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Abstract

Can unanimity be achieved in an unknown and un
reliable distributed system? We analyze two extreme
models of networks: one in which all the routes of
communication are known, and the other in which not
even the topology of the network is known. We prove
that independently of the rIlodel, unanimity is achiev
able if and only if the nUInber of faulty processors in
the system is

1. less than one half of the connectivity of the sys
tem's network, and

2. less than one third of the total number of proces
sors.

In eases where unanimity is achievable, an algorithm
to obtain it is given.

§1 Introduct,ion

The lllajor issue analyzed in this paper isreaclling una
nirnity in an uIlrcliablc distributed system. Unanimity
means complete agreement by every pair of processors
on the value of every processor in the systern. We look
for unanilnity even if the topology of the network is
not known to the individual processors. The Inajor
task is to circumvent errors without losing unanimity.
'fhis can be achieved if all the reliable melnbers of the
SystCIIl agree upon the content of the messages in the
system. 'fhey have to agree on especially those mes
sages corresponding to thc faulty parts of the systelu,
even if the faulty parts cannot be uniquely idcntifi.ed.

The assumption is that a faulty processor can do what
ever it likes. Thus, a faulty processor can behave
very strangely: It can alter the information relayed
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through itself; it can block such information from be
ing relayed; it can incorrectly rcroute the information,
and in the worst casc, it can send conflicting informa
tion to different members of the system. These are
exa.m pIes of nlalfunctioning behaviors; in general we
would like not to restrict ourselves to certain assump
tions about faulty behavior.

Some of the proccssors may consider a faulty proces
sor to be a reliable one and a reliable processor to be
faulty. Obviously, there is a limit to the nunlber of
faulty processors a systcln can tolerate. 'fhe problem
of achicving unaniluity is further cornplicated by the
following compound question:

Under what conditions does unaninlity remain
valid and what is the system's unanimity
threshold?

In the general case one does not know which processors
are faulty. Moreover, in nlost cases one will never be
able to find it out. To understand the reason for this,
imagine yourself as a processor in a distributed system
that receives a Illessage from a processor z. Assume
that you want to make sure that z is reliable. So, you
inquire what are the messages the rest of the system
received. You lind out that the rnessage you have re
ceived differs from all the rest. Is z a faulty processor?
The answer is not necessarily positive. The possibility
that the only reliable processors in the system are you
and z always exists.

To overCOIIle this logical pathology you should Inake
your decision assuming an upper bound on the number
of faulty processors in the systcIn. That is, if the sys
tcm contains rnorc faulty processors than that upper
bound, it will no longer Inatter what decision you are
going to make. Throughout this paper t denotes the
upper bound on the nunlber of faulty processors in the
system. Knowing t a receiver can sometiInes determine
that the sending processor is unreliable. This can be
achieved in cases of "too many" conflicting versions of
the sender's message.

Unfortunately, in lllany cases faulty processors can
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still remain anonylnous and indistinguishable from the
reliable ones. Consider first the problem of a proces
sor, say z, that sends its message to every other proces
sor in the system. If more than one message is received,
the reliable processors have to determine and agree
upon which value was actually sent by z. Consider
the following agreement that has to be achieved in the
presence of faulty processors:

Bl) All the reliable processors agree on the same mes
sage.

B2) If z is reliable, then all the reliable processors
agree on its message.

This agreelnent was named the Byzantine Generals
problem by Lamport, Shostak and Pease [LSP80]. fIere
it will he refered to as the IJyzantinc Agreement.

A characterization of a network's tolerance to faults
for a given type of agreement and for a given type
of network is t, the upper bound on the number of
faults a network can susta.in while still reaching the
agreement. The upper bound t should depend on the
topology of the network. For example, if the network
graph is a tree, it is clear that almost every faulty
processor can prevent the system from achieving the
Byzantine Agreelnent.

The first work toward finding the threshold t for some
networks was done by Pease, Shostak, and I.Jarnport
and is described in their paper "Reaching Agreement
in the Presence of Faults" [PSI.J80]. In that paper and
in an extended one, "The Byzantine Generals Problem"
[LSP80], the authors analyze the problem of reaching
the Byzantine Agreement in a complete network in
which every pair of processors are directly connected.
'fhey present an algorithm to circumvent (n - t )/3
faulty processors, where n is the number of processors
in the system. They proved that this threshold is tight,
that is, one cannot guarantee a unique agreement if
the number of faulty processors is a third or more.
IJRInport, Shostak, and Pease [lJSP80] found another
algorithm for a special type of networks that they call
a p-regular network, but in this case the result is no
longer tight. In a later paper I.Jamport [L80] studied
the cOlnpJete network with respect to another type
of agreernent called "The Weak llyzantine Gencrals
Problem." In recent work ([D81]) the threshold is
determined for two types of agreements and for specific
assumptions about the networks.

In this paper we consider two extreme cases: networks
in which all thc routes of cOlnmunication are predeter
Inincd, and networks in which neither' the routes nor
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the topology are known to the proccssor. For every
such network, G, we will prove:

The Byzantine agreement 'can be achieved
in a network G if and only if:

1. t is less than one half of the connec
tivity of G; and

2. t is less than one third of the total
number of processors in G.

This result implies that the threshold for t holds for
other assunlptions about networks between these two
extrelnes. By connectivity we mean a vertex-connec
tivity, that is, the minimal number of vertices the
removing of which disconnects the network to at least
two parts. The above threshold can be relaxed a little
bit if we assume that all the processors are supposed
to have the same value.

§2 Basic Notions an(l Assumptions

A network· is composed of processors connected by
links. 'fhe processors communicate by sending infor
mation via messages. Assume that every processor in
the network knows its direct neighbors and can iden
tify which of them forwarded which message.

For a clear representation of the relationships among
the processors the following notions are used. A sender
of messages is called the transmitter and the messages
it sends carry its value. 'rhe transluitter sends its
values to its receivers either dire~tly or through other
processors called relays. A processor can be a tra.ns
nlitter, a receiver or a relay according to its function
in the network with respect to a given message. A
processor is reliable if it transfers the messages it has
received without altering or eavesdropping on them. A
reliab,le transmitter is a reliable processor that sends
the same value to all its receivers. A faulty processor
is a relay or a transrnitter that is not reliable.

Let us concentrate on the case of a single processor
that sends its value to the rest of the network. Solving
this case successfully will enable us to handle the gen
eral case in which every processor scnds its own value
to every other processor.

Messages should contain SOIne information about the
route through which they were relayed. Otherwise, a.
receiver is not able to distinguish among messages and
therefore is unable to discrirnina.te between good and
faulty processors. Let the information about the route
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be the list of the processors which actually relayed the
message.

We can assume that every relay appends its name to
the message. IIowever, a faulty processor can compose
an irnaginary route 3.nd exchange it with the real route
appended to the message. Moreover, it can eliminate
,its own name froID the route; and thus is able to thwart
any effort to be identified as a faulty processor.

This argument shows that we cannot trust individual
processors in composing the route. To ensure the in
clusion of a faulty processor's name, assume that after
a relay receives a message to relay, it first appends
to the message the IlaIne of its forwarding neighbor.
Only then does it relay the message. But now, if a
faulty relay produces many false copies of the mes
sage it is supposed to relay, and sends them through
various routes, then its name appears on everyone of
the routes.

Throughout all the above discussion one issue was omit
ted: synchronization. Consider an asynchronous dis
tributed system. In a reliable asynchronous system
there should be an upper bound on the amount of
tinle between sending and receiving of a message. If
the transmitter sends several messages to the saIne
receiver, then, in a reliable system, the above upper
bound determines the maximum length of the time
interval during which aU the messages should arrive.
In an unreliable system every message that has not
arrived on tinle can be ignored, because it was relayed
(delayed) by a faulty processor.

The ability of a faulty processor to disrupt may appear
unlimited, but the situation is not so bad. Due to
the Menger l'heorenl [1172], if the connectivity of the
graph is k, then there exist at least k disjoint paths
between every pair of processors. This shows that the
transmitter has the ability to transmit k copies of its
value through k disjoint routes to every receiver.

Summary of assumptions:

Pl. The processors are arranged in a k connected
bidirectional network.

P2. Every processor knows the members of the net
work.

P3. Processors communicate only by sending mes
sages along links.

P4. Every processor can identify the neighbor from
which it receives each message.
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P5. A message includes the route through which it
was delivered.

P6. A reliable processor relays a message only after
it appends the name of the processor from which
it received the message to the message's route.

P7. A reliable processor relays messages without both
altering them and eavesdropping on their values.

P8. There exists an upper bound on the delay of
relaying a message by a reliable processor.

PD. There exists an upper bound, t, on the number
of faulty processors in the system.

In the rest of the paper we will consider two extreme
models: First model, a Routed-Network in which
every receiver knows beforehand the routes through
which the transmitter will send the messages; Second
model, a Unknown-Network in which a processor
knows neither the topology of the network nor the
routes through which it will receive messages.

It is clear that the freedom that a faulty processor
has in an Unknown-Network is much more than that
in a Routed-Network. 'fherefore, it should be hard
er to reach unanimity in an Unknown-Network. We
will present algorithms to achieve unanimity in both
Illodels. The surprising fact· is that the conditions
on the topology of the network for the existance of
unanimity is the same in both cases. This means that
for a very wide range of network types the threshold
under which no unanimity can be achieved is the same.

§3 Reliable Trans.mitter

Consider first a reliable transmitter, that is, a trans
Illitter which sends the same value to every receiver.
In this case it is easy to achieve unanimity. Notice
that in the general case the receiver does not know if
the transmitter is reliable or not. This special case is
needed for the general algorithm.

3.1 Reliable Transmitter in all.outed--Network

In a Routed-Network a transmiter can send messages
along disjoint routes. This increases the probability
of the receivers getting the correct values. The re
ceiver can compare the actual routes, along which it
received the messages, to the planned ones; thus it can

Authorized licensed use limited to: Danny Dolev. Downloaded on February 2, 2010 at 22:10 from IEEE Xplore.  Restrictions apply. 



eliminate some of the probleuls that a faulty processor
might cause.

A receiver Inay receive many messages from the trans
mitter carrying several values. The following algo
rithm provides the receiver with a method to select
the correct values out of all the copies it has received.
Define 0 to be the empty value this means that either
the transmitter did not send any value or that there is
no way to find a unique value out of the set of copies.
This last case arises when the transmitter is a faulty
processor that has sent too many conflicting values.

Algorithm Find (t; al' .. 'J a,,; x)

1. Delete every message ai whose route does not
agree with the planned route. Call the messages
that are left the good messages.

2. If there are t + 1 good messages that carry the
same value, then set the found value to be their
value.

3. Otherwise, set t~e found value to be 0.

The following theorem proves that the Find Algorithm
enables a reliable translnitter to send its value faith
fully. Throughout the rest of the paper G denote a
network (either routed or unknown) of connectivity at
least 2t + 1, where t is the upper bound on the number
of faulty processors.

Theorem 1. Let G be a Routed-Network. If a reli
able translnitter sends 2t+ 1 copies of its value to every
receiver through disioint paths, then every reliable re
ceiver can obtain the transmitter's value.

Proof: Every message contains a route that is sup
posed to be the route through which it was delivered.
If the route is entirely composed of reliable relays, then
its route will be the planned route and will be the
actual route along which the message wa..~ delivered.
If the planned route contains faulty processors then
several things might happen. Assurnption P6 implies
that at least the name of the last .faulty processor
which relayed the message will appear on the message's
route. The algorithm cnsures that all Illessages with
non Inatching routes are ignored.

Thus, thc number of good messages a receiver has to
consider is bounded by 2t + 1. If the reliable trans
mitter sends 2t + 1 copies of its value through disjoint
routes and the number of faulty processors is less than
t + 1, then the number of good Inessages is at least
t + 1; and by P8 they will be reccived by the receiver.
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Moreover, there are at most t wrong values and a~ least
t + 1 correct values. This conlplctes the proof. I

Notice that in a Routed-Network no "false alarm"
can 3appeOj that is, if the reliable transmitter did
not send anything, then the Find Algorithm would not
provide any value different from 0 to any reliable pro
cessor. Assumption P8 is not essential for the proof ot
Theorem 1; it is sufficient to assume that eventually
every message will arrive. Assumption P8 will be used
in later sections to enable the receivers to know when
to start the next step of their algorithms.

3.2 Reliable transmitter in an Unknown-Network

An Unknown-Network requires much more effort for
ensuring a correct reception. Neither the transmit
ter nor the receiver knows the topology of the net
work; therefore, no preplanning of routes can be done.
One method to establish a faithful transmission us
ing the connectivity of the network is broadcasting.
The transIuitter can send the lllessage to its neighbors
and they can relay it to their neighbors and so on.
IIowever, this method must be carefully handled in the
presence of faulty processors.

Another issue that produces problems is the effect of a
flood of faulty messages. The transInission should be
a finite process. We cannot prevent a faulty processor
froIlI sending an infinite nUInber of messages, but we
have to provide Lbe reliable processors with a method
to ignore this behavior and to be able to determine the
correct value after a finite nUluber of steps.

The following algorithm recursively describes the broad
casting Inethod. Processor x forwards a message that
c~rries the value a and the route p, to processor y.

Algorithm Send (x; a : p; y)

1. IF p contains only processors which are lllernbers
of the systeIll and every processor appears at most
once, TIII~N

a. p f- px;

b. A))D a : p to the messages received from
head{p) by Yj

e. FOR every neighbor z of Y which is not in p
DO Send(y; a : p; z) OD ;.

2. ELSE ignore the message.
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Notice that the transmitter's nalne is the first name in
p, and if p is empty, then it is x.

The following lemma describes the basic properties
of the Send Algorithm. Define two nlesages to be
independent if the sets of processors which relayed the
messages are disjoint. A set of messages is independent
if every pair of elelnents of that set are independent.

Lemma 2. Let G be an Unknown-Network, the con
nectivity 0/ which is at least 2t + 1. 1/ a reliable trans
mitter v sends to every neighbor y the value a, then
after a finite time every reliable processors will receive
at least t + 1 independent copies 0/ a message carrying
the value a.

Proof: Transmitter v is reliable and it sends the value
a by Send(v; a : 0; y) to each one of its neighbors.
Asslllnption P2 irnplies that every processor knows the
sct of the nlerrlbers of the system. There are at least
t + 1 independent routes between Xo and every reliable
receiver which contain only reliable relays. Assumption
P8 inlplies that after a finite time every reliable relay
will receive the message and will relay it to the rest
of the processors. From these arguments it is easy to
conclude the proof. •

The Send Algorithm and A.ssumption P8 imply that
there exists a tinlC interval T during which all lllessages
sent and relayed by reliable processors should arrive.
In the final algorithm we will use this tilne interval
dynamically to sanlple arriving messages to determine
when a reliable transmitter sends a value and what the
value is.

The next issue is the method by which a reliable pro
cessor is able to choose the right value out of all the
messages it receives.

Algorithn"l Purifying (t;al' ...,ar;x)

1. If there exists a subset of {al; ... ; a r } containing
t + 1 independent messages all of which carry the
saIne value, then set the purified value to be that
value;

2. Otherwise, set the purified value to be 0.

Notice that if more than one set of t + 1 indepen
dent messages exists, then there may be many purified
values. But because of the way the algorithm will be
used, a plurality of possible values will not be a prob
lem:; any value can be choosen in this case.
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The basic property of the Purifying Algorithm is elimi
nation of fictive values, as proved by the following
lemma.

Lemma 3. Assume that the number o//aulty proces
sors is bounded by t. The Purifying Algorithm yields a
nonempty value only if such a value was actually sent
by the transmitte r.

Proof: If the maximal number of independent mes
sages is not greater than t, then the Purifying Algorithm
provides an empty value. If the transmitter does not
send anything, then the only messages received should
be produced by faulty processors. The Illessages rnay
be relayed by reliable ones, but observe that the tech
nique used in the Send Algorithm of adding the names
of the processors along the route to the message, en
abl~s x to differcntiate aIIlong the values. Every mes
sage which passcd through faulty processors contains
at least one naIne of a faulty processor; more precisely,
every list of processors added to a message contains
at least the name of the last faulty processor that
relayed it. Thus, the faulty processors cannot produce
more than t independent messages, which completes
the proof. •

The following theorem proves that in an Unknown
Network with sufficient connectivity all the reliable
receivers obtain the sarrIe value, if the transmitter is
reliable.

Theorem 4. Let G be an unknown-network of pro
ce8sor.~ containing at most t faulty processors, and
the connectivity 0/ which i.~ at least 2t + 1. If a reli
able transmitter broadcasts its value to all its neighbors
by the Send Algorithm, then, by use of the Purifying
Algorithm, every reliable receiver can obtain the trans
mitter's value.

Proof: The reliable transmitter uses the Send AIgo
rithIIl to broadcast its value. It sends the same value to
all receivers. Let {at, ... , a r } be the set of all the copies
of the transmitter's value that receiver x receives. There
are at lllOSt t faulty processors. lly IJemma 2, at .least
t + 1 of the received copies arc independent and carry
the original value. Note that if the transmitter were a
faulty processor, then the above reasoning would fail
to hold.

Usually the number of copies received is much more
than t + 1 and it may even be that the majority of
them ·carry a faulty value. Thc task of receiver x is
to find the correct value out of this Iness. It docs this
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by applying the Purifying Algorithm. The Purifying
Algorithm looks for a set of t+ 1 independent messages
with the property that all the values carried by these
messages are the same. The network contains at most
t faulty processors, and the transmitter is not one of
them. l'herefore, as in Lemma 3, the faulty processors
cannot produce more than t independent messages.
Thus, the only possibility of finding such· a set is to
include a message carried only by reliable processors,
which ilnplies that the purified value will be the value
of the reliable transmitter. This completes the proof
of the theorem. •

x

z

a ~ ~ b

y

In the case where the transmitter is faulty, Theorem
1 and Theorem 4 do not ensure the ability to reach a
unique agreement on a value. This case is discussed in
the rest of the paper.

Since the receivers do not know when the transmitter
starts to broadcast its value, they are not able to know
when to apply the I>urifying Algorithm. To enable the
general algorithln to proceed receivers should try to
apply the Purifying Algorithm several tiDles, until a
nonempty value is obtained. The following corollary
ensures that this sampling Inethod will not produce a
wrong value.

Corollary 5. Under the conditions of Theorem 4,
the application 0/ the Purifying Algorith11J, to any sub
set 0/ the messages sent by the reliable transmitter will
produce either 0 or the transmitter's value.

Proof: 13y Lemma 3, a nonempty value will be produced
only if the transInitter actually sent onc. The trans
mitter is reliable and therefore sends the same value
to everybody. A set of t + 1 independent nlcssages
must contain a message which was forwarded only by
reliable processors, and therefore carries the transmit
ter's value. Since all the independent messages should
carry the same value to produce a nonempty value,
the only possibility is that each one of them carries
the transnlitter's value. I

§4 The Necessary Conditions

In terms of the communication vocabulary defined in
Section 2, the Byzantine Agreement becomes:

Byz1) All reliable receivers agree on the same value.

Byz2) If the transmitter is reliahle, then all reliable
receivers agree on its value.
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Figure 1: Three processors with one faulty

Thus, to prove the necessary condition what has to
be shown is that if t is not less than half the con
nectivity or not less than the third of the total num
ber of processors, then the Byzantine Agreement can
not in general be achieved. It is sufficient to show
that the Byzantine Agreelnent cannot be achieved in a
routed network, because this implies the proof for the
unknown-network.

The following example clarifies the difficulties of reach
ing an agreement in the caset ~ n/3. Assume the
network contains only three processors connected in a
triangle and contains exactly one faulty processor. Let
z be the transmitter and x be a processor which tries
to follow the Byzantine AgreeIuent. Figure 1 shows
the information x gets.

Receiver x gets the value a directly from the transmit
ter and a different version of the translnitter's value,
say b, from y. The receiver has to consider two pos
sibilities:

1. the transmitter z is reliable and y is a faulty relay;
and

2. the transmitter z is faulty and y is a reliable relay.

Now, x can decide: "faulty transmitter" (i.e. 0) or it
can choosc a value. It does not know if the situation
is 1 or 2. l'hererore, if it decides "faulty transnlitter"
it might be that the situation is 1 which contradicts
Byz2. This implies that it cannot decide "faulty trans
mitter" in this case. Processor x should choose the
value a, otherwise it may fail to obey Byz2 in the
case 1. Assume that the actual case is 2; therefore
as a reliable processor, y faces the same problem: it
receives b froIn z and a frOID x. Thc above arguments
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Figure 2: A two-connected network

Lexnma 7. No unanimity can be achieved in an
unknown-network of n procetUlors if the number o/faulty
processor" is not less than hall 0/ the connectivity 0/
the network.

IleInma 6. No unanimity can be achieved in an
unknown-network of n processors if the number of faulty
processors is greater than or eq1J,a~ to a third 0/ the
total number 0/ processor. •

The necessary part of the main result is implied by the
above lemluas. The rest of the paper is the proof of its
sufficiency for the case of an Unknown-Network. We
are only interested in existance and not in complexity;
therefore, it is enough to observe that the solution for
a Known-Network follows from that of an Unknown
Network. The first case can be solved directly using a
much simpler algorithm such as the one for obtaining
the Crusader Agreement in [DoSt].

§5 The Byzantine Agreement for Unknown-Network

impossibility of this situation will be proved by con
structing the Byzantine Agreement for the nctwork or
Figure 2.

Let {Vl' ...,Vk} be a set of k processors that separates
the network into two parts. Let X and Y be the sets or
processors of these parts. Divide the sets of processors
{VI' ... ' Vk} into two parts, such that each set contains
at most t processors. Denote by If the reduced net
work obtained from G by contracting all processors in
each of the above four sets. The new network 11 is a
network of 4 processors, in which processors U and W
represent up to t processors of the original network G.
Reaching the Byzantine Agreement in the presenceoC
one faulty processor in 11 can be simulated by reach
ing the agreelnent in the network G, in the presence
of up to t faulty processors. Similarly, the assumed
algorithm for reaching the Byzantine Agreement in
G can be simulated in order to reach the Byzantine
Agreement in II. But this contradicts our previous
arguments. The constructed contradiction proves the
lemma. •

i. A reliable processor initiates the algorithm with
11" = 0 at "lost once;

To obta.in the Byzantine Agreelnent in an Unknown
Network the following recursive algorithm can be used.
Throughout this section we use the following notation:
IJet G be a network of n processors with connectivity
at least 2t + 1; let U ~ V be a supset of the set of
processors of G; and let the current initiator of the
algorithm, v, be a processor not in U. Let 11" be a
simple path of processors in G - U - {v}. rrhe path
11" dccrihcs the sequence of processors which initiated
thc algorithm before the current initiator.

To simplify the analysis of the algorithm's behavior
we will limit it to the case in which every processor is
eligible to initiate the algorithm at most once for each
11". To ensure that we assume:

w

x

y

u

imply that y will choose b to be the translnitter's value.
These forced decisions contradict Byzl. This proves
that no matter what decision the processors make, the
Byzantine Agreement cannot he achieved.

By simulating the case of 3 processors one can prove
the following lemma.

Proof: Assume to the contrary that there exists a
network G with n processors and connectivity k, and
that there exists an algoritlun to achieve the Byzantine
Agreement in G for every distribution of up to t faulty
processors in the network, where k/2 < t ~ k. Observe
that if t ~ k, thcn thc ICIIlma obviously holds. The

Figure 2 shows a two connected network of four proces
sors. Sirnilarly to the triangle case (Figure 1), one can
show that no unanimity can he achieved in this net
work.. Moreover, even knowing that the faulty proces
sor is either u or w would not help. The main reason
for that is that the faulty processor can behave as a
"filter" such that x and y always get different values.
The fact that u and w separate x frolll y prevents them
from deciding who is the faulty processor. Thus, they
cannot decide which is the right value.
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ii. A reliable processor intiates the algorithm with
11" =f 0 only according to step 3a of the algorithm.

The content of the messages exchanged during the
algorithm is composed of the original value together
with the current index m, with the set or receivers
U, and with the path of initiators 11". We say that a
message is erroneous if m > n, or if U ~V, or if 11"

is not an appropriate path; that is, either 11" is not a
simple path in G - U - {v} or the transmitter v had
previously initiated the algorithm with the same path
11".

The algorithm uses a function MAJORITY, that each
processor uses for deciding what the value is, given a
set of received values. The function has to be such that
it -points out the majority value if there exists exactly
one; otherwise it can get an arbitrary (but consistent)
value.

x

u

y

Figure 3: five processors and one faulty

w

AIgorithIll BG(G, v, U, 1r,t, m):
(the Byzantine Algorithln)

1. l'he transmitter v broadcasts a message contain
ing its value together with the set U, the path 11",

and the index m through all its neighbors, using
the Send A.lgorithm.

2. Denote by A(v, m, U, 1f, u) the set of non-erroneous
messages sent by the transIIlitter v, carrying the
same U, m, and 7r, and arriving within tilne in
terval T, that receiver u has received. Each re
ceiver applies the Purifying Algoritlull to every
set A(v, m, U, 11", u) it receives froIu thc transruit
ter to find the value, a, that the transmitter in
tended it to receive.

3. IF m > 0 and a =f 0 'ffIEN :

a. I"or every u E U, let au be the value re
ceiver u has obtained in step 2 and 1f be
the associated path. Receiver u acts as the
transmitter in the Byzantine Algorithm
llG(G,u,U - U,1f· v,t,m-l)
to send the value au to every other receiver
in U - u.

b. For each w E U and each u =f w in U let
aw ( u) be the value receiver w receives from
receiver u in step a. If no value is received,
then set aw(u) = 0. Let aw(w) be the value
receiver w has received from the transmitter
v in step 2. Recciver w determines the value
of v by MAJOHJ1:'Y{aw (x) I x E U}.

To prove the validity of thealgorithrn BG observe that
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the same processor can be used again and again as a
transmitter of independent paths betwecn pairs of pro
cessors, cven if it were a relay. Moreover, even being a
faulty processor does not matter for the simple reason
that the total number of independent paths that would
be affected by faulty processors will never excced t.

Before proving the validity of the algorithm, consider
the example in Figure 3. The network is 3-connected;
it contains 5 processors and z is a faulty translnitter.
At step 2 of the algorithm, processors x and y obtain
the value a while processors U and w obtain b. At
step 3a every processor transfers its version to the rest
of the receivers. At step 3b every processor evaluates
MAJOH.ITY{a, a, b, b}, ,vhich produces the same value.

LeIIlffia 8. 1'he Byzantine Algorithm terminates.

Proof: Assumption P8 implies that the broadcasting
process, at step 1 of the algori thIn, is finite. That is
after a finite time every processor will actually receive
the messages and reliable pro~essorswill stop initiating
new messages for the current broadcasting.

Step 2 of the algorithm might cause trouble. To con
sider the set A, a processor has to characterize files
sages according to the index m, the set U, and the
path 1r. The three parameters have a finite range of
possible values. The receiver can dynamically deter
mine those lllessages that arrived within tirne interval
T. Dy Corollary 5, after finding a nonempty value it
can eliminate any further rnessage carrying the same 11"

sent by the saIne transmitter. Moreover, the sampling
interval T advances in time and Iuessages outside the
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interval can be ignored. It will eventually get the cor
rect value, since it samples consecutively all intervals
of size T, and by Theorem lone of them will produce
the value. Thus, the total number of possible sets A is
finite. Moreover, with respect to every set the depth of
the algorithm is also finite. This cornpletes the proof
of ternlination. I

The rest of the proof that the algorithm implies the
Byzantine Agreenlent is similar to those in [LSP80]
and [D8!].

Lemma. 9. Let G be an Unknown-Network 01 proces
80rs; U be a 8ub8et of proceS80r,fJ from G with car
dinality at least 2r + m, and let v be a proceS80r not
in U. If the set of processors U contain8 at most r
faulty processors, then Algorithm BG(G, v, U, 1r, t, m)
8atisfies condition Byz2 with respect to U.

Proof: The condition Byz2 determines the behavior
of the reliable processors in the case where the trans
mitter is reliable. A reliable processor faithfully fol
lows the algorithm and therefore uses an appropriate
1r. The proof of the lemma is by induction on m. At
the same time we will prove that if v is reliable and
1r is appropriate, then the receiver is not in 1r. This
implies that 1r remains a simple path.

Byz2 holds for m = 0, because the transmitter is
reliable; it sends its value with 11" = 0 for the first
tirne, and by Theorem 4 and Corollary 5 every reliable
receiver receives the same value.

Assume that the ICffilna holds for m - 1 > O. 'fhe
reliable transmitter v broadcasts its unique value a
to every receiver in U by the Send algorithm, using
11" for the first tiIne. According to Theorem 4 and
Corollary 5, every receiver w in U has not yet obtained
a nonempty value carrying 11", and therefore obtains in
step 2 the value aw = a. In step 3a, each processor 1J,

~:pp1ies the algorithm BG(G, u, 11 - u, 1r • v, t, m - 1) to
send the value it ob tained to all the other processors
in U - u. Since U contains at least 2r + m processors,
U -u contains at least 2r+m-l processors. The set U
docs not eontain v or the processors along the path 1r.

1'he transmitter v considers 1r to be appropriate, and
therefore 1J, is not in 11". Moreover, since v has not sent
11" beCore, 1J, does not suppose to send 1r. v before. Thus,
if u is reliable, then 11" • v is appropriate. This implies
that the induction hypothesis can be applied to reach
the conclusion that every other reliable processor in U
receives 'rom every other reliable processor the sanle
value a. The set U contains at least 2r +m processors.
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Since m > 0 and since there are at most r faulty
processors in U the Illajority in step 3b, done by every
individual receiver w, produces the same value a. This
cOInpletes the proof of the lemma. I

l'he following thcoreIn uses I.Jemma 9 to prove that
algorithmBG(G,v,U,1r,t,m) induces the Byzantine
Agreement among the processors in U.

Theorem 10. Let G be an Unknown-Network 01
processors; U be a subset of processors from G with
card1:nality at least 3m, and let v be a processor not in
U. /f the set of processors U U{v} contains at most m
faulty processors, then Algorithm BG(G, v, [1,11", t, m)
satisfies conditions Byzl and Byz2 with respect to U.

Proof: The proof is by induction on m, the bound
011 the number of faulty processors in the set U U{v}.
l'he case m = 0 is the case where there are no faulty
processors in U and v is a reliable tranSlllitter. In
this case Theorem 4 and Corollary 5 irnply that the
algorithm trivially satisfies Byz1 and Byz2.

Assume that the theorem holds for m-l > O. Consider
first the case in which the transrui.tter v is reliable.
Lelnma 9 holds for every distribution of faulty proces
sors, especially for the case where r === m faulty proces
sors in U U{v }. Therefore, algorithm BG satisfies
I3yz2 which implies Dyzl for this case.

l'he only remaining case is the one where the trans
nlitter is a faulty processor. There are at most m
faulty processors in U U{v} and the translnitter is one
of theIn, therefore U itself contains at most m - 1
faulty processors. Since U contains at least 3m proces
sors then U - u contains at least 3m - 1 > 3(m - 1)
processors. ~rhis implies that the inductive assumption
can be applied to step 3a. The validity of Byz2 and
the inductive assulllption on Byzl imply that in step
3b every two reliable processors get the same value
for every processor in U. This leads to the fact that
MAJORITY{aw(x) I x ~ U} produces the same value
for every processor w in U, which proves Byzl. I

Theorern 10 irnplics that the J~yzantincAgreclnent, for
the whole graph G, can be obtained by taking V - {v}
to be U, choosing t = m, and 1r == 0.

Corolla.ry 11. The algorith1n BG(G, v, V -v, 0, t, t)
achieves the Byzantine Agreement for every network 01
more than 3t proceStJors with connectivity greater than
2t. I
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