
JCSD: Visual Support for Understanding Code Control
Structure

Ahmad Jbara1,2 Dror G. Feitelson2

1School of Mathematics and Computer Science
Netanya Academic College, 42100 Netanya, Israel

2School of Computer Science and Engineering
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

ABSTRACT

Program comprehension is a vital mental process in any mainte-
nance activity. It becomes decisive as functions get larger. Such
functions are burdened with very many programming constructs as
lines of code (LOC) strongly correlate with the McCabe’s cyclo-
matic complexity (MCC). This makes it hard to capture the whole
code of such functions and as a result hinders grasping their struc-
tural properties that might be essential for maintenance.

Program visualization is known as a key solution that assists in
comprehending complex systems. As a matter of fact we have
shown, in a recent work, that control structure diagrams (CSD)
could be useful to better understand and discover structural proper-
ties of such functions. For example, we found that the code regu-
larity property, and even cloning, can be easily identified by CSDs.

This paper presents JCSD, which is an Eclipse plug-in that im-
plements CSD diagrams for Java methods. In particular it visu-
alizes the control structure and nesting of a Java method, and by
this it easily conveys structural characteristics of the code to the
programmer and helps him to better understand and refactor.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments—Graph-

ical environments

General Terms

Design, Human Factors

Keywords

Visualization, code regularity, code complexity, MCC, LOC

1. INTRODUCTION
Program visualization (PV) is one aspect of Software visualiza-

tion (SV). It has been defined as ”the program is specified in a
conventional, textual manner, and the graphics is used to illustrate
some aspect of the program or its run-time execution" [10].

Software visualization has been around for a long time to facil-
itate both the human understanding and effective use of computer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2-3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

software [12]. In particular, by providing visual representation of
the code (program visualization) programmers can handle and un-
derstand complex software more easily.

The comprehension of a given program becomes crucial as pro-
grams get larger. One of the key solution to this is better visualiza-
tion [7]. This insight is consistent with our results about the effec-
tiveness of using visualization to explore interesting properties of
very long functions mainly in the Linux kernel and in many other
systems [6, 5]. Our criteria for selecting long functions was those
with high (higher than twice the highest threshold ever suggested)
McCabe’s cyclomatic complexity (MCC) as it is well known that
MCC has a strong correlation with lines of code (LOC) [4]. There-
fore, functions with high-MCC values are not only very long but
also burdened with very many control constructs.

This makes it hard to capture the whole code of such functions
as it spans over many pages and studying their structural properties
is also not easy, in particular when such properties are scattered
across the long code yet are related.

To cope with this we suggested to visualize such functions focus-
ing on their structure and therefore we presented the control struc-
ture diagram (CSD) [6, 5]. In particular it was applied on high-
MCC functions taken from the Linux kernel.

We showed that the high MCC does not really reflect effective
complexity as there are functions with much higher MCC values
but they are still well structured and easy to understand and handle.

This diagram has proved to be very useful as we have used it to
examine the structure of these long functions. We identified regu-
lar code segments within them. Regularity in code means that code
segments are repeated many times in the same function usually in
a consecutive manner, but there are cases where instances appear
separately. Such structural property is easily identified when the
functions are visualized, especially when the block sizes are re-
flected in the diagram as it is the case in CSD.

Moreover, we conducted an experiment to check correlation be-
tween regularity and perceived complexity. In this experiment we
got better correlation when the functions were presented to the sub-
jects using CSD rather than the code listing.

To summarize, using CSD diagrams we realized that long func-
tions that are supposed to be hard (according to traditional metrics)
are actually well structured and easy to handle.

These promising results lead to the thought of integrating CSDs
in a development environment. Our efforts produced an Eclipse
plug-in called JCSD which is used to create CSD diagram for Java
methods.

The JCSD tool is available for downloading and more details at
URL http://www.cs.huji.ac.il/%7eahmadjbara/jcsd/jcsd.html.

2. THE JCSD

2.1 Design and Implementation
JCSD is a plug-in that has been developed for the Eclipse IDE

for visualizing the control structure and nesting of Java methods. It
is an implementation of our earlier study about CSD diagrams [6,
5]. In its current version the plug-in has one simple use case: when-

ever a programmer clicks a method’s name in the project explorer

window of Eclipse it produces a control structure diagram (CSD)

in a separate resizable window. Figure 1 shows an example of a
method and its CSD diagram.

The view window of the diagram is a typical Eclipse inner win-
dow. It is movable and resizable. It enables the programmer to
move it and position it vertically or horizontally. Moreover, in cases
the function is extremely long there is a possibility to resize the
window which automatically scales the diagram while resizing.

The general process of creating the CSD diagram is composed of
three basic stages. Initially, the source code of the method is pre-
processed: comments are removed, braces are added as required,
and line breaks are added, if needed, after opening and closing
braces and semicolon.

After preprocessing, a tree is built where nodes represent con-
structs. Each node contains the construct type it represents and its
block size.

On the basis of the tree built, the CSD is drawn and the tool
listens to the resize event to enable future scaling of the diagram.
Each time the resize event is raised the diagram is redrawn on the
basis of the same tree.

2.2 Control Structure Diagram - CSD
As we stated earlier, CSD is a visualization of the control struc-

ture and nesting of a Java method. Three design criteria were con-
sidered when we designed this diagram:

• Capturing the whole code at once as much as possible.

• Reflecting the size of the different blocks in the code.

• Identifying the different types of control flow constructs.

To meet the first criterion we visualize the structure only by con-
sidering constructs and nesting while discarding simple statements.
For the second criterion we allocate more space on the diagram for
larger blocks. In particular we measure the size of each block and
scale its representation in the diagram accordingly. For the last
criterion we provide different geometric shapes and colors for dif-
ferent types of constructs. For example, the if statement is repre-
sented by a yellow trapezoid, and the wider the trapezoid the larger
the block it controls in the code. Figure 1 shows an example of a
Java method along with its CSD produced by the JCSD tool.

The CSD diagram is structured as follows. At the top appears
the legend that maps between the different constructs and their ge-
ometric shapes. The whole function is denoted by a bar, which
contains its name, underneath the legend. The content of the func-
tion is represented in the diagram from left to right while nesting is
reflected by deeper levels. Moreover, empty space between the ge-
ometric shapes represents uncontrolled lines of code between con-
trolled blocks in the code.

For example, Figure 1 visualizes a method called nextGen. This
method receives a board representing a generation of Conway’s

Game of Life and it creates the next generation. This method, at
its top level, is composed of three blocks. The first block encom-
passes the uncontrolled lines 3 and 4. The second block starts at
line 6 and ends at 11, while the third one spans the lines 13 to 29.

These three blocks are represented in the CSD diagram at the first
level right underneath the function bar. The first block is repre-
sented by a proportional empty space at the left. Next to it is the
second block which is represented by a small ellipse, and the third
block is represented by a larger ellipse as it contains more lines in
the original code than the previous block.

Levels in the diagram reflect nesting in the code. For example,
the leftmost yellow trapezoid in level 3 in the diagram represents
the if statement in line 6 in the listing which is nested in two for

loops.

2.3 Analysis of Example Usage
To illustrate our tool we used the jEdit open source project which

is a programmer’s text editor written in the Java language. We ap-
plied our tool on the getSize method taken from the ExtendedGrid-

Layout class of jEdit.
Figure 2 shows the CSD of this method while its listing is shown

at URL http://www.cs.huji.ac.il/%7eahmadjbara/jcsd/getSize.java as
it is quite long. Moreover, Table 1 shows its common metrics val-
ues.

According to the traditional metrics used the getSize method is
supposed to be hard for understanding. It has 348 lines of code
spanning about 6 pages. This is what a programmer really sees and
it is not easy to capture the whole structure of methods with such
size. However, it is easy by using a CSD.

When examining its control flow complexity (measured by MCC)
we see that it is on the highest threshold ever given. Moreover,
when considering its lines of code metric together with its MCC we
recognize that the average size of its control blocks is about 6 lines,
therefore the method is not purposelessly long but very many con-
trol constructs are interwoven within its lines. This could be easily
observed by the diagram without considering complexity metrics.

The nesting metrics also indicate that this method is not easy to
handle. The average nesting of all its lines is 1.3 which means that
on average every line is nested. However, one might think that there
is one control construct that encompasses all others and this metric
does not really reflect nesting. Again, the CSD helps to identify
that. In our example, this is not the case.

Based on the traditional metrics and the method’s listing this
method is portrayed as not easy to understand. However, exam-
ining its CSD diagram reveals a different picture. The regularity
property seems to be relatively dominant as there are two large
code segments (framed in Figure 2) that are likely similar. More-
over, within these two framed segments there are four repeated sub
trees. The first instance appears at the left of the first frame while
the second instance appears at the end of the first frame. The third
and fourth instances appear in the second framed segment. These
two framed segments appear at lines 60 and 173 of their method’s
listing at the URL presented earlier.

The fact that a code segment is totally repeated helps in investing
less efforts in understanding its instances and may be an indicator
for the need of refactoring.

3. RELATED WORK
One of the key solutions to code comprehension is visualization,

in particular when programs get larger [7]. Nassi and Shneider-
man suggested a visual model by proposing a flowchart language
which prevents unrestricted transfers of control and supports struc-
tured programming [11]. In their model the details of the code are
reflected as the constructs and their conditions appear within the
flowchart. This might make the control over large programs diffi-
cult. Trying to grasp structural properties does not necessarily need
the examination of the details. Moreover, the size of the differ-

Metric name Description Value

LLOC Number of logical lines of code excluding blank lines and comments. 307
PLOC Number of physical lines of code. 348
MCC McCabe’s cyclomatic complexity. 50
Max nesting Max nesting within function. 3
Average nesting Average nesting of all logical lines of code. 1.3

Table 1: Typical metrics values of the getSize method.

Figure 1: The control structure diagram (CSD) for the nextGen method of the Conway’s game of life.

Figure 2: The control structure diagram (CSD) for the getSize method of the ExtendedGridLayout class from the jEdit project. Note

the similarity between the structure of the framed sub trees.

ent blocks that are represented is not reflected, therefore makes it
harder to capture the structure of the program.

Another work that investigates control structure is a work by
Cross et al. where they present a Control Structure Diagram (CSD)
to clearly depict the control constructs and the control flow at all
levels of program abstraction [2]. Except of its name, it is totally
different from our diagram. This diagram is superimposed upon
the source code which means that the programmer is obliged to see
all the code, and therefore misses the power of abstraction as he
sees the details. Moreover, a diagram that reflects every line in the
code would experience some difficulty in visualizing long meth-
ods which are the real challenge. In addition, their diagram is not
aware to the size of the blocks that are controlled by the different
constructs.

Eick et al. suggested SeeSoft [3, 1] where a line of code is repre-
sented by a colored line (each construct type is colored differently)
with a height of one pixel and its length reflects the length of the
code line. The structure of the code is reflected by preserving in-
dentation.

Marcus et al. presented sv3D [9, 8]. This visualization technique
is based on SeeSoft and added a third dimension where each code
line is mapped to a rectangular cuboid.

4. FUTURE WORK
One avenue is to empirically evaluate our tool to provide an evi-

dence of its viability in typical comprehension tasks.
Another direction is enhancing it by adding more features to help

discovering more interesting structural properties. In particular,
making JCSD an interactive tool. For example, it would be help-
ful to show the code of a specific block when the programmer’s
mouse hovers on its shape in the diagram, or adding a feature that
enables examining simultaneously the code segments of two sub
trees so the programmer could compare between them for cloning
or regularity detection.

Moreover, implementing CSD for other languages and IDEs would
expose it for more communities and bring more feedback. In par-
ticular, migration to other languages would be easy as the control
constructs and the means for formatting and layout building are
shared between different languages.

Last interesting direction is implementation of this idea as a web-
based tool. The purpose is to enable programmers who search for
code segments in the Internet to be able to examine its structure
before copying it to his development environment.

Acknowledgments

Thanks to Elinor Alpay, Daniel Shragai, and Chen Shabo from the
Computer Science Department of the Netanya Academic College
for their active involvement in the implementation phase of this
tool as a part of their final project of their Bachelor studies. This
research was supported by the ISRAEL SCIENCE FOUNDATION
(grant no. 407/13).

5. REFERENCES
[1] T. Ball and S. G. Eick, “Software visualization in the large”.

Computer 29(4), pp. 33–43, Apr 1996, doi:10.1109/2.488299.
URL http://dx.doi.org/10.1109/2.488299

[2] I. Cross, J.H. and S. Sheppard, “The control structure
diagram”. In Computers and Communications, 1988.

Conference Proceedings., Seventh Annual International

Phoenix Conference on, pp. 274–278, Mar 1988,
doi:10.1109/PCCC.1988.10084.

[3] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr., “Seesoft-a
tool for visualizing line oriented software statistics”. IEEE

Trans. Softw. Eng. 18(11), pp. 957–968, Nov 1992,
doi:10.1109/32.177365.
URL http://dx.doi.org/10.1109/32.177365

[4] I. Herraiz and A. E. Hassan, “Beyond lines of code: Do we
need more complexity metrics?” In Making Software: What

Really Works, and Why We Believe It, A. Oram and
G. Wilson (eds.), pp. 125–141, O’Reilly Media Inc., 2011.

[5] A. Jbara, A. Matan, and D. G. Feitelson, “High-MCC
functions in the Linux kernel”. In Proceedings of the 20th

IEEE International Conference on Program Comprehension,

ICPC 2012., Jun 2012.

[6] A. Jbara, A. Matan, and D. G. Feitelson, “High-MCC
functions in the Linux kernel”. Empirical Softw. Eng. 2013,
doi:10.1007/s10664-013-9275-7. Accepted for publication.

[7] F. Lemieux and M. Salois, “Visualization techniques for
program comprehensiona literature review”. In Proceedings

of the 2006 Conference on New Trends in Software

Methodologies, Tools and Techniques: Proceedings of the

Fifth SoMeT_06, pp. 22–47, IOS Press, Amsterdam, The
Netherlands, The Netherlands, 2006, ISBN 1-58603-673-4.

[8] A. Marcus, L. Feng, and J. Maletic, “Comprehension of
software analysis data using 3d visualization”. In Program

Comprehension, 2003. 11th IEEE International Workshop

on, pp. 105–114, May 2003,
doi:10.1109/WPC.2003.1199194.

[9] A. Marcus, L. Feng, and J. I. Maletic, “3d representations for
software visualization”. In Proceedings of the 2003 ACM

Symposium on Software Visualization, pp. 27–ff, ACM, New
York, NY, USA, 2003, ISBN 1-58113-642-0,
doi:10.1145/774833.774837.
URL
http://doi.acm.org/10.1145/774833.774837

[10] B. A. Myers, “Taxonomies of visual programming and
program visualization”. J. Vis. Lang. Comput. 1(1), pp.
97–123, Mar 1990, doi:10.1016/S1045-926X(05)80036-9.

[11] I. Nassi and B. Shneiderman, “Flowchart techniques for
structured programming”. SIGPLAN Not. 8(8), pp. 12–26,
Aug 1973, doi:10.1145/953349.953350.
URL
http://doi.acm.org/10.1145/953349.953350

[12] B. A. Price, R. M. Baecker, and I. S. Small, “A principled
taxonomy of software visualization”. Journal of Visual

Languages & Computing 4(3), pp. 211 – 266, 1993,
doi:http://dx.doi.org/10.1006/jvlc.1993.1015.

