
Evaluating Total Order Algorithms in WAN
Tal Anker

School of Engineering and Computer Science
The Hebrew University of Jerusalem, Israel

anker@cs.huji.ac.il
Radlan Computer Communications, Israel

tala@radlan.com

Danny Dolev
Gregory Greenman

and Ilya Shnayderman
School of Engineering and Computer Science
The Hebrew University of Jerusalem, Israel�

dolev, gregory, ilia � @cs.huji.ac.il

Abstract— Agreed message delivery is an important service in
distributed systems, especially when dealing with fault-tolerant
applications. This work studies factors influencing protocols
that provide global order in Wide Area Networks. Performance
evaluation in real network conditions was conducted in order to
compare two recently published algorithms. It was found that loss
rate and variations in message propagation time have a significant
impact on the performance of the algorithms.1

Keywords: total order, atomic broadcast, group communi-
cation, WAN

I. INTRODUCTION

Message delivery order is a fundamental building block in
distributed systems. For more than two decades, researchers
have been developing efficient algorithms that offer useful
guarantees. The agreed order is one of the basic message
delivery order guarantees, allowing distributed applications
to use the state-machine replication model to achieve fault
tolerance and data replication. Extensive analysis of algorithms
providing agreed message order can be found in [1]. In
addition, two recently introduced algorithms have presented
methods to implement an agreed message delivery order
in a Wide Area Network (WAN): Optimistic Algorithm [2]
and Hybrid Algorithm [3]. These algorithms give an early
notification of message delivery order to the application, even
before the final order of the messages is established. In [4],
it is shown that this early notification is useful in replicated
databases.

Replicated databases are often built atop Group Commu-
nication Systems (GCS). Such middleware systems usually
provide an application builder with tools, such as message
ordering, reliable delivery and group membership services. We
have developed such a GCS for a WAN called Xpand [5]. In
order to provide Xpand users with an efficient WAN-oriented
agreed message order, we have evaluated recent WAN global
ordering algorithms, namely, Optimistic Algorithm and Hybrid
Algorithm. The assumptions used by these algorithms are
suitable for Xpand. We evaluated the algorithms in order to
implement them in Xpand and analyzed the factors which
have substantial impact on algorithms’ latency. Theoretical
evaluation of distributed algorithms is complicated, due to
multiple factors that have impact on algorithms’ performance,

1Slightly improved version of the paper which appeared at Workshop on
Large-Scale Group Communication at SRDS 2003.

e.g. network topology, message frequency, failure model etc.
Metrics commonly used for such comparisons (e.g. the number
of rounds of message exchanges or the number of sent
messages) proved not to be accurate enough in a WAN [6].

We studied the algorithms’ latency in a steady state case
in a real network and discovered that two factors, namely, a
loss rate and variations in message propagation time, have a
significant impact on algorithms’ performance.

II. ALGORITHMS UNDER COMPARISON

When comparing ordering algorithms, it is important to
consider the guarantees each algorithm provides. We start
by presenting the order required by a replicated database
application, namely, Uniform Total Order (UTO). A formal
definition of a UTO broadcast guarantee can be found in [3].
In essence, it provides the same message delivery order for all
the processes, including the faulty ones2.

Before a UTO is agreed on, a Preliminary Order (PO) is
“proposed” by each of the processes. If the PO is identical
for all correct (non-faulty) processes, it is called Total Order
(TO). PO and TO should either be confirmed or changed
by the UTO later. The algorithm presented in [3] (Hybrid
Algorithm) provides both TO and UTO, while the algorithm
presented in [2] (Optimistic Algorithm) provides PO (which
the authors call Optimistic Order) and TO. Although no
protocol is proposed for UTO, it could easily be built atop
TO by collecting acknowledgments from the majority of the
processes that have delivered messages in TO. The most
important difference between Optimistic Order and TO is that
in the latter the order may be changed iff a process is suspected
to have failed, while Optimistic Order may be changed even if
no process has been suspected. Below we discuss the protocols
used by these algorithms in order to achieve the above ordering
services.

In Optimistic Algorithm, a process is selected to serve as the
Sequencer. For every message it receives, the Sequencer gives
a TO number and notifies all the processes about the message
order. The Optimistic Order is achieved by predicting (with
a high probability) the time when the message is received by
the Sequencer.

2We do not consider Byzantine Failures in this work.



In Hybrid Algorithm, each process is marked as either
passive or active, according to the location of the process in the
network and its message sending rate. Active processes act as
sequencers for passive ones. Lamport symmetric protocol [7]
is used to achieve TO in the set of active processes. In order
to compare a sequencer-based approach with a symmetric
approach, we chose the topology and process sending rates
so that all the participating processes were marked as active
ones. The latency of Lamport symmetric protocol [7] can be
improved by using local clocks as was shown in [3].

III. METHODOLOGY

This section describes the methodology used for the evalu-
ation of the ordering algorithms.

It is important to note that throughout the experiments we
did not consider processes suspicions/failures. Although these
are important factors, they should be studied in a separate
work, since the current paper focuses on the steady state case.
However, message losses do occur in the steady state and may
have significant impact on the algorithms’ performance [6]. In
order to achieve TO/UTO guarantee, lost messages must be
re-acquired. Xpand [5] guarantees reliability by retransmitting
lost messages, thus providing an appropriate framework for
this study.

In the experiments, we used nodes from the RON project
([8]). The tests involved 6 sites, 5 residing in North America
and one in Jerusalem, Israel. While the number of sites is
relatively small, Xpand’s hierarchical structure and its support
for multiple groups allow to extend the algorithms to large-
scale systems. The nodes themselves were Celeron/733 or
PentiumIII/1.1G machines running FreeBSD/Linux operating
system, connected via commodity Internet and Internet2. The
links had diverse delays and varying packet loss rates.

We used Xpand to collect information about the network
characteristics. Each host generated a new data packet every
10ms. Although data packets were sent by UDP protocol,
the rate was limited by Xpand’s TCP-friendly congestion
control [9] mechanism. Each node listed the time when a
packet was received from the network. The ordering algo-
rithms were evaluated by emulating their protocols behavior
on the message logs.

A. Application Layer Multicast
Xpand reliable multicast service relies on the availability

of a many-to-many communication substrate. The network
service that supports many-to-many communication in IP
networks is IP multicast. There is a limitation on using IP
multicast, since it is only partially deployed in various net-
works, which creates isolated regions supporting IP multicast.

In order to overcome this difficulty and to “bridge” between
regions supporting IP multicast, Xpand introduces a layer
called Application Layer Multicast (ALM) which is used
only as an interim solution. This layer constructs a message
distribution tree incorporating representative nodes, each node
being chosen from a region that supports a native multicast.
The tree construction is performed automatically and is beyond
the scope of this paper (See [5], [10]).

B. Clock Skews

In order to estimate the ordering algorithm latency, we
needed a good evaluation of the clock differences among
all the participating processes. This was achieved using the
mechanism described in [6]. The assumption made in calcu-
lating the clock differences was that message Round Trip Time
(RTT) in a WAN was stable and rarely changed. The RTT was
also assumed to be symmetric. Although these assumptions
may not hold for a general case, they were applicable in
our experiments. Time drift may be another concern when
evaluating time differences. In our experiments, the logs were
collected over a relatively short interval (several minutes’
span), thus making time drift between the clocks negligible.

C. Implementation and Optimization of the Algorithms

This section describes essential implementation and opti-
mization details. In order to emulate the ordering protocols,
we assumed that control information can be piggybacked on
data messages. This technique did not introduce any additional
delay into the ordering protocols latency, as data messages
were generated at a high rate.

Optimistic Algorithm relies on delay calculations. In order
to emulate this algorithm, we used the logs to estimate
the delays, and then emulated the protocol running on the
logs using the estimated delay. High message sending rate
and small variation in message propagation time may cause
Optimistic Order to wrongly predict TO (on messages received
in the same time window). To improve the TO prediction,
Optimistic Algorithm batches messages [2]. For the same
purpose we used message-sending time.

Some applications may require messages to be delivered in
the same order they have been sent (FIFO). Since this is not
part of the UTO definition, our implementation of Optimistic
Algorithm does not provide FIFO, in order to achieve an
improved latency.

Since we achieved clock synchronization, in Hybrid Algo-
rithm (See III-B) we could put a timestamp on messages and
use it to achieve TO.

In order to reduce the impact of message losses, we dupli-
cated previous acknowledgments on each data message. This is
feasible since (1) the size of an acknowledgment is very small
and (2) an acknowledgment on message � also acknowledges
messages preceding � .

IV. PERFORMANCE RESULTS

The logs were collected in multi-continent (WAN) setting
of RON Testbed Network. The experiment included six sites:
Zikit1 (Jerusalem), RON0 (Boston), RON2 (Salt Lake City),
RON33 (Ottawa), RON35 (Berkeley), RON45 (Chicago).

As there is no IP multicast connectivity among these sites, a
proprietary application layer multicast (ALM) mechanism was
used [5]. The obtained message distribution tree is presented
in Figure 1. RON33 was selected to be the tree root by the
algorithm used in the dynamic ALM tree construction and was
used as the Sequencer for Optimistic Algorithm.



RON33

RON45

RON35 RON2

RON0

Zikit1

Ottawa

Chicago

Berkeley Solt Lake City

Cambridge(MA)

Jerusalem

Fig. 1. ALM Layout

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Latency (ms)

D
el

iv
er

ed
 M

es
sa

ge
s 

(%
)

Optimistic Order
Optimistic TO
Hybrid TO
Optimistic UTO
Hybrid UTO

Fig. 2. Comparing the Algorithms

The maximal RTT registered between RON2 and Zikit1
was 330ms. It is worth noting that in some links a significant
percentage of messages experienced substantial delays. Also,
we noticed that loss rate varied significantly over different
links (the worst link experienced the average of 3.6% loss
rate).

In order to compare the algorithms, we studied the latencies.
For Optimistic Algorithm, we measured the time between
message sending and its delivery by all the processes (mes-
sage latency) in Optimistic Order, TO and UTO. For Hybrid
Algorithm, we measured the latencies of TO and UTO. For
some messages, very high latencies were observed due to loss
bursts. Therefore, the average values are not representative,
and we chose to use Cumulative Distribution Function (CDF)
(Figure 2). Here, the X axis presents latencies, while the Y
axis shows the percentage of messages delivered by specific
time.

As can be seen from the data represented in the graph,
approximately at the 60% level, the behavior of the curves
changes. Below this point, the latencies are similar to those
expected. A message � is deliverable in Optimistic TO only
after � ’s TO number has been received from the Sequencer.
Hybrid TO delivers � when a subsequent message from
each process is received. Therefore, Hybrid TO imposed a
shorter delay on � , as the sending rate was high during the

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 104

0

100

200

300

400

500

600

700

800

900

Time (ms)

La
te

nc
y 

(m
s)

Optimistic TO
Hybrid TO
Zikit1 Losses

Fig. 3. Impact of Losses

experiment. Optimistic Order latency is better than that of
Hybrid TO, since it waits only for a precomputed delay to
deliver � and does not require reception of any additional
message.

In the upper part of the graph, the pattern of the curves
changes drastically. Optimistic Order curve converges with
that of Optimistic TO. It means that Optimistic Order was
predicted wrongly, hence, � ’s Optimistic Order delivery time
was substituted by Optimistic TO delivery time. The decrease
in Optimistic TO slope indicates an increase in the number of
messages delivered with a high latency. This increase is even
more significant in Hybrid TO.

As we found out, this slowdown of TO algorithms was
caused by message losses. The graph in Figure 3 shows the
latencies measured by Zikit1 for its own messages. Only
a short time interval is presented (time is measured from
the start of the experiment) in order to make the graph
more comprehensible. It is evident that message losses have
significant influence on the latency. It is worth noting that the
impact on Hybrid TO is higher than on Optimistic TO. In order
to deliver message � , the Lamport Algorithm (used in Hybrid
TO) requires that a message with a timestamp higher than
� be received from every process, while keeping the FIFO
order. To understand why losses increase the Optimistic TO
latency, we need to consider message completion mechanism
in Xpand [5]. This mechanism causes a lost message � to be
retransmitted point-to-point, and consequently, the Sequencer
receives � much quicker than Zikit1 and then sends its TO
number to all the nodes. This causes Zikit1 to postpone the
delivery of the messages following � , until � is recovered.

In Figure 4 the reasons for Optimistic Order delivery
slowdown are shown. A replicated database may only benefit
from correctly “guessed” Optimistic Order. In case of a wrong
guess, hereafter referred to as miss, Optimistic TO delivery
time is to be used. If TO is not equal to Optimistic Order, the
replicated database has to perform a rollback. We assumed
that this rollback may be performed immediately after TO is
received. Optimistic Order latency measured by Zikit1 for its



4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

x 104

0

100

200

300

400

500

600

700

800

900

Time (ms)

La
te

nc
y 

(m
s)

Optimistic Order
Optimistic TO
Zikit1 Losses
Atypical OTT Experienced by Zikit1
Atypical OTT Experienced by the Sequencer

Fig. 4. Impact of OTT Variations

own messages is shown in Figure 4.
The percentage of misses varied from 11% measured by

RON0 to 43% measured by RON35 for Optimistic Order3. It
is noteworthy that once an application learns that Optimistic
Order is incorrect, it has to perform the rollback for all the
messages received starting from the missing message4. The
peaks on the graph correspond to the first miss. Afterwards,
Optimistic Order latency decreases for each following mes-
sage, due to the reduction of the time interval from the moment
when a message was sent till it is TO-delivered.

Although the numbers of misses might seem very high, it is
not of great significant, as they largely depend on the rollback
model and message sending rate. However, it is important to
understand the reasons which caused those misses. As it can
be seen in Figure 4, those misses are not evenly distributed
over time, but occur in ranges. Such range is initiated by
either a message loss or high (atypical) One-way Trip Time
(OTT) experienced by Zikit1 as well as the Sequencer. Such
OTT’s, in turn, may be caused both by the message completion
protocol and by the network. To study the network links’
characteristics, we used ping utility and found out that RTT’s
of some messages were significantly higher than the average
RTT on the same link. On some links, the number of atypical
RTT’s was as high as 2%.

V. CONCLUSIONS AND FUTURE WORK

The paper focuses on factors that have considerable impact
on the Total Order algorithms’ latency in a WAN. The algo-
rithms under study were found to be vulnerable to message
losses and to variations in message propagation time which are
inherent in a WAN environment. Hence, while developing a
distributed algorithm for a WAN, it is essential to consider the
impact of those factors on the performance. We also found out
that the message completion mechanism in Xpand instigates
misses in Optimistic Order and should be modified.

3The misses were not registered by Hybrid Algorithm as no failures
happened.

4Our model considers all messages sent to a single group as potentially
conflicting transactions [4].

Another important observation is that the loss rate of a
link does not vary considerably. This fact was also mentioned
in [11]. We believe that an efficient protocol in WAN is to
combine the usage of unreliable channels built over lossy links
with reliable channels over lossless links.

In order to further improve the performance of the studied
algorithms, some optimizations are to be carried out, that
require from a process to measure loss rate on its links. In
case when a receiver finds out that the loss rate of incoming
messages is too high, it is to stop delivering messages in
Optimistic Order. In the other case, when a sender finds out
that its messages are frequently lost by other processes Hybrid
Algorithm is to mark the sender as passive. (See II.) Optimistic
Algorithm is to use a similar approach. As an alternative
Forward Error Correction code can be used to minimize the
impact of message losses.

The study strategy is comprehensive enough to be extended
to cover various network topologies, sending rates and other
total order algorithms.

The set of collected logs reflecting the real network
conditions, as well as the simulator designed for this
study, allow an algorithm developer to evaluate the perfor-
mance. The logs and the simulation code are located at
www.cs.huji.ac.il/labs/danss/TO logs.html

REFERENCES

[1] X. Defago, A. Schiper, and P. Urban, “Totally ordered broadcast and
multicast algorithms: a comprehensive survey,” 2000.

[2] F. Moura A. Sousa, J. Pereira and R. Oliveira, “Optimistic total order
in wide area networks,” in Proc. 21st IEEE Symposium on Reliable
Distributed Systems. October 2002, pp. 190–199, IEEE CS.

[3] P. Vicente and L. Rodrigues, “An indulgent uniform total order algorithm
with optimistic delivery,” in Proc. 21st IEEE Symposium on Reliable
Distributed Systems. October 2002, IEEE CS.

[4] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing
transactions over optimistic atomic broadcast protocols,” in Proceedings
of 19th International Conference on Distributed Computing Systems
(ICDCS’99), 1999.

[5] T. Anker, G. Chockler, I. Shnayderman, and D. Dolev, “The Design
and Performance of Xpand: A Group Communication System for Wide
Area Networks,” Tech. Rep. 2001-56, Institute of Computer Science,
The Hebrew University of Jerusalem, Jerusalem, Israel, August 2001,
URL: http://leibniz.cs.huji.ac.il/research/, See also the previous version
TR2000-31.

[6] O.Bakr and I. Keidar, “Evaluating the running time of a communication
round over the internet,” in 21th Annual ACM Symposium on Principles
of Distributed Computing (PODC), 2002, pp. 243–252.

[7] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Comm. ACM, vol. 21, no. 7, pp. 558–565, July 78.

[8] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of the
Fifth Symposium on Operating Systems Design and Implementation,
Boston, MA, Dec. 2002, USENIX Association, pp. 255–270, url:
www.emulab.net.

[9] I. Shnayderman T. Anker, D. Dolev and I. Sukhov, “Tcp-friendly many-
to-many end-to-end congestion control,” in Proc. 22st IEEE Symposium
on Reliable Distributed Systems. October 2003, IEEE CS, To Appear.

[10] T. Anker, D. Dolev, and I. Shnayderman, “Ad Hoc Membership
for Scalable Applications,” in 16th Intl. Conference on Distributed
Computing Systems, Oct. 2002.

[11] Vern E. Paxson, Measurements and Analysis of End-to-End Internet
Dynamics, Ph.D. thesis, University of California, Lawrence Berkeley
National Laboratory, April 1997.


