esa

galgel

art
facerec

am
m

p

lucas

apsi

Fig. 4. The effect of cache size, ranging from 4KB to 64KB, on the W1/2 (top) and N1/2 (bottom) statistics for the data streams of SPEC2000

benchmarks.

in benchmarks known for their poor cache utilization, such as mcf, art, swim, and lucas. For example

almost 96% of mcf ’s residencies contain up to 5 references, but still they account for over 70% of the

references. This leads to a joint ratio of 33/67, and relatively high W1/2 and N1/2 values — with half the

residencies accounting for ∼25% of the mass, and half the mass centered in ∼17% of the residencies.

But with the longest 3% of the residencies incorporating 30% of the mass, even mcf still exhibits some

degree of disparity.

In the case of instruction streams the results tend to be more extreme than for data streams. The joint

ratios are ∼26/74 and up, with several higher than 5/95. This is a manifestation of the rule-of-thumb

that programs spend most of the time executing a small fraction of their code. The highest W1/2 values

are ∼11%, and most are much lower, indicating that the short residencies service only a small fraction

of all references. The N1/2 values are generally even lower, indicating the long residencies dominate the

reference stream, and that the majority of references are directed at a small fraction of the working set.

The only exception is mcf where N1/2 = 10.7%. This stems from mcf ’s exceptional code density, which

results in a very small number of distinct instruction blocks accessed throughout the execution, so all

residencies are longer than 105 references.

The above results may be expected to depend on cache size. Intuitively, larger caches will experience

fewer evictions and thereby merge consucutive redidencies of the same block into a single, longer

residency. The resulting increase in residency lengths will shift the mass distribution towards longer

(core) residencies. Hence the fraction of the overall mass in the shorter 50% of the residencies (W1/2)

will decrease as caches get bigger, and so will the fraction of long residencies needed for 50% of the

mass (N1/2).

Fig. 4 shows the effect of cache size on W1/2 and N1/2 for the data streams of SPEC2000 benchmarks

(instruction streams produced similar results). As expected, while the effect is not large, the metrics do

tend to decrease as cache sizes increase. The exceptions to this rule are gcc, swim, and lucas for W1/2, and

swim for N1/2. The reason for this is that these benchmars exhibit intrinsic access patterns that result in

short residencies, regardless of the cache size. For example, gcc’s intrinsics lead to ∼90% of its residencies

being shorter than 8 references. The increase in cache size and ensuing merging of multiple consecutive

6

 0
 50

 100
 150
 200
 250
 300
 350
 400

W
o
rk

in
g
 s

et
 s

iz
e

Working set: gcc data

Denning
16B core

 0

 20

 40

 60

 80

 100

0 1e+09

2e+09

3e+09

4e+09

5e+09

P
er

ce
n
t

Instruction number

Working set: Core / Denning

16B mass% 16B count%

Fig. 5. Examples of memory access patterns and the resulting Denning and core working sets.

residencies only merges these clusters of 8 reference that were broken into multiple residencies into a

single 8-reference residency. Therefore, residencies of length 8 constitute ∼89% of the residencies in a

4KB cache and ∼94% of the residencies in a 64KB cache. The end result is that the shorter 50% of

the residencies in a 64KB cache constitute of more residencies of length 8, which increases their overall

mass.

Fig. 4 demonstrates that our metrics are robust across multiple cache sizes and even capture the

movement of residencies from pollution to core. In addition, while the results shown here focus on

direct mapped caches, similar results are obtained for 4-way set-associative caches [10]. Together, they

confirm the effectiveness of the metrics in providing a better understanding of cache workloads.

C. Definition of Core Working Sets

Denning’s definition of working sets is based on the principle of locality, which he defined to include

a slow change in the reference frequency to any given page [7], [8]. Our data, however, demonstrates the

continued access to the same high-use memory objects, while much of the low-use data is only accessed

for very short and intermittent time windows. In addition, transitions between phases of the computation

may be expected to be sharp rather than gradual, and moreover, they will probably be correlated for

multiple memory objects. This motivates a new definition that focuses on the persistent high-usage data

in each phase. We thus define the core working set to be those blocks that appear in the working set and

are reused “a significant number of times”.

The simplest interpretation of this definition is based on counting the number of references to a block

during a single cache residency. The number of references needed to qualify can be decided using data

such as that presented in Figs. 2 and 3. For example, we can set the threshold so that for most benchmarks

it will identify no more than 5% of the residencies, but more than 50% of the references. For typical

residency length distributions, such a threshold would be 100–1000 references.

While the skewed distribution of popularity is a major contributor to temporal locality, one should

nevertheless acknowledge the fact that references do display a bursty behavior. To study this, we looked

at how many different blocks are referenced between successive references to a given block. The results

indicate that the majority of inter-reference distances are indeed short. We can then define bursts to be

sequences of references to a block that are separated by references to less than say 256 other blocks.

Using this we can study the distribution of burst lengths, and find them to be generally short, ranging up

to about 32 references for most benchmarks. However, they are long enough to discourage the use of a

low threshold to identify blocks that belongs to the core working set with confidence. Again this points

to a threshold of 100 or more.

7

The effect of the above definitions is illustrated in Fig. 5. The figure shows the Denning working set

for a window of 1000 instructions, and the core working set as defined by a threshold of 16 references to

a block (denoted 16B in the legend). The core working set is indeed much smaller, typically being just

10–20% of the Denning working set. Importantly, it eliminates all of the sharp peaks that appear in the

Denning working set. Nevertheless, as shown in the bottom graph, it routinely captures about 60% of the

memory references.

III. CACHE BYPASS AND DUAL STRUCTURES

We have established that memory blocks can be roughly divided into two groups: the core working

set, which includes a relatively small number of blocks that are accessed a lot, and the rest, which are

accessed few times in a bursty manner. The question is how this can be used to improve caching.

A. The Advantage of Cache Bypass

The principle behind optimal cache replacement is simply to replace the item that will not be used for

the most time in the future (or never) [3]. In particular, it is certainly possible that the optimal algorithm

will decide to replace the last item that was brought into the cache. This would indicate that this item

was inserted into the cache only as part of the mechanism of performing the access, and not in order to

retain it for future reuse.

Analyzing the reference streams of SPEC benchmarks indicates that this behavior does indeed occur

in practice. For example, we found that if the references of the gcc benchmark were to be handled by

a 16 KB fully-associative cache, 30% of insertions would belong to this class; in other benchmarks, we

saw results ranging from 13% to a whopping 86%. Returning to gcc, if the cache is 4-way set associative

the placement of new items is much more restricted, and a full 60% of insertions would be immediately

removed by the optimal algorithm. These results imply that the conventional wisdom favoring the LRU

replacement algorithm is debatable.

It is especially easy to visualize why LRU may fail by considering transient streaming data. When

faced with such data, the optimal algorithm would dedicate a single cache line for all of it, and let the

data stream flow through this cache line. All other cache lines would not be disturbed. Effectively, the

optimal algorithm thus partitions the cache into the main cache (for core non-streaming data) and a cache

bypass for the streaming component (non-core). The LRU algorithm, in contradistinction, would do the

opposite and lose all the cache contents.

The advantage of a cache bypass mechanism can be formalized as follows, using a simple, specific

example cache configuration. Assume a cache with n2 + n cache lines, and an address space partitioned

into n equal-size disjoint partitions. The cache is organized in either of two ways:

Set associative: there are n sets of n+ 1 cache lines each, and each serves a distinct partition of the

address space. This is the commonly used approach.

Bypass: there are n sets of n cache lines each, used as above. The n+ 1st set can accept any

address and serves as a bypass.

These two designs expose a tradeoff. In the set associative design, each set is larger by one, reducing the

danger of conflict misses. In the bypass design, the extra set is not tied to any specific address, increasing

flexibility. However, it is relatively easy to see that the bypass design has the advantage. Formally this is

shown by two claims.

Claim 1: The bypass design can simulate the set associative design.

Proof: While each cache line in the bypass set can hold any address from the address space, we are not

required to use this functionality. We can limit each cache line to one of the partitions, so the effective

space available for caching each partition becomes n+1, as in the set associative design. Thus the bypass

design need never suffer more cache misses than the set associative design.

8

LRU cacheMRU LRU

inserted
elements

new
fall out

elements

activity

transient
reuse during

stint of

reused
elements

core

of use

positionposition

Fig. 6. Operation of an LRU cache is implicitly based on the notion that core elements will be reused before they drop out of the cache.

Claim 2: There exist access patterns that suffer arbitrarily more cache misses when served by the set

associative design than when served by the bypass design.

Proof: An access pattern that provides such an example is the following: repeatedly access 2n addresses

from any single partition in a cyclic manner m times. When using the set associative design, only a single

set with n cache lines will be used. At best, an arbitrary subset of n − 1 addresses will be cached, and

the other n+1 will share the remaining cell, leading to a total of O(nm) misses. When using the bypass

design, on the other hand, all 2n addresses will be cached by using the original set and the bypass set.

Therefore only the initial 2n compulsory misses will occur. By extending the length of this pattern (i.e.

by increasing m) any arbitrary ratio can be achieved.

More generally, the number of sets and the set sizes need not be the same. The size of the bypass set

need also not be the same as that of all the other sets.

B. Related Work on Dual Structures

The skewed distribution of references seems to match the LRU cache replacement scheme. Core blocks

are not evicted because they are referenced again and again, bumping them back to the top of the stack

each time (Fig. 6). If the cache is big enough, transient blocks that enjoy a burst of activity can also be

retained till this activity ends. Skew also explains random eviction (which may be used in set-associative

caches [28], [29]), because if you select a cache residency at random, it is most probably a short residency.

Long residencies are rarer, and therefore less likely to be evicted.

Nevertheless, core residencies may still be evicted by mistake. Although frequently accessed blocks will

be quickly re-inserted into the cache, the first access after the eviction will incur a cache miss. The desire

to reduce such mistakes is one of the motivations for using dual cache structures. Our design described

in Section V is explicitly based on the skewed distribution of residency lengths, where one part of the

cache is used for the core data, while the more transient data is filtered. This is a generalization of the

cache bypass considered above.

Many similar schemes have been proposed in the literature [27]. Many of them are based on an attempt

to identify and provide support for blocks that display temporal locality — in effect, the more popular

blocks that are reused time and again. For example, Rivers and Davidson propose to tag cache lines with

a temporal locality bit [26]. Initially, lines are stored in a small non-temporal buffer (in our terminology,

this is the bypass area). If they are reused, the temporal bit is set indicating that, in our terminology, these

lines should be considered as core elements. Later, when a line with the temporal bit set is fetched from

memory, it is inserted into the larger temporal cache.

Park et al. also use a spatial buffer to observe usage [22]. However, they do so at different granularities:

when a word is referenced, only a small sub-line including this word is promoted to the temporal cache.

McFarling’s dynamic exclusion cache augments cache lines with two state bits, the last-hit bit and the

sticky bit [20]. The sticky bit is used to retain a desirable cache line rather than evicting it upon a conflict;

the conflicting line is served directly to the processor without being cached. However, this approach is

limited to instruction streams and specifically to cases where typically only two instructions conflict with

9

each other. A more extreme approach is the bypass mechanism of Johnson et al. [16]. This is based on a

memory address table (MAT) which counts accesses to different areas of memory. Then, if a low-count

access threatens to displace a cached high-count datum, it is simply loaded directly to the register file

bypassing the cache. Another scheme is the Assist cache used in the HP PA 7200 CPU [5], which filters

out streaming (spatial locality) data based on compiler hints.

The above schemes have the drawback of requiring historical information to be maintained for each

cache lines. This is avoided by Walsh and Board, who propose a dual design with a direct-mapped main

cache and a small fully associative filter [33]. Referenced data is first placed in the filter, and only if it is

referenced again it is promoted to the main cache. This avoids polluting the cache with data that is only

referenced once,but our data indicates that a much higher threshold is needed. Indeed, this is the basis

for the design we propose below.

A somewhat different approach is provided by Jouppi’s victim cache, which is a small auxiliary cache

used to store lines that were evicted from the main cache [17]. This helps reduce the adverse effect of

conflict misses, as the fully-associative victim buffer effectively increases the size of the most heavily

used cache sets. In this case the added structure is not used to filter out transient data, but rather to recover

core data that was accidentally displaced by transient data.

IV. PROBABILISTIC PREDICTION OF TEMPORAL LOCALITY

Mass-count disparity implies that the working set is not evenly used, but is rather focused around a core

serving the majority of references. This has important consequences for random sampling. Specifically,

if you pick a residency at random, there is a good chance that it is seldom referenced. But if you pick a

reference at random, there is a good chance that this reference refers to a block that is referenced very

many times, thus belonging to the core of the working set.

Identifying the core can be used to implement a cache insertion policy that will prevent transient blocks

from being inserted into the cache and polluting it. The length of a cache residency can serve as a metric

for cache efficiency, with longer residencies indicating better efficiency, since the initial block insertion

overhead (latency and power) is amortized over many cache hits. The insertion policy should therefore be

based on a residency length predictor, that will be used to predict whether inserting a block into the cache

would be beneficial. As noted above, length is the very characteristic that allows the desired residencies

to be identified using random sampling.

A. Identifying An Effective Subset of Blocks

Belady’s optimal replacement policy [3] does not handle dual cache structures. Moreover, Brehob et

al. have shown that optimal cache replacement is NP-Hard for dual-caches in which one component is

fully-associative and the other is set-associative or direct-mapped [4]. Thus we cannot expect optimal

algorithms to be implementable, and optimality cannot be used as an evaluation criterion.

An alternative approach is to evaluate cache filtering from a cost/gain perspective, trying to find the

minimal core working set of residencies that will effectively maximize gain. In this framework, the cost

can be defined as the fraction of all residencies included in the core working set, and the gain can be

defined to be the fraction of all references subsumed by the residencies in the core. Alternatively, the cost

of the core working set can be regarded as the size of the cache needed to accommodate it, and the gain

as the hit-rate achieved.

The tradeoff between the cost and gain here is obvious. Inserting all residencies to the core will service

all references from the core (100% gain), but will also require a cache of maximal size (100% cost). On

the other hand, leaving the core empty will minimize the number of residencies included in the core (0%

cost), but will serve no references from the core as well (0% gain). Balancing the two opposite goals

requires a threshold parameter for the minimal residency length that should be considered part of the

core. This can be done by finding a threshold that maximizes the average gain, i.e.
gain

cost
. But in the case

10

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1
0

1
0
0

1
0

3

1
0

4

C
D

F

Cache Residency Length (log) Cache Residency Index

255.vortex

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5
.0

*
1
0

6

1
.0

*
1
0

7

1
.5

*
1
0

7

2
.0

*
1
0

7

2
.5

*
1
0

7

3
.0

*
1
0

7

3
.5

*
1
0

7

References
Residencies

Fig. 7. Demonstration of the maximal effectiveness threshold. Left: the mass-count plot for vortex. Right: same data plotted as a function

of the residency index, where residencies are sorted by size. Double arrow indicates the point where the difference between the distributions is

maximized.

at hand, this goal translates directly to finding a threshold that maximizes the average residency, defined

as
core references

core residencies
. Due to monotonicity, this is obviously maximized by only including the longest

residency in the core working set.

The proposed strategy is therefore to use the threshold that maximizes the difference between the

fraction of references handled by the core, and the fraction of residencies included in the core, namely

core references − core residencies. All residencies whose length is longer than the threshold are

considered part of the core working set. Interestingly, the desired threshold is very simple:

Claim 3: Setting the core threshold to the average residency length maximizes the target function

core references− core residencies.
Proof: Given R the total number of references, and B the total number of residencies, we can sort the

residencies according to length from the shortest to the longest. Let len(i) denote the length of the ith

shortest residency. The sorting guarantees that len(i) ≤ len(i+1) for all i. Mass-count disparity plots can

then be plotted as a function of the residency indices, as shown in Fig. 7. In this plot style, the cumulative

probabilities of the count and mass at the ith residency are

count(i) =
i∑

j=1

1

B
=

i

B
and mass(i) =

i∑

j=1

len(j)

R

respectively. Hence the ith residency adds
1

B
to the count distribution, and

len(i)

R
to the mass. There-

fore, given that
len(i)

R
is monotonically non-decreasing, the gap between the two distributions grows

monotonically while
len(i)

R
<

1

B
, narrows when

len(i)

R
>

1

B
, and peaks at the average residency length

threshold = len =
R

B

While this may not be integral, it can still serve as a threshold for the residency lengths. Furthermore,

monotonicity of the gap dynamics assures that the threshold represents the global maximum.

The average residency length thus represents a unique equilibrium point that maximizes the effectiveness

of the core working set: any different proposed subset of residencies will inevitably replace a block in

the core with one not belonging to the core, and will thus replace a long residency with shorter one —

thereby reducing the number of references that will be served by the core. In the case of vortex, shown

in Fig. 7, the threshold indicates that ∼9% of all residencies be in the core, and they serve ∼84% of all

references.

11

Note also that using a threshold actually relaxes the requirements from the residency length predictor,

as it does not have to predict the actual length of a residency, but rather produce a binary prediction

stating whether the residency is likely to be longer than the threshold or not.

B. Probabilistic Residency Length Predictor

The probabilistic residency length predictor is based on the mass-count disparity phenomenon char-

acteristic of the skewed distribution of block popularity. As noted above, selecting a memory reference

at random by executing a Bernoulli trial on each memory reference is likely to identify a reference that

belongs to a long residency. When this happens, the rest of the residency is considered to be part of the

core working set.

The probability to use is the reciprocal of the desired residency length threshold. When sampling

references with a low probability P =
1

T
, short residencies will have a very low probability of being

selected. But given that a single hit is enough to induct a residency into the core, the probability that a

residency is classified as core after n references is 1 − (1− P)n. This converges exponentially to 1 for

large n. In practice, the selection need not even be random, and we have verified that periodic selection

achieves results similar to those obtained with random selection. For consistency, though, only results for

random selection are shown.

Importantly, implementing such a predictor does not require saving any state information for the blocks,

since every selection is independent of its predecessors. The hardware required to implement the selection

mechanism is trivial and constitutes of a pseudo random number generator, which can be implemented

using a simple linear-feedback shift register, whereas periodic selection requires only a saturating counter

[34]. It can also share the random source with others, such as Qureshi et al. prediction of performance

critical memory references [24] and Behar et al. [2] sampling-based predictor that reduces the power of

trace caches by generating only selected traces.

C. Evaluating the Probabilistic Predictor

The evaluation of the probabilistic predictor is done against the threshold-based gain-maximization idea

of Section IV-A. Since a sampling predictor with parameter P essentially tries to approximate a threshold

of
1

P
, the evaluation focuses on the effectiveness of this approximation.

Fig. 8 compares the probabilistic runtime predictor with precise threshold-based selection for select

benchmarks, with residencies generated using a 16KB direct-mapped cache. The figure shows the per-

centage of residencies classified as core (bottom lines) and the references they service (top lines) in both

data (top row) and instruction (bottom row) streams. As a unified scale, the X-axis equates a sampling

probability of P with a threshold of
1

P
. Focusing on the percentage of data references serviced by the

predictor’s selection, for example, we see a very good correlation to those serviced by the threshold-

based classification, at least for P ≤ 0.01. Thus for vortex using a selection probability of P = 0.01 in

the sampling predictor covers over 60% of all data references, constituting over 90% of the number of

references covered by threshold-based classification.

Table II lists the fraction of residencies classified as core by the probabilistic predictor on a 16KB

direct-mapped cache, and the fraction of references they service, for both data and instruction streams, with

P = 0.01 and P = 0.001. On average, sampling a mere 1% of the data references selects ∼7.39% of the

residencies, and covers over 45% of the references. As the average is highly affected by benchmarks known

for their poor temporal locality, like swim, art, and mcf, the median values are also shown, demonstrating

a coverage of over 50% of the data references. Sampling probabilities can be an order of magnitude lower

for instruction streams, as code density emphasizes locality. Thus sampling only 0.1% of the references

selects an average of 20% of the residencies, covering some 77% of the references. Again, the medians

emphasize the skewed averages, with selection reduced to 5.3% of the residencies but coverage growing

to 89% of the references.

12

0
20
40
60
80

100

 0.0001

 0.001

 0.01
 0.1

 1

256.bzip2

D
at

a

0
20
40
60
80

100

 0.0001

 0.001

 0.01
 0.1

 1

255.vortex

0
20
40
60
80

100

 0.0001

 0.001

 0.01
 0.1

 1

177.mesa

0
20
40
60
80

100

 1e-05

 0.0001

 0.001

 0.01
 0.1

 1

In
st

ru
ct

io
n

0
20
40
60
80

100

 1e-05

 0.0001

 0.001

 0.01
 0.1

 1
0

20
40
60
80

100

 1e-05

 0.0001

 0.001

 0.01
 0.1

 1

P
er

ce
n

t
[%

]

Selection probability P (Counter threshold=1/P)

Prob: References
Prob: Residencies

Counter: References
Counter: Residencies

Fig. 8. Fraction of blocks selected by the probabilistic predictor, and the fraction of references they service, compared with actually classifying

residencies by their lengths.

Overall, these results imply that executing Bernoulli trials with success probabilities of P = 0.01 for

data streams and P = 0.001 for instruction streams are good operating points for all benchmarks analyzed.

Similar results were also achieved for 4-way set-associative data and instruction caches [10]. The next

section describes a dual-cache design based on the probabilistic predictor proposed above, and details a

thorough exploration of specific probabilities suitable for this design.

V. A RANDOM SAMPLING L1 CACHE DESIGN

This section introduces a novel dual L1 cache design that uses reference sampling to distinguish long

residencies from short, transient ones. It then employs a direct-mapped structure to serve blocks belonging

to the core working set, and a fully-associative structure acting as filter to serve the transient residencies.

It is shown that such a design offers both better performance as well as reduced power consumption

compared to common cache structures.

Fig. 9 depicts the proposed design. On each memory access, the data is first searched in the direct-

mapped main cache. If this misses the fully-associative filter is searched. If the filter misses as well the

request is sent to the next level cache. In our experiments we used 16K and 32K (common L1 sizes) for

the direct-mapped cache, and a 2K fully-associative filter. All structures use 64B lines.

Each memory reference that is serviced by either the filter or the next level cache triggers a Bernoulli

trial with a predetermined success probability P , to decide whether it should be promoted into the cache

proper. Note that this enables a block fetched from the next level cache to skip the filter altogether and

jump directly into the cache. This decision is made by the memory reference sampling unit (MRSU).

In case the block is not selected, and was not already present in the filter, the MRSU inserts it into the

filter, typically evicting the LRU line there in order to make space. Section V-A explores the probabilistic

design space for a suitable Bernoulli success probability.

To reduce both time and power overheads associated with accessing the fully-associative filter, we have

augmented the classic CAM + SRAM design [34] with a wordline look-aside buffer (WLB) that caches

recent lookups in the CAM. This is a small direct-mapped structure mapping block tags directly to the

13

Data Instructions

P = 0.001 P = 0.01 P = 0.001 P = 0.01

Benchmark %Resds %Refs %Resds %Refs %Resds %Refs %Resds %Refs

164.gzip 0.90 31.91 5.77 56.63 4.50 82.34 28.23 89.06

175.vpr 0.90 13.86 6.24 41.09 3.49 88.40 21.98 92.77

176.gcc 1.30 45.53 8.38 65.26 2.86 77.19 18.89 85.06

181.mcf 0.20 1.32 1.87 8.12 100.00 100.00 100.00 100.00

186.crafty 0.83 27.34 5.49 52.29 2.63 26.64 18.42 49.17

197.parser 1.11 27.15 6.62 56.86 2.80 80.93 20.20 86.34

253.perlbmk 2.39 35.55 11.40 69.55 3.80 36.18 17.90 70.17

255.vortex 1.53 33.80 8.36 64.28 2.54 18.84 17.27 45.44

256.bzip2 1.23 54.96 7.22 73.83 67.70 99.97 78.71 100.00

300.twolf 0.94 5.98 7.22 28.79 4.56 41.09 26.51 66.08

168.wupwise 2.63 33.60 13.28 66.83 5.49 91.69 22.64 96.61

171.swim 1.13 0.88 10.62 7.49 5.12 99.87 15.21 99.96

172.mgrid 1.08 5.72 8.72 25.08 16.03 99.74 27.17 99.96

177.mesa 1.63 58.75 8.21 79.39 2.13 73.08 15.66 80.39

178.galgel 0.67 4.36 5.61 20.54 80.95 100.00 89.29 100.00

179.art 0.28 3.19 2.53 14.51 27.01 99.91 38.87 99.99

187.facerec 1.81 17.56 11.43 48.20 24.49 99.51 49.91 99.90

188.ammp 1.16 17.60 7.90 44.56 8.22 88.96 30.93 95.88

189.lucas 0.84 13.97 6.99 28.73 36.24 99.99 44.83 100.00

301.apsi 0.68 34.82 3.90 62.80 5.54 46.07 33.79 67.31

Average 1.16 23.39 7.39 45.74 20.30 77.52 35.82 86.20

Median 1.10 22.38 7.22 50.25 5.31 88.68 26.84 94.33

TABLE II

Percents of residencies classified as core and the references they service, for P = 0.001 and P = 0.01 (16KB direct-mapped data and

instructions caches).

Fig. 9. Design of a random sampling filtered cache.

Processor Core

L2 Cache

D
ata

A
d
d
re

ss

Miss?

SRAM

C
AM

Direct−Mapped Cache

B
uffer

Fully A
ssoc.

MRSU

W
LB

filter’s SRAM based data store, so hits in the WLB avoid the majority of the costly CAM lookups, while

still maintaining fully-associative semantics. Section V-B offers a detailed description of the WLB and an

analysis of its design space.

A. The Effects of Random Sampling

We use random sampling of memory references to partition the reference stream into long residencies

and short transient residencies. The number of references to long residencies is large, but they involve

only a relatively small number of distinct blocks. This reduces the number of conflict misses, enabling the

use of a low-latency, low-energy, direct-mapped cache structure. On the other hand, transient residencies

naturally have a shorter cache lifetime, but there are many of them. Therefore, they are better served by

a smaller, fully-associative structure.

14

-100

-80

-60

-40

-20

 0

0
.0

0
0
1

0
.0

0
0
5

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

Data

-100

-80

-60

-40

-20

 0

0
.0

0
0
1

0
.0

0
0
5

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

Instructions

M
is

s-
ra

te
 c

h
an

g
e

[%
]

Sampling probability (P)
25%--75%
Avg.

Fig. 10. Distributions of changes in miss-rate when using various sampling probabilities, as applied to SPEC2000 benchmarks, for a 16K-DM

cache.

The sampling probability (and by implication the filtering rate) is therefore a delicate tuning knob:

aggressive filtering might be counter-productive, since too many blocks may end up being served by

the filter and not promoted to the cache proper, overwhelming the filter and causing capacity misses. In

contrast, permissive filtering may promote too many blocks to the main cache, thus increasing the number

of conflict misses, and degrading the performance.

This section is therefore dedicated to evaluating the effect of the filtering probability on the partitioning

of references. The selected parameters are then used to evaluate performance and power consumption in

Section V-C.

1) Impact on Miss-Rate: First, we address the effects of filtering on the overall miss-rate (fraction of

blocks missed by both the cache and the filter) in order to determine the sampling probabilities that yield

best cache performance. Fig. 10 shows the distributions of changes in the miss-rate, when adding filtering

to a 16KB direct-mapped cache (for example, -40 means that the miss rate dropped by 40%). The data

shown for each probability are a summary of the observed changes in miss rate over all benchmarks

simulated. Good results should combine a large overall reduction in miss-rate with a dense distribution,

i.e. a small differences between the 25%–75% percentiles and min–max values, as a denser distribution

indicates more consistent results over all benchmarks.

The figure shows that the best average reduction in data miss-rate is ∼25%, achieved for P values

of 0.05 to 0.1. Moreover, this average improvement is not the result of a single benchmark skewing

the distribution, but rather the entire distribution — as represented by the 25%–75% box — is moved

downwards. The same happens with the instruction stream, where selection probabilities of 0.01 to 0.0001
all achieve an average improvement of ∼60%.

The fact that a similar improvement is achieved over a range of probabilities, for both data and

instruction, indicates that using a static selection probability is a reasonable choice, especially as it

eliminates the need to add a dynamic tuning mechanism. We therefore chose sampling probabilities of

0.05 and 0.0005 for the data and instruction streams, respectively, of a 16KB configuration. In a similar

manner, probabilities of 0.1 and 0.0005 were selected for the data and instruction streams, respectively,

of a 32KB configuration.

Interestingly, the data and instruction streams require widely different Bernoulli success probabilities.

The reason for this is that the instruction memory blocks are usually accessed an order of magnitude

more times compared to data blocks. This difference is attributed to the fact that instructions tend to be

executed sequentially, so instruction memory blocks are mostly read sequentially.

2) Impact on Reference Distribution: Filtering effectively splits the reference stream into two compo-

nents: one supposedly consisting of long residencies, and another consisting of short transient ones. We

now evaluates this separation.

Fig. 11 shows vortex’s distributions of references (the fraction of references serviced by residencies of

up to a certain length) observed in both parts of the filtered 16K cache, compared with that of a regular

15

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1
0

1
0
0

1
0

3

1
0

4

D
at

a
(P

=
0

.0
5

)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1
0

1
0
0

1
0

3

1
0

4

1
0

5

1
0

6

In
st

u
ct

io
n

s
(P

=
0

.0
0

0
5

)

Accesses per block

Filter (FA)
Orig. DM. Cache
Filtered Cache (DM)

Fig. 11. The mass distributions of residencies for vortex in both the cache and the filter, compared with the original mass distribution. The

horizontal arrows show the median-to-median range, and the vertical double arrow shows the false-∗ equilibrium point.

16K DM cache. Table III lists the results for all SPEC2000 benchmarks. Residencies that are promoted

from the filter to the cache are split appropriately, with references before the promotion counted as a filter

residency and those after it as a cache residency.

For the filtered cache, the difference between the resulting distributions is quantified by two metrics:

the median-median ratio (horizontal double arrow in Fig. 11) and the false-∗ equilibrium (vertical double

arrow). The first metric is the ratio between the median values of the cache and filter distributions (the

median values are marked with down-pointing arrows). This quantifies the distance between the two

distributions. Invariably, the results show that filter-based residencies are much shorter than those of

blocks promoted to the cache proper, which in turn serve the majority of the references. The ratios for

data streams are at 50–1000, and average ∼320 (∼50,000 for instruction streams), suggesting random

sampling is effective in splitting the reference distribution.

The second metric, called the false-∗ equilibrium, quantifies the fraction of false predictions. Any

residency length threshold will show up on the plot as a vertical line, with the fraction of the cache’s

distribution to its left indicating the false-positives (short residencies promoted to the cache), and the

fraction of the filter’s distribution to its right indicating the false-negatives (long residencies remaining in

the filter). The false-∗ equilibrium is the unique threshold that equalizes the percentages of false-positives

and false-negatives.

For example, the false-∗ equilibrium point for vortex stands at a residency length of ∼20 and generates

∼6% false predictions. On the other hand, the data stream of the cache unfriendly mcf experiences a

false prediction rate of ∼22%, which is among the highest values observed. This is caused by the large

number of short residencies which swamp the filter leading to a dual effect: they push blocks whose

residencies can potentially grow to be long out of the filter, and some are erroneously selected by the

random sampling due to their sheer number. Nevertheless, the average false prediction rate is as low

as ∼12% for data streams (∼2% for instruction streams), indicating the effectiveness of the proposed

technique.

Finally, Fig. 12 compares the percentage of references serviced by the cache proper with the percentage

of promoted blocks, for various probabilities. As expected, for low probabilities the fraction of serviced

references is much higher than the fraction of promoted blocks, because only frequently accessed blocks

are promoted. Higher probabilities also promote shorter residencies, and at some point the promoted

residencies are too short to affect cache’s hit-rate (indicated by the horizontal line). In our case this

saturation occurs around P = 0.2 for the data and P = 0.05 for the instructions. The probabilities

suggested above (P = 0.05 for data and 0.0005 for instructions) insert an average of only ∼33% of

the data blocks into the cache proper, servicing ∼77% of the data references (∼35% and ∼92% for the

instruction streams).

In summary, random sampling indeed effectively splits the distribution of references into two distinct

components — one representing frequently used blocks, the other transient ones.

16

Data Instructions

Benchmark Medians False-∗ False-∗ @ Medians False-∗ False-∗ @

ratio Equ. ratio Equ.

164.gzip 840 6 / 94 23 5.5 e3 3 / 97 9715

175.vpr 90 12 / 88 12 1.4 e4 2 / 98 10298

176.gcc 480 11 / 89 8 2.2 e4 3 / 97 2438

181.mcf 26 22 / 78 2 8 e5 0 / 100 29946

186.crafty 350 5 / 95 19 1.7 e3 1 / 99 320

197.parser 240 8 / 92 16 4.3 e2 6 / 94 7995

253.perlbmk 240 5 / 95 24 6.3 e2 6 / 94 1327

255.vortex 270 6 / 94 22 1.6 e3 3 / 97 655

256.bzip2 1900 5 / 95 25 7.3 e3 0 / 100 9591

300.twolf 29 14 / 86 11 1.7 e3 2 / 98 1429

168.wupwise 180 8 / 92 20 9.5 e3 1 / 99 11865

171.swim 1.1 43 / 57 8 1.6 e3 0 / 100 19332

172.mgrid 3.6 12 / 88 14 2.1 e3 0 / 100 13748

177.mesa 600 5 / 95 32 2.1 e3 9 / 91 5918

178.galgel 57 15 / 85 10 6.5 e4 0 / 100 23124

179.art 140 23 / 77 3 4.6 e4 0 / 100 11266

187.facerec 48 15 / 85 16 4.4 e3 0 / 100 12051

188.ammp 58 12 / 88 14 5.9 e3 6 / 94 8462

189.lucas 4.1 26 / 74 8 2.7 e3 0 / 100 31174

301.apsi 840 6 / 94 16 1.8 e3 3 / 97 1307

Average 320 12 / 87∗ 15 5 e4 2 / 97∗ 10598

Median 160 12 / 89∗ 15 3.5 e3 2 / 99∗ 9653
∗ False-∗ values calculated independently and thus may not sum up to 100%.

TABLE III

Median-median ratios and false-∗ equilibrium values for all benchmarks reviewed, using sampling probabilities P = 0.05 and P = 0.0005 for

data and instruction streams, respectively.

 0

 20

 40

 60

 80

 100

0
.0

0
0

1

0
.0

0
0

5

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

P
er

ce
n

t
[%

]

Data

 0

 20

 40

 60

 80

 100

0
.0

0
0

1

0
.0

0
0

5

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

Sampling probability (P)

Instructions

References
Blocks

Fig. 12. Percent of references serviced by the cache vs. the percent of blocks transferred from the filter into the cache for varying sampling

probabilities (averages over all benchmarks).

B. The Wordline Look-aside Buffer

The filter in our dual cache design is a fully-associative caching element. Such elements introduce

long access latencies and increased power consumption due to the fully-associative lookups. As shown in

Fig. 13 (left), the common implementation uses content-addressable-memory (CAM) for the tag-store, with

the wordlines connected to the wordlines of an SRAM block serving as the data-store [34]. But temporal

locality suggests the expensive fully-associative lookups may be frequently repeated for a specific block.

We therefore propose a wordline look-aside buffer (WLB) to cache recent lookup results. The resulting

design is shown in Fig. 13 (right).

The WLB consists of a direct-mapped structure, mapping tags of filter-resident blocks to their location

in the SRAM data store. The data contained in the WLB for each tag is a bitmap whose width is the

17

Address In

Data OutData Out

Address In
Miss?

SRAM

C
AM

B
uffer

Fully A
ssoc.

W
LB

SRAM

C
AM

Fully A
ssoc.

B
uffer

Fig. 13. Left: common fully associative buffer with a CAM tag-store and an SRAM data-store. Right: using a WLB to cache mappings of

recent lookups.

Fig. 14. Distributions of filter access depth for all

SPEC2000 benchmarks, and the average distribution. The

vast majority of accesses are focused around the MRU

position.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 4 8 16

C
D

F

Stack depth

Data

Avg.

 1 4 8 16

Instructions

number of lines in the filter — 32 lines for a 2K filter. This allows for each WLB output bit to be directly

connected to an SRAM wordline without a decoder, offering fast, low-power caching of CAM results.

In fact, the WLB structure is efficient enough to be accessed in parallel with the cache on every access,

totally eliminating the lookup latency on most filter accesses. If the WLB misses, the CAM is accessed,

and the result is fed back to the WLB during the ensuing SRAM access, hiding the WLB update latency.

The main design question is the size of the WLB. Fig. 14 shows the stack depth distributions of filter

accesses for all benchmarks, as well as the average distribution. The three benchmarks that fall below the

main cluster are swim, art, and crafty. While the first two benchmarks are known for their poor temporal

locality, it seems the filtered design is very effective at splitting crafty’s workload so the vast majority of

blocks in the filter exhibit very poor locality (crafty’s miss-rate is in fact reduced by ∼50%). Still, it is

clear that the vast majority of accesses pertain to recently used blocks: on average ∼94% of data accesses

are to stack depths of 8 or less, out of a total of 32 lines in the filter.

Because of the its susceptibility to conflict misses, a WLB consisting of N entries can only approximate

a stack of depth N . We have therefore explored WLB sizes of 8 and 16 entries. In our experiments, we

have found that using an 8 entry WLB achieves an average of ∼78% hit-rate for the data stream (∼83%

median) and over 97% for the instruction stream (∼97% median) for a 2K filter. Doubling the WLB

size to 16 entries was found to improve its performance by ∼5%, but substantially increases its power

consumption. We therefore use an 8 entry WLB in our power and performance evaluation. Given that the

hit-rate for the main cache stands at almost 80% for the data stream and over 90% for the instruction

stream (Section V-A2), these results indicate that on average only ∼4% of the data references and ∼0.1%

of the instruction references still initiate expensive fully-associative lookups.

The WLB demonstrates that temporal locality can be used to greatly reduce a CAM-based filter’s power

consumption and improve its performance, without losing the fully-associative property.

C. Impact on Power and Performance

The reduced miss-rate achieved by the random sampling design, combined with a low-latency, low-

power, direct-mapped cache, potentially offers both improved performance and reduced power consump-

18

DL1/IL1 cache micro-architecture

size 16/32 KB fetch / issue / decode 4

line size 64 B functional units 4

associativity DM window size 128

latency 1 cy.∗ Load/Store queue 64

filter branch predictor

entries 32 meta-predictor with 64K-entry

associativity full bimodal and gshare, and a

max total latency 5 cy. similar size meta table.

CAM latency 3 cy. 4K branch target buffer (BTB).

SRAM latency 1 cy. L2 cache

WLB latency 1 cy. design unified

WLB entries 8 size 512 KB

WLB line 32 b line size 64 B

MRSU data prob. (16K) 0.05 associativity 8

MRSU inst. prob. (16K) 0.0005 latency 16 cy.

MRSU data prob. (32K) 0.1 memory

MRSU inst. prob. (32K) 0.0005 latency 350 cy.
∗ L1 latency is 2 cycles for set-associative and fully-associative caches

TABLE IV

micro-architecture and cache configurations used in the out-of-order simulations.

SRAM

Cache

WLB

CAM

0 1Cycle 2 43 5

Cache Hit Fast Filter Hit Slow Filter Hit

Miss

Fig. 15. Timing diagram of the cache design, based on the µarch parameters listed in Table IV. Down pointing arrows indicate lookup hits,

while up pointing arrows indicate misses.

tion. Augmenting the fully-associative filter with a WLB reduces the overhead incurred by the filter, further

improving efficiency. Using the SimpleScalar toolset [1] for out-of-order simulations and CACTI 4.1 [32]

for power estimates, we have compared the performance achieved by direct-mapped filtered caches against

various set-associative caches. The parameters of the superscalar design used in the simulations are listed

in Table IV. CACTI was configured for a 70nm manufacturing process (the finest supported feature size).

The SPEC2000 benchmark suite was used [30] with the ref input sets. Benchmarks were fast-forwarded

15 billion instructions to skip any initialization code, and were then executed for 2 billion instructions.

Fig. 15 shows a timing diagram of the different components in the proposed cache design. The main

cache and WLB are searched in parallel in the first cycle. If the main cache misses, the result of the

WLB lookup determines the filter lookup path: if the requested block is found in the WLB then no CAM

lookup is necessary, enabling direct access to the SRAM, and resulting in a 2 cycles total filter latency;

this is the normal case. Only if both the direct-mapped main cache and the WLB miss, the filter’s CAM

looked is used (taking 3 additional cycles). The MRSU does not add any latency as it can perform the

random sampling even before the data is fetched, enabling it to perform any necessary eviction (either

from the cache proper or the filter) beforehand.

Fig. 16 shows the IPC improvement achieved by a random sampling cache over a similar sized 4-way

associative cache. The figure shows consistent improvements (up to ∼35% for a 16K configuration and

∼28% for a 32K one), with an average IPC improvement of just over 10% for both sizes. In no case did

the filtered design cause a degradation in performance. While the results are consistent, it is clear that

19

 0

 10

 20

 30

 40

b
zip

2

crafty

g
cc

g
zip

m
cf

p
arser

p
erlb

m
k

tw
o
lf

v
o
rtex

v
p
r

am
m

p

ap
si

art

facerec

g
alg

el

lu
cas

m
esa

m
g
rid

sw
im

w
u
p
w

ise

S
tats

IP
C

 c
h

an
g

e
[%

]

16K, DM
32K, DM

Fig. 16. IPC improvement for direct-mapped random sampling caches (using a 2K filter) over similar sized 4-way caches.

 0

 2

 4

 6

 8

 10

1
6
K

-D
M

1
6
K

-4
w

ay

1
6
K

-F
A

1
6
K

+
v
ictim

3
2
K

-D
M

3
2
K

-4
w

ay

3
2
K

-F
A

3
2
K

-D
M

3
2
K

-4
w

ay

3
2
K

-F
A

3
2
K

+
v
ictim

6
4
K

-D
M

6
4
K

-4
w

ay

6
4
K

-F
A

IP
C

 c
h

an
g

e
[%

]

Filtered 16k,DM Filtered 32k,DM

Fig. 17. Average IPC improvement for 16K and 32K direct-mapped filtered caches over common cache configurations.

benchmarks suffering from conflict misses enjoy better performance gains. This is most pronounced for

apsi, where over 70% of the residencies consist of a single reference. Indeed, doubling the cache size

to 32K — thus increasing the number of sets and reducing conflicts — decreases its performance gains,

while other benchmarks remain largely unaffected.

Fig. 17 compares the average performance achieved by 16K and 32K random sampling caches to that

of common cache structures. It shows that a direct-mapped random sampling filtered cache achieves

significantly better performance not only compared with similar size set-associative caches, but also

compared with larger, more expensive caches: a 16K-DM random sampling cache yields ∼5% higher

IPC than a 32K-4way cache, and a 32K configuration outperforms a 64K-4way by over 7%. Likewise,

using the extra 2K for a filter yields better performance than using it as a victim buffer, indicating that

even a relatively large victim buffer may be swamped by transient blocks.

Interestingly, the IPC improvement is similar when comparing the 16K-DM random sampling cache

to both a regular 16K-DM cache and a 16K-4way set-associative cache, indicating similar performance

achieved by the latter two. The reason is that the direct-mapped cache’s low access latency compensates

for its higher miss-rate. This is even more evident when considering the larger 32K and 64K caches, where

the doubling of the number of cache sets reduces the number of conflicts, thus allowing the direct-mapped

cache’s lower latency to prevail.

Next, we evaluate the proposed design’s power consumption. Using independent random sampling elim-

inates the need to maintain any previous reuse information, reducing the power consumption calculation

to summing the energies consumed by the direct-mapped cache, the fully-associative filter, and the small,

direct-mapped WLB, each weighted by the number of accesses it serves.

Fig. 18 shows both dynamic read energy and leakage power consumed by the random sampling cache,

compared to common cache configurations (same as those in Fig. 17). Obviously, the power consumed

by the random sampling cache is higher than that of a simple direct-mapped cache, because of the filter:

up to ∼30% more dynamic energy and ∼15% excess leakage power for a 16K random sampling cache,

20

-100

-80

-60

-40

-20

 0

 20

 40

1
6

K
-D

M

1
6

K
-4

w

1
6

K
-F

A

1
6

K
+

v
ictim

3
2

K
-D

M

3
2

K
-4

w

3
2

K
-F

A

3
2

K
-D

M

3
2

K
-4

w

3
2

K
-F

A

3
2

K
+

v
ictim

6
4

K
-D

M

6
4

K
-4

w

6
4

K
-F

A
R

el
at

iv
e

p
o

w
er

 [
%

]

Filtered 16k, DM Filtered 32k, DM

Data
Inst
Leak.

Fig. 18. Relative power consumption of the random sampling cache, compared to common cache designs (lower is better), for a 70nm process.

and just over half that for a 32K cache. However, when comparing a random sampling cache to a more

common 4-way associative cache of a similar size, the 16K random sampling cache consumes 70%–

80% less dynamic energy, with only ∼5% more leakage power. The 32K configuration yields 60%-70%

reduction in dynamic energy, with no increase in leakage.

An even bigger advantage of random sampling caches is apparent when compared to a set-associative

cache double its size: both the 16K and 32K random sampling caches consume 70%-80% less dynamic

energy, and 40%-50% less leakage, than 32K and 64K 4-way set-associative caches, respectively, while

still offering better performance, as shown in Fig. 17. This suggests that adding just a small buffer and a

trivial insertion policy is more efficient than blindly doubling cache size.

VI. RELATED WORK

Several studies have considered the notion of separating memory reference streams into core and

transient groups, and designing mechanisms that serve each class using a different caching policy.

Megiddo and Modha [21] designed the ARC policy for operating systems’ buffer caches. New blocks are

managed using an LRU list, and moved to an LFU list on the second access. ARC thus favors frequently

accessed blocks, yet still dedicates at least half the cache memory to transient data.

In L2 caches, Qureshi et al. [24] describe the LIN replacement policy that takes the cost of a cache

miss into account, prioritizing isolated memory accesses that stall the processor. Interestingly, this policy

serves some benchmark very well and some very poorly. They therefore propose SBAR, a set dueling

policy which maintains dual LRU/LIN tag-stores for a subset of the cache sets, and uses their performance

to determine the overall replacement policy. Adaptively chosing among dueling L2 replacement policies

was also suggested by Subramanian et al. [31].

In a later study, Qureshi et al. [23] observe that most L2 blocks are never reused, and propose a bimodal

insertion policy (BIP) that occasionally inserts blocks to the MRU position rather than to the LRU position.

They then again use set dueling to dynamically select the best performing policy.

Rajan and Ramaswamy [25] attempted to approximate optimal replacement by tracking the reference

distance of cached blocks. Each L2 cache set is partitioned into a Main Cache (MC) and a Shepherd

Cache (SC) that uses FIFO replacement. New blocks are inserted into the SC where the inter-block access

distances are tracked. On block evictions, the cache selects the block that is expected to be accessed

furthest away from the oldest SC block. A somewhat similar approach was taken by Jaleel et al. [14] in

the Re-Reference Interval Predictions (RRIP) eviction policy, which evicts the cache block that will likely

be used in the most distant future.

Cho et al. [6] observed that a large portion of memory references target local variables stored on the

stack (as was also observed much earlier by Ditzel and McLellan [9]). They then propose a compiler-

assisted mechanism that splits the memory stream into local and global accesses, allowing the pipeline to

serve local variables from a small local variable cache (LVC).

21

Lee et al. [18] also target stack references. They show that stack references account for 56% of all

memory reference in SPECint2000 benchmarks, and that the vast majority of stack references are to

offsets smaller than 8KB of the top-of-stack. They therefore propose to use a dedicated stack value file

(SVF), which caches all stack references and thereby reduces memory access latencies, cache accesses,

and memory traffic.

In summary, most of the studies described above target non-L1 caches and involve mechanisms that

are too complex to be efficiently implemented in L1 caches (Shepherd Cache [25], RRIP [14], set dueling

[24], [31]) or rely on the fact that the L2 only views a subset of the memory stream that is filtered

by the L1 cache (ARC [21] and LIP/BIP [23]). The few studies that do target L1 cache performance

specifically address stack references. In contrast, we present a generic mechanism based on a thorough

analysis of L1 memory references, characterization of the mass-count disparity in L1 reference streams,

and the definition of the core working sets concept, where a small subset of memory blocks dominate the

reference stream.

VII. CONCLUSIONS

The growing size and power consumption of processor caches, and the replication of caches in multicore

designs, motivate renewed efforts to improve cache characteristics. One way to do so is by taking cues from

workload patterns. In this vein, the main contributions of this paper are the characterization of the mass-

count disparity phenomenon prevalent in L1 cache workloads, and the design of a random sampling filtered

cache that employs this statistical phenomenon to filter L1 reference streams. In addition, we introduce the

Wordline Look-aside Buffer (WLB) to eliminate the vast majority of expensive fully associative lookups,

leading to a win-win design with both improved overall performance and reduced power consumption.

The skewed distribution of memory references is well-known. Our contribution is in the quantification

of this effect using metrics for mass-count disparity. This quantification reveals that random sampling of

references can be used to effectively identify the core of an application’s working set. This mechanism

is crucial for our design, as it avoids the need for maintaining historical information that has plagued

previous dual cache designs.

Our dual cache design employs a fast, low-power direct-mapped component for the heavily accessed

core, and a smaller fully-associative filter for the more transient data. Specifically, we suggest augmenting

a 16KB cache with a 2KB filter. The sampling probability used to promote a cache line from the filter to

the cache is P = 0.05 for the data stream and P = 0.0005 for instructions. In implementing the filter, a

WLB with only 8 entries was sufficient to avoid ∼80% of the lookups in the costly CAM. This design

yields up to ∼35% improvement in IPC, with an average of ∼10% over all benchmarks — better than a

double size, 4-way set-associative conventional cache. Moreover, it dramatically reduces the overall power

consumption: dynamic power consumption is reduced by ∼70%–80% relative to the double-size cache,

and leakage by over 40%.

While the various components need to be balanced correctly to achieve good performance, our analysis

indicates that the design is not overly sensitive to the design parameters. However, additional research is

needed in order to fully capitalize on these ideas. In particular, effectively integrating caches with variable

response times into the instruction pipeline is an interesting challenge.

REFERENCES

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer system modeling. IEEE Computer, 35(2):59–67,

2002.

[2] M. Behar, A. Mendelson, and A. Kolodny. Trace cache sampling filter. Intl. Conf. on Parallel Arch. and Compilation Techniques

(PACT), pp. 255–266, Sep 2005.

[3] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[4] M. Brehob, S. Wagner, E. Torng, and R. Enbody. Optimal replacement is NP-Hard for nonstandard caches. IEEE Trans. on Computers,

53(1):73–76, 2004.

[5] K. K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F. X. Schumacher, , and J. Zheng. Design of the HP PA 7200 CPU. Hewlett-Packard

Journal, 47(1), Feb 1996.

22

[6] S. Cho, P. C. Yew, and G. Lee. Decoupling local variable accesses in a wide-issue superscalar processor. In Intl. Symp. on Computer

Architecture (ISCA), pages 100–110, 1999.

[7] P. J. Denning. The working set model for program behavior. Comm. ACM, 11(5):323–333, May 1968.

[8] P. J. Denning and S. C. Schwartz. Properties of the working-set model. Comm. ACM, 15(3):191–198, Mar 1972.

[9] D. R. Ditzel and H. R. McLellan. Register allocation for free: The C machine stack cache. In Intl. Conf. on Arch. Support for

Programming Languages & Operating Systems (ASPLOS), pages 48–56, 1982.

[10] Y. Etsion. The Skewed Distribution of Working Sets: Leveraging Randomness for Cache Design. PhD thesis, School of Computer

Science and Engineering, Hebrew University, Oct 2008.

[11] Y. Etsion and D. G. Feitelson. L1 cache filtering through random selection of memory references. In Intl. Conf. on Parallel Arch. and

Compilation Techniques (PACT), pages 235–244, Sep 2007.

[12] Y. Etsion and D. G. Feitelson. Probabilistic prediction of temporal locality. IEEE Computer Architecture Letters, 6(1):17–20, Jan–Jun

2007.

[13] D. G. Feitelson. Metrics for mass-count disparity. In Modeling, Anal. & Simulation of Comput. & Telecomm. Systems (MASCOTS),

pages 61–68, Sep 2006.

[14] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High performance cache replacement using re-reference interval prediction

(RRIP). In Intl. Symp. on Computer Architecture (ISCA), pages 60–71, 2010.

[15] S. Jin and A. Bestavros. Sources and characteristics of web temporal locality. In Modeling, Anal. & Simulation of Comput. & Telecomm.

Systems (MASCOTS), pages 28–35, Aug 2000.

[16] T. L. Johnson, D. A. Connors, M. C. Merten, and W. mei W. Hwu. Run-time cache bypassing. IEEE Trans. on Computers, 48(12):1338–

1354, 1999.

[17] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers. In

Intl. Symp. on Computer Architecture (ISCA), pages 364–373, 1990.

[18] H. H. S. Lee, M. Smelyanskiy, G. S. Tyson, and C. J. Newburn. Stack Value File: Custom microarchitecture for the stack. In Symp.

on High-Performance Computer Architecture (HPCA), pages 5–14, 2001.

[19] M. O. Lorenz. Methods of measuring the concentration of wealth. Publications of the American Statistical Association., 9(70):209–219,

Jun 1905.

[20] S. McFarling. Cache replacement with dynamic exclusion. In Intl. Symp. on Computer Architecture (ISCA), pages 191–200, 1992.

[21] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead replacement cache. In USENIX Conference on File and Storage

Technologies (FAST), 2003.

[22] G.-H. Park, K.-W. Lee, J.-H. Lee, T.-D. Han, and S.-D. Kim. A power efficient cache structure for embedded processors based on

the dual cache structure. In Workshop Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 162–177. Springer

Verlag, 2000.

[23] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive insertion policies for high performance caching. In Intl.

Symp. on Computer Architecture (ISCA), pages 381–391, 2007.

[24] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for MLP-aware cache replacement. In Intl. Symp. on Computer

Architecture (ISCA), pages 167–178, Jun 2006.

[25] K. Rajan and G. Ramaswamy. Emulating optimal replacement with a shepherd cache. In Intl. Symp. on Microarchitecture, pages

445–454, 2007.

[26] J. A. Rivers and E. S. Davidson. Reducing conflicts in direct-mapped caches with a temporality-based design. In Intl. Conf. on Parallel

Processing (ICPP), volume 1, pages 154–163, 1996.

[27] J. Sahuquillo and A. Pont. Splitting the data cache: A survey. IEEE Concurrency, 8(3):30–35, Jul–Sep 2000.

[28] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of Superscalar Processors. Mcgraw-Hill, Jul 2004.

[29] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

[30] Standard Performance Evaluation Corporation. SPEC2000 benchmark suite. http://www.spec.org.

[31] R. Subramanian, Y. Smaragdakis, and G. H. Loh. Adaptive caches: Effective shaping of cache behavior to workloads. In Intl. Symp.

on Microarchitecture, pages 385–396, 2006.

[32] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Technical Report HPL-2006-86, HP Laboratories, Palo Alto, June 2006.

http://quid.hpl.hp.com:9081/cacti/.

[33] S. J. Walsh and J. A. Board. Pollution control caching. In Intl. Conf. on Computer Design (ICCD), pages 300–306, 1995.

[34] N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective. Addison Wesley, 3rd edition, 2005.

BIOGRAPHIES

Yoav Etsion is an Assistant Professor (Senior Lecturer) at the Technion - Israel Institute of Technology,

where he is a member of both Electrical Engineering and Computer Science faculties. He received his

PhD in Computer Science from the Hebrew University of Jerusalem in 2009, and then served as a Senior

Researcher at the Barcelona Supercomputing Center (BSC-CNS). His research interests include high-

performance computer architectures, computer systems, and HW/SW interoperability.

Dror Feitelson received the PhD in Computer Science from the Hebrew University of Jerusalem in

1991, and then worked on parallel systems at the IBM T.J. Watson Research Center. He joined the

faculty of the School of Engineering and Computer Science at Hebrew University in 1995, and heads

the experimental systems lab. His research interests include performance evaluation, and especially the

23

effect of workloads on system performance, and software evolution in open-source systems. He is the

founding co-organizer of JSSPP, the annual series of workshops on Job Scheduling Strategies for Parallel

Processing, and maintains the Parallel Workloads Archive.

