Implementation of a Wait-Free Synchronization Primitive

That Solves n-Process Consensus

Dror G. Feitelson

Larry Rudolph

Department of Computer Science

The Hebrew University of Jerusalem
91904 Jerusalem, ISRAEL

Abstract

Several synchronization primitives were compared
in a recent paper by Herlihy [7th PODC, 1988, pp.
276-290], using their ability to implement wait-
free shared data objects as a measure of relative
strength. Wait-free n-process consensus was shown
to be a useful generic problem, whose solution for
different values of n creates a hierarchy of primi-
tives. Well known primitives such as test-and-set,
swap, and fetch-and-add, can only solve 2-process
consensus, and thus cannot be used to implement
arbitrary wait-free objects. Stronger primitives that
solve the n-process version were also suggested in
the paper; these include memory-to-memory swap,
compare-and-swap, and fetch-and-cons. However,
it is not clear that these primitives can be imple-
mented in a satisfactory manner. In this note a new
primitive that solves the wait-free n-process consen-
sus problem is presented: the fetch-and-conditional-
swap. This primitive is easily implementable by a
combining network.

Keywords: consensus, read-modify-write, wait-
free synchronization

1 Introduction

Shared memory allows multiple processes to inter-
act using few data objects; for example, a broad-
cast can be implemented by having the transmitter
write to a shared cell and then having the receivers
read from it. The problem with such a scheme is
that if the transmitter is delayed for some internal
reason, the receivers must wait for it. The solution
is to try not to use operations such as broadcast,
where many processes are dependent on the activ-
ities of one other process; rather, symmetric oper-
ations are used in which all processes play a sim-
ilar non-critical role. In addition, the interactions

should be wait-free, meaning that any process is
guaranteed to complete its part in the interaction
regardless of the progress of the others.

A comparison of some well-known primitives,
based on the wait-free objects that they can imple-
ment, was reported recently by Herlihy [2]. At the
heart of his work lies the problem of wait-free n-
process consensus: n processes each start out with
individual preferred values, and they must reach
an agreement on one of these values. A naive solu-
tion would be to decompose the problem into two
parts: first choose a leader, and then broadcast the
leader’s preferred value. However, the chosen leader
might go to a party to celebrate its victory and for-
get to broadcast the value, thus leaving his follow-
ers in suspense. Therefore the actions of choosing
the value and broadcasting it must be combined in
some way into one atomic operation.

Herlihy uses n-process consensus in two ways.
First, he uses it to form a hierarchy of operations:

1. Read/write memory cells cannot solve wait-
free 2-process consensus.

2. Any non-trivial read-modify-write operation
can solve wait-free 2-process consensus, but
most cannot solve 3-process consensus. This
includes test-and-set, swap, fetch-and-add, and
FIFO queues.

3. Several primitives do solve the general n-process
consensus problem. These include memory-
to-memory move and swap, compare-and-swap,
n-register assignment, fetch-and-cons, and an
augmented FIFO queue.

Second, he shows that primitives that solve the
wait-free n-process consensus problem are univer-
sal, in the sense that they can implement any wait-
free object.

The main problem with Herlihy’s results is that
the primitives he suggests are not so primitive; in

Page 1



fact, it seems doubtful whether they can be imple-
mented efficiently at all. The purpose of this note is
to present a new primitive that is simple to imple-
ment, and solves the wait-free n-process consensus
problem; this is done in the next section. The final
section evaluates the significance of this result.

2 Fetch-and-Conditional-Swap

The only way to implement a shared object that
supports highly concurrent access by multiple pro-
cesses is by use of a combining multi-stage inter-
connection network [3]. Such networks are indeed
utilized by research prototypes like the NYU ultra-
computer [1] and IBM RP3 [4]. Other methods use
arbitration mechanisms to perform only one of a
set of concurrent requests addressed at the same
object, and thus force serial execution when con-
current access is attempted.

Combining proceeds as follows. The intercon-
nection network is a multi-stage packet-switched
network that connects processors to memory mod-
ules. Access requests are taken to be read-modify-
write operations of the form < addr, f >, where
addr is an address in the shared memory and f is
a function that specifies how to update the con-
tents of that address. Such requests return the
old contents of the address. When two requests
< addr, f > and < addr,g > directed at the same
address arrive at the same network node, they are
combined and the unified request < addr,go f > is
forwarded to the relevant memory module (where
g o f is the composition of g and f, i.e. go f(z) =
9(f(z))). When the return value v is received by
the node, it is propagated back as a response to the
first request. Then f(v) is calculated, and sent as
a response to the second request. The final effect is
equivalent to a scenario in which the first request
was served before the second one [3].

Not all types of functions can be combined, how-
ever. Using the symbols of the above example, we
can identify the following two requirements that
must be fulfilled for combining to be practical:

1. The composition of functions g o f must be
easy to compute.

2. The representation of g o f should not require
more space than the representations of f or
of g.

The synchronization primitives suggested by Her-
lihy are not suitable for combining:

e Memory-to-memory swap: this instruction ad-
dresses two memory locations, and thus un-
dermines the whole basis of a combining net-
work’s operation. These networks can han-
dle multiple requests that propagate from the
processors to the memory modules, but can-
not handle direct interaction among the pro-
cessors or among the memory modules.

e Compare-and-swap: each compare-and-swap
requires the address contents to be compared
with another specified value; when such re-
quests are combined all the values must prop-
agate on, and actually all the work must be
done serially at the memory module.

e Fetch-and-cons: each fetch-and-cons requires
another element to be added to the head of
a list. Therefore when many are combined,
many new elements must be transferred with
the request.

The proposed primitive, fetch-and-conditional-
swap, is based on the observation that a restricted
version of compare-and-swap is sufficient for solv-
ing the n-process consensus problem. The initial
value of the shared memory location is L. All the
processes check for this same value, to see if they
are first; if so, they substitute it with their pre-
ferred value. If the value they see is not L, they
infer that another process arrived before them; in
this case they just read its preferred value.

Formally, fetch-and-conditional-swap is defined
as a read-modify-write operation such that the func-
tion f associated with a memory access request is

Azy.if £ = 1 then y else z,

where z is the contents of memory and y is the
preferred value of the process. Two requests with
preferred values y; and y, are combined by arbitrar-
ily choosing one of them and sending it on; assume
it is y1. When the return value v arrives, the two
return values are generated as follows: if v = 1,
return L to the process that had sent y; and re-
turn y; to the process that had sent y,. If it is not,
return v to both. Obviously, the hardware needed
to implement the combining is small, and there is
no overhead in the size of the combined request.

It should be noted that fetch-and-conditional-
swap is a restricted version of the data-level syn-
chronization primitives suggested by Kruskal, Rudo-
plph, and Snir [3]. These are primitives that per-
form an operation on a shared variable, conditioned
on the state that the variable is in. If the number of

Page 2



possible states is small, as it is in our case, efficient
combining is possible. This also explains why the
full compare-and-swap cannot be combined: it ef-
fectively uses the whole memory-word contents as a
state variable, and thus has an exponential number
of states.

3 Evaluation

The fetch-and-conditional-swap primitive introduced
in this note allows for a wait-free solution to the n-
process consensus problem; this is interesting in its
own right, as consensus is a basic problem in con-
current systems. In addition, it is a simple and
practical universal wait-free primitive, using Her-
lihy’s construction for implementing fetch-and-cons
based on consensus and then inplementing any wait-
free object by use of fetch-and-cons. As Herlihy
notes, however, this construction is too inefficient to
be considered useful for practical purposes. There-
fore is seems that the universality of the new prim-
itive is of academic interest only.

It is natural to ask whether this deficiency is
specific to fetch-and-conditional-swap, in which case
other primitives ought to be sought, or maybe it is
inherent in the concept of universal wait-free prim-
itives. The answer probably lies in between, specif-
ically in the use of fetch-and-cons as an interme-
diate step in the reduction of an arbitrary object
to a wait-free implementation using n-process con-
sensus. The problem is that fetch-and-cons implies
access to two shared memory locations at once: one
is the pointer to the head of the list, which is made
to point at the new element, and the other is the
“next” pointer of the new element, which is made to
point at the element which was previously pointed
at by the head. Thus fetch-and-cons is similar to a
memory-to-memory swap at a very basic level.

Realization of a practical universal wait-free prim-
itive therefore requires a solution to one of the fol-
lowing problems:

1. Find an efficient and practical implementa-
tion of memory-to-memory swap.

2. Find a direct method to generate a wait-free
implementation of a concurrent object, using
n-process consensus but avoiding fetch-and-
cons.

References

[1] A. Gottlieb, R. Grishman, C. P. Kruskal,
K. P. McAuliffe, L. Rudolph, and M. Snir, “The
NYU Ultracomputer — designing an MIMD
shared memory parallel computer”. IEEE
Trans. Computers C-32(2), pp. 175-189, Feb
1983.

[2] M. P. Herlihy, “Impossibility and universality
results for wait-free synchronization”. In Proc.
7th Symp. Principles of Distributed Computing,
pp- 276-290, 1988.

[3] C. P. Kruskal, L. Rudolph, and M. Snir, “Ef-
ficient synchronization on multiprocessors with
shared memory”. ACM Trans. Programming
Languages and Systems 10(4), pp. 579-601,
Oct 1988.

[4] G. F. Pfister, W. C. Brantley, D. A. George,
S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe,
E. A. Melton, V. A. Norton, and J. Weiss,
“The IBM research parallel processor prototype
(RP3): introduction and architecture”. In Intl.
Conf. Parallel Processing, pp. 764-771, 1985.

Page 3



