«

RJ 7727 (71592) 10/3/90 & 9062

Computer Science

Research Report

A UNIFIED THEORY OF DISTRIBUTED
COORDINATION

WiTH COMMUNICATION UNCERTAINTY

Ray Strong
Danny Dolev
Flaviu Cristian

IBM Research Division
Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and wili probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of
royaities).

Research Division
Yorktown Heights, New York ® San Jose, California @ Zurich, Switzerland

|"
1

i
]

RJ 7727 (71592) 10/3/90
Computer Science

A UNIFIED THEORY OF DISTRIBUTED
COORDINATION
WITH COMMUNICATION UNCERTAINTY

Ray Strong
Danny Dolev
Flaviu Cristian

IBM Research Division
Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

ABSTRACT: A prominent piece of distributed systems folklore holds that safety and
timeliness are incompatible properties for distributed coordination protocols. In this
paper we provide a framework for understanding and comparing various lower bounds and
impossibility results concerning the solution of coordination problems like atomic commit
for distributed transactions and other consensus problems. Our treatment provides an
abstract notion of information transfer that applies equally to systems with message
based communication and systems with other information transfer mechanisms, such as
shared memory. We provide a concise abstract definition of communication uncertainty
that is independent of the particular information transfer mechanism.

1. Introduction

In this paper we focus on some of the key problems of fault tolerant distributed
systems and what makes them hard to solve. We offer a unified theory that allows in-
terpretation and comparison of many of the most important known limits on distributed
systems. Among the demands placed on the designer of a distributed system, there is a
competition between opposing demands for safety (consistency) and timeliness. We will
argue that systems that require safety are generally subject to an isolation phenomenon
that prevents timely coordination. We attempt to capture at a very high level of ab-
straction the possibility that faults or delays may force some processes in a distributed
system to make decisions and take actions that are not entirely coordinated with those
of other processes that remain functioning.

Our results are obtained in an abstract model of a distributed system that consists of
a set of executions of the system together with an analysis of the system presented as a
family of partial executions. Requirements for such an analysis are presented axiomati-
cally. Any family that satisfies these requirements will serve as an analysis of the system;
but some families provide a richer analysis than others.

Our results could be obtained using a knowledge oriented analysis based on possible
executions in place of our families of partial executions (cf. [FHV, HM, HF, CM, PT]).
However, the structures in such an analysis would be much more complex than those we
introduce. The surprise is that we can obtain so much without resorting to knowledge
based argument, relying only on a few simple axioms and definitions.

Our theory does not require a global concept of time, depending instead on a local
ordering of events at each process in the distributed system. A novel contribution of our
approach is the definition of “communication uncertainty” without the explicit mention
of messages or other mechanisms for information transfer (cf. [L,DDS]).

The earliest discussed glimpse at this phenomenon of communication uncertainty,
and one of the most intuitive, comes in the form of the Two Generals’ Problem [G] (also
known as the Chinese Generals’ Problem). Two generals of allied armies are encamped
on opposite hills above a valley occupied by the enemy. The generals’ problem is to
coordinate a time of attack. However, the only way they can communicate is by messenger

through the valley, so there is uncertainty about whether any particular message will get
through. '

One of the most studied recent impossibility results in computer science is the result of
[FLP] that it is impossible to reach consensus in an asynchronous system in the presence of
at most one process crash failure, even when eventual communication is guaranteed. This
result was generalized in [DDS] to apply to systems with various synchrony assumptions.
The consensus problem is a coordination problem in the sense that all the processes
that do not fail must agree on a common output. Multivalence is introduced because
each process is given an input from a set of at least two values, and if all inputs agree,
then all outputs must agree with the inputs. Note the similarity to the atomic commit
problem (v. [BHG,G]) in which each process has some “input” that allows it to make

1

a unilateral decision on whether to abort or allow commit; if all inputs allow commit
and there are no failures, then the agreed on output must be commit. The essential
distinction between the two problems is the constraint placed on processes recovering
from failure in the atomic commit problem. The consensus problem is simpler because
it puts no constraints on the actions taken by processes once they have failed. In both
cases, communication is assumed to be uncertain. A fundamental characteristic of a
communication uncertain system is that no information is conveyed to a process about
the state of other processes by the number of actions the process takes. Using a new
definition of communication uncertainty that attempts to capture this characteristic, we
show that communication uncertain systems are vulnerable to isolation that can block
the solution of any nontrivial coordination problem including consensus. Moreover, we
show that, even in a model with guaranteed eventual communication and guaranteed
eventual process repair, safety requires blocking. We extend this result to a generalization
of the Fischer, Lynch, Paterson impossibility result. This generalization is expressed
without reference to any specific mechanism for information transfer, such as messages,
and allows immediate application to systems in which information is transferred by other
mechanisms including shared memory

The reader may wish to compare our approach with alternate approaches (cf. [CM
PT, BMZ)).

The remainder of the paper is organized as follows: in Section 2 we provide our formal
theory of distributed systems and give a general result relating safety and blocking for
systems that solve nontrivial coordination problems; in Section 3 we provide a methodol-

ogy for modelling distributed systems and prove the promised generalization of the [FLP]
result.

3

2. Formal Model of Coordination.

We consider systems composed of at least two independently acting processes that
can communicate with each other. The set of all possible process actions is denoted
A. During an execution of a system, each process has an infinite (w ordered) sequence
of events called the local event sequence. Each event e is composed of (1) an id, id(e),
consisting of the location at which the event takes place @(e) € P (we identify a process
with the location at which the events of its local event sequence take place), and a positive
integer sequence number s(e), (2) an action, act(e) € A, and (3) a failure bit, f(e). Thus,
in any execution, s is a function from events to positive integers, @ is a function from
events to processes, and f is a function from events to {0,1}. An event e with f(e) =1
is called a failure event. The function @ applied to any set of events will be the set of
processes at which the events take place.

Formally, an erecution is a set of events, such that projection on ids is a one-one
mapping onto the Cartesian product of P (the set of processes) and the positive integers.
We define a distributed system as a set of executions with at least two processes. We will
use the term system as synonymous with the term distributed system.

A set of events is said to be compatible with respect to a system if it is contained
in one of the executions of the system. When the particular system is clear from the
context we will use the term “compatible” without mentioning the system. Two sets of
events are said to be compatible if their union is compatible.

A prefizis a finite compatible set of events that is closed under precedence (if prefix z
contains event e, then it contains all events at @(e) with smaller sequence numbers than
s(e)). A prefix may be thought of as a finite partial execution. We use incompatibilities
between prefixes to capture the idea of information transfer within a distributed system.

A coordination problem for a distributed system consists of a subset O of A called
output actions, a subset R of P called participants with cardinality at least two, and
an equivalence relation = on O called agreement. A distributed system is said to have
a protocol for a coordination problem < O, R, => if, in every execution of the system,
each process in R either fails or has at most one action from . (Formally, a protocol
is a system together with a particular coordination problem for the system such that
participants behave as described above in each execution.) A protocol is said to be total
if, in each execution each process in R either fails or has exactly one action from 0. A
protocol is said to be safe if, in each execution, all actions from O taken by processes in
R that have not failed agree with respect to =. When two output actions do not agree we
will say they disagree. A coordination problem is said to be nontrivial for a distributed
system if there are disagreeing output actions in the set of failure free executions of the
system (the disagreeing outputs may be in different executions). Examples of nontrivial
coordination problems include the atomic commit problem, the consensus problem, and
the atomic broadcast problem. (For atomic broadcast, one participant is given an input
value. If this participant does not fail, then all participants that do not fail must give
the input value as output. In any case, all participants that do not fail must give the
same value as output. Thus failure free executions of a protocol for the atomic broadcast
problem must have disagreeing outputs if their inputs disagree.)

Our goal is to analyze our distributed system by choosing some family of prefixes to
represent the “global states” or “cuts.” The intuition leading to our axiomatization of
such a family is contained in an example that assumes a Newtonian framework of real
time. If each event in the system has associated with it a real time, and if events at one
process can only “cause” or “influence” later events at other processes (no simultaneous
action), then each prefix that corresponds to events that happen before some real time
corresponds to a global state. We also add any subset of the events that happen at some
particular real time to those that happen before. For each execution, the prefixes in the
family are partially ordered by real time. This family of prefixes satisfies the first three
axioms discussed below: Closure, Compatibility, and Separability. It turns out that for
many purposes, we can drop the assumption of real time and simultaneity and obtain
the same results by constructing another family of prefixes that satisfies the first two
of these axioms. Moreover, we can characterize the intutive concept of “communication
uncertainty” with the second pair of axioms below: Separability and Autonomy.

If z and y are sets of events, we denote the union of z and y by z + y; and, the set

of events in z but not in y by z — y. Thus @(y — z) is the set of locations of events in y
but not in z, which may not be the same as @Q(y) — @(z). A family of sets of events is
said to be closed under compatible union and intersection if, whenever z and y are in the
family and z 4 y is compatible, then z +y and z Ny are in the family. A family of sets of
events is said to cover the set of prefixes of a distributed system if, for each prefix z and
execution 2z, if z is contained in z, then there is a member y of the family that contains
z and is contained in z. Prefix y is said to be a failure conserving extension of prefix z if
the only failure events in y — z occur at processes that failed in z. A failure conserving
extension y of z is a sirict extension if the failure bit of any event in y — z is the same
as the failure bit of the last event in z at the same process.

An analysis of a distributed system is a family of prefixes (called cuts) that satisfies
the following two axioms:
Closure Axiom: The family contains the empty prefix, covers the set of prefixes of the
system, and is closed under compatible union and compatible intersection.
Compatibility Axiom: If z, y, and z are cuts with z C y and z C 2, and Q(y — z)
and @Q(z — z) are disjoint, then y and 2z are compatible.

The cuts are to be viewed as global states of our system; however, in general in our
model, there is no notion of time or simultaneity, so cuts should not be considered to
represent any notion of concurrency. Every system possesses at least one analysis. If a
system possesses an analysis satisfying the following two additional axioms then we say
the system has communication uncertainty:

Separability Axiom: For any pair of events at different processes that are contained
in a cut, there is a compatible cut that contains one event but not the other.
Autonomy Axiom: For each cut z and process p, there is a cut y containing z such
that @(y — z) contains only p and y is a failure conserving extension of z.

It is communication uncertainty rather than any particular form of asynchrony that
leads to impossibility results like those of [FLP]. Let the asynchronous message based
systems of [FLP] (with no restriction on failure types or numbers) with analysis consisting
of the family of prefixes that contain the corresponding message send event for every
contained message receive event be called standard message based systems. It is easy to
check that this analysis satisfies all four axioms above. (cf. [L]).

The results in the remainder of this section assume communication uncertainty. In
the next section, an analysis that satisfies the separability axiom will be called separable
and an analysis that satisfies the autonomy axiom will be called autonomous.

Cut y is said to be a successor of set of events z when z C y and there is no cut z
such that z C 2z C y. The transitive closure of the successor relation is denoted leads to.
When z leads to y, y is said to eztend z. When z leads to y and |@(y — z)| = 1, we say z
leads to y locally and y is a local extension of z. Note that a successor to a set of events
must be a cut and therefore a prefix.

If cut = has incompatible successor cuts y and z, then the triple < z,y, z > is said to
be a fork. The fork < z,y, z > is said to be local if @(y — z) U @Q(z — z) consists of one

4

b 4

process. Fork < z,y,z > is said to be failure free if y and z are failure free.
Lemma 2.1.: If cut y is a successor of cut z, then there is exactly one process in @Q(y — z).

Proof: Suppose cut y were a successor of cut z and @(y — z) contained more than
one process. By the separability axiom, since y — z contains events at different processes,
there is a cut z compatible with y that contains some event of y — z but does not contain
some other event of y — z. By the closure axiom, the intersection of y and z is a cut
properly contained in y but containing some event of y — z. Now z is also a cut properly
contained in y, so the union w of z with the intersection of y and z is a compatible set
of events and thus a cut. But w properly contains z and is properly contained in y; so y
could not be a successor of z.
|

Lemma 2.2.: Every fork is local.

The proof is omitted.

A sequence {z(4)} of prefixes is called an ascending chainif, for each 1, z(¢) C z(:+1).
A protocol is called blocking if there is an infinite ascending chain {z(z)} such that some
participant takes infinitely many actions in U{z (i)} without failing or giving output. We
say a protocol is timely if there exists an integer k& such that, in every execution, every
participant either fails or gives an output before it has taken k actions. Thus if a protocol
is blocking, then it is not timely (cf. “wait-free” in [H]). Moreover, if a protocol is timely,
then it is total.

Consider some fixed protocol. A cut is said to be multivalent if it is contained in
failure free executions with disagreeing outputs. If a cut is contained in some failure free
execution and if all outputs in the failure free executions that contain it agree, then the
cut is said to be univalent. Note that if a system has a nontrivial coordination problem,
then the empty cut is multivalent.

Theorem 2.3.: Any safe protocol for a nontrivial coordination problem in a communication
uncertain system must be blocking.

Proof Sketch: The empty cut is multivalent. Either there is an infinite ascending
chain of multivalent cuts or there is a multivalent cut with no multivalent successors.
If there is an infinite ascending chain of multivalent cuts, then the protocol is blocking.
If there is a multivalent cut z with no multivalent successors, then there must be a
failure free fork < z,y,z >. By Lemma 2.2, there is a process p not contained in
Q(y — z) UQ(z — z). Now repeated application of the autonomy axiom yields an infinite
ascending chain of failure free cuts, beginning with z, in which only p takes actions after
z. By the compatibility axiom, each of these cuts must be compatible with both y and
z, so p can neither fail nor give output in any of them. Thus, in any case, the protocol
is blocking.

n

- Corollary 2.4.: There is no safe timely protocol for a nontrivial coordination problem in a
communication uncertain system.

3. Production of Models of Distributed Systems by Restriction
3.1. Syntax and Environment

Our method for constructing models of systems starts with a syntactically defined free
algebra of executions. By restriction we introduce what we call an environment. This is
a set of executions that contains in some sense executions for all possible protocols that
could be written for the system. Then we further restrict the set of executions to those
that correspond to the actions (state transitions) of a fixed set of automata. All our
restrictions are specified as properties of sets of events, independent of any consideration
about what system is being restricted. Thus an execution either satisfies or does not
satisfy a restriction, independent of the system from which it is taken. Formally, a
restriction is a property of sets of events. Applying a restriction p to a system S produces
the set of executions pS that satisfy the property p.

To model each example, we start with what we call a syntactic system consisting of
all executions that can be formed from given sets of processes and actions. we apply
restrictions to the syntactic system to obtain an environment, where an environment is
a system E such that, for any execution of E, changing any failure bit produces another
execution of E. Note that under this definition, a syntactic system is an environment.
A restriction is said to be environmental in system S if the restriction is independent of
which events are failure events for executions-in S. For environments, the failure bits of
events are irrelevant. We use the failure bits of events in a system to indicate events that
are not according to the specifications of the protocols of the system but are still possible
within an environment that contains the system. Note that if F is an environment and
p is an environmental restriction in F, then pF is also an environment.

We can think of an environment as containing many potential protocols. To specify a
single protocol, we restrict the environment to a system in which the actions correspond
to state transitions of a given set of automata and the events with actions not specified
by the automata are the failure events (cf. I0 automata [LM,LT}).

3.2. Completeness and Continuity

A system is said to be complete if the union of the events of any ascending chain of
prefixes is contained in an execution. Note that a complete system cannot have a total
blocking protocol for a coordination problem.

An example of a restriction that does not preserve completeness is eventual message
delivery. This restriction holds of a set of events if for each message sent the set contains
a corresponding receive event or a failure event at the target process. Thus, if a system
has eventual message delivery, then an infinite ascending chain of cuts in which some

N

a

message is never delivered while its target takes infinitely many actions without failing
is not contained in any execution of the system.

The following result follows immediately from Theorem 2.3.

Corollary 3.1.: (Generalization of Two Generals Problem) There is no safe total protocol
for a nontrivial coordination problem in a complete communication uncertain system.

For each system S and restriction p, we define the restriction eztg(p) to hold of a set
of events if that set can be extended to an execution of S that satisfies p. In other words,
exts(p)(z) if, and only if, z is a compatible set of events in pS. A restriction p is said
to be continuous on system S if the restriction ezts(p) is inherited by the union of any
ascending chain of prefixes for which it holds. The following lemmas are immediate from
the definitions.

Lemma 3.2.: System pS is complete if, and only if, p is continuous on S.

Lemma 3.3.: If restrictions p and o are continuous on system S then (p|o) is continuous

on S. If, in addition, ezts(p) A exts(o) implies ezts(p A o), then (p A o) is also continuous
on S.

If prefix z can be obtained from prefix y by changing only failure bits, then z and y
are said to be simular. A restriction p is said to impose a protocol on system S if for every

prefix or execution y of S, there is exactly one prefix or execution of pS that is similar
to y. '

Lemma 3.4.: If restriction p imposes a protocol on complete system S, then p is continuous

on S.

The proof is omitted.

When we restrict an environment to executions with failure bits determined by a given
set of automata (with state transitions corresponding to the actions of the environment),

the restriction imposes a protocol on the environment. Thus such a restriction preserves
completeness.

3.3. Special Restriction Types

We focus on two types of restrictions and the system properties that they preserve.

The types are called “pattern enforcing” and “coherent.” Each type is defined in this
section.

If p is a restriction and R is a set of processeé, then p is said to have base R if p
is determined by the projection of its argument on the set of events that take place at
processes in R. Here we define a specific type of restriction that can be used to state a

7

powerful result for uncertain systems. Restriction p is said to be basic if
(1) it is inherited by supersets,

(2) it is inherited by some finite subset, and

(3) it has a base other than the set of all processes.

Messages provide a special case of what we call a basic pattern. The pair < ¢, f >
of basic restrictions is a basic pattern for an analysis A if
(1) for each z € A, f(z) implies a(z);
(2) for each z € A, a(z) implies z has a failure conserving local extension y in A such
that f(y); and
(3) there is a base for consisting of a single process.

When a restriction can be expressed as the countable conjunction of implications of
the form (o = f), where < a,3 > forms a basic pattern for analysis A, we call the
restriction pattern enforcing with respect to A. If “failure conserving” is replaced by
“strict” in (2) above, then we call the restriction strict pattern enforcing with respect to

A.

The restriction to ”eventual message delivery” is a strict pattern enforcing restriction
for standard message based systems. Each basic pattern < o, f > corresponds to the
send and receive of a particular message. In general restrictions that specify eventual
communication are usually pattern enforcing. However, restrictions that specify com-
munication within a bounded number of actions (e.g. if the communication is initiated
before action & of the sender, then receipt must take place before action 2k of the re-
ceiver) are usually not pattern enforcing because they cannot be expressed in terms of
patterns that satisfy (2) above.

Lemma 3.5.: If S is complete and p is pattern enforcing with respect to some analysis of
S, then any analysis for S forms an analysis for pS. Moreover, any separable or autonomous
analysis for S forms a respectively separable or autonomous analysis for pS.

The proof is omitted.

A property p is said to be pattern enforcing for a system if it is pattern enforcing for
some analysis of the system.

Corollary 3.6.: If restriction p is pattern enforcing for a complete communication uncertain
system S, then pS is communication uncertain.

One very strong restriction that is sometimes assumed in modelling distributed sys-
tems is the property of eventual repair with immunity to failure (after some point each
process that has failed is repaired and has no subsequent failure). A weaker alternative
that is somewhat more realistic is what we call eventual repair (for any integer k and
any process p, there is some point after which p takes k actions without failing). The
restriction to “eventual repair” is a pattern enforcing restriction for standard message
based systems. For each basic pattern < o, >, we take o = true. For each process

8

2]

- p and integer k there is a corresponding f that requires p to have at least k& contiguous
events that are not failures in its local event sequence.

A restriction p is said to be coherent for analysis A of system S if it satisfies the
following conditions:
(1) the empty prefix satisfies ezts(p),
(2) ezts(p) is inherited by compatible unions of members of A, and
(3) ezts(p) is inherited by strict extensions.
We say a restriction is coherent for a system if it is coherent for some analysis for the
system.

If A is an analysis for system S and p is a restriction, then we define pA to be the
family of prefixes of pS that are members of A.

Lemma 3.7. : If restriction p is coherent for analysis A of system S then pA forms an
analysis for pS. Moreover, p preserves separability and autonomy.

The proof is omitted.

Let R be any subset of the set of processes. Let p be the restriction that is satisfied
when failure events occur only at R. Let S be any system that contains an execution
satisfying p. Then p is coherent for S.

Theorem 3.8. : Suppose A is a separable autonomous analysis for a complete system S.
Let p be any pattern enforcing restriction for A in S. Let 7 be the restriction of having no
process failures. Then (p A 7)S has communication uncertainty.

Proof Sketch: Since 7 is coherent, 7A forms a separable autonomous analysis for 7.5
by Lemma 3.7. Note that 7 is continuous on S so that 75 complete. Thus by Lemma 3.5
it suffices to show that p is pattern enforcing for 74 in 7S. But this is straightforward
since a failure conserving extension of a failure free cut must also be failure free.
=

Corollary 3.9.: Let S be the restriction of a standard message based system to executions
with any combination of eventual message delivery, eventual repair, and no process failures.
Then S has no safe timely protocol for a nontrivial coordination problem.

Proof Sketch: The Corollary follows from Corollary 9.4 and Theorem 3.8 for the
conjunction of all three restrictions.
n

Lemma 3.10.: If p is a strict pattern enforcing restriction for analysis A of system S and ¢
is a coherent restriction for A, then p is a strict pattern enforcing restriction for analysis A

of system ¢S. ‘

The proof is omitted.

3.4. Crash Failures

A process is said to suffer a crash failure with respect to analysis A if its local sequence
of events consists of failure free events followed by an infinite number of special events
called stopped events such that if a is some last stopped event in a member z of A, then
either the removal of a or the addition of a next stopped event provides another member
of A. A system is said to be subject to crash failures with respect to analysis A if, for each
process p, any prefix z is contained in a prefix y such that y — z is a stopped event at p
with respect to A. Note that the restriction of having only crash failures is continuous on
any complete system that is subject to crash failures. Also, having only crash failures is
inherited by failure conserving extensions in any system that is subject to crash failures
and has only stopped events as failure events.

Theorem 3.11.: Suppose A is a separable autonomous analysis for a complete system S
such that S is subject to crash failures and has only stopped events as failure events with
respect to A. Let p be any pattern enforcing restriction for A in S; let o be the restriction
of having only crash failures; let 7 be the restriction of having at most one failure; and let
be the conjuction p Ao A 7. Then 7S is a system that contains no safe total protocol for a
nontrivial coordination problem.

Proof Sketch: (This proof uses techniques adapted from [FLP].) Assume the hy-
potheses of the theorem and assume that the conclusion is not satisfied because 7.5 has
a safe total protocol for a nontrivial coordination problem. We will write A’ for (pAc)A
and S’ for (pAo)S. By Lemmas 3.5, 3.7, and 3.10, A’ is a separable autonomous analysis
of §'. :

Let u(p) be the restriction of having failure events only at process p. Let v be the
restriction of having no failure events. Then u(p) and v are both coherent restrictions
for A'in S'. Thus by Lemma 3.7, u(p)A’ and v A’ are separable autonomous analyses of
their respective systems.

The triple < z,y,2z > of members of A’ will be said to form a local disagreement
if z is multivalent and leads to disagreeing univalent y and z with only one process in
Q(y — z) UQ@(z — z). We will show that S’ can have no local disagreements. Suppose
that < z,y, 2z > were a local disagreement at process p. Since they are all failure free, z,
vy, and z are all prefixes of u(p)S’. Since u(p)S’ is a subset of the executions of 7.5, each
execution of 4(p)S’ must contain output for all processes except possibly p. There must
be some execution of u(p)S’ that contains z and in which p crashes immediately after
its last event in z. For this execution, some process must give an output; so there must
be some member of u(p)A’ that is univalent and has no event at p except for those of
z. Since u(p)A’ forms an analysis for u(p)S’, this univalent cut must be compatible with
both y and z, contradicting the safety of the hypothesized protocol. Thus S’ can have
no local disagreements. ‘ »

Since S has a total protocol for a nontrivial coordination problem, the empty cut of

vA'is multivalent in vS’. We can now construct an infinite ascending chain of multivalent

10

s

]

cuts in which each process takes infinitely many actions without failing. The construction
- iterates n+ 1 stages where n is the number of processes. In stages that are : mod (n+1)
with 0 < ¢ < n 4 1, we construct a cut containing the cut we have together with some
new action of process . In stages that are 0 mod (n + 1), if p holds of the cut we have,
then we do nothing; otherwise, we construct a failure free containing cut that satisfies
the first implication o; = f; not satisfied by the original cut.

Using the key technique of [FLP], it is straightforward to show that if, at some
stage, we cannot produce a multivalent cut with the required property, then there must
be a local disagreement. Thus we can construct the desired infinite ascending chain.
By construction the chain must satisfy property p. Since the chain has infinitely many
actions at each process, its union is a failure free execution in 7 S. But this contradicts
the assumption that the protocol is total in 7S.

n

Corollary 3.12. : (FLP) Let S be the restriction of a standard message based system to
executions with eventual message delivery, no failures except crash failures, and at most one
process failure. Then S has no safe total protocol for a nontrivial coordination problem.

4. Conclusion.

When communication is uncertain, isolation is possible and there is no way to guar-
antee safety and timely (nontrivial) coordination among distributed processes. Usually
the probability of isolation is small even though some components may be inoperative
for long periods of time. Blocking prevents transient failures from causing a loss of con-
sistency during isolation. Much as we would like a truly nonblocking total coordination
protocol, Corollaries 3.1 and 3.6 imply that neither eventual message delivery nor even-
tual repair is enough to guarantee safety without blocking in an uncertain environment.
We suggest that rather than search for real systems without the problems of communica-
tion uncertainty, we should search for systems in which isolation has low probability and
choose either consistency or timeliness to guarantee, relegating the other goal to highly
probable but not certain.

5. Acknowledgements

The authors would like to thank Joe Halpern for helpful comments on an earlier
version of this work.

References.

[BHG] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrent Control and
Recovery in Database Systems, Addison-Weseley, 1987.

11

O. Biran, S. Moran, and S. Zaks, “A Combinatorial Characterization of the
Distributed Tasks Which are Solvable in the Presence of one Faulty Proces-
sor.” Proc. 7Tnd ACM Symp. on PODC, (1988) 263-273.

K. M. Chandy, and J. Misra, “How Processes Learn.” Distributed Computing,
(1986) 1:40-52.

D. Dolev, C. Dwork, and L. Stockmeyer, ”On the Minimal Synchronism
Needed for Distributed Consensus,” Journal of the ACM, (1987) 34:77-97.

R. Fagin, J. Y. Halpern, M. Y. Vardi, “A Model-Theoretic Analysis of Knowl-
edge,” Proc. 25th IEEE Symp. on Foundation of Computer Science, (1984)
268-278.

M. J. Fischer, N. A. Lynch and M. S. Paterson, “Impossibility of Distributed
Consensus with One Faulty Process,” JACM 32 (1985) 373-382.

J. N. Gray, “Notes on Database Operating Systems,” Operating Systems:
an advanced course, Lecture Notes in Computer Science 60, Springer Verlag
(1978) 393-481.

J. Halpern and R. Fagin, “A Formal Model of Knowledge, Action, and Com-
munication in Distributed Systems,” Proc. 4th ACM Symp. on PODC, (1985)
224-236.

J. Y. Halpern, and Y. Moses, “Knowledge and Common Knowledge in a
Distributed Environment,” Proc. 3rd ACM Symp. on PODC, (1984).

Maurice P. Herlihy, "‘Impossibility and Universality Results of Wait-Free Syn-
chronization,” Proc. 7nd ACM Symp. on PODC, (1988) 276-290.

L. Lamport, “Time Clocks and the Ordering of Events in a Distributed Sys-
tem,” CACM 21,7 (1978) 558-565.

N. A. Lynch, and M. Merritt, “Introduction to the Theory of Nested Trans-
actions,” International Conf. on Database Theory, Sep. 1986, Rome, Italy,
278-305. Technical Report MIT/LCS/TR-367, MIT, Lab. for Computer Sci-
ence, April 1986. '

N. A. Lynch, and M. R. Tuttle, Hierarchical Correctness Proofs for Distributed
Algorithms, Technical Report MIT/LCS/TR-387, MIT, Lab. for Computer
Science, April 1987.

P. Panangaden and K. Taylor, “Concurrent Common Knowledge: A New
Definition of Agreement for Asynchronous Systems,” Proc. 7nd ACM Symp.
on PODC, (1988) 197-210.

12

/

4

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

