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Abstract 

 
The scheduler is a key component in determining 

the overall performance of a parallel computer, and as 
we show here, the schedulers in wide use today exhibit 
large unexplained gaps in performance during their 
operation. Also, different scheduling algorithms often 
vary in the gaps they show, suggesting that choosing 
the correct scheduler for each time frame can improve 
overall performance. We present two adaptive 
algorithms that achieve this: One chooses by recent 
past performance, and the other by the recent average 
degree of parallelism, which is shown to be correlated 
to algorithmic superiority. Simulation results for the 
algorithms on production workloads are analyzed, and 
illustrate unique features of the chaotic temporal 
structure of parallel workloads. We provide best 
parameter configurations for each algorithm, which 
both achieve average improvements of 10% in 
performance and 35% in stability for the tested 
workloads. 
 
1. Introduction 
 

Large parallel computers are often shared by many 
different users. A user wishing to run a job submits a 
request to a central scheduler, which has the 
responsibility to decide when and where the job will 
run. The scheduler is an on-line algorithm, which must 
optimize the execution of the incoming workload, 
balance throughput and fairness, and encapsulate the 
system's administrative policies and priorities. This 
makes the scheduler a key component, which 
determines the bottom-line level of service that users 
receive. Improving it can have a dramatic visible effect 
on a system's usability, for a given platform and policy. 

This study began with the observation that 
widespread scheduling systems in use today, such as 
Maui [4] and Easy [6], sometimes exhibit inconsistent 
and unstable behavior. As the next section will show, in 

a typical year these schedulers have several “good” 
months, a few “bad” ones, and one or two “major 
blunders”. In very bad months, the computer’s average 
response time is several times slower than usual. 

Another observation that we make is that another 
scheduling algorithm, Flex [7], offers comparable 
performance to Maui, with an important difference: 
Although it also has “good” and “bad” months, they are 
different than those of Maui in every case we 
examined. This raises an opportunity: If we could 
predict when each scheduler should be used, we can 
enjoy the best of both worlds. 

This paper describes two algorithms that use 
different strategies to predict when each scheduler is 
most appropriate. There are two end goals: Improve the 
overall performance of the computer, and maintain a 
stable and predictable quality of service. In addition, 
the analysis of each algorithm will reveal new hints 
about the key question of why a given algorithm is 
better for a given workload. 

 

2. The Inconsistent Performance Problem 
 
2.1. Review of Backfilling Schedulers 
 

The parallel computers considered in this paper are 
of the most widespread type today, which uses variable 
partitioning: A new job requires a certain number of 
processors upon its arrival, and these processors are 
dedicated to it once it starts running. In addition, each 
job provides an estimate for its runtime; this is an upper 
bound, since if a job exceeds it, it is killed. Users also 
have an incentive to provide low estimates, since this 
enables promoting jobs from the back of the queue to 
fill idle processors – an optimization known as backfilling. 

This study compares four well-known backfilling 
schedulers. The first is the EASY Scheduler [6], used 
mainly in IBM SP2 machines since the mid ‘90s. When 
a new job is submitted, EASY checks its requirements 
against the currently running jobs and the first job in 



the queue. The time in which the first job in the queue 
is going to run is called the shadow time; the idle nodes 
after the first queued job starts running are called extra 
nodes. The new job is backfilled (passes the first job in 
the queue and starts running immediately) if one of the 
following two conditions holds: 
1. It requires no more than the currently free nodes, 

and will terminate by the shadow time. 

2. It requires no more than the minimum of the 
currently free nodes and the extra nodes. 
EASY uses an aggressive backfilling strategy, in 

the sense that the above two conditions are only 
checked for the first (oldest) job in the queue. This 
strategy is aimed at improving the response time and 
slowdown of small jobs. However, this comes at a 
price: subsequent queued jobs (not the first) can suffer 
an unbounded delay, and a job cannot be guaranteed 
when it will run. 

The second backfilling scheduler, the Conservative 
Scheduler [5], uses a different rule: A job can be 
backfilled only if does not delay any job in the queue. 
This enables runtime guarantees and decreases 
starvation on one hand, but may hamper utilization and 
responsiveness for small jobs on the other. 

The third scheduler is Maui [4]. Maui is a high-end 
scheduling system, successfully deployed in many 
computing sites over the past few years, from IBM SP2 
machines to Linux clusters [1,4]. The scheduler 
supports backfilling, and is highly configurable: In 
particular, the number of jobs that cannot be delayed 
and the order in which jobs are backfilled can be 
controlled. The default and recommended 
configuration (which is used in all simulations in this 
paper) is a variation on EASY: Make reservations for 
the first job in the queue only, and backfill jobs by 
FCFS. That is, when a new job arrives, it is not the only 
one that the scheduler tries to backfill. Instead, all 
waiting jobs are sorted in order of ascending arrival 
time, and are then backfilled (this in fact rebuilds the 
queue) in that order. 

The fourth scheduler that we consider here is the 
Flex Scheduler [7]. Flex takes a different approach 
from the above three algorithms, by trying to reach a 
global optimization of the entire queue, rather than just 
the head of the queue. This means that whenever a 
decision has to be made (job arrival, termination or 
cancellation events), all possible queues are compared, 
and the best one (according to a configurable criteria) 
is chosen. For example, if two jobs are queued and a 
third arrives, Flex will consider three alternative 
schedules: Running the new job first, in the middle, and 
last. Each possible schedule is graded, suffering a 
penalty for every job that must wait. To prevent 

starvation, Flex introduces the concept of slack: Each 
job is given a slack upon arrival, and it can never be 
delayed by more than its slack. This is safer than 
EASY and enables runtime guarantees, yet is more 
flexible than Conservative. 

 
2.2. Performance Comparison 

 
The four algorithms have been studied and 

compared in depth [5,7]. The bottom-line results as 
reported so far are as follows: 
� Easy is generally better than Conservative under the 

response time metric, and sometimes also under 
bounded slowdown, mainly in high-load workloads. 

� Flex offers a level of performance 10%-20% better 
than that of Easy, depending on the workload. As 
we show here, Maui provides similar performance. 
We have repeated these experiments by simulation 

on logs from three parallel IBM SP2 computers, which 
together constitute almost six years of real user activity. 

Symbol Machine # 
Nodes 

# 
Jobs 

# 
Weeks 

SDSC 
BLUE 

ASCI Blue 
Horizon 1152 250440 140.1 

SDSC 
SP2 IBM SP/2 128 73496 105.2 

KTH 
SP2 IBM SP/2 100 28490 48.6 

Table 1: Parallel Computers in Our Data Set 
 

Table 2 uses both the average wait time and 
average bounded slowdown to compare the schedulers. 
The first metric is equal towards all jobs, while the 
second one penalizes causing short jobs to wait, 
encouraging better interactive behavior. This table 
confirms past results: Flex is the best scheduler in wait-
time in two out of three cases, and in slowdown in one 
of the three; Maui is the best scheduler in the other 
cases, and Conservative and Easy typically have lower 
performance. However, this is not the whole picture. 

Wait Time 
 Cons Easy Flex Maui 

BLUE 1878 2083 1661 1535 
SDSP2 6379 6033 5500 5612 
KTH 7302 6806 6250 6731 

Bounded Slowdown 
 Cons Easy Flex Maui 

BLUE 9.1 11.0 8.0 10.2 
SDSP2 28.4 29.2 25.7 17.6 
KTH 89.2 88.9 70.5 63.3 

Table 2: Schedulers’ Performance for Entire Logs 



2.3. Monthly Performance Gaps 
 

In order to gain a better understanding of the 
algorithms than previously done, we re-ran the 
simulations and gathered per-month results. This is 
significant since as shown in [8] the usage pattern in 
production logs may change radically over time, and 
also because this gives us a total dataset of 67 unique 
workloads, instead of three. This monthly breakdown 
uncovered an unexpected result, shown in table 3. 

 
Wait Time 

 Cons Easy Flex Maui 
0 0 8 23 BLUE 

0% 0% 26% 74% 
0 2 6 15 SDSP2 

0% 9% 26% 65% 
0 1 2 8 KTH 

0% 9% 18% 73% 
Bounded Slowdown 

 Cons Easy Flex Maui 
2 0 7 22 BLUE 

6% 0% 23% 71% 
3 0 4 16 SDSP2 

13% 0% 17% 70% 
0 0 3 8 KTH 

0% 0% 27% 73% 

Table 3: Schedulers’ Superiority by Months 
 

The table counts how many months, in absolute 
and relative terms, each scheduler “won” by providing 
the best performance among the four schedulers. As 
can be seen, Maui has a clear lead and “wins” about 
70% of the months, under both metrics, consistently 
across all logs. When only Flex and Maui are 
compared, Maui “wins” about 75% of the months, and 
Flex wins the other 25%. 

This is surprising because as we saw in Table 2, 
Maui’s overall yearly statistics are not better than 
Flex’s. This can only happen if Flex wins by very high 
margins when it does, and this is indeed what we 
found: about one month per year, Maui shows 
catastrophic performance, by presenting average wait 
times that are 2-4 hours longer than that of Flex. Such a 
wait time is about three times the yearly average on 
each of the machines we study, and is enough to make 
Flex the more responsive scheduler overall in two of 
three cases. 

Flex shows considerable improvement over Maui 
in the months in which it leads, but this works the other 
way as well: Maui often outperforms Flex significantly. 
Table 4 shows both the average and maximum monthly 

gap in average wait time between these two schedulers; 
the gap is shown in percentage to make it possible to 
compare across logs. The numbers are consistently 
very high, which is an important unexpected fact, on 
which we base the second part of this work. 

The last two rows of table 4 prove that these results 
are largely not the result of outliers in the logs. 
Following the work on flurries in [10], we re-ran the 
simulations on “cleaned” versions of the logs – such 
versions exist for the BLUE and SDSP2 logs. 

 

 Months won by Flex 
Months won by 

Maui 

 Average 
Gap 

Max 
Gap 

Average 
Gap 

Max 
Gap 

BLUE 46% 251% 43% 189% 
SDSP2 44% 97% 29% 145% 
KTH 56% 158% 29% 53% 

 
BLUE cln 46% 144% 33% 147% 
SDSP2 cln 26% 95% 25% 93% 

Table 4: Average and Maximal Wait Time Gaps 
between Flex and Maui 

 
The results show that although the removal of 

flurries (which exist in real-life workloads) reduces 
some of the figures, most of the performance gap 
remains unexplained. 

Months in which the four schedulers greatly differ 
also do not stand out statistically as outliers. On the 
contrary – the statistics of workload attributes such as 
the inter-arrival time, runtime and parallelism is often 
similar across months with very different scheduling 
performance. Therefore, we suspect that the cause of 
the performance gaps is the temporal structure of the 
workload, or the correlations between adjacent jobs. 
More specifically, it is likely that self-similarity – 
shown in [8] to exist in parallel workloads – plays a 
role here, since it exhibits itself in long-term 
correlations between jobs, that cause long-term (i.e. 
over months) load patterns that change chaotically over 
time. However, the focus of this paper is not the 
theoretical explanation of the performance gap 
phenomenon, but rather a practical utilization of it, by 
using the most practical tool to handle chaos in 
dynamic systems: adaptability. 

 
 
 
 
 
 



3. Performance Based Adaptive Scheduling 
 
3.1. The Rationale 
 

The practical opportunity that the performance gap 
presents is clear: we can theoretically improve 
performance by 30-40%, if we could predict in advance 
which scheduler will win each month. In practice, we 
can’t predict the future but can afford mistakes, since a 
10% gain will be a significant and very useful 
achievement as well. 

An adaptive algorithm makes sense only if it can 
make one very basic assumption – that past behavior 
predicts future behavior. This is ensured by locality. 
Locality is often caused by users working in sessions, 
which has been noted to cause very similar or even 
identical jobs to be repeatedly submitted over short 
periods of time. In addition, the daily and weekly 
cycles of human users cause similar load conditions in 
successive hours and days. Finally, long-range 
dependence implied by self-similarity is also very 
evident [8]. All of these overlapping features ensure us 
that some time scales will enable us to make 
predictions about the workload, but also complicates 
the situation, since the different types of correlations 
are not continuous and may sometimes cancel out one 
another. Finding the “right” time scales will be a major 
challenge in making the adaptive schedulers work. 

 
3.2. The Algorithm 
 

The performance-based adaptive scheduler (PBAS), 
summarized in figure 1, assumes that the scheduler that 
performed best in the recent past is likely to perform 
best in the near future. The idea is simple: Run a set of 
candidate schedulers in the background, while using 
one of them as the active scheduler; at regular intervals, 
review the performance of all schedulers, and choose 
the one with the best performance to be the active 
scheduler for the next time frame. 

 
3.3. Empirical Results 
 

The PBAS algorithm can be configured by four 
parameters: The candidate schedulers set, the time 
frame between switching events, the metric used to 
compare schedulers’ performance, and the history time 
frame to consider when comparing performance. In our 
runs, the history time frame was always identical to the 
switching time frame, because using a longer history 
period has an unclear semantics when switching 
happens during that period, and we did not want to add 
to the algorithm’s complexity. 

Performance-Based Adaptive Scheduler 

Initialization 
o Initialize each of the candidate schedulers. 
o Select one arbitrarily as the active scheduler. 

On Job Arrival Event 
o Notify each candidate scheduler about the arrival. 
o Start running only the jobs that the active 

scheduler decided to run. 
On Job Termination or Cancellation Event 
o Notify each candidate scheduler about the event. 
o Start running only the jobs that the active 

scheduler decided to run. 
On Switch Schedulers Event 
o Measure the performance of each of the candidate 

schedulers during the last measurement period. 
o Set the active scheduler to be the one which 

performed the best under a preferred metric. 
o Synchronize all schedulers to the current real 

state, which may be different than the state they 
reached (since they don’t “know” that their output 
is not used to drive the actual system). 

o Set another ‘switch’ event to happen after another 
time interval. 

Figure 1: PBAS Algorithm 

 
The six graphs of figure 2 summarize the PBAS 

results for different metrics (wait time and bounded 
slowdown) and logs. The candidate schedulers set 
includes only Flex and Maui, for a reason that will be 
explained later. The time scale is logarithmic, since we 
tested over five orders of magnitude of time – from one 
minute to fifty days. The metrics used to judge 
performance and decide to switch schedulers are 
response time (PBAS-Resp), bounded slowdown 
(PBAS-BSld), and utilization (PBAS-Util). The wait 
time and slowdowns metrics were tested as well, but 
result in similar or worse performance so were left out. 

Perhaps the most surprising visual impact of figure 
2 is the fact that results are highly non-continuous: 
performance seems to be very sensitive to the time 
frame, and does not lend itself to any elegant 
explanation. There are several unique points which are 
consistent across logs, but most of the time, behavior 
can only be predicted by experimentation. The same 
happens across metrics: using different metrics for 
same time frames results in inconsistent and non-
continuous performance. Also, with a few rare 
exceptions, using a certain metric to decide on 
switching does not guarantee good results in that 
metric. 
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Figure 2: PBAS Results by Time Frame and Metric 
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Maui and Flex are shown as straight lines in the 
plots, since they are not adaptive. The visuals show that 
most PBAS runs are between the Maui and Flex results 
for that log, which is expected – after all, the adaptive 
scheduler can only run one of them at any given time. 

It is also visible that the wrong selection of 
parameters can lead to performance that is worse than 
both Maui and Flex, but on the other hand – the right 
selection can result in outperforming both. It is 



expected and doesn’t matter than most parameter 
combinations don’t work, as long as one or more 
combination consistently improves performance. In our 
case, there are two consistently winning combinations, 
presented in table 5. “Util-7 Days” means switch every 
7 days, to the scheduler that achieved the highest 
utilization in the last period. The numbers show the 
percent of improvement over Flex and Maui, both in 
average wait time (performance), and in standard 
deviation between wait times of months (stability). 
 
Configuration Versus KTH SDSP2 BLUE 

                                                  Performance Gain 
Maui 13% 8% 9% Util 7-Days 
Flex 6% 6% 16% 
Maui 5% 11% 12% Resp 12-Hour 
Flex -3% 10% 19% 

                                                     Stability Gain 
Maui 63% 29% 17% Util 7-Days 
Flex -2% 4% 14% 
Maui 24% 27% 24% Resp 12-Hour 
Flex -11% 3% 22% 

Table 5: PBAS Best Parameter Configurations 
and Overall Improvements over Flex and Maui 
The average performance gain of the Utilization-7 

Days configuration over Maui is 10%, and its average 
stability gain is 36%. The numbers for the Response 
Time-12 Hours configuration are 9% and 25%. The 
average performance gains for Flex are similar, but the 
stability gains are smaller, since Flex is more stable 
than Maui to begin with – for example, it is 64% more 
stable than Maui in the KTH log. Another good 
configuration was Bounded Slowdown-1 Hour, which 
worked very well for KTH and SDSP2, but caused a 
small decline in performance of the BLUE log. 

 

3.4. Candidate Schedulers 
 
All the PBAS experiments analyzed so far use only 

Maui and Flex, for a simple reason – using any other 
candidate set, and in particular the set of all four 
schedulers, provides significantly worse results. Figure 
3 demonstrates this visually, for specific logs and 
PBAS configuration – but the results repeat for other 
configurations and logs as well. 

The explanation is as follows. Since the adaptive 
scheduler makes local decisions, there are occasions 
when Easy or Cons will be chosen. Since these 
algorithms are generally weaker than Flex and Maui, 
the probability that their past success indicates future 
success is smaller than for Flex and Maui. This means 
that erroneous choices are made more often. 
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Figure 3: 4-Scheduler PBAS vs. 2-Schedulers PBAS 

Y Axis is wait time, switching metric is utilization 

Table 6 illustrates this from a different point of 
view, by listing the portion of time that PBAS uses 
each scheduler. The five rows are results for the BLUE 
log, using utilization as the switching metric, and all 
four schedulers as the candidate set. As the table 
shows, Cons and Easy are used together between 21% 
and 47% of the time, depending on the time frame. 
This means that during this portion of the time, PBAS 
uses an inferior scheduler – and as figure 3 shows, this 
is apparent in its performance. To borrow an analogy 
from sports: If an adaptive algorithm is a team’s coach, 
then it should prefer to use a strong player on a bad 
day, than a mediocre player on a winning streak. 

 

 % Flex % Maui % Easy % Cons 
30 min 27% 52% 17% 4% 
4   hours 22% 47% 23% 8% 
24 hours 21% 52% 19% 9% 
7   days 11% 43% 40% 7% 
50 days 17% 44% 33% 6% 

Table 6: PBAS Switching Patterns 



4. Workload Based Adaptive Scheduling 
 
4.1. The Rationale 
 

Performance-Based Adaptive Scheduling takes a 
greedy approach to profit from the performance gap. 
The ability to bypass the need to understand the root 
cause of a phenomenon and still benefit from it is the 
key advantage of adaptive algorithms – but yet, if such 
an understanding can be reached, then the rewards in 
terms of performance are usually high [3]. On the other 
hand, some dynamic environments are too complex to 
fully “understand”, and then an adaptive heuristic 
behavior is the best practical choice. 

Workload-Based Adaptive Scheduling is an 
intermediate path between these extremes. Instead of 
blindly following the best-performing candidate 
scheduler, we will examine which local features of the 
workload are correlated with preferring a given 
scheduler. Afterwards, our on-line algorithm will work 
by monitoring that feature, and switching schedulers 
accordingly. This should enable us to benefit by 
identifying and reacting to a new trend in the workload 
as its first jobs enter the queue – instead of when the 
first jobs terminate, when the first performance 
statistics become available for PBAS. 

The workload variables that were tested are the 
number of jobs and users, the load, and the medians 
and intervals of the runtime, parallelism, total CPU 
work and inter-arrival time.  The average and standard 
deviation metrics were not used, since they are known 
to be unreliable in parallel workloads due to the heavy 
tails of the involved distributions [2]. These variables 
were compared against two measures of relative 
algorithmic superiority: the absolute difference 
between the wait times of Flex and Maui, and the 
relative difference (in percent) between the wait times 
of the two algorithms. The first measure tests 
correlation to “major blunders” since large absolute 
values dominate the computation, while the second 
(relative) regards small and large wait times equally. 

 
 
 
 
 
 
 
 
 
 
In table 7, positive correlations mean that large 

values of that workload variable indicate better 

performance of Maui over Flex. Negative values 
indicate that large values correlate with better Flex 
performance. The correlations were computed between 
the statistics of each month of a log, to the difference 
between Flex and Maui’s performance for that month. 
As the table shows, most variables do not consistently 
indicate a preference towards a certain algorithm, and 
this dataset is too small to assume that a majority 
means anything. There are two exceptions: the number 
of processors (both median and interval) for both the 
absolute and relative performance measures, and the 
median of inter-arrival times or related job count for 
the absolute or relative measure, respectively. 
 
4.2. The Algorithm 
 

The Workload-Based Adaptive Scheduler 
(WBAS) uses the number of processors as an indicator 
of scheduler preference. It was chosen since it works 
for both the relative and absolute measures, and since 
its correlations were the most consistent across logs. 

The algorithm is adaptive and works in the 
following manner. When a switching event occurs, it 
checks if the number of processors requested in the last 
time frame is greater than the long-term average 
parallelism of the workload – which indicates that Flex 
should be activated – or not, which means that Maui 
should be chosen. The long-term average parallelism of 
the workload is updated each time a job arrives, using 
an exponential moving average, to enable the global 
average to slowly adjust even after the scheduler has 
been running for a long time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Workload-Based Adaptive Scheduler 

Log  Jobs 
Count 

Runtime 
Load 

Users 
/TJobs 

Runtime 
Median 

Runtime 
Interval 

Procs 
Med. 

Procs 
Int. 

CPU 
Med. 

CPU 
Int. 

IA-Med. IA-Int. 

Correlations to relative Flex/Maui difference: 
KTH 0.44 -0.35 0.13 0.83 -0.38 -0.05 -0.60 N/A N/A -0.46 0.64 
SDSP2 0.01 0.11 -0.05 -0.04 0.28 -0.30 -0.19 -0.02 0.29 0.02 -0.11 
BLUE 0.20 -0.05 -0.09 0.14 -0.02 -0.33 -0.24 0.00 0.09 -0.21 -0.13 

Correlations to absolute Flex-Maui difference: 
KTH 0.39 -0.03 0.11 0.32 -0.28 -0.14 -0.72 N/A N/A -0.52 -0.14 
SDSP2 0.10 0.08 -0.16 -0.24 0.16 -0.19 -0.21 -0.16 0.19 -0.11 -0.28 
BLUE -0.01 -0.12 0.07 0.02 0.13 -0.09 -0.02 0.01 0.17 -0.11 0.08 

Table 7: Correlations between workload attributes and relative Flex-Maui performance 
 



Initialization 
o Select one of the candidate schedulers arbitrarily 

as the active scheduler 
On Job Arrival Event 
o Update the moving average of parallelism AP 

using the number of processors requested by the 
new job Pnew and this formula: 

AP  =  (1 – MAF 

 –1) x AP  +  MAF – 

1 x Pnew 

o Start running only the jobs that the active 
scheduler decided to run. 

On Job Termination or Cancellation Event 
o Only start running jobs the active scheduler 

decided to run. 
On Switch Schedulers Event 
o Measure the average level of parallelism of jobs 

that arrived during the last time frame: APlast. 
o If AP < APlast , then activate Flex, else use Maui. 
o If the active scheduler changed, synchronize it to 

the current situation. 
o Set another ‘switch’ event to happen after another 

time interval. 

Figure 4: WBAS Algorithm 

4.3. Empirical Results 
 

The WBAS can be configured by two parameters: 
The switching time frame, and the moving average 
factor (MAF) which determines the length of the “long-
term memory” of the algorithm. The candidate set and 
history time frame, in the sense used in PBAS, are 
irrelevant here. Since both parameters are continuous, 
we could not test all possible combinations in order to 
find the best one, and therefore took the following 
approach to find the best combination. In figure 5, all 
the performance-per-switch-time graphs use MAF of 
5000, and all the performance-per-MAF graphs use one 
day as the switch time. These values were chosen after 
preliminary test runs, which indicated that these values 
both perform well and are relatively stable to small 
changes. The performance measure in figure 5 is wait 
time in all graphs; the scales for both MAF and switch 
times are logarithmic, since as usual we tested values 
from several orders of magnitude. 

The first question to answer, before analyzing 
patterns in the graphs, is whether WBAS improves 
overall performance. The answer is a clear yes, and 
table 8 shows the best configurations that do so. As was 
done in table 5, the results are the percentage of 
improvement compared to Maui and Flex. 

 

Configuration Versus KTH SDSP2 BLUE 

                                                  Performance Gain 
Maui 20% 10% 1% 7500 MAF 

1 Day Flex 14% 8% 9% 
Maui 15% 7% 8% 7500 MAF 

2 Hours Flex 9% 6% 15% 
Maui 17% 11% 0% 750 MAF 

1 Day Flex 11% 10% 7% 

                                                     Stability Gain 
Maui 60% 32% 14% 7500 MAF 

1 Day Flex -10% 8% 11% 
Maui 28% 22% 17% 7500 MAF 

2 Hours Flex -10% -5% 14% 
Maui 62% 31% 5% 750 MAF 

1 Day Flex -5% 7% 2% 

Table 8: WBAS Best Parameter Configurations 
and Overall Improvements over Flex and Maui 

The performance gain is measured by the average 
wait time, and the stability gain is measured by the 
standard deviation of monthly wait times. 

The average performance gain of the first two 
combinations over Maui is 10%, and their average 
stability gains are 35% and 22%. The third 
combination’s average improvement over Maui is 9%, 
and its average stability gain is 33%. These averages 
are similar to the improvements achieved using PBAS, 
with the distinction that PBAS achieved much better 
gains for the BLUE log, while WBAS achieved better 
gains for the KTH log. The difference between the 
KTH and BLUE logs that is responsible for this result 
is unknown at this time. The average improvements 
over Flex are similar, except for the much smaller 
stability gains, which also appeared in PBAS and are 
caused by the fact that Flex is more stable than Maui. 

Another difference between PBAS and WBAS, 
made obvious by visually comparing figure 2 and 
figure 5, is that the performance of WBAS is less 
sensitive to parameter changes. This is not to say that 
the WBAS results are “well-behaved”: we still cannot 
see continuous and predictable lines, and the best way 
to know the results for a given parameter combination 
is to run it in a simulation. But there is still an 
improvement compared to PBAS: For example, 
changing a MAF of 5000 by several hundreds has a 
moderate effect, and performance changes are usually 
visible only when crossing the borders to a higher or 
lower order of magnitude. The switching time frame is 
more sensitive than that, but we can still observe some 
common features in the three logs’ graphs. 
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Figure 5: WBAS Results by Time Frame and MAF 
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Since both PBAS and WBAS show the same 
average overall performance, the selection between 
them can be based on secondary considerations. Most 
of these are in favor of WBAS: Its parameters are more 
robust to minor errors, it is simpler to implement since 
it doesn’t require simulating both schedulers in 
memory at runtime, and it is slightly more efficient 
since only one scheduler needs to run at any given 
time. 



A final word is due about the algorithms’ 
performance. The runtime of adaptive algorithms is the 
sum of runtimes of the candidate algorithms, plus the 
time required to synchronize between them. This means 
that the performance of an adaptive scheduler is the 
same, in the Big-O sense, as that of its slowest 
candidate. In practice, both algorithms run an entire log 
simulation in several dozen seconds on a strong PC, 
which equals millisecond-range time per scheduling 
event. Moreover, switching events are done 
asynchronous to user requests, so users experience the 
same service times that Flex and Maui provide alone. 

 
5. Conclusions 
 

This paper makes three novel contributions. First, 
it identifies a practical problem – the per-month 
performance gap. The problem is shared by all the logs 
we examined, has a dire affect on a system’s usability, 
and cannot be gracefully handled once it starts. Since 
our study focuses on the most widely used schedulers 
today, deployed on several platforms, we suspect that 
this problem is widespread and often ignored. 

Second, we propose a practical solution, in the 
form of adaptability. The combination of the different 
approaches of Maui and Flex, with the recommended 
parameter sets that we found, significantly improves 
the stability and predictability of the tested systems. 
The average improvement for our dataset was 35% 
using the recommended configurations. 

Moreover, the new algorithms enable a 10% gain 
in overall performance over existing algorithms, which 
makes them useful for any large parallel computer. 
Compared to other alternatives for boosting 
performance, improving the scheduler is easy: It is a 
software-only, relatively independent module of the 
computer; implementing the algorithms described here 
requires writing several thousand lines of code. 

What adaptive algorithms don’t explain is why 
they do or don’t work. Our results provide many hints 
about the temporal structure of parallel workloads, and 
the factors that dominate them. The resulting picture is 
a complex and highly chaotic one, yet it is obvious that 
future research to further understand it is required, and 
can yield practical benefits. 

The third contribution of this paper is the 
methodology, for deriving an adaptive algorithm to 
solve a given problem. Much of the process done in 
this study – defining the candidate algorithms set, 
tuning in to find the best parameter combinations, 
trying both performance- and input-based switching 
criteria – is applicable to many other problems of 
similar nature. 
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