
Implementation of a Wait-Free Syn
hronization PrimitiveThat Solves n-Pro
ess ConsensusDror G. Feitelson Larry RudolphDepartment of Computer S
ien
eThe Hebrew University of Jerusalem91904 Jerusalem, ISRAELAbstra
tSeveral syn
hronization primitives were 
omparedin a re
ent paper by Herlihy [7th PODC, 1988, pp.276{290℄, using their ability to implement wait-free shared data obje
ts as a measure of relativestrength. Wait-free n-pro
ess 
onsensus was shownto be a useful generi
 problem, whose solution fordi�erent values of n 
reates a hierar
hy of primi-tives. Well known primitives su
h as test-and-set,swap, and fet
h-and-add, 
an only solve 2-pro
ess
onsensus, and thus 
annot be used to implementarbitrary wait-free obje
ts. Stronger primitives thatsolve the n-pro
ess version were also suggested inthe paper; these in
lude memory-to-memory swap,
ompare-and-swap, and fet
h-and-
ons. However,it is not 
lear that these primitives 
an be imple-mented in a satisfa
tory manner. In this note a newprimitive that solves the wait-free n-pro
ess 
onsen-sus problem is presented: the fet
h-and-
onditional-swap. This primitive is easily implementable by a
ombining network.Keywords: 
onsensus, read-modify-write, wait-free syn
hronization1 Introdu
tionShared memory allows multiple pro
esses to inter-a
t using few data obje
ts; for example, a broad-
ast 
an be implemented by having the transmitterwrite to a shared 
ell and then having the re
eiversread from it. The problem with su
h a s
heme isthat if the transmitter is delayed for some internalreason, the re
eivers must wait for it. The solutionis to try not to use operations su
h as broad
ast,where many pro
esses are dependent on the a
tiv-ities of one other pro
ess; rather, symmetri
 oper-ations are used in whi
h all pro
esses play a sim-ilar non-
riti
al role. In addition, the intera
tions

should be wait-free, meaning that any pro
ess isguaranteed to 
omplete its part in the intera
tionregardless of the progress of the others.A 
omparison of some well-known primitives,based on the wait-free obje
ts that they 
an imple-ment, was reported re
ently by Herlihy [2℄. At theheart of his work lies the problem of wait-free n-pro
ess 
onsensus: n pro
esses ea
h start out withindividual preferred values, and they must rea
han agreement on one of these values. A naive solu-tion would be to de
ompose the problem into twoparts: �rst 
hoose a leader, and then broad
ast theleader's preferred value. However, the 
hosen leadermight go to a party to 
elebrate its vi
tory and for-get to broad
ast the value, thus leaving his follow-ers in suspense. Therefore the a
tions of 
hoosingthe value and broad
asting it must be 
ombined insome way into one atomi
 operation.Herlihy uses n-pro
ess 
onsensus in two ways.First, he uses it to form a hierar
hy of operations:1. Read/write memory 
ells 
annot solve wait-free 2-pro
ess 
onsensus.2. Any non-trivial read-modify-write operation
an solve wait-free 2-pro
ess 
onsensus, butmost 
annot solve 3-pro
ess 
onsensus. Thisin
ludes test-and-set, swap, fet
h-and-add, andFIFO queues.3. Several primitives do solve the general n-pro
ess
onsensus problem. These in
lude memory-to-memory move and swap, 
ompare-and-swap,n-register assignment, fet
h-and-
ons, and anaugmented FIFO queue.Se
ond, he shows that primitives that solve thewait-free n-pro
ess 
onsensus problem are univer-sal, in the sense that they 
an implement any wait-free obje
t.The main problem with Herlihy's results is thatthe primitives he suggests are not so primitive; in
Page 1



fa
t, it seems doubtful whether they 
an be imple-mented eÆ
iently at all. The purpose of this note isto present a new primitive that is simple to imple-ment, and solves the wait-free n-pro
ess 
onsensusproblem; this is done in the next se
tion. The �nalse
tion evaluates the signi�
an
e of this result.2 Fet
h-and-Conditional-SwapThe only way to implement a shared obje
t thatsupports highly 
on
urrent a

ess by multiple pro-
esses is by use of a 
ombining multi-stage inter-
onne
tion network [3℄. Su
h networks are indeedutilized by resear
h prototypes like the NYU ultra-
omputer [1℄ and IBM RP3 [4℄. Other methods usearbitration me
hanisms to perform only one of aset of 
on
urrent requests addressed at the sameobje
t, and thus for
e serial exe
ution when 
on-
urrent a

ess is attempted.Combining pro
eeds as follows. The inter
on-ne
tion network is a multi-stage pa
ket-swit
hednetwork that 
onne
ts pro
essors to memory mod-ules. A

ess requests are taken to be read-modify-write operations of the form < addr; f >, whereaddr is an address in the shared memory and f isa fun
tion that spe
i�es how to update the 
on-tents of that address. Su
h requests return theold 
ontents of the address. When two requests< addr; f > and < addr; g > dire
ted at the sameaddress arrive at the same network node, they are
ombined and the uni�ed request < addr; g Æf > isforwarded to the relevant memory module (whereg Æ f is the 
omposition of g and f , i.e. g Æ f(x) =g(f(x))). When the return value v is re
eived bythe node, it is propagated ba
k as a response to the�rst request. Then f(v) is 
al
ulated, and sent asa response to the se
ond request. The �nal e�e
t isequivalent to a s
enario in whi
h the �rst requestwas served before the se
ond one [3℄.Not all types of fun
tions 
an be 
ombined, how-ever. Using the symbols of the above example, we
an identify the following two requirements thatmust be ful�lled for 
ombining to be pra
ti
al:1. The 
omposition of fun
tions g Æ f must beeasy to 
ompute.2. The representation of g Æf should not requiremore spa
e than the representations of f orof g.The syn
hronization primitives suggested by Her-lihy are not suitable for 
ombining:

� Memory-to-memory swap: this instru
tion ad-dresses two memory lo
ations, and thus un-dermines the whole basis of a 
ombining net-work's operation. These networks 
an han-dle multiple requests that propagate from thepro
essors to the memory modules, but 
an-not handle dire
t intera
tion among the pro-
essors or among the memory modules.� Compare-and-swap: ea
h 
ompare-and-swaprequires the address 
ontents to be 
omparedwith another spe
i�ed value; when su
h re-quests are 
ombined all the values must prop-agate on, and a
tually all the work must bedone serially at the memory module.� Fet
h-and-
ons: ea
h fet
h-and-
ons requiresanother element to be added to the head ofa list. Therefore when many are 
ombined,many new elements must be transferred withthe request.The proposed primitive, fet
h-and-
onditional-swap, is based on the observation that a restri
tedversion of 
ompare-and-swap is suÆ
ient for solv-ing the n-pro
ess 
onsensus problem. The initialvalue of the shared memory lo
ation is ?. All thepro
esses 
he
k for this same value, to see if theyare �rst; if so, they substitute it with their pre-ferred value. If the value they see is not ?, theyinfer that another pro
ess arrived before them; inthis 
ase they just read its preferred value.Formally, fet
h-and-
onditional-swap is de�nedas a read-modify-write operation su
h that the fun
-tion f asso
iated with a memory a

ess request is�x y: if x = ? then y else x;where x is the 
ontents of memory and y is thepreferred value of the pro
ess. Two requests withpreferred values y1 and y2 are 
ombined by arbitrar-ily 
hoosing one of them and sending it on; assumeit is y1. When the return value v arrives, the tworeturn values are generated as follows: if v = ?,return ? to the pro
ess that had sent y1 and re-turn y1 to the pro
ess that had sent y2. If it is not,return v to both. Obviously, the hardware neededto implement the 
ombining is small, and there isno overhead in the size of the 
ombined request.It should be noted that fet
h-and-
onditional-swap is a restri
ted version of the data-level syn-
hronization primitives suggested by Kruskal, Rudo-plph, and Snir [3℄. These are primitives that per-form an operation on a shared variable, 
onditionedon the state that the variable is in. If the number of
Page 2



possible states is small, as it is in our 
ase, eÆ
ient
ombining is possible. This also explains why thefull 
ompare-and-swap 
annot be 
ombined: it ef-fe
tively uses the whole memory-word 
ontents as astate variable, and thus has an exponential numberof states.3 EvaluationThe fet
h-and-
onditional-swap primitive introdu
edin this note allows for a wait-free solution to the n-pro
ess 
onsensus problem; this is interesting in itsown right, as 
onsensus is a basi
 problem in 
on-
urrent systems. In addition, it is a simple andpra
ti
al universal wait-free primitive, using Her-lihy's 
onstru
tion for implementing fet
h-and-
onsbased on 
onsensus and then inplementing any wait-free obje
t by use of fet
h-and-
ons. As Herlihynotes, however, this 
onstru
tion is too ineÆ
ient tobe 
onsidered useful for pra
ti
al purposes. There-fore is seems that the universality of the new prim-itive is of a
ademi
 interest only.It is natural to ask whether this de�
ien
y isspe
i�
 to fet
h-and-
onditional-swap, in whi
h 
aseother primitives ought to be sought, or maybe it isinherent in the 
on
ept of universal wait-free prim-itives. The answer probably lies in between, spe
if-i
ally in the use of fet
h-and-
ons as an interme-diate step in the redu
tion of an arbitrary obje
tto a wait-free implementation using n-pro
ess 
on-sensus. The problem is that fet
h-and-
ons impliesa

ess to two shared memory lo
ations at on
e: oneis the pointer to the head of the list, whi
h is madeto point at the new element, and the other is the\next" pointer of the new element, whi
h is made topoint at the element whi
h was previously pointedat by the head. Thus fet
h-and-
ons is similar to amemory-to-memory swap at a very basi
 level.Realization of a pra
ti
al universal wait-free prim-itive therefore requires a solution to one of the fol-lowing problems:1. Find an eÆ
ient and pra
ti
al implementa-tion of memory-to-memory swap.2. Find a dire
t method to generate a wait-freeimplementation of a 
on
urrent obje
t, usingn-pro
ess 
onsensus but avoiding fet
h-and-
ons.

Referen
es[1℄ A. Gottlieb, R. Grishman, C. P. Kruskal,K. P. M
Auli�e, L. Rudolph, and M. Snir, \TheNYU Ultra
omputer | designing an MIMDshared memory parallel 
omputer". IEEETrans. Computers C-32(2), pp. 175{189, Feb1983.[2℄ M. P. Herlihy, \Impossibility and universalityresults for wait-free syn
hronization". In Pro
.7th Symp. Prin
iples of Distributed Computing,pp. 276{290, 1988.[3℄ C. P. Kruskal, L. Rudolph, and M. Snir, \Ef-�
ient syn
hronization on multipro
essors withshared memory". ACM Trans. ProgrammingLanguages and Systems 10(4), pp. 579{601,O
t 1988.[4℄ G. F. P�ster, W. C. Brantley, D. A. George,S. L. Harvey, W. J. Kleinfelder, K. P. M
Auli�e,E. A. Melton, V. A. Norton, and J. Weiss,\The IBM resear
h parallel pro
essor prototype(RP3): introdu
tion and ar
hite
ture". In Intl.Conf. Parallel Pro
essing, pp. 764{771, 1985.

Page 3


