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Abstract

Unequal cell division is a common event during development. We
have formulated a model that predicts significant differences in the
expression of an activator gene that are strictly dependent on cell
size. The model is based on well known aspects of the regulation of
gene expression, specifically the existence of multiple regulatory sites,
positive autoregulation, and the short half-life of regulatory proteins.

1 Introduction

Differentiation is a basic process during the development of multicellular or-
ganisms, leading to the creation of diverse cell types. This requires that the
two products of a cell division assume different identities. There is evidence
for two mechanisms which may be responsible for the determination of cell
identity: one is unequal distribution of genetic information, proteins, and
RNA in the mother cell, and the other is cell-cell interactions that provide
different environments for the two cells. We wish to show how unequal cell di-
vision may serve as a mechanism that drives cell fate determination, through
its effect on gene expression.

In many cases it seems that cell differentiation is a hierarchical process,
governed by master regulatory genes. These genes regulate the expression
of specialized gene sets whose products determine the identity of the differ-
entiated cell (Herskowitz, 1989). Thus it is possible to view the expression
of a master regulatory gene (henceforth called the “activator”) as the deter-
minative event in the differentiation process. We will therefore focus on the
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expression of the activator, and show how very different levels of expression
may arise in small and large cells.

We assume that the two products of cell division express basal levels of
the activator gene. This low-level expression is not sufficient for the activa-
tion of the genes that require the activator’s product for their expression, and
the product does not accumulate due to degradation (it is often the case that
regulatory proteins have short life times). The activator is also assumed to
have positive autoregulation. We assume that the rate of transcription and
the rate of degradation do not depend on cell size. However, the concentra-
tion of the gene’s product will be larger in a smaller volume. Thus unequal
cell division will cause a certain difference in the concentration of the acti-
vator gene’s product. If the concentration of the product in the smaller cell
passes a certain threshold, then autoregulation will take effect. Autoregu-
lation can then amplify this small difference, by a positive feedback effect,
leading to a high level of expression. This will switch on all the genes that
depend on the activator. The nonlinear dependence of the autoregulation on
the concentration is modeled by assuming strongly cooperative binding in
multiple binding sites. This threshold mechanism is essentially the same as
that proposed by Lewis et. al. (1977).

Sporulation in the usually unicellular prokaryote B. subtilis is one example
of a system that matches many aspects of our model. The process starts with
unequal cell division (Kunkel, 1991). The smaller cell differentiates into the
spore cell, and the larger cell develops into the mother cell. The spoIIIG

gene is the activator of the spore specific genes. Two modes of expression
where shown for this gene: basal expression which is not specific to the
spore cell, and a higher spore-specific expression which is dependent on the
product of the spoIIIG gene itself (Karmazyn-Campelli et. al., 1989). It is
possible that the difference in size between the mother cell and the spore cell
may trigger the change in the mode of expression of the spoIIIG gene. The
analogy between this system and the model breaks down when the nonlinear
autoregulation is considered, because spoIIIG has a single binding site. This
issue is elaborated in the discussion, where other possibilities are presented.

The patterns of cell division during the development of multicellular or-
ganisms are highly regulated. Unequal cell division is a well documented
phenomenon during the early development of many organisms. For example,
it is seen in C. elegans (Kimble, 1981b; Sulston and Horvitz, 1977) and sea
urchin (Hörstadius, 1973). There are a number of examples where cell size
correlates with cell fate determination. In C. elegans unequal cell divisions
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create cells that differ in the cell lineages that they produce. Laser ablation
of neighboring cells can sometimes change the polarity of these unequal cell
divisions, and this correlates with changes in the polarity of the ensuing cell
lineages (Kimble, 1981a). A possible interpretation for this is that cell-cell
interactions regulate the polarity of the division, and that the unequal cell
division directly determines the developmental fate, as our model suggests.
Another example is provided by the lin-17 mutation. This mutation may
cause cell divisions that are normally unequal to produce daughter cells with
equal sizes (Sternberg and Horvitz, 1988). The products of such equal divi-
sions have the same developmental fates, whereas the unequal cells produced
normally have different fates. Again, a possible interpretation is that the
lin-17 mutation affects the equality of the division, which determines the
daughter cells’ fates.

In sea urchin, four cells undergo unequal cell division in the forth cleavage,
and their smaller daughter cells undergo unequal division again in the fifth
cleavage. The larger products of this second unequal division are the founder
cells of the primary skeletogenic mesenchyme, while their smaller sisters are
the founders of the small micromers which produce the coelomic pouches
(Cameron and Davidson, 1991). Again the correlation between cell size and
cell fate seems to agree with our model; however, the close proximity of these
cells may also be the cause for their undertaking the same fates.

The basic ideas underlying our model (that cell size may influence gene
expression and that an amplification mechanism is required) were suggested
by Sternberg in the context of mother-daughter asymmetric HO expression
in the yeast S. cerevisiae (Sternberg, 1987). However, it seems that in this
specific case a mechanism other than cell size is at work (Nasmyth et. al.,
1987).

2 Model and Results

Let us now formalize the proposed model. Positive autoregulation exists
when the promoter for a gene’s transcription includes a binding site for its
own product. If there are multiple binding sites, the gene is transcribed only
when all the sites are occupied. Assuming strong cooperativity of binding
(a Hill coefficient of n), the probability that n binding sites are occupied
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Figure 1: A plot of the saturation as a function of product concentration, given
by equation (1). The dashed line is for n = 1, and the others are for n = 2, 4,
6, 8, and 10. The dissociation constant is k = 1; it dictates the point at which
all the curves intersect. Note that for n > 1 these curves are sigmoids, indicating
that in practice the n binding sites will be occupied simultaneously only if the
concentration exceeds a certain threshold.

simultaneously is given by

Y =
[q]n

k + [q]n
, (1)

where [q] denotes the concentration of the product, k is the dissociation
constant, and Y is the saturation. This is plotted in figure 1 for different
values of n, showing that for n > 1 autoregulation can only take effect if
the concentration passes a certain threshold. This equation, which is well
known in enzymology (Creighton, 1984), assumes that all the binding sites
are equivalent and that binding is an “all or nothing” event.

Apart from the induced transcription due to autoregulation, there is also
some basal transcription that does not depend on the gene’s product. The
total rate at which the product is generated is therefore

∂q
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∣
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= β + α
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(q/V )n

k + (q/V )n

)

, (2)
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where α is the rate of induced transcription (when all the binding sites are
occupied), β is the rate of basal transcription, and we use [q] = q/V to
introduce the dependency on the cell volume.

Countering this generative process is a process by which the product
degrades. We make the simplest possible assumption about this process,
namely that the rate of degradation is proportional to the current quantity
of the product:

∂q

∂t

∣

∣

∣

∣

∣

deg

= −
q

τ
. (3)

This means that with no generation the product quantity would decrease
exponentially with a half-life time of τ .

The Two Stable States

A stable state is achieved when the transcription rate is equal to the degra-
dation rate, i.e. when equation (2) equals the absolute value of equation (3).
The two functions are plotted together in figure 2. It is seen that there
may be either one or three intersections, depending on the values of various
parameters (the critical cases of two intersections are of no practical inter-
est, except to delimit the range in which three intersections occur). Stable
states are represented by intersections such that at slightly higher quantities
of the product the degradation is larger than the production, while at lower
quantities the production is higher than the degradation.

Keeping all the parameters fixed, we find that there are two critical values
that divide the volumes into three ranges (figure 3 (a)). For small volumes
there is only one stable state, in which the quantity of the product is high due
to autoregulation: it is approximately q = (α+β)τ . For large volumes there
is also only one stable state, but in this case the quantity of the product is
low, corresponding to the basal transcription rate: q = βτ . For intermediate
volumes both stable states are possible (the middle intersection is not stable).
Assuming that the quantity of the product is low to begin with, the cell will
enter the low stable state and stay there. However, if the cell starts out small,
so that the product reaches the high level, it will stay in the high level even
if the cell subsequently grows into the middle range (dashed line in figure).
This property is a result of the positive feedback, and is important for the
maintenance of the cell’s new identity (Lewis et. al., 1977). In particular,
it means that the state that is observed depends on the history of the cell’s
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Figure 2: Plotting the rate at which the product is produced against the rate in
which it degrades identifies intersections that denote steady states. The six curves
show the rate that the product is generated at volumes of V = 4, 8, 12, 16, 20,
and 24, from left to right (equation (2), with α = 10, β = 1, k = 1, and n = 4).
The diagonal line represents the linear degradation (absolute value of equation (3),
with τ = 3). For low volumes ( lines) there is only one stable state, where
the quantity of the product is high due to autoregulation. For higher volumes
( lines) there are three intersections, two of which represent stable states.
Assuming that we start with a small amount of the product, the lower one will
be observed. In this state the quantity of the product corresponds to the basal
transcription. For very large volumes ( lines) there is only one stable state,
with the same low quantity.
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Figure 3: The steady state of the product was found by starting with q = 0, and
using equations (2) and (3) iteratively until a steady state was reached. (a) shows
the results as a function of V , for α = 10, β = 1, k = 1, τ = 3, and n = 4. The
three ranges of volumes are V ≤ 9, 10 ≤ V ≤ 19, and V ≥ 20. In the first range
the high steady state is observed, while in the other two cells settle into the low
steady state. However, if a small cell subsequently grows into the middle range,
it will remain in the high steady state (dashed line). The concentration of the
product in small cells is larger than in big cells both because the absolute quantity
is larger, and because the volume is smaller. This effect is plotted in (b). Pairs of
data points symmetrical on both sides of V = 9 were used.

size.
Figure 3 (a) gives the quantity of the product that is found in cells of var-

ious sizes, and figure 4 shows how it depends on the ratio of α to β. But the
activity of the product depends on the concentration, not on the absolute
quantity. It is therefore interesting to see how the concentration changes.
Near the critical volume, very small changes in cell size can cause very large
changes in the concentration. Figure 3 (b) plots the ratio of product concen-
tration in the small and large cells as a function of the ratio of volumes. It
should also be remembered that the volume is cubic in the diameter. Thus
an increase of only 26% in the cell diameter leads to a doubling of the vol-
ume (1.263 = 2.000376), and a 21-fold decrease in the concentration (for the
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Figure 4: The calculation used in fig. 3 (a) is repeated here for different ratios of
α/β. The parameters are n = 2, τ = 3, k = 0.5, β = 1, and α = 5, 10, and 15. For
α = 5 there is no sharp threshold, as expected from the data in table 1. When
α is big enough, a bistable region is formed, and the larger the ratio of α/β, the
wider this region is.

parameters in our example). In general, the concentration ratio is

[q]small

[q]large
=

(α + β)Vlarge

βVsmall

. (4)

If the smaller cell subsequently grows, the concentration ratio will be reduced
accordingly.

Finding the Threshold Volumes

The dynamics of the system depend of course on the model’s parameters. It
is especially interesting to find the threshold volumes as a function of these
parameters. To do so, we note that the threshold volumes are characterized
by the fact that the graph of equation (2) is tangential to the graph of equa-
tion (3) (see figure 2). This leads to the following two conditions. First, the
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n 2 3 4 5 6

α/β 8 3 1.78 1.25 0.96

Table 1: Minimal ratios of α to β needed for bistability.

generation rate must equal the degradation rate:

β + α

(

(q/V )n

k + (q/V )n

)

=
q

τ
, (5)

and second, the derivatives of these two functions must be equal:

αn
V
(q/V )n−1

k + (q/V )n

(

1−
(q/V )n

k + (q/V )n

)

=
1

τ
. (6)

By substituting the left-hand side of equation (6) for 1
τ
in the right-hand side

of equation (5), we get the following quadratic equation in the saturation:

αn

(

(q/V )n

k + (q/V )n

)2

− α(n− 1)

(

(q/V )n

k + (q/V )n

)

+ β = 0. (7)

Using the formula for the solution of a quadratic equation, we can express
the two solutions as

Y1,2 =
α(n− 1)±

√

α2(n− 1)2 − 4αnβ

2αn
. (8)

Obviously, if the discriminant is negative, there is no solution. When this
happens there is no range of volumes where the cell can have two stable
states. In particular, there is no threshold volume such that very different
levels of expression will be observed on its two sides. This immediately leads
to a necessary condition for bistability and the resulting threshold effect,
namely that

α

β
>

4n

(n− 1)2
(9)

The minimal allowed ratios of α to β for different values of n are shown
in table 1. It is seen that in most cases this is not a severe restriction, as the
transcription rate with autoregulation may be expected to be substantially
larger than the basal rate. If the ratio is too small, we still get a higher level
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of expression in smaller cells, but the transition from “small” to “large” is
gradual rather than abrupt (figure 4).

returning to equation (8), we complete the discriminant to a square by

adding a factor of
(

2nβ
n−1

)2
. Assuming as we do that α is much larger than β,

this introduces a negligible error. The solutions are then found to be

Y1 =
β

α(n− 1)
and Y2 =

n− 1

n
−

β

α(n− 1)
. (10)

These values may be plugged into equation (5) to yield solutions in terms of
q rather than Y . Finally, based on the knowledge of q and Y , we can use the
original expression for Y (equation (1)) to express the result in terms of the
volume V . The two thresholds are found to occur at

V1 = τ β n
n−1

n

√

α(n−1)−β

k β

V2 = τ
(

n−1
n

α + n−2
n−1

β
)

n

√

α(n−1)+βn

αk(n−1)2−βkn

(11)

The second expression especially is ungainly. We can arrive at a simpler one
by using n−1

n
as an approximation for Y2, rather than the original expression

in equation (10). This is again reasonable because α is much larger than β.
The result using this approximation is

V2 = τ
(

n−1
n

α + β
) 1

n

√

k(n− 1)
. (12)

We have conducted extensive tests for a large number of combinations of
parameters to validate these approximations and results. In each case, the
real threshold values were found by using equations (2) and (3) directly, as
described in the caption of figure 3. These were compared with the the values
calculated from equations (11) and (12) above. The agreement in all cases
was excellent. For example, the numbers for the parameters used in figure 3
are V1 = 9.28 and V2 = 19.38.

An important point is that the threshold volume that distinguishes be-
tween small and large cells, V1 in equation (11), may be quite large for certain
sets of parameters. This means that the smaller daughter cell does not have
to be extremely small for the model to work. The ratio of α to β dictates
the ratio of product levels in the two steady states. The absolute levels are
given by these parameters multiplied by τ . Thus a large τ raises the product
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quantities at steady state. As a result, it also raises the threshold volumes,
and allows larger cells to enter the high steady state. A small k also raises the
threshold volumes, because it indicates that binding occurs at lower levels
of the product. A large n, on the other hand, reduces the threshold volume,
because when more binding sites need to be occupied higher concentrations
are required.

3 Discussion

An important aspect of the model is that the activator gene may have two
very different stable states of expression over a relatively wide range of vol-
umes. This bistable behavior implies that the observed state depends on the
cell size history, and not only on the current size. It can also explain how
a transitive difference in cell size can lead to an epigenetic change which is
stably inherited.

Stable inheritance can work in two ways: either the same mechanism may
continue to work whenever a cell divides, or the initial differentiation may
trigger some other change that is then permanently maintained (Heemskerk
et. al., 1991). In cases of epigenetic inheritance where there are switches
back and forth, it seems plausible that the same mechanism is at work. This
requires that the top threshold be at least twice as large as the bottom one,
i.e. that V2 ≥ 2V1. To see this, consider what happens during normal cell
division. To guarantee stable inheritance, a growing cell should not pass the
V2 threshold. In addition, when a cell divides, its daughter cells should not
be smaller than the V1 threshold. This implies that the sizes of both the
mature cell which is dividing and its newly formed daughter cells must be
within the bistable region. As the mother cell is at least twice the size of the
smaller daughter cell, the condition follows.

Occasional switching may occur due to fluctuations in cell size under the
following conditions. The mature cell size should be just a little bit smaller
than the V2 threshold, which is just a little bit larger than twice the V1

threshold. Whenever a mature cell happens to grow beyond V2, the level
of expression in it will drop to the basal level, and this will be inherited by
its descendants. On the other hand, whenever a cell divides and one of the
daughter cells happens to be smaller than V1, the level of expression in it will
go up due to autoregulation. this too will be inherited by its descendants.

We can find the ratio of V2 to V1 using equations (11) and (12). The
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Figure 5: Stable inheritance can occur if V2/V1 ≥ 2. This ratio is expressed by
equation (13). Note that it depends only on n and on the ratio α/β. It is plotted
here for several values of n.

result is

V2

V1

=

[

n− 1

n
+
(

n− 1

n

)2 α

β

]

1

n

√

(n− 1)2 α
β
− (n− 1)

. (13)

Figure 5 shows how this ratio depends on the ratio α/β for different values
of n. For small n, rather large ratios of α to β are needed to make this model
applicable, but for larger n the necessary ratios are perfectly reasonable.

The weakest point in the model is the assumption that the autoregulation
depends on multiple binding sites with highly cooperative binding. Multiple
binding sites with strong cooperativity are known to exist in the regulatory
regions of various eukaryotic genes (Struhl et. al., 1989; Fromental et. al.,
1988). For example, it has been suggested that cooperative binding and
the resulting threshold property provide a mechanism for the differential
regulation of downstream genes by the bicoid morphogen gradient in early
Drosophila development (Struhl et. al., 1989). Likewise, cooperative binding
of the λ repressor plays a role in the switch between lysogeny and lytic growth
in phage λ (Johnson et. al., 1981).
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However, in real biological systems one rarely finds such simple and clear-
cut situations as the one used in our model. Rather, the different binding sites
may have different affinities, and binding at one site may affect the affinity
of another. In addition, various complexes may be required for the binding
to succeed. Obviously, a detailed model of such a system would be very hard
to analyze, and would also require a large number of parameters. The highly
cooperative binding model that we used has only one parameter, k, and leads
to tractable formulas. In addition, it is reasonable to believe that all other
binding patterns that have a similar (i.e. sigmoid) nature would give similar
results. For example, it has been suggested that multi-component complexes
might also require that the concentration of their components pass a certain
threshold for their formation (Frankel and Kim, 1991). The mechanism in
B. subtilis may be of this type, since spoIIIG has only one binding site in its
5’ upstream region.

Our model demonstrates that unequal cell division may cause changes in
a gene’s expression in the smaller cell. Changing the rate of transcription of
a transcriptional activator is the first step in the process that changes the
whole pattern of gene expression in the smaller cell. Differentiation of the
larger cell can be a result of a default mechanism, or alternatively cell-cell
interactions with the sister cell may determine the larger cell’s identity. The
lin-17 mutations in C. elegans sometimes result in both (equal) daughter cells
producing abnormal cell lineages (Sternberg and Horvitz, 1988), indicating
that interactions with the differentiated smaller cell may be important in this
case.

It should be noted that the question of what causes unequal cell divi-
sions is left open. However, this phenomenon is known to exist. The main
contribution of our model is to show how easily this phenomenon can affect
gene expression, to identify the necessary components (especially nonlinear
autoregulation), and to quantify the effect. Assuming that size differences
indeed influence differentiation as our model suggests they might, this means
that additional regulatory mechanisms are not needed. We therefore believe
that this possibility deserves more attention than it has received so far.

Morphogenesis is part of the developmental process which is usually con-
sidered to be a product of the differentiation process. We have now shown
that morphogenesis can also influence differentiation. The interplay between
morphogenesis and differentiation might be an important factor during de-
velopment.
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