
Hierarhial Indexing and DoumentMathing in BoWMaayan Ge�et and Dror G. FeitelsonShool of Computer Siene and EngineeringThe Hebrew University, 91904 Jerusalem, IsraelAbstratBow is an on-line bibliographial repository based on a hierarhial onept indexto whih entries are linked. Searhing in the repository should therefore returnmathing topis from the hierarhy, rather than just a list of entries. Likewise, whennew entries are inserted, a searh for relevant topis to whih they should be linked isrequired. We develop a vetor-based algorithm that reates keyword vetors for theset of ompeting topis at eah node in the hierarhy, and show how its performaneimproves when domain-spei� features are added (suh as speial handling of topititles and author names). The results of a 7-fold ross validation on a orpus of some3,500 entries with a 5-level index are hit ratios in the range of 89-95%, and most ofthe mislassi�ations are indeed ambiguous to begin with.1 IntrodutionAn obvious and natural approah to organize a large orpus of data is a hierarhial index{ akin to a book's table of ontents. The type of orpus we deal with is a bibliographialrepository, with entries from a limited domain (our prototype is on \parallel systems").Given suh an index, it is desirable that searh results point to relevant loations in thehierarhy, rather than just providing a at list of entries. This is useful not only to supportuser searhing, but also as an aid suggesting possible plaes to link new entries that areinserted into the repository.1.1 BoW { Bibliography on the WebThe goal of the BoW projet [9℄ is to reate a onvenient environment for using andmaintaining an on-line bibliographi repository. The key idea is that this be a ommunale�ort shared by all the users. Thus every user an bene�t from the input and experiene ofother users, and an also make ontributions. In fat, the system tabulates user ativity, somerely searhing through the repository and exporting seleted items already ontributesto the ranking of items in terms of user interest.1

The heart of the BoW repository is a deep (multi-level) hierarhial index spanning thewhole domain. The nodes in the hierarhy are alled onept pages. Pages near the top ofthe hierarhy represent broad onepts, while those near the bottom represent more narrowonepts. The depth of the hierarhy should be suÆient so that the bottommost pagesonly ontain a handful of tightly related entries (as opposed to Web searh engines andsienti� literature databases like CORA [5℄ whih ontain a relatively shallow diretory).A subtrees ontaining all the onept pages reahable from a ertain (high level) oneptpage is referred to as a topi. Entries an be linked to multiple onept pages, if they pertainto multiple onepts. Likewise, they an be linked at di�erent levels of the hierarhy,depending on their breadth and generality.The index is navigated using a onventional browser. Normally three frames are avail-able (Fig. 1). The �rst shows the hierarhial index, and the urrently seleted oneptpage. The seond lists entries linked to this onept page, and allows for the seletionof a spei� entry. the third displays the surrogate of the hosen entry, inluding all thebibliographial data (authors, title, where and when published), user annotations, and ad-ditional links (e.g. to where the full text is available). Available operations on the urrententry inlude marking it for export, adding an annotation, and adding links. This inludeslinks from additional onept pages to the entry, links between this entry and related en-tries (e.g. from a preliminary version of a paper to the �nal version), and links to externalresoures suh as the full text.The index struture is reated by the site editor. The voabulary used in the index andannotations is unontrolled by the system, and users also query the system using naturallanguage [2℄. Indexing is simpli�ed by the fat that we use onise surrogates, rather thanfull text douments [13℄. We make up for the redution in data by enlisting users to verifyindexing suggestions. Thus, when a user introdues a new entry, the system uses the textof the entry as a query, and �nds onept pages that ontain similar entries. But the atualdeision to link the new entry to these onept pages is left to the disretion of the user.The indexing desribed in this paper is based on lexial analysis of onept pages andentries linked to them. For eah topi, we reate a list of keywords that di�erentiate it fromother topis that have the same parent. The indexing then proeeds from the root, hoosingthe most suitable sub-topi(s) at eah point. As only ontending topis are onsidered, theomplexity of the searh is redued [15, 19℄.1.2 Related WorkThere are three basi approahes for textual douments proessing [14℄: lexial, syntati,and semanti analysis. A number of systems using syntati and semanti analysis havebeen developed and are being used for researh, suh as DR-LINK [17℄, CLARIT [8℄ andTREC [7, 29℄. However, they are typially not signi�antly better than the best lexialanalyzers. We will disuss various lexial analyzers throughout the paper, in relation toour work.Very little has been done so far on hierarhial indexing. In general, it has been shownthat hierarhial indexing methods outperform traditional at algorithms [19, 15℄. How-2

Figure 1: Sreen dump of BoW showing partially opened hierarhial index.ever, these studies were based on a very wide domain and a relatively shallow hierarhy(e.g. two levels). our work, in ontrast, requires a very �ne lassi�ation, as the bottomlevels of the hierarhy only ontain a small number of entries eah.2 O�-Line Preparation of Keyword VetorsThe hierarhial indexing mehanism onsists of two parts. The �rst is an o�-line traversalof the whole repository, repeated at regular intervals (e.g. one a day) in order to omputekeyword vetors for all the topis. The seond is a mathing sheme that ompares newentries or queries with these pre-omputed keyword vetors.3

Topi Number of Hit ratiolusters 5-grams Whole wordsCooking reipes 10 87% 53%Linux 16 85% 47%Table 1: Clustering hits ratio for two given douments olletions using 5-grams versuswhole words.The o�-line part is exeuted reursively for every level of the index, top-down. Themain idea is that eah topi enompasses all the onept pages in a sub-tree of the index,therefore all of them should be taken into aount while onstruting its keywords vetor.The group of sibling topis, loated at the same level and having the same parent inthe index are alled a ompetitive topis set, sine they ompete for keywords with eahother. The algorithm generates keywords vetors in �ve steps: parse all the pages in thetopi's sub-tree, merge them into one vetor, unify the resulting vetors to inlude thesame words, normalize the weights of the words in all the vetors, and hoose the mostrelatively frequent ones to represent the orresponding topis.2.1 ParsingThe �rst stage is parsing the text of onept pages, with the goal of reating a vetor of allthe words in the given onept page [28, 31℄, denoted by V opage. This of ourse requiresus to de�ne \word".The natural de�nition is a ompletely separated meaningful string. This has the well-known disadvantages of treating related words as being di�erent, and the well-known so-lutions suh as stemming (e.g. [22, 18℄). An alternative is to use n-grams (substrings oflength n of words: for example, \algorithm" will be turned into \algor", \lgori", \gorit",\orith", and \rithm") [1℄. We prefer the latter, and spei�ally use 5-grams, based on aseparate study1 in whih douments were lustered automatially based on similarity andthis was ompared with manual lustering (Table 1). But in order to avoid 5-grams thatare largely based on ommon suÆxes and therefore meaningless, we also use stemming�rst.Note that longer words are represented by more 5-grams in the voabulary vetorthan shorter ones, whih gives them more weight in the omparisons. Thus it wouldbe interesting to hek if similar results would be obtained by using whole words, andweighting them aording to length.In any ase, from now on the word \word" will mean a 5-gram.1In ooperation with E. Bonhek.
4

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2000 4000 6000 8000 10000 12000 14000 16000

co
un

te
r

va
lu

es

5-gramsFigure 2: Example of ounter values for 5-grams in the voabulary of a top-level topi.2.2 MergingAfter parsing all the onept pages in a topi's sub-tree, the resulting voabulary vetorsare merged. The resulting vetor inludes the omplete voabulary of the topi: V otopi =V opage1 [V opage2 [::: [V opagen. The ounters indiating how many times eah wordappears are summed as desribed below.2.3 Uni�ationIn order to ompare a query with a set of ompetitive topis, the voabulary vetors of thesetopis must span the same spae. We therefore reate a uni�ed voabulary that inludesall the words that appear in any of the ompetitive topis: V oompet�set = V otopi1 [V otopi2[:::[V otopik. We then normalize the voabulary vetors of the individual topisto inlude all these words, by adding the missing ones with a ount of zero. The resultingnormalized vetors will be denoted by NormV otopi.2.4 Counters NormalizationIn order to selet meaningful keywords, we need to onsider the number of times eahword appears in eah topi. As shown in Fig. 2, these values vary onsiderably. But theyalso su�er from the saling e�et problem [14℄: the ounter values in \small" topis aregenerally lower than in \big" topis, leading to an assignment of all the keywords to thebigger topis. To ompensate for this, we need to normalize the ounters based on the sizeof eah topi.The simplest approah is to divide the ounter values by the total number of the wordsin the topi. However, aording to Zipf's formula [32℄, rank � ount � onstant (where5

0

500

1000

1500

2000

2500

2000 4000 6000 8000 10000 12000 14000 16000

m
ax

im
al

 w
or

d
fr

eq
ue

nc
y

number of 5-grams in topic

unnormalized
divided by size

TFIDF
normalized

Figure 3: The inuene of various normalization strategies on the 5-grams frequenies inthe top level ompetitive set of 7 topis.the words in the text are ranked in order of dereasing ount), so the number of distintwords in the text grows muh slower than their ounts. Pratially, about 50% of theregular text ontent onsists of the same 250 words [14℄. Therefore this method does notlead to good normalization (Fig. 3).The most popular algorithm is TFIDF (Term Frequeny Inverse Doument Frequeny)[25, 24, 6℄. However, this tehnique does not take into aount the frequeny of termourrenes in other douments in the olletion, based on the assumption that there arevery many douments. In our ase, we are trying to distinguish between a small set oftopis, so as adjustment is needed. When applied diretly, TFIDF did not produe goodresults (Fig. 3).Our hosen approah is to normalize the ounters on-the-y during the previous threesteps. Sine we are interested de�ning a topi's voabulary, words whih our frequentlyin one partiular entry within it should not have a higher weight. Thus, we ount eahword only one for every entry ontaining it in the onept page. For example, given atopi with 5 entries, the maximal weight of a word is 5 if it appears in all the entries, butif it appears twie in one entry and three times in another, its weight will only be 2. Thisnormalization is implemented as part of the parsing algorithm. To deal with the fat thatonept pages have di�erent sizes, the ounters are further normalized by dividing by thenumber of entries in a page or topi. This is done as part of the merging and uni�ation.The omparative results of this method are illustrated in Fig. 3. As shown in the graphthe maximal weights have reahed the uniform distribution irrespetive of the topi size.
6

2.5 Keywords Seletion HeuristiA keyword is a word that haraterizes a onept and di�erentiates one topi from others[14℄. Thus, in order to deide whether a word is a keyword of some topi, one shouldonsider its frequeny (weight) in this topi, and also ompare with its weights in all theompetitive topis. The basi idea is that if a word is extremely frequent in one partiulartopi and relatively rare in others, then we may use it as a keyword for this topi. If aword has similar weight in all the topis, then it does not represent any of them, even ifits weight is high [27℄.One way to assess the disriminatory power of a word is based on the di�erene betweenits maximal and minimal ounter values in di�erent topis in the ompetitive set. Moreformally, the algorithm is as follows (where NormV ot(w) denotes the ounter value forword w in the normalized vetor of topi t):1. For eah topi in the ompetitive set, �nd those words that ahieve their maximalounter value in this topi: Maxt = fwj8i; i 6= t : NormV ot(w) > NormV oi(w)g.2. For these words, �nd the range of ounter values: 8w, w 2Maxt,Dif(w) = maxi 6=tf(NormV ot(w)�NormV oi(w))g.3. sort the words in Maxt aording to Dif(w) in a desending order.4. Choose the top 10% of the words (those with the biggest di�erene values) and plaethem in the keywords vetor Tkeyst.A possible problem with this de�nition is that the di�erene an be large beause theminimal value is very small. An alternative is therefore to use the di�erene between thetwo top ounter values in step 2. The de�nition then beomes Dif(w) = NormV ot(w)�maxi 6=tfNormV oi(w)g. This version selets the words with signi�antly greater weightin one partiular topi than in all the others, but may miss ases in whih a word has ahigh ount in 2 or 3 topis (whih may happen as shown in Fig. 4). Spei�ally, in theBoW orpus the gap between the two highest values is the largest in 65-79% of the ases,but the gap between the 2nd and 3rd is the largest in another 15-22%.Another disadvantage of this heuristi is the perentage of words to be hosen as themost signi�ant: we deided to hoose an empirially-determined 10% threshold, butmaybe for other repositories it will be reasonable to use another threshold. An alter-native is to hoose the most signi�ant words aording to their statistis. Spei�ally,we propose to selet those words whose ounter value is larger than the average plus onestandard deviation:1. For eah word alulate the average ounter value: average(w) = 1n P1�i�nNormV oi(w)(where n is the number of topis in the ompetitive set).2. Calulate the standard deviation:std�dev(w) = 1nqP1�i�n(NormV oi(w)� average(w))2.7

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

1 2 3 4 5 6 7

0
100
200
300
400
500

Figure 4: Distribution of word ounts in the top level 7 topis for 30 seleted 5-grams. Theounters are sorted in a desending order.3. If max�weight(w) > average(w) + std�dev(w) then the word w is a keyword of themaximal weight topi, otherwise it does not represent any topi sine it is almostequally frequent in all of them.To hek if the word should be a keyword for other topis as well, the highest value isremoved and the proedure repeated for the remaining topis.To ompare the above heuristis we used them to lassify 200 entries from the BoWprototype repository. The results are shown Table 2, and indiate that the last heuristi(using the average and standard deviation) is the best.2.6 Optimizations2.6.1 Stop-listsA well-known optimization in lassi�ations based on lexial analysis is the de�nition ofa stop-list { a list of ommon words that should be ignored. In order to generate the list8

Heuristi used Hit ratioextreme values di�erenes 48%two highest values di�erenes 62%if (max weight > avg+std dev) 87%Table 2: Corret lassi�ation rate when using alternative heuristis for keyword seletion.automatially, a threshold distinguishing the most ommon words should be found. Nu-merous studies of douments show that 30% of general English text enompassing millionsof words is made up of only 18 distint words [14℄. Usually, stop-lists ontain about 250-300terms [30, 23, 10℄. However, our repository is limited to a foused sienti� domain, so itslanguage is rather limited, and may vary among topis. Thus, the stop-list should ontainonly those words whih are ommon in all the topis in the ompetitive set. This leads us tothe following method for stop words identi�ation: stop�list = fwj8i; NormV oi(w) > �g,where � is an empirially seleted threshold on the ounter values.Aording to our observation of the ommon words values distribution, the upper valueat the top level is greater than at lower levels. The best � value is 80 for the highest levelof the hierarhy, 60 for the seond one, and 50 for the rest, where the average maximalounters are 320, 240 and 200, respetively. Thus the empirially obtained rule is that astop-words lower bound threshold is a quarter of the average maximal frequenies for thegiven ompetitive set of topis.Another interesting question is whether the stop-lists at various loations in the hier-arhy will di�er. It is reasonable to expet that words like \network", \software", and\language" will be important at the highest level of the hierarhy, sine eah of them leadsto an appropriate broad topi, suh as \arhiteture and interonnetions", \operatingsystems and run-time support", and \programming, languages, and ompilation" (see Fig.1). Obviously, inside the topi \programming, languages, and ompilation" the words\programming" and \languages" should be the �rst ones to go to the stop-list. However,our observation of Parallel Systems repository has shown that most of the stop-words atall the levels were the same, whereas for every lower level several additional ommon stop-words were added. The total number of stop-words is around 200 with slight di�erenesfor various ompetitive sets.2.6.2 Speial Treatment for Seleted FieldsAnother means for optimization is using domain-spei� knowledge. In our ase the domainis a bibliographial repository, whih is lassi�ed into topis. Thus speial �elds like authorsnames and topi titles may arry speial signi�ane.For example, the topis and sub-topis title �elds may be expeted to reet the ontentsof the topi, and this is based on a semanti understanding by a human editor. It istherefore desirable to use these words as keywords, even if the ounter-based algorithmdesribed above does not reognize them as suh.The speial treatment of author names is founded on the assumption that usually9

sientists tend to onentrate their work in a rather narrow area of researh. Therefore ifseveral of the given author's publiations appear in one spei� topi of the ompetitiveset, but not in the others, then it is sensible to suggest that the new artile will also belongto this topi. As most of the author names appear too rarely and thus do not survive thekeyword �ltering proess, speial treatment is required. Just as in the ase of topi titles,we simply treat author names expliitly as keywords. For this purpose, the �rst and lastnames are onatenated and treated as a single term.2.6.3 ThesauriThe �nal major problem to be onsidered here is the use of similar or related terms (syn-onyms). Thus the use of thesauri in order to reognize variants or to ontrol the voabularyhas been suggested [3℄. A spei� feature of our index is that it ontains a lot of names ofprojets, systems, and tools, whih are often referred to by aronyms. Text observationsshow that typially suh terms our in one of the following formats at least one:1. The full term words with apital letters and then the aronym onsisting of the same�rst apital letters in parenthesis.2. The aronym is followed by the parenthesized full term words interpretation.Based on this we developed a thesaurus-builder whih is responsible for lexial text analysisand extrating the full expressions and their aronyms, and used it to onstrut a ditionaryof aronyms. This was used during parsing to hek if the aronym or its interpretationour in any partiular onept voabulary, then if so it was expliitly entered into thekeywords vetor. User queries are also heked against the thesaurus, and expanded in asimilar manner.3 On-Line SearhingGiven the keyword vetors for all the repository's topis, those mathing queries an befound. This is done in two ases: when a user issues a searh by speifying authors and/orkeywords, and when a user inserts a new entry into the repository. In this latter ase, thegoal is to reommend topis to whih the new entry may be linked.An important goal is that a retrieved set will be of \reasonable" size | large enough togive the user a hoie but not too large. BoW therefore doesn't retrieve a set of individualdouments in response to a query. Instead, it returns whole onept pages. Moreover, ifmany of these onept pages belong to the same higher-level topi, that topi is returnedrather than listing the lower level ones.3.1 Mathing and RankingMathing and ranking go together | we want to �nd the topis that math the query tothe highest degree. Several methods for suh ranking exist [20℄. The most popular are10

based on the TFIDF algorithm desribed in setion 2.4 [24, 28, 26, 25℄ and will be rejetedhere for the same reasons. An alternative approah whih is usually used in lustering(e.g. in Isodata Clustering) is to ompute the distanes between the keyword vetors. Thisan be applied in our ase, by omparing the distanes between the query vetor and theompetitive set vetors. However, the query is typially so short that it is not reasonable toweight its terms [11℄ so the terms relative frequenies distane between the query and theindex vetors is not useful in our model. Thus we have to use a boolean ranking method[16℄, rather than a vetor spae algorithm.Our mathing proess works as follows:1. Chek the query data against the aronyms thesaurus, and insert both aronyms andtheir full interpretation into the initially empty query voabulary vetor QV o.2. Parse the query (of new entry) and insert the resulting 5-grams into the voabularyvetor QV o (with no terms weights onsiderations).3. Starting from the highest level topis, measure the similarity of the query to all topisin the ompetitive set by ounting the number of ommon words in the vetors:soretopi = j QV o \ TKeystopi j.4. Selet the topis with the highest sore, and ontinue reursively to lower levels.The seletion riterion is that the sore be higher than the average plus a standarddeviation, as was done in setion 2.5. This gives good results beause in 84%-91%of the queries the biggest gap is between the highest and the next topi, or betweenthe seond highest and the third one (Fig. 5).Note that we don't examine all the tree branhes, but only those whih survive the�ltering riteria, thus reduing the omputational ost. This tehnique, alled tree pruning,was also employed by others [15, 19℄, exept that they hoose only the single most suitablesub-topi at eah level. The main disadvantage of suh aggressive \single-path" pruningis that a failure at one of the higher levels will ause all the lassi�ation proess to fail,whereas pruning that keeps two or three branhes for further examination attains almostthe same auray as full tree evaluation. Therefore, our ranking sheme does not su�erfrom the irreoverable errors ourrene problem. Choosing more than one also meets ourexpetation that an artile may refer to several ategories in the bibliography.3.2 Output RepresentationObserve that the total number of seleted topis may grow exponentially while desendingthe tree, if most subtopis are seleted at eah stage. To avoid showing the user suha long list of hits, we replae them all by their shared father. As the result, the moregeneral (higher level) topi will be returned to the user. The ondition for suh outputompression is that at least 50% of the partiular topi's hildren and more than two ofthem are in the resulting list. The ompressing routine is performed reursively from the11

1 2 3 4 5 6

0153045607590105120135150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

1 2 3 4 5 6

0
30
60
90

120
150

Figure 5: Distribution of topis sores (in a ompetitive set of 6 topis) for 30 samplequeries. The topis are sorted in a desending order for eah one.bottom to the root of the index. The results of output ompression are demonstrated inFig. 6. The output was ompressed for about 25% of the queries, where the majorityof the ompressed output sets were those inluding 14 links and more, only 10% of themremained untouhed. On the other hand, only 10% of smaller sets (up to 13 links) wereompressed. The ompression ratio is quite big, and the size of ompressed output setswas dereased by half in average.Given the topis seleted by the ranking proess, and remaining after output ompres-sion, the question is how to display them on the sreen. The dilemma is how to reoniletwo ontraditing onsiderations: keep both the onept pages' topologial loations in thehierarhy (as in the Berkeley Cha-Cha Searh Engine [4℄), and their respetive ranking withregard to this query (as is typially done in searh engines, e.g. Northernlight [21℄). Oursolution is to display the original index tree, with the seleted links opened and markedwith di�erent olors and font sizes aording to their relevane to the query.
12

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 r

et
ur

ne
d

to
pi

cs

queries

uncompressed
compressed

Figure 6: Results of the ompression proedure for 500 queries from one of the 7-fold rossvalidation experiments (desribed below), sorted in desending order by the unompressedoutput sets sizes.4 EvaluationIn order to hek the �nal algorithm performane we have onduted a sequene of 5experiments employing 7-fold ross validation over a orpus of about 3,500 bibliographientries. The orpus is foused on the domain of parallel systems, with an index that hasan average depth of 5 and an average branhing fator of 6. Every experiment was basedon about 500 randomly hosen entries, whih were extrated from the repository. Theautomati o�-line indexing was performed on the remaining 3,000 entries, and the resultingkeyword vetors used to re-insert the 500 entries that were extrated. The hit ratio for eahase was omputed by omparing the algorithm's lassi�ation of these entries with theiroriginal manual lassi�ations (Fig. 7). Manually heking those that were mislassi�edrevealed that in many ases they were indeed ambiguous, and had very short annotationsthat only inluded very general terms.Our experimental results have orroborated those of MCallum et al. that larger voab-ulary sizes generally perform better. For larger branhes of the index our algorithm seletsmore keywords, and the lassi�ation reahed its highest auray (near 100%). For ex-ample, the \Operating Systems and Run-Time Support" topi, whih is one of the biggesttopis in the repository with over 7,700 distint �ve-grams voabulary, got 100% hit ratio,whereas \Algorithms and Appliations" whih is a smaller topi, ontaining about 3,700keywords, attained only 92% hit ratio. Another evidene is the derease in hits perentagefor lower levels, due to the smaller number of entries and therefore the smaller number ofkeywords, as shown in Fig. 8.Generally, the results indiate that the more information is available about eah onept13

H
it

R
at

io
 in

 %

0

10

20

30

40

50

60

70

80

90

100

Top level 2nd level Lower levels

Authors as keywords
 and acronyms thesaurus

Use stoplists

Titles treated as keywords

Normalized counters

Unnormalized counters

Figure 7: The hit ratios ahieved at di�erent levels of the index hierarhy, and how theydepend on di�erent parts of the lassi�ation algorithm.and eah query, the better the mathing that is ahieved. However, we �nd that even arelatively short annotation of 2-3 lines is enough for a reasonably good lassi�ation.5 ConlusionsWe have developed and presented the details of a data lassi�ation algorithm for e�etiveonept-based storage and retrieval of sienti� papers in multi-level hierarhial reposito-ries. The three main features of the algorithm are its universality, sale independene, andself-updateability. The algorithm is universal in that it produes good results at all levelsof the hierarhial index, and does not depend on the index depth. It is sale independentdue to areful normalization of the keyword vetors, resulting in fair judgments for various-sized onept pages. It updates the keyword vetors regularly, thus keeping them urrentand adjusting to hanges in the repository ontents. This is done at seleted intervals,rather than on-line for eah new entry, beause every loal hange in an individual oneptpage auses hanges in the entire topi's voabulary, and so in the seletion of keywordsaross the entire ompetitive set; moreover, this e�et an propagate up the hierarhy.Results of experimentation with the BoW prototype repository on parallel systems arevery promising. At the top level, nearly 95% of the entries were lassi�ed orretly, and thisdropped to just under 90% for the lowest levels. Remarkably, this was ahieved with onlythe entry details (mainly title and authors), and very short annotations typially betweenone and three sentenes long. There was no aess to or use of full text. The entries that14

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7

nu
m

be
r

of
 k

ey
w

or
ds

top-level topics

top level
second level

third levels
lower levels

Figure 8: Distribution of keywords under the 7 top-level topis (whih are sorted by size).were mislassi�ed were found to be ambiguous and had short or missing annotations.In the future we hope to test our algorithm on additional repositories. Possible exten-sions inlude automati onstrution of full thesaurus for all the words and phrases in thegiven orpus. A bigger hallenge is automati index reation from srath. Our sugges-tion is to use one of the hierarhial lustering methods [12℄ ombined with the desribedautomati indexing algorithm.AknowledgementsThis work was supported by the Ministry of Siene, Culture & Sport under the programto develop sienti� and tehnologial infrastruture.Referenes[1℄ Adamson, G. and Boreham. 1974. \The use of an Assoiation Measure Based onCharater Struture to Identify Semantially Related Pairs of Words and DoumentTitles," Information Storage and Retrieval, 10, 253-260.[2℄ Blair, David. C. 1990. Language and Representation in information retrieval. N.Y.:Elsevier.[3℄ Chen, H., Martinaz, J., Kirhho�, A., Ng, T. D., and Shatz, B. R.. \Alleviatingsearh unertainty through onept assoiation: automati indexing, o-ourreneanalysis, and parallel omputing." J. Am. So. Inf. Sys. 49(3), 216-206.15

[4℄ Chen, M., Hearst, M. Hong, J. and Lin, J., 1999. \Cha-Cha: A System for OrganizingIntranet Searh Results". In 2nd USENIX Symp. Internet Tehnologies & Systems.[5℄ CORA - Computer Siene Researh Paper Searh Engine, http://ora.whizbang.om[6℄ Doszkos, T.E. 1982. \From Researh to Appliation: The CITE Natural Language In-formation Retrieval System," in Researh and Development in Information Retrieval,eds. G. Salton, and H. J. Shneider, pp. 251-62. Berlin: Springer-Verlag.[7℄ Dumais, Susan, T. 1995. \Latent semanti indexing (LSI): TREC-3 report." InOverview of 3rd Text Retrieval Conferene (TREC-3). Donna K. Harman, ed. 1995.Washington, D. C.: Nist Speial Publiation.[8℄ Evans, David A., Robert G. Le�erts, Gregory Gregenstette, S. Henderson, WilliamHersh, and A. Arhbold. 1993. \CLARIT TREC design, experiments, and results." In1st Text Retrieval Conferene (TREC-1). ed. Donna K. Harman, pp. 251-286. 1993.Washington, D. C.: Nist Speial Publiation, 500-207.[9℄ Feitelson, D. G., 2000. \Cooperative Indexing, Classi�ation, and Evaluation inBoW". In 7th IFCIS Intl. Conf. Cooperative Information Syst., O. Etzion and P.Sheuermann (eds.), Springer-Verlag LNCS Vol. 1901, pp. 66-77.[10℄ Fox, C. 1990. \A Stop List for General Text". SIGIR Forum.[11℄ Frakes, W. B., Baeza-Yates, R. eds. 1992. Information Retrieval - Data Strutures andAlgorithms, Englewood Cli�s, N. J.: Prentie Hall.[12℄ Jardine, N. and C. J. vanRijsberngen. 1971. \The Use of Hierarhi Clustering inInformation Retrieval." Information Storage and Retrieval, 7(5), 217-40.[13℄ Kerner, C. J., and T. F. Lindsley. 1969. \The value of abstrats in normal text searh-ing." In The information bazaar: Pro. 6th Ann. Nat'l Colloq. Information Retrieval,Philadelphia, pp. 437-440.[14℄ Korfhage, R. R., 1997. Information Storage and Retrieval, N.Y.: John Wiley and Sons.[15℄ Koller, D., and Sahami, M. 1997. \Hierarhially lassifying douments using very fewwords". In Pro. 14th Int'l Conf Mahine Learning (ML-97), pp. 170-178, Nashville,Tennessee.[16℄ Lee, Joon Ho, Myoung Ho Kim, and Yoon Hoon Lee. 1993. \Ranking douments inthesaurus-based Boolean retrieval systems." Information Proessing & Management30(1), 79-91.[17℄ Liddy, Elizabeth D., and Sung H. Myaeng. 1993. \DR-LINK's linguisti-oneptualapproah to doument detetion." In 1st Text Retrieval Conferene (TREC-1). DonnaK. Harman, ed. Washington, D. C.: Nist Speial Publiation, 500-207, pp. 113-130.16

[18℄ Lovins, J. B. 1968. \Development of the Stemming Algorithm." Mehanial Transla-tion and Computation Linguistis, 11(1-2), 22-23.[19℄ MCallum, A., Rosenfeld, R., Mithell, T., and Ng, A. Y. 1998. \Improving TextClassi�ation by Shrinkage in a Hierarhy of Classes". In Pro. 15th Int'l Conf MahineLearning (ML-98), Madison, Wisonsin.[20℄ MGill, M. et al. 1979. An Evaluation of Fators A�eting Doument Ranking by in-formation retrieval systems. Projet report. Syrause, New York: Strause UniversityShool of Information Studies.[21℄ The Northernlight Searh Engine, http://www.northernlight.om.[22℄ Paie, Chris. 1990. \Another stemmer." SIGIR Forum 24(1), 53-61.[23℄ Salton, G., and M. MGill. 1983. Modern Information Retrieval. New-York: MGraw-Hill.[24℄ Salton, G. and C. S. Yang. 1973. \On the Spei�ation of Term Values in AutomatiIndexing." J. Doumentation 29(4), 351-72.[25℄ Salton, G. 1971. The SMART Retrieval System - Experiments in Automati DoumentProessing. Englewood Cli�s, N. J.: Prentie Hall.[26℄ Salton, G. and C. Bukley. 1988. \Term-Weighting Approahes in Automati TextRetrieval," Information Proessing and Management 24(5), 513-23.[27℄ Salton, G., H. Wu, and C. T. Yu. 1981. \The Measurement of Term Importane inAutomati indexing." J. Am. So. Inf. Sys. 32(3), 175-86.[28℄ Salton, G. and J. Allan. 1994. \Text retrieval using the vetor proessing model." Pro.3rd Ann. Symp. Doument analysis and information retrieval, Las Vegas, Nevada, pp.9-22.[29℄ Smeaton, Alan F., R. O'Donnel, and F. Kelledy. 1995. \Indexing strutures derivedfrom syntax in TREC-3: system desription". In Overview of 3rd Text Retrieval Con-ferene (TREC-3). Donna K. Harman, ed. 1995. Washington, D. C.: Nist SpeialPubliation.[30℄ vanRijsberngen, C. J. 1975. Information Retrieval. London: Butterworths.[31℄ Wong, S.K.M., W. Ziarko. 1985. \On generalized vetor spae model in informationretrieval." Annals of the Soiety of Mathematis of Poland, Series 4: Fundamentalsof information 8(2), 253-267.[32℄ Zipf, George Kinglsey. 1949. Human behavior and the priniple of least e�ort. Cam-bridge, Massahusetts: Addison-Wesley.17

