
Improving and Stabilizing Parallel Computer Performance
Using Adaptive Backfilling

David Talby Dror G. Feitelson
Hebrew University

Email: {davidt,feit}@cs.huji.ac.il

Abstract

The scheduler is a key component in determining

the overall performance of a parallel computer, and as
we show here, the schedulers in wide use today exhibit
large unexplained gaps in performance during their
operation. Also, different scheduling algorithms often
vary in the gaps they show, suggesting that choosing
the correct scheduler for each time frame can improve
overall performance. We present two adaptive
algorithms that achieve this: One chooses by recent
past performance, and the other by the recent average
degree of parallelism, which is shown to be correlated
to algorithmic superiority. Simulation results for the
algorithms on production workloads are analyzed, and
illustrate unique features of the chaotic temporal
structure of parallel workloads. We provide best
parameter configurations for each algorithm, which
both achieve average improvements of 10% in
performance and 35% in stability for the tested
workloads.

1. Introduction

Large parallel computers are often shared by many
different users. A user wishing to run a job submits a
request to a central scheduler, which has the
responsibility to decide when and where the job will
run. The scheduler is an on-line algorithm, which must
optimize the execution of the incoming workload,
balance throughput and fairness, and encapsulate the
system's administrative policies and priorities. This
makes the scheduler a key component, which
determines the bottom-line level of service that users
receive. Improving it can have a dramatic visible effect
on a system's usability, for a given platform and policy.

This study began with the observation that
widespread scheduling systems in use today, such as
Maui [4] and Easy [6], sometimes exhibit inconsistent
and unstable behavior. As the next section will show, in

a typical year these schedulers have several “good”
months, a few “bad” ones, and one or two “major
blunders”. In very bad months, the computer’s average
response time is several times slower than usual.

Another observation that we make is that another
scheduling algorithm, Flex [7], offers comparable
performance to Maui, with an important difference:
Although it also has “good” and “bad” months, they are
different than those of Maui in every case we
examined. This raises an opportunity: If we could
predict when each scheduler should be used, we can
enjoy the best of both worlds.

This paper describes two algorithms that use
different strategies to predict when each scheduler is
most appropriate. There are two end goals: Improve the
overall performance of the computer, and maintain a
stable and predictable quality of service. In addition,
the analysis of each algorithm will reveal new hints
about the key question of why a given algorithm is
better for a given workload.

2. The Inconsistent Performance Problem

2.1. Review of Backfilling Schedulers

The parallel computers considered in this paper are
of the most widespread type today, which uses variable
partitioning: A new job requires a certain number of
processors upon its arrival, and these processors are
dedicated to it once it starts running. In addition, each
job provides an estimate for its runtime; this is an upper
bound, since if a job exceeds it, it is killed. Users also
have an incentive to provide low estimates, since this
enables promoting jobs from the back of the queue to
fill idle processors – an optimization known as backfilling.

This study compares four well-known backfilling
schedulers. The first is the EASY Scheduler [6], used
mainly in IBM SP2 machines since the mid ‘90s. When
a new job is submitted, EASY checks its requirements
against the currently running jobs and the first job in

the queue. The time in which the first job in the queue
is going to run is called the shadow time; the idle nodes
after the first queued job starts running are called extra
nodes. The new job is backfilled (passes the first job in
the queue and starts running immediately) if one of the
following two conditions holds:
1. It requires no more than the currently free nodes,

and will terminate by the shadow time.

2. It requires no more than the minimum of the
currently free nodes and the extra nodes.
EASY uses an aggressive backfilling strategy, in

the sense that the above two conditions are only
checked for the first (oldest) job in the queue. This
strategy is aimed at improving the response time and
slowdown of small jobs. However, this comes at a
price: subsequent queued jobs (not the first) can suffer
an unbounded delay, and a job cannot be guaranteed
when it will run.

The second backfilling scheduler, the Conservative
Scheduler [5], uses a different rule: A job can be
backfilled only if does not delay any job in the queue.
This enables runtime guarantees and decreases
starvation on one hand, but may hamper utilization and
responsiveness for small jobs on the other.

The third scheduler is Maui [4]. Maui is a high-end
scheduling system, successfully deployed in many
computing sites over the past few years, from IBM SP2
machines to Linux clusters [1,4]. The scheduler
supports backfilling, and is highly configurable: In
particular, the number of jobs that cannot be delayed
and the order in which jobs are backfilled can be
controlled. The default and recommended
configuration (which is used in all simulations in this
paper) is a variation on EASY: Make reservations for
the first job in the queue only, and backfill jobs by
FCFS. That is, when a new job arrives, it is not the only
one that the scheduler tries to backfill. Instead, all
waiting jobs are sorted in order of ascending arrival
time, and are then backfilled (this in fact rebuilds the
queue) in that order.

The fourth scheduler that we consider here is the
Flex Scheduler [7]. Flex takes a different approach
from the above three algorithms, by trying to reach a
global optimization of the entire queue, rather than just
the head of the queue. This means that whenever a
decision has to be made (job arrival, termination or
cancellation events), all possible queues are compared,
and the best one (according to a configurable criteria)
is chosen. For example, if two jobs are queued and a
third arrives, Flex will consider three alternative
schedules: Running the new job first, in the middle, and
last. Each possible schedule is graded, suffering a
penalty for every job that must wait. To prevent

starvation, Flex introduces the concept of slack: Each
job is given a slack upon arrival, and it can never be
delayed by more than its slack. This is safer than
EASY and enables runtime guarantees, yet is more
flexible than Conservative.

2.2. Performance Comparison

The four algorithms have been studied and

compared in depth [5,7]. The bottom-line results as
reported so far are as follows:
� Easy is generally better than Conservative under the

response time metric, and sometimes also under
bounded slowdown, mainly in high-load workloads.

� Flex offers a level of performance 10%-20% better
than that of Easy, depending on the workload. As
we show here, Maui provides similar performance.
We have repeated these experiments by simulation

on logs from three parallel IBM SP2 computers, which
together constitute almost six years of real user activity.

Symbol Machine #
Nodes

Jobs

Weeks

SDSC
BLUE

ASCI Blue
Horizon 1152 250440 140.1

SDSC
SP2 IBM SP/2 128 73496 105.2

KTH
SP2 IBM SP/2 100 28490 48.6

Table 1: Parallel Computers in Our Data Set

Table 2 uses both the average wait time and
average bounded slowdown to compare the schedulers.
The first metric is equal towards all jobs, while the
second one penalizes causing short jobs to wait,
encouraging better interactive behavior. This table
confirms past results: Flex is the best scheduler in wait-
time in two out of three cases, and in slowdown in one
of the three; Maui is the best scheduler in the other
cases, and Conservative and Easy typically have lower
performance. However, this is not the whole picture.

Wait Time
 Cons Easy Flex Maui

BLUE 1878 2083 1661 1535
SDSP2 6379 6033 5500 5612
KTH 7302 6806 6250 6731

Bounded Slowdown
 Cons Easy Flex Maui

BLUE 9.1 11.0 8.0 10.2
SDSP2 28.4 29.2 25.7 17.6
KTH 89.2 88.9 70.5 63.3

Table 2: Schedulers’ Performance for Entire Logs

2.3. Monthly Performance Gaps

In order to gain a better understanding of the
algorithms than previously done, we re-ran the
simulations and gathered per-month results. This is
significant since as shown in [8] the usage pattern in
production logs may change radically over time, and
also because this gives us a total dataset of 67 unique
workloads, instead of three. This monthly breakdown
uncovered an unexpected result, shown in table 3.

Wait Time

 Cons Easy Flex Maui
0 0 8 23 BLUE

0% 0% 26% 74%
0 2 6 15 SDSP2

0% 9% 26% 65%
0 1 2 8 KTH

0% 9% 18% 73%
Bounded Slowdown

 Cons Easy Flex Maui
2 0 7 22 BLUE

6% 0% 23% 71%
3 0 4 16 SDSP2

13% 0% 17% 70%
0 0 3 8 KTH

0% 0% 27% 73%

Table 3: Schedulers’ Superiority by Months

The table counts how many months, in absolute
and relative terms, each scheduler “won” by providing
the best performance among the four schedulers. As
can be seen, Maui has a clear lead and “wins” about
70% of the months, under both metrics, consistently
across all logs. When only Flex and Maui are
compared, Maui “wins” about 75% of the months, and
Flex wins the other 25%.

This is surprising because as we saw in Table 2,
Maui’s overall yearly statistics are not better than
Flex’s. This can only happen if Flex wins by very high
margins when it does, and this is indeed what we
found: about one month per year, Maui shows
catastrophic performance, by presenting average wait
times that are 2-4 hours longer than that of Flex. Such a
wait time is about three times the yearly average on
each of the machines we study, and is enough to make
Flex the more responsive scheduler overall in two of
three cases.

Flex shows considerable improvement over Maui
in the months in which it leads, but this works the other
way as well: Maui often outperforms Flex significantly.
Table 4 shows both the average and maximum monthly

gap in average wait time between these two schedulers;
the gap is shown in percentage to make it possible to
compare across logs. The numbers are consistently
very high, which is an important unexpected fact, on
which we base the second part of this work.

The last two rows of table 4 prove that these results
are largely not the result of outliers in the logs.
Following the work on flurries in [10], we re-ran the
simulations on “cleaned” versions of the logs – such
versions exist for the BLUE and SDSP2 logs.

 Months won by Flex
Months won by

Maui

 Average
Gap

Max
Gap

Average
Gap

Max
Gap

BLUE 46% 251% 43% 189%
SDSP2 44% 97% 29% 145%
KTH 56% 158% 29% 53%

BLUE cln 46% 144% 33% 147%
SDSP2 cln 26% 95% 25% 93%

Table 4: Average and Maximal Wait Time Gaps
between Flex and Maui

The results show that although the removal of

flurries (which exist in real-life workloads) reduces
some of the figures, most of the performance gap
remains unexplained.

Months in which the four schedulers greatly differ
also do not stand out statistically as outliers. On the
contrary – the statistics of workload attributes such as
the inter-arrival time, runtime and parallelism is often
similar across months with very different scheduling
performance. Therefore, we suspect that the cause of
the performance gaps is the temporal structure of the
workload, or the correlations between adjacent jobs.
More specifically, it is likely that self-similarity –
shown in [8] to exist in parallel workloads – plays a
role here, since it exhibits itself in long-term
correlations between jobs, that cause long-term (i.e.
over months) load patterns that change chaotically over
time. However, the focus of this paper is not the
theoretical explanation of the performance gap
phenomenon, but rather a practical utilization of it, by
using the most practical tool to handle chaos in
dynamic systems: adaptability.

3. Performance Based Adaptive Scheduling

3.1. The Rationale

The practical opportunity that the performance gap
presents is clear: we can theoretically improve
performance by 30-40%, if we could predict in advance
which scheduler will win each month. In practice, we
can’t predict the future but can afford mistakes, since a
10% gain will be a significant and very useful
achievement as well.

An adaptive algorithm makes sense only if it can
make one very basic assumption – that past behavior
predicts future behavior. This is ensured by locality.
Locality is often caused by users working in sessions,
which has been noted to cause very similar or even
identical jobs to be repeatedly submitted over short
periods of time. In addition, the daily and weekly
cycles of human users cause similar load conditions in
successive hours and days. Finally, long-range
dependence implied by self-similarity is also very
evident [8]. All of these overlapping features ensure us
that some time scales will enable us to make
predictions about the workload, but also complicates
the situation, since the different types of correlations
are not continuous and may sometimes cancel out one
another. Finding the “right” time scales will be a major
challenge in making the adaptive schedulers work.

3.2. The Algorithm

The performance-based adaptive scheduler (PBAS),
summarized in figure 1, assumes that the scheduler that
performed best in the recent past is likely to perform
best in the near future. The idea is simple: Run a set of
candidate schedulers in the background, while using
one of them as the active scheduler; at regular intervals,
review the performance of all schedulers, and choose
the one with the best performance to be the active
scheduler for the next time frame.

3.3. Empirical Results

The PBAS algorithm can be configured by four
parameters: The candidate schedulers set, the time
frame between switching events, the metric used to
compare schedulers’ performance, and the history time
frame to consider when comparing performance. In our
runs, the history time frame was always identical to the
switching time frame, because using a longer history
period has an unclear semantics when switching
happens during that period, and we did not want to add
to the algorithm’s complexity.

Performance-Based Adaptive Scheduler

Initialization
o Initialize each of the candidate schedulers.
o Select one arbitrarily as the active scheduler.

On Job Arrival Event
o Notify each candidate scheduler about the arrival.
o Start running only the jobs that the active

scheduler decided to run.
On Job Termination or Cancellation Event
o Notify each candidate scheduler about the event.
o Start running only the jobs that the active

scheduler decided to run.
On Switch Schedulers Event
o Measure the performance of each of the candidate

schedulers during the last measurement period.
o Set the active scheduler to be the one which

performed the best under a preferred metric.
o Synchronize all schedulers to the current real

state, which may be different than the state they
reached (since they don’t “know” that their output
is not used to drive the actual system).

o Set another ‘switch’ event to happen after another
time interval.

Figure 1: PBAS Algorithm

The six graphs of figure 2 summarize the PBAS

results for different metrics (wait time and bounded
slowdown) and logs. The candidate schedulers set
includes only Flex and Maui, for a reason that will be
explained later. The time scale is logarithmic, since we
tested over five orders of magnitude of time – from one
minute to fifty days. The metrics used to judge
performance and decide to switch schedulers are
response time (PBAS-Resp), bounded slowdown
(PBAS-BSld), and utilization (PBAS-Util). The wait
time and slowdowns metrics were tested as well, but
result in similar or worse performance so were left out.

Perhaps the most surprising visual impact of figure
2 is the fact that results are highly non-continuous:
performance seems to be very sensitive to the time
frame, and does not lend itself to any elegant
explanation. There are several unique points which are
consistent across logs, but most of the time, behavior
can only be predicted by experimentation. The same
happens across metrics: using different metrics for
same time frames results in inconsistent and non-
continuous performance. Also, with a few rare
exceptions, using a certain metric to decide on
switching does not guarantee good results in that
metric.

1300

1400

1500

1600

1700

1800

1900

0.5 1.5 2.5 3.5 4.5

BLUE

4900

5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

0.5 1.5 2.5 3.5 4.5

SDSP2

5300

5500

5700

5900

6100

6300

6500

6700

6900

7100

0.5 1.5 2.5 3.5 4.5

KTH

X Axis is log-minutes:
Hour�1.7, Day�3.2, Week�4

Y Axis is Wait Time on left &
Bounded Slowdown on right

Figure 2: PBAS Results by Time Frame and Metric

6

7

8

9

10

11

12

13

14

15

0.5 1.5 2.5 3.5 4.5

BLUE

15

17

19

21

23

25

27

0.5 1.5 2.5 3.5 4.5

SDSP2

50

55

60

65

70

75

80

0.5 1.5 2.5 3.5 4.5

KTH

Maui and Flex are shown as straight lines in the
plots, since they are not adaptive. The visuals show that
most PBAS runs are between the Maui and Flex results
for that log, which is expected – after all, the adaptive
scheduler can only run one of them at any given time.

It is also visible that the wrong selection of
parameters can lead to performance that is worse than
both Maui and Flex, but on the other hand – the right
selection can result in outperforming both. It is

expected and doesn’t matter than most parameter
combinations don’t work, as long as one or more
combination consistently improves performance. In our
case, there are two consistently winning combinations,
presented in table 5. “Util-7 Days” means switch every
7 days, to the scheduler that achieved the highest
utilization in the last period. The numbers show the
percent of improvement over Flex and Maui, both in
average wait time (performance), and in standard
deviation between wait times of months (stability).

Configuration Versus KTH SDSP2 BLUE

 Performance Gain
Maui 13% 8% 9% Util 7-Days
Flex 6% 6% 16%
Maui 5% 11% 12% Resp 12-Hour
Flex -3% 10% 19%

 Stability Gain
Maui 63% 29% 17% Util 7-Days
Flex -2% 4% 14%
Maui 24% 27% 24% Resp 12-Hour
Flex -11% 3% 22%

Table 5: PBAS Best Parameter Configurations
and Overall Improvements over Flex and Maui
The average performance gain of the Utilization-7

Days configuration over Maui is 10%, and its average
stability gain is 36%. The numbers for the Response
Time-12 Hours configuration are 9% and 25%. The
average performance gains for Flex are similar, but the
stability gains are smaller, since Flex is more stable
than Maui to begin with – for example, it is 64% more
stable than Maui in the KTH log. Another good
configuration was Bounded Slowdown-1 Hour, which
worked very well for KTH and SDSP2, but caused a
small decline in performance of the BLUE log.

3.4. Candidate Schedulers

All the PBAS experiments analyzed so far use only

Maui and Flex, for a simple reason – using any other
candidate set, and in particular the set of all four
schedulers, provides significantly worse results. Figure
3 demonstrates this visually, for specific logs and
PBAS configuration – but the results repeat for other
configurations and logs as well.

The explanation is as follows. Since the adaptive
scheduler makes local decisions, there are occasions
when Easy or Cons will be chosen. Since these
algorithms are generally weaker than Flex and Maui,
the probability that their past success indicates future
success is smaller than for Flex and Maui. This means
that erroneous choices are made more often.

5300

5500

5700

5900

6100

6300

6500

6700

6900

1.5 2 2.5 3 3.5 4 4.5 5

KTH

1400

1500

1600

1700

1800

1900

2000

1.5 2 2.5 3 3.5 4 4.5 5

BLUE

Figure 3: 4-Scheduler PBAS vs. 2-Schedulers PBAS

Y Axis is wait time, switching metric is utilization

Table 6 illustrates this from a different point of
view, by listing the portion of time that PBAS uses
each scheduler. The five rows are results for the BLUE
log, using utilization as the switching metric, and all
four schedulers as the candidate set. As the table
shows, Cons and Easy are used together between 21%
and 47% of the time, depending on the time frame.
This means that during this portion of the time, PBAS
uses an inferior scheduler – and as figure 3 shows, this
is apparent in its performance. To borrow an analogy
from sports: If an adaptive algorithm is a team’s coach,
then it should prefer to use a strong player on a bad
day, than a mediocre player on a winning streak.

 % Flex % Maui % Easy % Cons
30 min 27% 52% 17% 4%
4 hours 22% 47% 23% 8%
24 hours 21% 52% 19% 9%
7 days 11% 43% 40% 7%
50 days 17% 44% 33% 6%

Table 6: PBAS Switching Patterns

4. Workload Based Adaptive Scheduling

4.1. The Rationale

Performance-Based Adaptive Scheduling takes a
greedy approach to profit from the performance gap.
The ability to bypass the need to understand the root
cause of a phenomenon and still benefit from it is the
key advantage of adaptive algorithms – but yet, if such
an understanding can be reached, then the rewards in
terms of performance are usually high [3]. On the other
hand, some dynamic environments are too complex to
fully “understand”, and then an adaptive heuristic
behavior is the best practical choice.

Workload-Based Adaptive Scheduling is an
intermediate path between these extremes. Instead of
blindly following the best-performing candidate
scheduler, we will examine which local features of the
workload are correlated with preferring a given
scheduler. Afterwards, our on-line algorithm will work
by monitoring that feature, and switching schedulers
accordingly. This should enable us to benefit by
identifying and reacting to a new trend in the workload
as its first jobs enter the queue – instead of when the
first jobs terminate, when the first performance
statistics become available for PBAS.

The workload variables that were tested are the
number of jobs and users, the load, and the medians
and intervals of the runtime, parallelism, total CPU
work and inter-arrival time. The average and standard
deviation metrics were not used, since they are known
to be unreliable in parallel workloads due to the heavy
tails of the involved distributions [2]. These variables
were compared against two measures of relative
algorithmic superiority: the absolute difference
between the wait times of Flex and Maui, and the
relative difference (in percent) between the wait times
of the two algorithms. The first measure tests
correlation to “major blunders” since large absolute
values dominate the computation, while the second
(relative) regards small and large wait times equally.

In table 7, positive correlations mean that large

values of that workload variable indicate better

performance of Maui over Flex. Negative values
indicate that large values correlate with better Flex
performance. The correlations were computed between
the statistics of each month of a log, to the difference
between Flex and Maui’s performance for that month.
As the table shows, most variables do not consistently
indicate a preference towards a certain algorithm, and
this dataset is too small to assume that a majority
means anything. There are two exceptions: the number
of processors (both median and interval) for both the
absolute and relative performance measures, and the
median of inter-arrival times or related job count for
the absolute or relative measure, respectively.

4.2. The Algorithm

The Workload-Based Adaptive Scheduler
(WBAS) uses the number of processors as an indicator
of scheduler preference. It was chosen since it works
for both the relative and absolute measures, and since
its correlations were the most consistent across logs.

The algorithm is adaptive and works in the
following manner. When a switching event occurs, it
checks if the number of processors requested in the last
time frame is greater than the long-term average
parallelism of the workload – which indicates that Flex
should be activated – or not, which means that Maui
should be chosen. The long-term average parallelism of
the workload is updated each time a job arrives, using
an exponential moving average, to enable the global
average to slowly adjust even after the scheduler has
been running for a long time.

Workload-Based Adaptive Scheduler

Log Jobs
Count

Runtime
Load

Users
/TJobs

Runtime
Median

Runtime
Interval

Procs
Med.

Procs
Int.

CPU
Med.

CPU
Int.

IA-Med. IA-Int.

Correlations to relative Flex/Maui difference:
KTH 0.44 -0.35 0.13 0.83 -0.38 -0.05 -0.60 N/A N/A -0.46 0.64
SDSP2 0.01 0.11 -0.05 -0.04 0.28 -0.30 -0.19 -0.02 0.29 0.02 -0.11
BLUE 0.20 -0.05 -0.09 0.14 -0.02 -0.33 -0.24 0.00 0.09 -0.21 -0.13

Correlations to absolute Flex-Maui difference:
KTH 0.39 -0.03 0.11 0.32 -0.28 -0.14 -0.72 N/A N/A -0.52 -0.14
SDSP2 0.10 0.08 -0.16 -0.24 0.16 -0.19 -0.21 -0.16 0.19 -0.11 -0.28
BLUE -0.01 -0.12 0.07 0.02 0.13 -0.09 -0.02 0.01 0.17 -0.11 0.08

Table 7: Correlations between workload attributes and relative Flex-Maui performance

Initialization
o Select one of the candidate schedulers arbitrarily

as the active scheduler
On Job Arrival Event
o Update the moving average of parallelism AP

using the number of processors requested by the
new job Pnew and this formula:

AP = (1 – MAF

 –1) x AP + MAF –

1 x Pnew

o Start running only the jobs that the active
scheduler decided to run.

On Job Termination or Cancellation Event
o Only start running jobs the active scheduler

decided to run.
On Switch Schedulers Event
o Measure the average level of parallelism of jobs

that arrived during the last time frame: APlast.
o If AP < APlast , then activate Flex, else use Maui.
o If the active scheduler changed, synchronize it to

the current situation.
o Set another ‘switch’ event to happen after another

time interval.

Figure 4: WBAS Algorithm

4.3. Empirical Results

The WBAS can be configured by two parameters:
The switching time frame, and the moving average
factor (MAF) which determines the length of the “long-
term memory” of the algorithm. The candidate set and
history time frame, in the sense used in PBAS, are
irrelevant here. Since both parameters are continuous,
we could not test all possible combinations in order to
find the best one, and therefore took the following
approach to find the best combination. In figure 5, all
the performance-per-switch-time graphs use MAF of
5000, and all the performance-per-MAF graphs use one
day as the switch time. These values were chosen after
preliminary test runs, which indicated that these values
both perform well and are relatively stable to small
changes. The performance measure in figure 5 is wait
time in all graphs; the scales for both MAF and switch
times are logarithmic, since as usual we tested values
from several orders of magnitude.

The first question to answer, before analyzing
patterns in the graphs, is whether WBAS improves
overall performance. The answer is a clear yes, and
table 8 shows the best configurations that do so. As was
done in table 5, the results are the percentage of
improvement compared to Maui and Flex.

Configuration Versus KTH SDSP2 BLUE

 Performance Gain
Maui 20% 10% 1% 7500 MAF

1 Day Flex 14% 8% 9%
Maui 15% 7% 8% 7500 MAF

2 Hours Flex 9% 6% 15%
Maui 17% 11% 0% 750 MAF

1 Day Flex 11% 10% 7%

 Stability Gain
Maui 60% 32% 14% 7500 MAF

1 Day Flex -10% 8% 11%
Maui 28% 22% 17% 7500 MAF

2 Hours Flex -10% -5% 14%
Maui 62% 31% 5% 750 MAF

1 Day Flex -5% 7% 2%

Table 8: WBAS Best Parameter Configurations
and Overall Improvements over Flex and Maui

The performance gain is measured by the average
wait time, and the stability gain is measured by the
standard deviation of monthly wait times.

The average performance gain of the first two
combinations over Maui is 10%, and their average
stability gains are 35% and 22%. The third
combination’s average improvement over Maui is 9%,
and its average stability gain is 33%. These averages
are similar to the improvements achieved using PBAS,
with the distinction that PBAS achieved much better
gains for the BLUE log, while WBAS achieved better
gains for the KTH log. The difference between the
KTH and BLUE logs that is responsible for this result
is unknown at this time. The average improvements
over Flex are similar, except for the much smaller
stability gains, which also appeared in PBAS and are
caused by the fact that Flex is more stable than Maui.

Another difference between PBAS and WBAS,
made obvious by visually comparing figure 2 and
figure 5, is that the performance of WBAS is less
sensitive to parameter changes. This is not to say that
the WBAS results are “well-behaved”: we still cannot
see continuous and predictable lines, and the best way
to know the results for a given parameter combination
is to run it in a simulation. But there is still an
improvement compared to PBAS: For example,
changing a MAF of 5000 by several hundreds has a
moderate effect, and performance changes are usually
visible only when crossing the borders to a higher or
lower order of magnitude. The switching time frame is
more sensitive than that, but we can still observe some
common features in the three logs’ graphs.

1400

1450

1500

1550

1600

1650

1700

0.5 1 1.5 2 2.5 3 3.5 4 4.5

BLUE

4900

5000

5100

5200

5300

5400

5500

5600

5700

0.5 1 1.5 2 2.5 3 3.5 4 4.5

SDSP2

5200

5400

5600

5800

6000

6200

6400

6600

6800

0.5 1 1.5 2 2.5 3 3.5 4 4.5

KTH

X axis on left is log-MAF
5000MAF�3.7

X axis on right is log-Minutes
1Day�3.2

Y Axis on both is Wait Time

Figure 5: WBAS Results by Time Frame and MAF

1400

1450

1500

1550

1600

1650

1700

1750

1 1.5 2 2.5 3 3.5 4 4.5 5

BLUE

5000

5100

5200

5300

5400

5500

5600

5700

1 1.5 2 2.5 3 3.5 4 4.5 5

SDSP2

5400

5600

5800

6000

6200

6400

6600

6800

1 1.5 2 2.5 3 3.5 4 4.5 5

KTH

Since both PBAS and WBAS show the same
average overall performance, the selection between
them can be based on secondary considerations. Most
of these are in favor of WBAS: Its parameters are more
robust to minor errors, it is simpler to implement since
it doesn’t require simulating both schedulers in
memory at runtime, and it is slightly more efficient
since only one scheduler needs to run at any given
time.

A final word is due about the algorithms’
performance. The runtime of adaptive algorithms is the
sum of runtimes of the candidate algorithms, plus the
time required to synchronize between them. This means
that the performance of an adaptive scheduler is the
same, in the Big-O sense, as that of its slowest
candidate. In practice, both algorithms run an entire log
simulation in several dozen seconds on a strong PC,
which equals millisecond-range time per scheduling
event. Moreover, switching events are done
asynchronous to user requests, so users experience the
same service times that Flex and Maui provide alone.

5. Conclusions

This paper makes three novel contributions. First,
it identifies a practical problem – the per-month
performance gap. The problem is shared by all the logs
we examined, has a dire affect on a system’s usability,
and cannot be gracefully handled once it starts. Since
our study focuses on the most widely used schedulers
today, deployed on several platforms, we suspect that
this problem is widespread and often ignored.

Second, we propose a practical solution, in the
form of adaptability. The combination of the different
approaches of Maui and Flex, with the recommended
parameter sets that we found, significantly improves
the stability and predictability of the tested systems.
The average improvement for our dataset was 35%
using the recommended configurations.

Moreover, the new algorithms enable a 10% gain
in overall performance over existing algorithms, which
makes them useful for any large parallel computer.
Compared to other alternatives for boosting
performance, improving the scheduler is easy: It is a
software-only, relatively independent module of the
computer; implementing the algorithms described here
requires writing several thousand lines of code.

What adaptive algorithms don’t explain is why
they do or don’t work. Our results provide many hints
about the temporal structure of parallel workloads, and
the factors that dominate them. The resulting picture is
a complex and highly chaotic one, yet it is obvious that
future research to further understand it is required, and
can yield practical benefits.

The third contribution of this paper is the
methodology, for deriving an adaptive algorithm to
solve a given problem. Much of the process done in
this study – defining the candidate algorithms set,
tuning in to find the best parameter combinations,
trying both performance- and input-based switching
criteria – is applicable to many other problems of
similar nature.

7. Acknowledgements

This research was supported in part by the Israel
Science Foundation (grant no. 167/03).

The logs used in this paper are freely available in
the Parallel Workloads Archive [9]. We would like to
thank the following people for graciously providing the
workloads, as well as helping with background
information and interpretation: Travis Earheart and
Nancy Wilkins-Diehr for the SDSC Blue Horizon, Lars
Malinowsky for the KTH log, and Victor Hazlewood
for the SDSC SP2 log.

8. References

[1] B. Bode, D. Halstead, R. Kendall, Z. Lei and D.

Jackson, The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters. Proceedings of the 4th
Annual Linux Showcase and Conference, October 2000,
Atlanta, USA.

[2] A. B. Downey and D. G. Feitelson, The Elusive Goal of
Workload Characterization. In Perf. Eval. Rev. 26(4),
pp. 14-29, Mar 1999.

[3] A. E. Eiben, J. E. Smith, J. D. Smith, Introduction to
Evolutionary Computing. Natural Computing Series,
Springer-Verlag, 2003.

[4] D. Jackson, Q. Snell, M. J. Clement, Core algorithms of
the Maui scheduler. In JSSPP, pages 87–102, 2001.

[5] A. W. Mu'alem and D. G. Feitelson, Utilization,
predictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with backfilling. IEEE Trans.
Parallel & Dist. Syst. 12(6), pp. 529-543, 2001.

[6] J. Skovira, W. Chan, H. Zhoi, and D. Lifka, The EASY –
LoadLeveler API project. In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 41-47, Springer Verlag ‘96. LNCS vol. 1162.

[7] D. Talby and D. G. Feitelson, Supporting priorities and
improving utilization of the IBM SP2 scheduler using
slack-based backfilling. In 13th Intl. Parallel
Processing Symp., pp. 513-517, Apr 1999.

[8] D. Talby, D. G. Feitelson, and A. Raveh, Comparing
logs and models of parallel workloads using the Co-
Plot method. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (Eds.),
pp. 43-66, Springer-Verlag, 1999. Lecture Notes in
Computer Science Vol. 1659.

[9] The Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload

[10] D. Tsafrir and D. G. Feitelson, Workload flurries.
TR 2003-85, School of Computer Science and
Engineering, Hebrew University of Jerusalem,
Nov 2003.

