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Abstract

We describe a novel scalable group membership ser-
vice designed explicitly for wide area networks. Our
membership service is scalable in the number of groups
supported, in the number of members in each group,
and in the topology each group spans. Our service also
supplies the hooks needed to provide clients with full
virtual synchrony semantics. Our service attains, on
average, a low message overhead by agreeing on mem-
bership within a single message round. Furthermore,
our service avoids notifying the application of obsolete
membership views when the network is unstable, yet it
converges when the network has stabilized.

1 Introduction

Group communication [1, 24] is a means of ar-
ranging processes into multicast groups. Group com-
munication has proven to be a useful abstraction in
the development of highly available distributed and
communication-oriented applications. The most im-
portant aspects of this abstraction are the dynamic
maintenance of group membership and the interleav-
ing of noti�cations of group membership changes
within the delivery order of multicast messages. There
are many diverse semantics for such interleaving.

The task of a group membership service is to main-
tain a list of the currently active and connected pro-
cesses, which is called the membership. When the
membership changes, it is delivered to the application
at an appropriate point in the delivery sequence. The
output of the membership service is called a view, con-
sisting of the list of the current members in the group
and a unique identi�er. Reliable multicast services
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that deliver messages to the current view members
complement the membership service.

Group communication systems are especially use-
ful for constructing fault-tolerant applications that
consistently maintain replicated state of some sort,
e.g., [13] (see [1, 24] for discussion of the utility of
group communication systems). Such applications
greatly bene�t from virtually synchronous communi-
cation semantics [19, 14, 24] that synchronize mem-
bership noti�cations with regular messages and thus
simulate a \benign" world in which message delivery
is reliable within the set of connected processes. A vi-
tal part of any virtually synchronous communication
service is the membership service, since agreement on
uniquely identi�ed views is necessary for synchroniz-
ing communication in such views.

The design of a scalable membership service for a
wide area network (WAN) is a challenging task. Mes-
sage latency can be high and unpredictable, making
the exchange of information costly. Failure detection
in a WAN is usually less accurate than failure detec-
tion in a local area network (LAN). This may lead
to frequent (and often costly) view changes. Further-
more, there is no e�cient support for the ooding of
messages in a WAN. A group membership service sup-
porting multiple groups in a WAN must take care not
to ood the network.

In this paper, we present a group membership
algorithm that is designed for supporting hundreds
of clients in WANs. In contrast to previously sug-
gestedWAN-oriented group membership services, ours
does not evolve from LAN-oriented membership algo-
rithms: it is designed explicitly for the WAN environ-
ment.



2 Features
We now discuss the key features of our membership

algorithm.

2.1 Avoiding delivery of obsolete views

Further changes in the network connectivity can oc-
cur while the membership service is reaching agree-
ment on prior changes. Such concurrent changes are
more likely in a WAN due to the inaccuracy of fail-
ure detection. Existing group membership algorithms
(for example, [10, 11, 2, 22, 14]) can have the current
invocation of the membership algorithm proceed to
termination without reecting the new changes, and
then invoke the membership algorithm again to reect
the new changes.

Membership changes cause extra overhead for ap-
plications that rely on virtual synchrony. For such
applications, a view change causes the application to
send special messages to re-synchronize their shared
state (for examples, please see [24]). Such additional
communication is especially costly in WANs.

To avoid such excessive communication and execu-
tion penalties, our algorithm does not deliver obso-
lete views to an application. The membership service
waits for agreement among all of the view members
about what the view should be. It neither delivers a
view without such agreement, nor does it deliver an
obsolete view when it has new information that the
membership has changed.

By avoiding the delivery of obsolete views, our
membership algorithm may be non-terminating if the
network does not stabilize, i.e., if the network situ-
ation constantly changes. There may be applica-
tions that would prefer to try to track the changes
in membership at times when the membership is con-
stantly changing. However, such applications would
not attempt to re-synchronize their states following
view changes. Applications like these typically do not
make use of virtual synchrony semantics. A member-
ship algorithm providing virtual synchrony is overkill
for such applications, which could be usually satis�ed
with a network event noti�cations service (cf. Sec-
tion 3.1).

2.2 A single round algorithm

Since message latency in WANs may be large, we
have designed our membership algorithm to minimize
the number of messages exchanged among the servers.
In most cases, once a change in network connectivity
is detected, each server simply multicasts a message
to the other servers. Thus, if the maximum message
latency in the network is �, then the membership al-
gorithm usually terminates within � time after all of
the servers detect the change in connectivity.

If temporary lack of symmetry or transitivity in
the network causes surviving members to di�er too
much in their detections of failures and reconnections,
though, then our algorithm may be required to run a
re-synchronization round among the servers. In this
case, the algorithm terminates within at most 3� time
once network stabilization occurs and all of the servers
correctly detect the network connectivity.

After agreement among the servers is reached, each
server reports the view to its local clients. Clients do
not directly communicate with other servers. Since
each client can be served by a server that is proximate
to it (preferably in the same LAN), the amount of
communication that spans multiple LANs is limited,
and depends solely on the number of servers.

2.3 WAN based architectural design

Our membership algorithm is part of a novel archi-
tecture for group membership services [5] designed for
CSCW and groupware applications in WANs. Two
salient features of this architecture are the use of a
network event noti�cation service as a building block,
and the use of a client-server approach.

Group membership algorithms designed for local-
area networks often incorporate failure detection into
their functionality. Failure detection in a WAN is a
di�cult problem, and does not scale easily. Therefore,
our membership service does not explicitly attempt
to detect failures using time-outs. Rather, it uses a
network event noti�cation service as a building block
(cf. Section 3.1). Our algorithm was designed for
use with congress [4] which is a distributed network
event noti�cation service geared to WANs.

Our architecture employs a client-server approach:
dedicated membership servers maintain process-level
group membership (i.e., which clients are members of
each group). Server-level group membership is not
maintained. The membership servers are only con-
cerned with membership maintenance, and not with
message transmission within groups. This architec-
ture allows us to be scalable in the number of groups
and in the number of clients.

The membership service interface provides the
hooks for clients to e�ciently implement virtually syn-
chronous communication semantics, but it does not
impose such semantics. Thus, the membership service
does not delay delivery of views to clients until such
semantics are achieved. It also allows an application
to choose, on a per message stream basis, whether to
use the network noti�cation service directly or the full
membership semantics. Details on this architecture
and its utility can be found in [5]. The membership
server interface is presented in Section 4.



3 The environment model

Our membership algorithm is implemented in
an asynchronous message-passing environment: pro-
cesses communicate solely by exchanging messages.
There is no bound on message delivery time. Pro-
cesses fail by crashing, and may later recover. Com-
munication links may fail and recover.

3.1 Network event noti�cation service

Our membership service extends a distributed net-
work event noti�cation service such as congress.
The noti�cation service accumulates and disseminates
failure detection information, along with information
about processes requesting to join or leave groups.

Each membership server has a local noti�cation ser-
vice component that reports the client status to the
membership servers. The noti�cation service reports
network events to the membership server via noti�ca-
tion events (NEs), with the following interface:

NE(G, joining, leaving) is a noti�cation that the
processes in the set joining are joining group
G, and those in the set leaving are leaving the
group.

A NE can report of changes in more than one
group by providing a list of triples of the form
<G, joining, leaving>.

Note that the noti�cation service does not distin-
guish between processes leaving the group due to fail-
ures and processes leaving the group voluntarily. Both
are reported via the same interface.

Our membership servers keep track of the member-
ship according to the noti�cation service in a variable
called the NSView. The NSView of a group G is com-
puted by aggregating all of the NEs that correspond to
G. Note that the NSView is not a membership view,
since it has no unique identi�er that can be agreed
upon. The NSView is simply the list of group mem-
bers that are currently not suspected.

As a failure detector in an asynchronous environ-
ment, the noti�cation service is bound to be unreli-
able in some runs [8]: it may be inaccurate in that it
may suspect correct processes. However, we assume
that the noti�cation service is always complete, i.e., it
eventually suspects all permanently faulty or discon-
nected processes.

3.2 Communication guarantees

The reliable fifo communication layer guarantees
that messages from a single source are not received out
of order. For example, if process p �rst sends message
m1 to process q and later sends m2 to q, and if q de-
livers both m1 and m2, then q delivers m1 before m2.

In addition, the underlying reliable fifo communica-
tion layer guarantees liveness in conjunction with the
noti�cation service. In particular, if server S1 sends
a message m to server S2 at time t1, then there is a
time t2 > t1 by which either S2 has received m, or
the NSView of S1 does not contain any client of S2.

Such a reliable communication service can be easily
implemented by retransmitting lost messages to live
processes as long as they are not suspected by the no-
ti�cation service. Group membership algorithms are
often based on such services, e.g., in Transis [11], En-
semble [16] and the algorithm described in [6].

4 Membership algorithm guarantees
We now describe the interface the membership al-

gorithm provides to its clients, and the guarantees it
makes. The clients use the noti�cation service inter-
face directly to issue join and leave requests. The
primary function of our membership algorithm is to
provide clients with views that contain a membership
and a unique identi�er. Each membership server com-
municates with its clients using reliable fifo links.

The server sends two types of events to its clients:

startChange(G; startChangeNum; suggestedMemb)
indicates to the client that the server is now en-
gaging in a membership change for group G.

view(G; V ) noti�es the client that the new view
of group G is V . The view V is a triple:
<id, members, startChangeNums>, where the
id is an integer and members is a set of processes.

The startChange event and the third value of a
view V are used in the implementation of virtual syn-
chrony (see [18] for details).

4.1 Membership guarantees

We say that two processes deliver the same view
in a group G if they deliver identical triples. Views
are partially ordered according to their id. The mem-
bership algorithm guarantees that the ids of views
delivered to each client are monotonically increasing:

View Identi�er Local Monotonicity If a
process delivers a view V 1 and later delivers
a view V 2, then V 2:id > V 1:id.

One of the tasks of a membership service is to reach
agreement on views that correctly reect the network
connectivity. Unfortunately, such a desirable mem-
bership service is impossible to implement in asyn-
chronous environments [24]. An unstable communica-
tion layer can force every deterministic membership al-
gorithm to either block or to constantly deliver chang-
ing views. Therefore, we formulate the Agreement



on Views property to guarantee only that agreement
be reached in runs in which the network stabilizes and
the noti�cation service does not suspect correct and
connected processes:

Agreement on Views Let G be a group,
CS a set of clients, and SS the set of servers
serving clients in CS. Assume that there is a
time t0 such that from time t0 onwards, the
NSView of G at all of the servers in SS con-
tains exactly the clients in CS. Then even-
tually, all of the clients in CS receive the
same view V from their servers in group G

such that V:members = CS, and do not re-
ceive new view or startChange messages in
group G henceforward.

This property classi�es runs in which all of the con-
nected members of G agree on the same view forever.
Since our algorithm runs in asynchronous systems, it
is impossible to guarantee that such agreement be
reached in every run. However, such agreement is
reached if the following two conditions hold: 1. the
set of members of G in a certain connected network
component1 eventually stabilizes; and 2. the noti�ca-
tion service behaves like an eventually perfect failure
detector (cf. [8, 24, 6]), i.e., it eventually stops making
mistakes. A similar guarantee is formally de�ned in
terms of network stability and failure detector prop-
erties in [6, 24]. For the sake of simplicity, we have
summarized both conditions into one requirement.

Note that although the Agreement on Views

property is guaranteed to hold only in certain runs,
the conditions on these runs are external to the imple-
mentation and therefore cannot be met trivially.

Note also that we require stability to last forever.
In practice, it only has to hold long enough for the
membership algorithm to execute and for the fail-
ure detector module to stabilize, as explained in [12].
This time period depends on external conditions: mes-
sage latency, process scheduling and processing time.
Our membership algorithm typically terminates one
message round after such stabilization occurs, and in
the worst case 3� time after such stabilization oc-
curs, where � is the maximum message latency in the
run. However, we do not formally analyze the actual
length of time required for the algorithm to terminate.
This can be done, as in [13, 9], by explicitly linking

1A connected network component is a set of processes among

which all of the links are operational and all of the links to pro-

cesses outside the component are not operational. The existence

of such a component implies that communication is transitive

and symmetric.

the guarantees of the membership algorithm to pre-
determined bounds on process scheduling times and
network delays.

The startChange messages and startChangeNums

are used by the clients for implementing virtual
synchrony (see [18]). In order to be useful,
startChangeNums have to be monotonically increas-
ing and the startChangeNums included in views have
to correspond to those conveyed in the preceding
startChange events.

5 The membership algorithm

In this section we discuss the implementation of
the group membership algorithm. For simplicity we
discuss the membership algorithm for a single group
and omit the group name.

The membership algorithm is invoked whenever it
receives a NE. The typical message ow of the mem-
bership algorithm is as follows: On receiving a NE

from the noti�cation service, the server noti�es its
clients that the membership is undergoing a change
via startChange messages. The server also multi-
casts a proposal message to all of the other servers
so the servers can agree on the unique identi�er of
the view to be installed in a manner consistent with
the View Identi�er Local Monotonicity property.
Once the server has received a proposal from each of
the servers, it computes the new view and sends a
view message to its clients.

A one round algorithm such as this may reach
agreement in a failure-free case, but cannot success-
fully reach agreement under all conditions. Consider
Example 5.1 below:

Example 5.1 Some client c tries to join the group,
but fails soon after requesting the join. In such a case,
the noti�cation might send a NE that reects c join-
ing the group to the server s that is responsible for c.
The noti�cation service may later send to s another
NE that reects c leaving the group. Because c failed
so soon after attempting to join the group, the noti�-
cation service at another server s0 might not send a NE

at all. In such a case, s has begun the algorithm and
sent a startChange message to its clients, but s0 is
not running the algorithm. Thus, s will block waiting
for a proposal from s0 that will never be sent, and the
algorithm will never terminate.

Such cases, albeit rare, need to be addressed. Our
algorithm is therefore composed of a fast agreement
algorithm that terminates in one round in the best
case, a mechanism for detecting if the fast agreement
algorithm is blocked, and a slow agreement algorithm



that terminates in all cases. These pieces of the algo-
rithm are presented in pseudo-code in the rest of this
section.

5.1 The Fast Agreement Algorithm

The algorithm uses the following variables: The
variable running is used to track which algorithm is
currently being run: its value is initially none since
no algorithm is running. Its value can also be FA for
the fast agreement algorithm or SA for slow agree-
ment. The set NSView, initially empty, contains the
aggregation of the NEs received from the noti�cation
service. The bu�er props is used to store the most
recent proposal message received from every server.
The variable curView contains the most recent view
sent to the clients, and is initially a special initial
view. The integer startChangeNum ensures that every
startChangemessage sent to a client have a monoton-
ically increasing number, and the integer propNum is a
logical timestamp used to ensure that every proposal

message sent by a server has a unique monotonically
increasing identi�er. The function usedProps is used
to detect if the fast agreement algorithm is blocked,
as described in Section 5.2 below. These last two vari-
ables are not used by the fast agreement algorithm.

We assume the existence of two external functions:
serversOf that maps a set of clients to the set of
servers serving those clients, and local that maps a
set of clients to the subset of those clients being served
by this server. These functions can be implemented
by using a naming convention that associates clients
with their local servers. Alternatively, a client can be
assigned to a server the �rst time the client issues a
join request, and this information can be disseminated
to maintain a registry of the clients.

The algorithm as we have described it herein does
not allow a client to be served by more than one server.
This implies that when a server crashes, all its local
clients are also considered to have crashed. In order
to avoid this undesirable situation, we have devised a
mechanism that allows fail-over of clients to alterna-
tive servers in case of crash. The discussion of this
mechanism is not in the scope of this paper.

The membership algorithm is event-driven, and re-
sponds to events as they occur. We assume that event
handlers are atomic, i.e., they cannot be preempted
once they are invoked. The algorithm responds to two
types of events: the reception of NEs from the noti�ca-
tion service, and the reception of proposal messages
that were sent by other servers. The event handlers
are presented in Figure 1. Code shown in gray is not
part of the fast agreement algorithm.

Upon receiving a NE from the noti�cation service,

every server sends a startChange message to its
clients and sends a proposal message to all of the
servers in the group. The proposalmessage has three
�elds used by the fast agreement algorithm: sender is
the server that sent the proposal message; members
indicates the NSView that this proposal message is
proposing for the new view; and startChangeNum is
used to compute the identi�er of the new view, as ex-
plained below.

To ensure that the View Identi�er Local Mono-

tonicity property is not violated, the identi�er of the
new view must be greater than the identi�er of the last
view for every client in the new view. The servers use
startChangeNums to calculate such an identi�er: The
startChangeNum at a server is always greater than
or equal to the identi�er of the last view sent to the
clients, and it is included in the proposal message.
When a server has collected proposal messages from
all of the servers, it uses the startChangeNum values
to calculate a new view number greater than all of the
previous view numbers.

Reaching agreement on a view is determined via
proposal messages sent by all of the servers of clients
in the NSView. The props bu�er collects these
proposal messages. Whenever a proposal is re-
ceived, it is placed in the props bu�er regardless of
the membership it proposes. Because of fifo commu-
nication, this proposalmessage is guaranteed to have
been sent after the proposal message it replaces. By
using the most recent proposal message sent by the
servers, the algorithm avoids delivering obsolete views.

Once a server has received proposal messages
proposing the same NSView from each server that has
clients in the NSView, the server sends a view to its
clients. After a view is sent to the local clients in C,
for each server s of a client in C, props[s] is set to
null in order to avoid using the same proposal in fu-
ture invocations of the membership algorithm. When
props[s] is set to null and view V is sent, we say
that the proposal message that was in props[s] was
used for V .

5.2 The detection mechanism

To satisfy Agreement on Views, our member-
ship algorithm must terminate when the network and
the NSView eventually stabilize. Unfortunately, as il-
lustrated in Example 5.1 above, the fast agreement al-
gorithm may not terminate successfully in some cases,
even if the network and NSView eventually stabilize.
We refer to the failure to terminate as blocking.

Blocking stems from transient conditions in the net-
work, such as a lack of symmetry or transitivity in the
communication system. Such conditions may cause



On receive NE n:

NSView = NSView [ n.joining n n.leaving // Update NSView

if ( local(NSView) 6= f g ) then // We are only interested in groups that contain local clients

startChangeNum = max( curView.id, startChangeNum + 1 )

send startChange hstartChangeNum, NSViewi to local(NSView)

running = FA

propNum = max( propNum, props[serversOf(NSView)].propNum ) + 1

proposal p = hme, NSView, startChangeNum, FA, usedProps[serversOf(NSView)], propNum i
send p to serversOf(NSView) n {me}

deliver p immediately to myself // Invoke proposal handler

endif

On receive proposal inProp:

props[inProp.sender] = inProp // Overwrite to use latest proposal (we assume �fo links)

if ( inProp.members = NSView ) then // Proposal is only acted upon if it matches the NSView

if ( TestIfSAProposalNeeded(inProp) ) then SendSAProposal(inProp) endif

if ( TestIfAgreeementReached() ) then

curView = hmax( props[serversOf(NSView)].startChangeNum ) + 1, NSView,

props[serversOf(NSView)].startChangeNumi
forall s 2 serversOf(NSView)

usedProps[s] = props[s].propNum

props[s] = null

end forall

running = none

send curView to local(NSView)

endif

endif

// In the fast agreement algorithm:

TestIfAgreeementReached()
�

= 8s 2 serversOf(NSView) : props[s].members = NSView

Code shown in gray is not part of the fast agreement algorithm.

Figure 1: Event handlers for the membership algorithm.

the servers to receive di�erent sets of network events.
Once the network stabilizes, all of the servers will send
their last proposalmessage for the fast agreement al-
gorithm. These proposal messages will all have the
same membership. However, some servers may have
sent previous proposalmessages with the same mem-
bership. Since the fast agreement algorithm is a one
round algorithm, there is no means of determining
which proposalmessages are the last ones sent. Thus,
one server may use an obsolete proposalmessage sent
by another server along with its own latest proposal
message, or vice versa.

Note that we are only interested in detecting non-
termination of the fast agreement algorithm in case
the network and the NSView eventually do stabilize.
If an invocation of the membership algorithm is fol-
lowed by another NE, then the membership algorithm
is re-started and we are no longer concerned with the
termination of the former invocation.

The detection mechanism is implemented in the
function TestIfSAProposalNeeded, which is invoked
whenever a proposal message inProp is received by
some server s, as shown in gray in the event handler
of Figure 1. The detection mechanism is presented in
Figure 2.

TestIfSAProposalNeeded(proposal inProp)

return ( running = none _
inProp.usedProps[me] = propNum )

Figure 2: Detecting if the fast agreement algorithm is
blocked.

In [17] we prove that whenever the fast agreement
algorithm blocks, it is detected by the detection mech-
anism at some server. We also prove that the detection
mechanism only detects when the fast agreement does



indeed block.

5.3 The slow agreement algorithm

We have seen that the fast agreement algorithm can
block. This blocking is inevitable since a one round
algorithm in which all of the servers send messages si-
multaneously cannot synchronize di�erent invocations
of the algorithm. Such synchronization would require
all of the servers to use an agreed round (invocation)
number. However, the algorithm cannot assume that
such an agreed round number exists a priori. Another
level of knowledge is required to agree on a common
round number.

The slow agreement algorithm is begun by a server
when it detects that the fast agreement algorithm
will not terminate. As with the fast agreement algo-
rithm, in the slow agreement algorithm servers send
proposal messages to each other and collect these
proposal messages to agree upon a new view. How-
ever, in contrast to the fast agreement algorithm, the
invocations of the slow agreement algorithm are syn-
chronized: the set of proposal messages used for a
view must all carry the same propNum. Since each
server sends no more than one SA proposal with the
same propNum, if two servers use a proposal message
p for a view V , then the same set of proposal mes-
sages are used for V by both servers.

A server that detects blocking of the fast agreement
algorithm initiates the slow agreement algorithm by
multicasting a proposal message to all of the other
servers with the type �eld set to SA. The propNum of
this proposal is chosen to be greater than the max-
imal value of propNum of any proposal message (of
any type) this server has previously sent, and at least
as large as any received proposal. This is the round
number associated with this invocation of the slow
agreement algorithm.

Every server that receives a proposal of type SA

while it is not running the slow agreement algorithm
joins the slow agreement algorithm by also sending
a proposal message of type SA. A server that joins
the slow agreement algorithm sends a proposal with
the value of propNum equal to the maximal value of
propNum in any proposal message it previously sent
or received. Ideally, this value will be equal to the
propNum in the initiator's proposal2, and all of the
servers will send proposal messages with identical
propNum values.

2If the initiator receives the last fast agreement algorithm

proposal sent by each of the other servers before invoking the

slow agreement algorithm, then the propNum of its SA proposal

is greater than the local values of propNum at all of the other

servers.

However, if the joining server sends a SA proposal

with a greater propNum than the initiator, the rest of
the servers (including the initiator) will also have to
send proposal messages with the higher propNum so
that the algorithm will be able to terminate. To this
end, if a server that has already started (or joined)
a round of the slow agreement algorithm receives a
proposal with a higher propNum value than its lo-
cal one, it joins the higher round by setting its local
propNum to the higher value and sending a new SA

proposal with the value.

Note that we do not assume that there is a single
initiator. The di�erence between starting a round of
the slow agreement algorithm as an initiator and join-
ing a round is that servers joining a round of the slow
agreement algorithm do not increase the propNum to
be larger than the highest value they received. Thus,
when all of the servers are running the slow agreement
algorithm, the maximum propNum of all of the servers
will not increase. This way, all of the servers eventu-
ally send proposal messages with the same propNum.
Once proposal messages with identical identi�ers are
collected from all of the servers, a view is sent to the
clients and the slow agreement algorithm terminates.

In Figure 3, we complete the pseudo-code shown
in Figure 1 by adding the functions that implement
the slow agreement algorithm. Recall that if the fast
agreement algorithm is detected as blocking, then the
slow agreement algorithm is initiated by call of the
function SendSAProposal at the initiator (cf. Fig-
ure 1).

The function SendSAProposal is also used by
the slow agreement algorithm to join a round in
progress. This addition is reected in function
TestIfSAProposalNeeded. The slow agreement al-
gorithm terminates once there is agreement not only
on the NSView, but also on the propNum. This change
in the termination condition is reected in the func-
tion TestIfAgreeementReached. In Figure 3 we show
the complete pseudo-code for these functions as imple-
mented in the combined algorithm. Code that is not
part of the slow agreement algorithm is shown in gray.

5.4 The combined algorithm

The combined algorithm works as follows: The
server initially is not running either algorithm. When
a NE is received from the noti�cation service, the server
begins running the fast agreement algorithm. It sends
a proposal message of type FA to the other servers,
and waits to receive similar proposal messages from
all of the servers.

When the server receives a proposal message that
matches its NSView, if it is a proposal message with



TestIfSAProposalNeeded(proposal inProp)

if ( running 6= SA ) then // detect if FA round blocked

return ( running = none _ inProp.usedProps[me] = propNum _ inProp.type = SA )

else // detect if later SA round in progress

return ( propNum < inProp.propNum )

endif

TestIfAgreeementReached()
if ( running = FA ) then // FA check: all FA proposals received

return ( 8s 2 serversOf(NSView) : props[s].members = NSView ^ props[s].type = FA )

else // SA check: all same round SA proposals received

return ( 8s 2 serversOf(NSView) : props[s].members = NSView ^ props[s].type = SA ^
props[s].propNum = propNum )

endif

SendSAProposal(proposal inProp)

// Notify the clients that a membership change is starting

startChangeNum = max( curView.id, startChangeNum + 1 )

send startChange hstartChangeNum, NSViewi to local(NSView)

running = SA

if ( inProp.type = FA ) then // detected FA problem { initiate SA (new round)

propNum = max( propNum + 1, props[serversOf(NSView)].propNum )

else // received SA proposal { join SA (same round)

propNum = max( propNum, props[serversOf(NSView)].propNum )

endif

proposal outProp = hme, NSView, startChangeNum, SA, usedProps[serversOf(NSView)], propNumi
send outProp to serversOf(NSView) n {me}

deliver outProp immediately to myself // Invoke proposal handler

Code shown in gray is not part of the slow agreement algorithm.

Figure 3: Function de�nitions for the membership algorithm.

type SA it joins the slow agreement algorithm. If it is a
proposal message with type FA, it runs the detection
mechanism to check if the slow agreement algorithm
needs to be started. In either of these cases, if the
slow agreement algorithm is begun, the server sends a
proposal message of type SA.

While the server is running either agreement algo-
rithm, it waits to collect proposal messages from the
other servers, until it has the necessary set to send a
view as per the current (fast or slow) agreement algo-
rithm. When a view is sent, the server returns to not
running either algorithm.

If the server receives a new NE while running the
slow agreement algorithm, it begins the fast agreement
algorithm anew to avoid sending an obsolete view to
the clients.

6 Performance Results

We now describe some performance measurements
of our algorithm. The algorithm was run by machines
at two locations, MIT and UCSD, communicating over
the Internet. In each test, we ran a series of 150

membership changes per con�guration: 50 changes in
which the membership grew, 50 in which the member-
ship shrank, and 50 in which the network event noti-
�cation service mistakenly thought that the member-
ship was changing. The former 100 cases were resolved
by the fast agreement algorithm, whereas the latter 50
were resolved by the slow agreement algorithm.
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Figure 4: Client scalability (four servers).

In the �rst test we measured how the membership
algorithm scales with respect to the number of clients



per server. We held the number of servers constant
(four servers - two at each location) and gradually in-
creased the number of clients. Figure 4 shows the av-
erage observed time between clients initiating a mem-
bership change and the membership change being re-
ported to the clients in this test. The measurements
show that there appears to be a linear increase in the
client response time with respect to the the number
of clients, but the slope of this increase is quite small.
Furthermore, the slow agreement algorithm is slower
than the fast agreement algorithm, as expected. The
di�erence between these two algorithms appears to
range up to about 10% of the client response time
for the fast agreement algorithm.
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Figure 5: Server scalability.

In the second test, we measured how the member-
ship algorithm scales with respect to the number of
servers. We increased the number of servers in the pro-
tocol, and kept the number of clients per server con-
stant at 20. The measurements are shown in Figure 5.
Again we see that the client response time of the fast
agreement algorithm is linear with a very small slope.
For this test, the slow agreement algorithm appear to
again be linear, but with a slightly larger slope. For
more information on the performance measurements,
see [21].

7 Discussion and Related work
We have described a scalable, one-round mem-

bership algorithm for wide-area networks. We have
proven in [17] that this algorithm provides properties
that are useful and attainable in an asynchronous sys-
tem that may su�er communication partitions, but
eventually stabilizes. We now compare our service
with related work.

Following the approach taken by congress [4] and
Maestro [7], our design separates the maintenance of
membership from the group multicast: membership is
not maintained by every client but only by dedicated
membership servers that are not concerned with com-
munication among clients. Our membership algorithm

extends congress and provides an interface for virtu-
ally synchronous communication semantics [18]. Un-
like Maestro [7], our membership service does not wait
for responses from clients asserting that virtual syn-
chrony was achieved before delivering views. Instead,
we provide a novel interface that allows clients to im-
plement virtual synchrony in parallel with the mem-
bership's agreement on views, and yet does not slow
the agreement on views until responses from clients
are received.

Other group communication systems that were
designed for use in a WAN evolved from previous
work on group communication systems for use in a
LAN [10, 2, 3]. These systems leverage the idea that
WANs are interconnected LANs. They �rst run the
original algorithm in each LAN, and then run another
algorithm among the LANs, merging the individual
LAN memberships into one membership which is then
disseminated to all of the group members. Thus, these
algorithms overcome the problem of remote failure de-
tection by having the failure detection done at the
LAN level. However, these algorithms are inherently
multi-round, since an additional round is added to the
algorithm run on each LAN. For example, the Totem
multiple ring algorithm [2] takes two rounds per ring3

plus an extra round for multiple rings [2]. Further-
more, ours is the only membership algorithm that we
are aware of that never delivers views which it knows
to be obsolete. As explained in Section 2.1, this fea-
ture is important in WANs.

Light-weight group membership services (e.g., [10,
3, 20, 15]) employ a client-server approach to both
virtual synchrony and membership maintenance. In
these algorithms, there are two levels of member-
ship, heavy-weight and light-weight. The servers are
typically part of the heavy-weight membership, and
they use virtually synchronous communication among
them. The clients are typically part of the light-
weight membership. Most light-weight group mem-
bership services, e.g., [10, 3, 20, 15], do not preserve
the semantics of the underlying heavy-weight mem-
bership services. Unlike light-weight group mem-
bership algorithms, which compute both heavy-weight
and light-weight membership, our algorithm only com-
putes the process-level group membership, hence ad-
ditional message rounds for computing both member-
ships are not necessary. Furthermore, our service pro-
vides clients with full virtual synchrony semantics.

The only other single round membership algorithm
that we are aware of is the one-round membership al-
gorithm in [9]. This algorithm terminates within one

3A ring is the logical representation of a LAN in Totem.



round in case of a single process crash or join, but in
case of network events that a�ect multiple processes,
the algorithm may take a linear number of rounds,
where in each round a token revolves around a virtual
ring consisting of all of the processes in the system.
Thus, the latency until the membership is complete
and stable is O(n2�) where � is the maximum mes-
sage delay at stable times. Thus, this membership
algorithm is not suitable for WANs, where � tends to
be big and typical network events are partitions and
merges. Once the network stabilizes and all of the in-
formation about network events has been propagated
by the noti�cation service to all of the servers, our
algorithm terminates within at most 3� time.
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