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Abstract. Let G = (V,E) be an n-vertex graph and Md a d-vertex
graph, for some constant d. Is Md a subgraph of G? We consider this
problem in a model where all n processes are connected to all other pro-
cesses, and each message contains up to O(logn) bits. A simple determin-
istic algorithm that requires O(n(d−2)/d/ logn) communication rounds is
presented. For the special case that Md is a triangle, we present a prob-
abilistic algorithm that requires an expected O(n1/3/(t2/3 + 1)) rounds
of communication, where t is the number of triangles in the graph, and
O(min{n1/3 log2/3 n/(t2/3 + 1), n1/3}) with high probability.
We also present deterministic algorithms that are specially suited for
sparse graphs. In graphs of maximum degree ∆, we can test for arbitrary
subgraphs of diameter D in O(∆D+1/n) rounds. For triangles, we devise
an algorithm featuring a round complexity of O((A2 log2+n/A2 n)/n),
where A denotes the arboricity of G.

1 Introduction

In distributed computing, it is common to represent a distributed system as a
graph whose nodes are computational devices (or, more generally, any kind of
agents) and whose edges indicate which pairs of devices can directly communicate
with each other. Since its infancy, the area has been arduously studying the so-
called local model (cf. [17]), where the devices try to jointly compute some
combinatorial structure, such as a maximal matching or a node coloring, of this
communication graph. In its most pure form, the local model is concerned with
one parameter only: the locality of a problem, i.e., the number of hops up to
which nodes need to learn the topology and local portions of the input in order
to compute their local parts of the output—for example this could be whether
or not an outgoing edge is in the maximal matching or the color of the node.

Considerable efforts have been made to understand the effect of bounding the
amount of communication across each edge. In particular, the congest model
that demands that in each time unit, at most O(log n) bits are exchanged over



each edge, has been studied intensively. However, to the best of our knowledge,
all known lower bounds rely on “bottlenecks” [10,12,18], i.e., small edge cuts
that severely constrain the total number of bits that may be communicated
between different parts of the graph. In contrast, very little is known about the
possibilities and limitations in case the communication graph is a clique, i.e., the
communication bounds are symmetric and independent of the structure of the
problem we need to solve. The few existing works show that, as one can expect,
such a distributed system model is very powerful: A minimum spanning tree
can be found in O(log log n) time [13], with randomization nodes can send and
receive up to O(n) messages of size O(log n) in O(1) rounds, without any initial
knowledge of which nodes hold messages for which destinations [11], and, using
the latter routine, they can sort n2 keys in O(1) rounds (where each node holds n
keys and needs to learn their index in the sorted sequence) [16]. In general, none
of these tasks can be performed fast in the local model, as the communication
graph might have a large diameter.

In the current paper, we examine a question that appears to be hard even
in a clique if message size is constrained to be O(log n). Given that each node
initially knows its neighborhood in an input graph, the goal is to decide whether
this graph contains some subgraph on d ∈ O(1) vertices. In the local model,
this can be trivially solved by each node learning the topology up to a constant
distance;3 in our setting, this simple strategy might result in a running time of
Ω(n/ log n), as some (or all) nodes may have to learn about the entire graph and
thus need to receive Ω(n2) bits. We devise a number of algorithms that achieve
much better running times. These algorithms illustrate that efficient algorithms
in the contemplated model need to strive for balancing the communication load,
and we show some basic strategies to do so. We will see as a corollary that it
is possible for all nodes to learn about the entire graph within O(|E|/n) rounds
and therefore locally solve any (computable) problem on the graph; this refines
the immediately obvious statement that the same can be accomplished within
∆ (where ∆ denotes the maximum degree of G) rounds by each node sending
its complete list of neighbors to all other nodes. For various settings, we achieve
running times of o(|E|/n) by truly distributed algorithms that do not require
that (some) nodes obtain full information on the entire input.

Apart from shedding more light on the power of the considered model, the
detection of small subgraphs, sometimes referred to as graphlets or network mo-
tifs, is of interest in its own right. Recently, this topic received growing attention
due to the importance of recurring patterns in man-made networks as well as
natural ones. Certain subgraphs were found to be associated with neurobiological
networks, others with biochemical ones, and others still with human-engineered
networks [15]. Detecting network motifs is an important part of understanding
biological networks, for instance, as they play a key role in information pro-
cessing mechanisms of biological regulation networks. Even motifs as simple as

3 In the local model, one is satisfied with at least one node detecting a respective
subgraph. Requiring that the output is known by all nodes results in the diameter
being a trivial lower bound for any meaningful problem.



triangles are of interest to the biological research community as they appear in
gene regulation networks, where what a graph theorist would call a directed tri-
angle is often referred to as a Feed-Forward Loop. In recent years, the network
motifs approach to studying networks lead to development of dedicated algo-
rithms and software tools. Being of highly applicative nature, algorithms used
in such context are usually researched from an experimental point of view, using
naturally generated data sets [9].

Triangles and triangle-free graphs also play a central role in combinatorics.
For example, it is long since known that planar triangle-free graphs are 3-
colorable [8]. The implications of triangle finding and triangle-freeness motivated
extensive research of algorithms, as well as lower bounds, in the centralized
model. Most of the work done on these problems falls into one of two categories:
subgraph listing and property testing. In subgraph listing, the aim is to list
all copies of a given subgraph. The number of copies in the graph, that may
be as high as Θ

(
n3
)

for triangles, sets an obvious lower bound for the run-
ning time of such algorithms, rendering instances with many triangles harder
in some sense [4]. Property testing algorithms, on the other hand, distinguish
with some probability between graphs that are triangle-free and graphs that are
far from being triangle-free, in the sense that a constant fraction of the edges
has to be removed in order for the graph to become triangle-free [1,2]. Although
soundly motivated by stability arguments, the notion of measuring the distance
from triangle-freeness by the minimal number of edges that need to be removed
seems less natural than counting the number of triangles in the graph. Consider
for instance the case of a graph with n nodes comprised of n − 2 triangles, all
sharing the same edge. From the property testing point of view, this graph is
very close to being triangle free, although it contains a linear number of tri-
angles. Some query-based algorithms were suggested in the centralized model,
where the parameter to determine is the number of triangles in the graph. The
lower bounds for such algorithms assume restrictions on the type of queries4 that
cannot be justified in our model [7].

Detailed Contributions. In Section 3, we start out by giving a family of
deterministic algorithms that decide whether the graph contains a d-vertex sub-
graph within O(n(d−2)/d) rounds. In fact, these algorithms find all copies of this
subgraph and therefore could be used to count the exact number of occurrences.
They split the task among the nodes such that each node is responsible for
checking an equal number of subsets of d vertices for being the vertices of a copy
of the targeted subgraph. This partition of the problem is chosen independently
of the structure of the graph. Note that even the trivial algorithm that lets each
node collect its D-hop neighborhood and test it for instances of the subgraph in
question does not satisfy this property. Still it exhibits a structure that is simple
enough to permit a deterministic implementation of running time O(∆D+1/n),
where ∆ is the maximum degree of the graph, given in Section 4. For the special
case of triangles, we present a more intricate way of checking neighborhoods that

4 For instance, in [7] the query model requires that edges are sampled uniformly at
random.



results in a running time of O(A2/n+log2+n/A2 n) ⊆ O(|E|/n+log n), where the
arboricity A of the graph denotes the minimal number of forests into which the
edge set can be decomposed. While always A ≤ ∆, it is possible that A ∈ O(1),
yet ∆ ∈ Θ(n) (e.g. in a graph that is a star). Moreover, any family of graphs
excluding a fixed minor has A ∈ O(1) [5], demonstrating that the arboricity is a
much less restrictive parameter than ∆. Note also that the running time bound
in terms of |E| is considerably weaker than the one in terms of A; it serves to
demonstrate that in the worst case, the algorithm’s running time essentially does
not deteriorate beyond the trivial O(|E|/n) bound.

All our deterministic algorithms systematically check for subgraphs by either
considering all possible combinations of d nodes or following the edges of the
graph. If there are many copies of the subgraph, it can be more efficient to
randomly inspect small portions of the graph. In Section 5, we present a triangle-
finding algorithm that does just that, yielding that for every ε ≥ 1/nO(1) and
graph containing t ≥ 1 triangles, one will be found with probability at least 1−ε
within O((n1/3 log2/3 ε−1)/t2/3+log n) rounds; we show this analysis to be tight.

All our algorithms are uniform, i.e., they require no prior knowledge of pa-
rameters such as t or A. Interleaving them will result in an asymptotic running
time that is bounded by the minimum of all the individual results. Due to lack
of space, we only sketch most proof ideas; for details we refer to [6].

2 Model and Problem

Our model separates the computational problem from the communication model.
Let V = {1, . . . , n} represent the nodes of a distributed system. With respect
to communication, we adhere to the synchronous congest model as described
in [17] on the complete graph on the node set V , i.e., in each computational
round, each node may send (potentially different) O(log n) bits to each other
node. We do not consider the amount of computation performed by each node,
however, for all our algorithms it will be polynomially bounded. Instead, we
measure complexity in the number of rounds until an algorithm terminates.5

Let G = (V,E) be an arbitrary graph on the same vertex set, representing
the computational problem at hand. Initially, every node i ∈ V has the list
Ni := {j ∈ V | {i, j} ∈ E} of its neighbors in G, but no further knowledge of G.

The computational problem we are going to consider throughout this paper
is the following: Given a graph Md on d ∈ O(1) vertices, we wish to discover
whether Md is a subgraph of G.

3 Deterministic Algorithms for General Graphs

During our exposition, we will discuss the issues of what to communicate and
how to communicate it separately. That is, given sets of O(log n)-sized messages
at all nodes satisfying certain properties, we provide subroutines that deliver
5 Note that ensuring termination in the same round is easy due to the full connectivity.



all messages quickly and then use these subroutines in our algorithms. We start
out by giving a very efficient deterministic scheme provided that origins and
destinations of all messages are initially known to all nodes. We then will show
that this scheme can be utilized to find all triangles or other constant-sized
subgraphs in sublinear time.

Full-knowledge message passing. For a certain limited family of algorithms
whose communication structure is basically independent of the problem graph,
it is possible to exploit the full capacity of the communication system, i.e., pro-
vided that no node sends or receives more than n messages, all messages can be
delivered in two rounds.

Lemma 1. Given a bulk of messages, such that:

1. The source and destination of each message is known in advance to all nodes,
and each source knows the contents of the messages to sent.

2. No node is the source of more than n messages.
3. No node is the destination of more than n messages.

A routing scheme to deliver all messages within 2 rounds can be found efficiently.

To get some intuition on why Lemma 1 is true, observe that if every node
initially holds a single message for every other node, the task can clearly be
completed within a single round. This reduces our problem to finding a message
passing scheme such that, after one round, every node will hold a single message
for every other node. Now consider the bipartite multi-graph in which the vertices
on the left are the nodes in their role as sources, the vertices on the right are
the nodes in there role as destinations, and for each message whose source and
destination are nodes i and j, respectively, there is an edge from i (on the left
hand side) to j (on the right hand sight). Our desired scheme translates to finding
n perfect matchings in the graph, since we could have every source send the edge
used by it (i.e. the message) in the ith matching to the ith node, resulting in every
node holding a single message for every other node in the subsequent round. The
graph described is always a disjoint union of n perfect matchings, as a corollary
of Hall’s Theorem. The required matchings can be found before communication
commences, since all sources and destinations are known.

TriPartition - finding triangles deterministically. We now present an al-
gorithm that finds whether there are triangles in G that has a better round
complexity than O(|E|/n) if |E| is large. Apart from a possible final broad-
cast message informing other nodes of a discovered triangle, it exhibits the very
simple communication structure required by Lemma 1.

Let S ⊆ 2V be a partition of V into equally sized subsets of cardinality n2/3.
We write S = {S1, ..., Sn1/3}. To each node i ∈ V we assign a distinct triplet
from S denoted Si,1, Si,2, Si,3 (where repetitions are admitted). Clearly, for any
subset of three nodes there is a triplet such that each node is element of one



Algorithm 1: TriPartition at node i.
1 Ei := ∅
2 for 1 ≤ j < k ≤ 3 do
3 for l ∈ Si,j do
4 retrieve Nl ∩ Si,k

5 for m ∈ Nl ∩ Si,k do Ei := Ei ∪ {l,m}
6 if there exists a triangle in Gi := (V,Ei) then send “triangle” to all nodes
7 if received “triangle” from some node then return true
8 else return false

of the subsets in the triplet. Hence, for each triangle {t1, t2, t3} in G, there is
some node i such that t1 ∈ Si,1, t2 ∈ Si,2, and t3 ∈ Si,3. Each node checks for
triangles that are contained in its triplet of subsets by executing TriPartition
(see Algorithm 1).

Theorem 1. TriPartition correctly decides whether there exists a triangle in G
and can be implemented within O(n1/3) rounds.

Remark 1. The fact that (except for the potential final broadcast) the entire
communication pattern of TriPartition is predefined enables to refrain from
including any node identifiers into the messages. That is, instead of encoding
the respective sublist of neighbors by listing their identifiers, nodes just send a
0 − 1 array of bits indicating whether a node from the respective set from S is
or is not a neighbor in G. The receiving node can decode the message because it
is already known in advance which bit stands for which pair of nodes. We may
hence improve the round complexity of TriPartition to O(n1/3/ log n).

Generalization for d-cliques. TriPartition generalizes easily to an algorithm
we call dClique0 that finds d-cliques (as well as any other subgraph on d vertices).
We choose S to be a partition of V into equal size subsets of cardinality n(d−1)/d,
resulting in S = {S1, ..., Sn1/d}. Each node now examines the edges between all
pairs of some d-sized multisubset of S (as we did for d = 3 in TriPartition). Since
there are exactly |S|d = n such multisets, all possible d-cliques are examined.
Every node needs to receive the list of edges for all

(
d
2

)
pairs, each containing

at most (n(d−1)/d)2 edges, thus every node needs to send and receive at most
O(n(2d−2)/d) messages.

Theorem 2. dClique0 determines correctly whether there exists a d-clique (or
any given d-vertex graph) in G within O(n(d−2)/d/ log n) rounds.

4 Finding triangles in sparse graphs

In graphs that have o(n2) edges, one might hope to obtain faster algorithms.
However, the algorithms from the previous section have congestion at the node



Algorithm 2: TriNeighbors at node i.
1 Ei := ∅
2 for j ∈ V s.t. (i, j) ∈ E do
3 retrieve Nj

4 for k ∈ Nj do Ei := Ei ∪ {j, k}
5 if there exists a triangle in Gi := (V,Ei) then send “triangle” to all nodes
6 if received “triangle” from some node then return true
7 else return false

level, i.e., even if there are few edges in total, some nodes may still have to
send or receive lots of messages. Hence, we need different strategies for sparse
graphs. In this section, we derive bounds depending on parameters that reflect
the sparsity of graphs.

Bounded degree. We start with a simple value, the maximum degree ∆ :=
maxi∈V δi, where the degree of node i δi := |Ni|. If ∆ is relatively small, then
every node can simply exchange its neighbors list with all its neighbors. We refer
to this as TriNeighbors algorithm, whose pseudo-code is given in Algorithm 2.
In a graph with bounded ∆, it will be much faster than dClique0 algorithm.

Since potentially all vertices may have degree ∆, the message complexity per
node is in O(∆2 + n). We use an elegant message-passing technique, suggested
to us by Shiri Chechik [3]. Assuming that (i) no node is the source of more than
n messages in total, (ii) no node is the destination of more than n messages,
and (iii) every node sends the exact same messages to all of the destinations for
its messages, it delivers all messages in 3 rounds. This is done by first having
each node distribute its messages evenly, in a Round-Robin fashion, to all other
nodes in the graph. In the second phase, messages are retrieved in a similar
Round-Robin process. This divides the communication load evenly, resulting in
an optimal round complexity. Assuming that for each node i we have the set of
its k(i) messages Mi = {mi,1, . . . ,mi,k(i)}, let Di denote its recipients list. With
these notations, the code of Round-Robin Messaging is given in Algorithm 3.

Lemma 2. Given a bulk of messages in which:

1. Every node is the source of at most n messages.
2. Every node is the destination of at most n messages.
3. Every source node sends exactly the same information to all of its destination

nodes and knows the content of its messages.

Round-Robin-Messaging delivers all messages in 3 rounds.

Corollary 1. Using Round-Robin-Messaging, all nodes can learn the complete
structure of the graph in |E|/n rounds.

Algorithm TriNeighbors satisfies all the conditions of Lemma 2. We conclude
that, employing Round-Robin-Messaging, the round complexity of TriNeighbors



Algorithm 3: Round-Robin-Messaging at node i.
1 R := ∅ // collects output
2 S := ∅ // collects source nodes and #messages for i
3 for j ∈ V do
4 send mi,j mod k(i) to j
5 if j ∈ Di then send “notify k(i)” to j

6 for “notify k(j)” received from j do S := S ∪ (j, k(j))
7 l := 1
8 for (j, k(j)) ∈ S do
9 for k ∈ {1, . . . , k(j)} do

10 send “request message from j” to l
11 l := l + 1

12 for received “request message from j” do send mj,i mod k(j) to j
13 for received message m do R := R ∪ {m}
14 return R

becomes O(∆2/n). If ∆ ∈ O(
√
n) then the round complexity is O(1), and clearly

optimal. More generally, any subgraph of diameter6 D ∈ O(1) can be detected
by each node exploring its D-hop neighborhood.

Corollary 2. We can test for subgraphs of diameter D in O(∆D+1/n) rounds.

Bounded arboricity. The arboricity A of G is defined to be the minimum
number of forests on V such that their union is G. Note that always A ≤ ∆,
and for many graphs A � ∆. The arboricity bounds the number of edges in
any subgraph of G in terms of its nodes. We exploit this property to devise an
arboricity-based algorithm for triangle finding that we call TriArbor.

An overview of the TriArbor algorithm. We wish to employ the same strategy
used by the naive TriNeighbors, that is “asking neighbors for their neighbors”,
in a more careful manner, so as to avoid having high degree nodes send their
entire neighbor list to many nodes. This is achieved by having all nodes with
degree at most 4A send their neighbor list to their neighbors and then shut
down. In the next iteration, the nodes that have a degree at most 4A in the
graph induced by the still active nodes do the same and shut down. As 2An′

uniformly bounds the sum of degrees of any subgraph of G containing n′ nodes,
in each iteration at least half of the remaining nodes is shut down. Hence, the
algorithm will terminate within O(log n) iterations. To control the number of
messages, in each iteration we consider triangles involving at least one node of
low degree (in the induced subgraph of the still active nodes). This way, any
triangle will be found once any of its nodes’ degrees becomes smaller than 4A.

Obviously, no node of low degree will have to send more than 4A messages
in this scheme. However, it may be the case that a node receives more than 4A

6 The diameter of a graph is the maximum shortest path length over all pairs of nodes.



Algorithm 4: One iteration of TriArbor at node i.
1 // compute delegates
2 send δ′i to all other nodes
3 compute assignment of delegates to high-degree nodes and neighbor sublists
4 // high-degree nodes distribute neighborhood
5 if δ′i > 4A then
6 partition N ′i into dδ′i/4Ae lists of length at most 4A
7 send each sublist to the computed delegate
8 for j ∈ N ′i do notify j of delegate assigned to it // only i knows order of N ′i
9 // let all delegates learn about N ′j

10 if i is delegate of some node j then
11 denote by Dj the set of delegates of j
12 denote by Lj,i ⊂ N ′j the sublist of neighbors received from j
13 for k ∈ Dj do send Lj,i to k
14 for received sublist Lj,k do N ′j := N ′j ∪ Lj,k

15 // low-degree nodes distribute neighborhoods
16 if δ′i ≤ 4A then
17 for j ∈ N ′i do
18 if δ′j ≤ 4A then send N ′i to j // low-degree nodes handle load alone
19 else send N ′i to j’s delegate assigned to i

20 // check for triangles
21 for received N ′j (from j with δ′j ≤ 4A) do
22 if N ′i ∩N ′j 6= ∅ then
23 send “triangle” to all nodes // triangles with two low-degree nodes
24 else if i is delegate of k and N ′j ∩N ′k 6= ∅ then
25 send “triangle” to all nodes // triangle with one low-degree node

26 if received “triangle” then return true
27 else return false

messages in case it has many low-degree neighbors. To remedy that, low-degree
nodes avoid sending their neighbor list to their high-degree neighbors directly,
and instead send it to intermediate nodes we call delegates. The delegates share
the load of testing their associated high-degree node’s neighborhood for triangles
involving a low-degree node. We present the algorithm assuming that A is known
to the nodes; for details on how to remove this assumption, we refer to [6].

Choosing delegates. In each iteration, every delegate node will be assigned to a
unique high-degree node, i.e., a node of degree larger than 4A in the subgraph
induced by the nodes that are still active. In the following, we will discuss a
single iteration of the algorithm. Denote by G′ := (V ′, E′) some subgraph of G
on n′ nodes, where WLOG V ′ = {1, . . . , n′}. Define δ′i, ∆

′, N ′i , etc. analogously
to δi, ∆, Ni, etc., but with respect to G′ instead of G. We would like to assign
to each node i exactly dδ′i/(4A)e delegates such that each delegate is responsible
for up to 4A of the respective high-degree node’s neighbors.



This is feasible because the arboricity provides a bound of the number of
nodes having at least a certain degree that is inversely proportional to this
threshold, implying the following claim.

Claim. At least n′/2 of the nodes have degree at most 4A and the number of
assigned delegates is bounded by n′.

Moreover, the assignment of delegates to high-degree nodes can be computed
locally using a predetermined function of the degrees δ′i. Thus, if every node
communicates its degree δ′i, all nodes can determine locally the assignment of
delegates to high-degree nodes in a consistent manner.

The algorithm. Algorithm 4 shows the pseudocode of one iteration of TriArbor.
The complete algorithm iterates until for all nodes δ′i = 0 and outputs “true” if
in one of the iterations a triangle was detected and “false” otherwise.

The following claim holds because we are certain that in each iteration half
of the nodes are of low degree and therefore eliminated.

Claim. TriArbor terminates within dlog ne iterations.

Since triangles with a low-degree node are detected, correctness is immediate.

Lemma 3. TriArbor correctly decides whether the graph contains a triangle.

Round complexity of TriArbor. We examine the round complexity of one
iteration of the algorithm. Obviously, announcing degrees takes a single round
only. The following claims can be veryfied by carefully applying the communi-
cation strategies we already established.

Claim. High-degree nodes’ neighborhoods can be distributed in two rounds.

Claim. Exchanging neighborhood sublists between delegates can be performed
in four rounds.

Claim. Low-degree nodes’ neighborhoods can be communicated in 3d32A2/ne
rounds.

Finally, announcing that a triangle is found takes one round. Recall that in each
iteration at least half of the nodes have low degree and are thus eliminated. All
in all, we get the following result.

Theorem 3. Algorithm TriArbor is correct. It can be implemented with a run-
ning time of O(dA2/ne log n) rounds.

The correctness here follows from the fact that eventually every node is elimi-
nated, and in the respective phase it has small degree. A triangle with at least
two low-degree nodes will be detected because these nodes will exchange their
neighborhoods. A triangle with only one low-degree node will be detected by at
least one delegate of each of its high-degree nodes.

We note that a more sophisticated implementation of the approach is uniform
and slightly faster.

Corollary 3. TriArbor can be modified to be uniform and run in O(A2/n +
log2+n/A2 n) rounds.



5 Randomization

Our randomized algorithm does not exhibit an as well-structured communication
pattern as the presented deterministic solutions, hence it is difficult to efficiently
organize the exchange of information by means of a deterministic subroutine.
Therefore, we make use of a randomized routine from [11].

Theorem 4 ([11]). Given a bulk of messages such that:

1. No node is the source of more than n messages.
2. No node is the destination of more than n messages.
3. Each source knows the content of its messages.

For any predefined constant c > 0, all messages can be delivered in O(1) rounds
with high probability (w.h.p.), i.e., with probability at least 1− 1/nc.

The algorithm. When sampling randomly for triangles, we would like to use the
available information as efficiently as possible. To this end, on the first iteration
of Algorithm 5 all nodes sample randomly chosen induced subgraphs of a certain
size and examine them for triangles. On subsequent iterations the size of the
checked subgraphs is increased. Checking a subgraph of size s requires to learn
about O(s2) edges, while it tests for Θ(s3) potential triangles. If s ∈ Θ(

√
n),

it thus takes a linear number of messages to collect such an induced subgraph
at a node. Using the subroutine from Theorem 4, each node can sample such a
graph in parallel in O(1) rounds. Intuitively, this means we can sample Θ(n5/2)
subsets of three vertices in constant time. As |

(
V
3

)
| ∈ Θ(n3), one therefore can

expect to find a triangle quickly if at least Ω(
√
n) triangles are present in G.

If less triangles are in the graph, we need to sample more. In order to do this
efficiently, it makes sense to increase s instead of just reiterating the routine
with the same set size: The time complexity grows quadratically, whereas the
number of sampled 3-vertex-subsets grows cubically. Finally, once the round
complexity of an iteration hits n1/3, we will switch to deterministic searching
to guarantee termination within O(n1/3) rounds. Interestingly, the set size of
s = n2/3 corresponding to this running time ensures that even a single triangle
in the graph is found with constant probability.

Round complexity. The last iteration dominates the running time.

Lemma 4. If TriSample terminates after m iterations, the round complexity is
in O(22m) with high probability.

Our aim is to bound the number of iterations needed to detect a triangle
with probability at least 1 − ε, as a function of the number of triangles in the
graph. Let T ⊂

(
V
3

)
denote the set of triangles in G, where |T | = t.

On an intuitive level, the triangles are either scattered (i.e., rarely share
edges) or clustered. If the triangles are scattered, then applying the inclusion-
exclusion principle of the second order will give us a sufficiently strong bound
on the probability of success. If the triangles are clustered, then there exists an



Algorithm 5: TriSample at node i.
1 s :=

√
n while s < n1/3 do

2 choose uniformly random set of s nodes Ci

3 for j ∈ Ci do send the member list of Ci to j
4 for received member list Cj from j do send Ni ∩ Cj to j
5 Ei := ∅
6 for received Nj ∩ Ci from j do
7 for k ∈ Nj ∩ Ci do Ei := Ei ∪ {j, k}
8 if Gi := (V,Ei) contains a triangle then send “triangle” to all nodes
9 if received “triangle” then return true

10 else s := 2s

11 run TriPartition and return its output // switch to deterministic strategy

edge that many of them share. Finding that specific edge is more likely than
finding any specific triangle, and given this edge is found, the probability to find
at least one of the triangles it participates in is large.

Bounding the probability of success using the inclusion-exclusion principle. We
know by the inclusion-exclusion principle that

Pr[triangle found] ≥ t · Pr[specific triangle found]−
∑

a 6=b∈T

Pr[a and b found].

For every a 6= b ∈ T there are three cases to consider:

1. a and b are disjoint, that is a ∩ b = ∅.
2. a and b share a single vertex, |a ∩ b| = 1.
3. a and b share an edge, |a ∩ b| = 2.

Definition 1. For r ∈ {4, 5, 6}, Tr ⊆
(
T
2

)
is the set of pairs of distinct triangles

in G that have together exactly r vertices. Denoting tr = |Tr|, clearly t4+t5+t6 =(
t
2

)
= |
(
T
2

)
|.

We define that Pm = Pr[triangle found in iteration m] and also that pm =
Pr[node i found triangle in iteration m]. For symmetry reasons the latter prob-
ability is the same for each node i.

Claim. For 0 < ε < 2, if pm ≥ ln(2/ε)/n then Pm ≥ 1− ε/2.

With the above notations, from the inclusion-exclusion principle we infer that

pm ≥ t ·
(

sm

n− sm + 3

)3

−
6∑

k=4

tk ·
(

sm

n− sm

)k

. (1)

Recall that we distinguish between the cases of “scattered” and “clustered”
triangles. We now give these expressions a formal meaning by defining a threshold
for t4 in terms of t and a critical value s(ε) of sm. This value is defined as
s(ε) := max{2n2/3t−1/3 ln1/3(2/ε), 2

√
n ln(2/ε)}. The critical value stems from

either of the following cases:



1. Scattered triangles - we wish to sample as many triangles as possible, and the
number of triangles sampled grows cubically in sm. The n2/3 factor in the
numerator reflects the fact that sm = n2/3 would imply that each triangle
is sampled with constant probability.7 Clearly having a lot of triangles in
general improves the probability of success, hence the division by t1/3.

2. Clustered triangles - it may be the case that all triangles share a single
edge, hence we must sample this edge with probability at least 1− ε/2. For
sm =

√
n each node samples Θ(n) edges, hence each edge is sampled with

constant probability.

The round complexity bound for the case of scattered triangles now follows
by an application of the inclusion-exclusion principle. The probability to find
a pair of triangles sharing an edge is considerably greater than finding other
pairs, as only 4 vertices need to be sampled (unlike 5 or 6 if they only share
a vertex or are disjoint, respectively), therefore it dominates the subtracted
amount in Equality (1). More specifically, the probability that some node samples
k ∈ {3, . . . , 6} fixed nodes is Θ((sm/n)k). Computations reveal that for the
relevant values of sm, t5 and t6 cannot be large enough to compensate for the
factors of (sm/n)2 and (sm/n)3 by which these probabilities differ, respectively.
With regard to t4, we can give a threshold, below which the respective term can
be neglected. This is done by the following Lemma that provides a probabilistic
guarantee to find a triangle, assuming that there are not many pairs of triangles
sharing an edge.

Lemma 5. If t4 ≤ tn/(2s(ε)) and n is sufficiently large, then a triangle will be
found with probability at least 1− ε/2 in any iteration where sm ≥ s(ε).

The strategy employed for clustered triangles is to show that due to the
bound on t4, there exists an edge shared by many triangles. An elegant proof
for this fact was given by Brendan McKay [14].

Definition 2. For each edge e ∈ E, define ∆e = |{Ti : e ⊆ Ti}|. In other words,
∆e is the number of triangles that e participates in. Denote ∆max = maxe∈E ∆e.

Lemma 6. ∆max ≥ 2t4/3t.

Proof. Consider a figure consisting of two triangles sharing an edge (this is ba-
sically K4 with one edge removed). We count the occurrences of this figure in G
in two different ways:

1. Observe that t4 counts just that.
2. Pick one of the t triangles from T , choose one of its 3 edges, denote it
e. Choose one of the other ∆e − 1 triangles that share e to complete the
figure. Note that this counts every figure exactly twice, since we may pick
either of the two triangles in the figure to be the first one. By definition
∆e − 1 ≤ ∆max − 1, hence we count at most 3t(∆max − 1)/2 occurrences.

7 TriPartition selects O(n2/3) vertices per node so that all sets of 3 nodes are covered.



By comparing 1. and 2., we conclude that indeed t4 ≤ 3t(∆max − 1)/2. ut

Subsequently the analysis focuses on this special edge, showing that the prob-
ability to sample this edge and find a triangle containing it is sufficiently large.

Lemma 7. If t4 > tn/(2 · s(ε)) then a triangle will be found with probability at
least 1− ε/2 in any iteration where sm ≥ s(ε).

Theorem 5. If G contains at least t triangles, for any ε ≥ 1/nO(1) TriSample
terminates within O(min{n1/3t−2/3 ln2/3 ε−1 + ln ε−1, n1/3}) rounds with proba-
bility at least 1− ε. It always outputs the correct result.

Remark 2. The running time bound from Theorem 5 is asymptotically tight,
that is, there are graphs for which TriSample runs with probability at least ε
for Ω(n1/3t−2/3 ln2/3 ε−1) or Ω(ln ε−1) rounds, respectively.

6 Conclusions

In this work, we give a number of solutions for the task of checking a distributed
input graph for small subgraphs, under the assumption of an underlying fully
connected communication network with bandwidth of O(log n) per link. Our
results show that non-trivial running time bounds can be achieved and present
some communication strategies that are successful in deriving such bounds. How-
ever, we provide no insight on lower bounds for the problem, although during
our work we developed intuition that strong, i.e., super-polylogarithmic, bounds
might exist. Due to the very powerful model, we consider it a highly challeng-
ing task to devise such a bound. As a first step, we suggest examining the
class of oblivious algorithms, whose communication pattern is completely prede-
fined. Algorithm 1 is such an algorithm, and we conjecture that its running time
is essentially optimal, i.e., that any deterministic oblivious algorithm deciding
whether there is a triangle in the input graph must run for Ω̃(n1/3) rounds.
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