
The Hebrew University of Jerusalem

School of Engineering and Computer Science

Israel

LogMemcached
An RDMA based Continuous Cache

Replication

LOGMEMCACHED
RDMA מבוסס מטמון זכרון שכפול

by

Samyon Ristov

Supervised by

Prof. Danny Dolev
and

Dr. Yaron Weinsberg
and

Dr. Tal Anker

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

April 2017
ה׳תשע״ז ניסן

Abstract

One of the advantages of cloud computing is its ability to quickly scale out services to meet

demand. A common technique to mitigate the increasing load in these services is to deploy a

cache.

Although it seems natural that the caching layer would also deal with availability and fault

tolerance, these issues are nevertheless often ignored, as the cache has only recently begun to

be considered a critical system component. A cache may evict items at any moment, and so a

failing cache node can simply be treated as if the set of items stored on that node have already

been evicted. However, setting up a cache instance is a time-consuming operation that could

inadvertently affect the service’s operation.

This paper addresses this limitation by introducing cache replication at the server side by ex-

panding Memcached (which currently provides availability via client side replication). This pa-

per presents the design and implementation of LogMemcached, a modification of Memcached’s

internal data structures to include state replication via RDMA to provide an increased sys-

tem availability, improved failure resilience and enhanced load balancing capabilities without

compromising performance and with introducing a very low CPU load, while keeping the main

principles of Memcached’s Design Philosophy.

i

ii

Abstract - Hebrew

קצב גדילת הדרישות. עם להתמודד מנת על במהירות להתרחב היכולת הינו ענן מחשוב של היתרונות אחד

להתמודדות כיום המקובלת הגישה השירות. של המידע שכבת על העומס את בתורה מגדילה הלקוח מצד הבקשות

מטמון. זכרון פרישת הינה העומס עם

בפועל אך ועקביות, תקלות מול סבילות זמינות, כמו נושאים עם גם תתמודד המטמון זכרון ששכבת טבעי אך זה

קריטי כרכיב להחשב המטמון זכרון שכבת זכתה האחרון בזמן שרק משום להתעלמות זוכים לרוב אלה נושאים

מערכת כל של לכשל להתייחס ניתן נתון, רגע בכל שמור פריט כל למחוק יכול המטמון שזכרון משום במערכת.

פריט כל מחדש להוסיף ניתן שתמיד ומשום השמורים, הפריטים כל נמחקו בה מערכת בתור פשוט המטמון זכרון

קריטי. כאינו נראה במערכת כשל שנמחק,

המערכת. בפעילות משמעותית לפגוע שיכול מה רב, זמן לוקחת חדש מטמון זכרון יצירת רבים במקרים זאת, עם

בעבודה שרת. בצד המטמון זכרון של שכפול הצגת ידי על אלה מגבלות עם להתמודדות גישה מציע זה מסמך

זמינות מספקת לעכשיו נכון אשר ביותר, הנפוצות המטמון זכרון ממערכות אחת ,MEMCACHED את עורכים אנו זו

של התאמה ,LOGMEMCACHED של והמימוש התכנון את מציגה זו עבודה בלבד. הלקוח בצד שכפול ביצוע ידי על

הזמינות את לשפר ובכך ,RDMA ידי על המערכת מצב של שכפול לאפשר מנת על MEMCACHED של הנתונים מבני

התכנון עקרונות על שמירה כדי ותוך המעבד, על עומס או ביצועים על התפשרות ללא המערכת, של והסבילות

.MEMCACHED של

iii

iv

Acknowledgements

I would like to express deepest gratitude to Prof. Danny Dolev. For his helpful guidance,

support, encouragement and endless patience throughout this research. I would also like to

express my sincere thanks to Dr. Yaron Weinsberg and Dr. Tal Anker. This thesis would

not have been possible without their help. The equipment for the thesis was provided by The

Hebrew University of Jerusalem and Mellanox, making the research of the thesis’ fields possible.

Finally, I wish to thank my parents and friends for their unmeasurable support and love.

v

Contents

Abstract i

Abstract - Hebrew i

Acknowledgements v

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Thesis Outline . 3

2 Background 4

2.1 RDMA . 4

2.2 Memcached . 5

3 LogMemcached Design 7

3.1 Objectives . 7

3.2 Architecture Design . 7

3.3 Pseudocode . 11

vi

4 Evaluation 29

4.1 Environment . 29

4.2 Test Cases . 30

4.3 Performance Analysis . 32

5 Related Work 37

6 Conclusion 44

Bibliography 44

vii

List of Tables

4.1 Results for tests (1)-(6), showing ∆Q, ∆QPM and ∆QPL as appropriate. The

results of tests (7) and (8) show the ratio between the throughput of the Set

operation vs. the throughput of the replication operation. Test (2) was limited

to items sized up to 256KB because of Memaslap limitations. 30

viii

List of Figures

2.1 Memcached’s slab allocation diagram. In this example two items are assigned to

a slab class for items of size up to 96B. 5

3.1 LogMemcached’s storing and replication mechanism. 8

4.1 Evaluation setup. 30

4.2 From left to right: results for tests (1) and (2). 34

4.3 From left to right: results for tests (3) and (4). 34

4.4 From left to right: results for tests (5), (6) (left graph) and (8). 34

4.5 From left to right: results for tests (9) and (10). Test (9) does not presents the

miss rate, since it was 0 for all item sizes smaller than 1MB. LogMemcached

had missed 38% of all the Get requests for 1MB items while Memcached had 0

misses for 1MB items. 35

4.6 From left to right: results for tests (11) and (12). 35

4.7 From left to right: results for tests (13) and (15), time spent running user pro-

cesses and time spent running kernel processes. The tests were performed with-

out concurrency, and presented in percentages of CPU utilization of the entire

machine. Notice that the difference in vertical scales. 36

ix

4.8 From left to right: results for tests (14) and (16), time spent running user pro-

cesses and time spent running kernel processes. The tests were performed with

concurrency, and presented in percentages of CPU utilization of the entire ma-

chine. Notice that the difference in vertical scales. 36

x

List of Algorithms

3.1 Memcached Primitives . 11

3.2 LogMemcached Primitives . 12

3.3 Memcached item allocate . 13

3.4 LogMemcached item allocate . 14

3.5 Memcached Get and Gets . 15

3.6 LogMemcached Get and Gets . 16

3.7 Memcached Set . 17

3.8 LogMemcached Set . 18

3.9 Memcached Add . 19

3.10 LogMemcached Add . 20

3.11 Memcached Replace . 21

3.12 LogMemcached Replace . 21

3.13 Memcached Append and Prepend . 22

3.14 LogMemcached Append and Prepend . 23

3.15 Memcached Incr and Decr . 24

3.16 LogMemcached Incr and Decr . 24

xi

3.17 Memcached Cas . 25

3.18 LogMemcached Cas . 26

3.19 Memcached Touch . 27

3.20 LogMemcached Touch . 27

3.21 Memcached Delete . 28

3.22 LogMemcached Delete . 28

xii

Chapter 1

Introduction

1.1 Motivation and Objectives

The use of key-value stores and caches is a common practice in scale-out deployments and large

cloud-services. Examples of this include Facebook’s use of Memcached [24], Amazon’s Dynamo

[13], Voldemort by LinkedIn [5] and Twitter’s use of Redis [7].

Memcached, one of the most popular key-value web caches, is an open source, high-performance,

distributed memory object caching system with a simple and widely adopted API. Systems

that require caching tend to operate under heavy load [10, 20, 24] and so improving cache

performance is very important. Many efforts have been made to decrease Memcached’s latency

by using Remote Direct Memory Access (RDMA) [18, 17, 29], but the main performance hit

occurs when the cache is cold (e.g. after crash recovery), which, in some cases might cause

a database breakdown [6]. In order to prevent a high miss-rate, a common practice is to use

cache warm-up mechanisms [24, 37] or client-side replications [2].

Recent technological trends show that large cloud-services providers massively adopt kernel and

CPU bypassing technologies, such as RDMA via InfiniBand, RoCE and iWARP network proto-

cols [23]. Kernel and CPU bypassing is a natural choice for boosting Memcached performance,

as well as for enabling server side state replication.

1

2 Chapter 1. Introduction

Server-side replication offers transparent-to-client failure-resilience, system upgrades and main-

tenance resets, and thus improves overall system availability. Replicated server states also allow

for improved load balancing, which is often also achieved by client-side or proxy replication [24].

Memcached’s internal design and data structures are heavily based on pointers, which are

challenging to replicate. Therefore we present LogMemcached [9], a modified version of Mem-

cached with an append-only cyclic log, which is more amenable to server-side-replication, and

with RDMA to enable continuity of the server-side replication. LogMemcached supports Mem-

cached’s API and maintains the main principles of Memcached’s Design Philosophy [3]:

• Simple Key-Value Store: Items are made up of a key, an expiration time, optional flags,

and raw data.

• O(1): All commands are implemented to be as fast and lock-friendly as possible.

• LRU Cache, a.k.a. “Forgetting is a Feature”: Items expire after a specified amount of

time.

LogMemcached has comparable performance to Memcached, but allows a simple master-slave

replication scheme. Other than during initialization, the replication-master is not aware of the

replication, and only the replicated-slave is responsible for the replication process. The slave

machine is able to perform any required task - such as answering to Memcached’s queries in

read-only mode, hosting another instance of Memcached master for keys partitioning, writing

backups to HDFS, or any other task - and therefore the replication process does not entail any

wasted resources.

LogMemcached keeps the same API, and all its modifications are transparent to the client.

All API functions are supported, and the client-server interface remains the same, based on

TCP, which means that there is no need to modify client libraries in order to work with

LogMemcached.

To the best of our knowledge, we are the first to study the data structures necessary to provide

simple, RDMA-oriented, and continuous state replication mechanisms in key-value caches.

1.2. Thesis Outline 3

1.2 Thesis Outline

The following section briefly introduces RDMA and Memcached, focusing on Memcached’s

internal data structures. Section 3 discusses LogMemcached’s design and its replication mech-

anism. In section 4 we evaluate our system and compare its performance, user space load and

kernel space load to those of Memcached, and compare the relative advantages of server-side

vs. client-side replication.

Chapter 2

Background

2.1 RDMA

Remote Direct Memory Access functionalities are implemented in InfiniBand, iWARP (internet

Wide Area RDMA Protocol) and RoCE (RDMA over Converged Ethernet). Current hardware

enables up to 40 Gbps of bandwidth in each direction for all three technologies (and up to 100

Gbps for InfiniBand and RoCE). RDMA provides high-throughput, low-latency networking,

with zero-copy and kernel and CPU bypassing.

RDMA operates via the Verbs API. This API offers four transfer types, or “verbs”: SEND,

RECV, WRITE and READ. The SEND and RECV verbs allow direct data transfer between

user space applications and the network interface, bypassing the kernel. When the SEND and

RECV verbs are used (they are always used together), both sender and receiver must actively

participate in all data transfers: before each SEND operation, the receiver must perform a

RECV operation. In RDMA WRITE only the sender side is active, and the receiver side is

not aware of the operation: the sender “pushes” the data to the registered receiver’s memory,

bypassing the kernel on both sides. RDMA READ operates in a symmetrical fashion, performed

by the receiver only: the receiver “pulls” data from the registered sender’s memory, bypassing

the kernel on both sides; the sender is not aware of the performed READ operation.

4

2.2. Memcached 5

Figure 2.1: Memcached’s slab allocation diagram. In this example two items are assigned to a
slab class for items of size up to 96B.

2.2 Memcached

Memcached is an in-memory key-value cache, which basically operates as a remote hash-table.

Memcached works with items, which are objects comprised of metadata, a key and a value.

Items are managed using three data structures: a Slab Allocation for storage, an Association

Array for quick access, and an LRU (Least Recently Used) List for eviction from the cache.

In order to store items and manage memory, Memcached implements Slab Allocation using

three data structures: Slab Class Array, Slab Lists, and Free Lists (see Figure 2.1). A Slab

Class is associated with a given size range, a given capacity (i.e. how many items it can store)

and a tally of items already allocated to it. The Slab List is a dynamic array of pointers to

assigned chunks (i.e. each entry points to a single chunk, which in turn contains a single item).

Memcached allocates pages of 1MB, each associated with a given slab class; pages are further

divided into chunks of size/quantity defined by the associated slab class. The Free List is a

doubly-linked-list of available (i.e. unassigned) chunks.

To enable fast access, Memcached uses an association array (hash table) of items. Each item

appears in a list of items with the same hash key, which may be located in different slabs,

resulting in a cross-slab linked list.

Eviction is implemented using a Least Recently Used (LRU) doubly-linked-list. Memcached

6 Chapter 2. Background

maintains one LRU list per slab.

Memcached provides a simple API, consisting of the following primitives: Get, Gets (a Get

which also returns an item’s CAS value), Set, Add (which creates and sets a not-yet-existent

item), Replace (which sets an existing item), Append, Prepend, Cas (Compare-and-swap),

Delete, Increment, Decrement and Touch (which updates an item’s expiration time).

Chapter 3

LogMemcached Design

3.1 Objectives

LogMemcached seeks to improve Memcached’s system availability, failure resilience and load

balancing without compromising performance and CPU load, and while keeping the main prin-

ciples of Memcached’s Design Philosophy.

System availability and failure resilience are improved by adding a continuously replicated

cache and by providing a simple, fault-tolerant, master-slave replication mechanism. These

prevent the cold-cache problem described in section 1 and and also simplify system setup and

configuration. The simplified setup and configuration, in turn, allow for maintenance of a

replicated backup and for handling of failure events. Load balancing is improved by the use of

read-only replicas [24].

3.2 Architecture Design

State replication refers to the replication of the system’s internal state and data, as opposed

to message replication, which refers to the replication of messages which can then be replayed

to recreate the state. State replication offers lower memory requirements and lower CPU

7

8 Chapter 3. LogMemcached Design

Figure 3.1: LogMemcached’s storing and replication mechanism.

overhead: message replication is simpler to implement, but requires additional memory to

store the replicated messages [26] and (if using TCP) to support the kernel’s buffer. Message

replication also requires additional CPU to manage the TCP stack and to replay the replicated

messages.

RDMA was chosen for LogMemcached’s replication mechanism in order to reduce both memory

and CPU usage. Using RDMA and state replication together reduces memory usage by elimi-

nating the need to store replicated messages, since the state is copied directly from the master’s

memory into the slave’s memory. RDMA also eliminates the need to maintain the TCP stack

or to perform kernel context switches, and thus reduces CPU usage. (Eliminating the kernel’s

context switch is essential: Leverich et al. [20] found that only 17% of Memcached’s runtime is

spent in user code vs. 83% in kernel code, and of that 83%, 37% is spent in Soft IRQ context).

RDMA provides four main verbs for data transmission: SEND, RECV, READ and WRITE.

LogMemcached uses RDMA READ verbs performed by the slave. This lets each slave be

responsible for its own state and speed. By contrast, SEND and RECV require careful commu-

nication management which involves the CPU for both master and slave and requires additional

memory. Although WRITE offers a plausible solution, it is less scalable since it requires that

the master maintain every slave’s state and repeatedly validate that every slave is alive.

3.2. Architecture Design 9

Memcached’s data structures are not suited for state replication, since their heavy reliance on

pointers requires gathering and modifying many memory areas with each replication. In order

to support replication we use an append-only cycled log for item storage, instead of the original

slab list and their associated slab classes. Replicating data from logs is easy, since all the items

are arranged in one continuous segment.

Memcached’s native hash table is kept unchanged. The free list mechanism that appears in

Memcached is kept too, but we use it only to manage items’ metadata allocations. Only one

free list is used, because regardless of item’s size, the metadata size is constant. Neither of these

data structures is replicated, and their state is reconstructed after performing the replication.

Memcached’s API is fully supported, and is easy to implement: Get and Gets are performed

by a hash table lookup to reach the item in the log, and Gets also returns the item’s CAS value

which is now stored as part of the item. Set is performed by first allocating memory in the log

- marking it as DIRTY - then by reading an item’s value from the socket and writing the value

to the allocated memory, adding the key to the hash table, and changing the item’s flag from

DIRTY to STORED. Add and Replace are implemented similarly to Set, but with an initial

check to see if the key appears in the hash table. Append and Prepend are also similar, but

also copy the item from the log to the log head, and then append/prepend the new value. Cas

stores the CAS value in a new item. Increment and Decrement first look at the old value, then

write the new modified value to the log head. Touch writes the existing item to the log head,

with its expiration time modified.

Delete is the only command that is implemented differently: The item key is removed from the

master’s hash table, and a special item, marked as DELETED, is appended to the end of the

log to signal that the replication slave should delete the respective item from its hash table as

well. This is necessary since the hash table is not replicated.

Item eviction is performed as follows: a second thread constantly monitors the log’s status,

and when the log is close enough to full, the thread removes items from the log tail. When an

item is removed, the thread checks if the item’s key appears in the hash table. If it does, the

thread then checks if it points to the removed item’s place, and if so removes the key from the

10 Chapter 3. LogMemcached Design

hash table. (If the key appears in the hash table but points to an other location, that means

that a newer instance of that item exists, and there is no need to remove the entry from the

hash table). To release enough free space for incoming items of different sizes, eviction is done

in batches.

The eviction algorithm removes items in FIFO order by default, but since Memcached uses LRU

eviction, this option is available too. In LRU mode, The Get command returns the item to the

client, but also writes it to the log head. In both Memcached and LogMemcached an item may

be reordered because of a Get command only once every 60 seconds. This limitation prevents

rapid writing to the log head after every Get command. In LogMemcached a special counter

in the item’s metadata counts how many Get commands requested the item. If LRU mode is

configured, then any value above 0, once every 60 seconds, initiates the rewriting mechanism:

setting the threshold a to higher value approximates Least Frequently Used (LFU) mode.

Figure 3.1 illustrates LogMemcached’s storing and replication mechanism. The initialization

process registers the log to the network interface and sends its address to the slave machine.

Following this, the normal operation sequence begins when the master machine receives a Set

request via standard Memcached TCP communication (1), appends the received item to its log

head and adds a reference to the hash table (2). The slave machine then performs an RDMA

READ operation, copying the item from the master’s log to its own log (3), independent of

the master’s CPU. Finally, the slave machine validates that the received item is marked with

the STORED flag and not the DIRTY flag, and adds a reference to the item to its hash table

(4). If the item is marked as DIRTY that means that the item has not yet been stored (on

the master), which in turn means that the slave machine will replicate that memory segment

again. The slave machine does not know when items arrive at the master machine, and so it

must constantly pull items from the master’s log and place them at the head of its own log,

advancing the head only when it copies items marked as ’stored’ and overwriting ’dirty’ items.

LogMemcached relaxes consistency in favor of availability. The approach is similar to Redis and

Pileus [30], providing eventual consistency to achieve better performances both in replication

and query responses.

3.3. Pseudocode 11

3.3 Pseudocode

This section describes the implementation of the API in Memcached and LogMemcached, pre-

sented in a form of a pseudocode. The provided pseudocode is an abstraction of the real code,

therefore, for readability, some details were omitted, as Memcached’s flags; the way LogMem-

cached handles full buffer and more. First, we define the pseudocode’s primitives, followed by

the API implementation description.

Algorithm 3.1: Memcached Primitives

hash(val1) - receives a value and returns its hash value.

item_lock(val1) - ’item’ lock.

item_unlock(val1) - unlocks ’item’ lock.

association_map_find(val1, val2) - finds an item in the association map with key ’val1’ and

hash value ’val2’.

association_map_insert(val1, val2) - interests an item into the association map with key ’

val1’ and hash value ’val2’.

association_map_delete(val1, val2) - deletes an item from the association map with key ’val1

’ and hash value ’val2’.

lru_lock(val1) - LRU lock.

lru_unlock(val1) - unlocks LRU lock.

lru_list_link(val1) - puts item given in ’val1’ to the head of the LRU list.

lru_list_unlink(val1) - removes item given in ’val1’ from the LRU list.

slabs_global_lock - ’slabs’ lock. No input needed.

slabs_global_unlock - unlocks ’slabs’ lock. No input needed.

slabs_allocate(val1, val2) - allocates an item from slab id ’val1’ and with size ’val2’.

slabs_free(val1) - removes ’val1’ from slabs.

calculate_slab_id(val1) - calculates the minimal slab size to fit item with size ’val1’.

copy_value(val1, val2, val3, val4) - copies ’val1’ and ’val2’ into ’val3’. ’val4’ is either

APPEND or PREPEND, and defines the copy order.

lru_pull_tail(val1, val2) - pulls item from the LRU lists. If ’val2’ is NULL, the function

pulls only unlocked and expired items from the list of items sized ’val1’. If ’val2’ is

EVICT, the function pulls an LRU item from the LRU list of items sized ’val1’.

12 Chapter 3. LogMemcached Design

Algorithm 3.2: LogMemcached Primitives

hash(val1) - receives a value and returns its hash value.

item_lock(val1) - ’item’ lock.

item_unlock(val1) - unlocks ’item’ lock.

association_map_find(val1, val2) - finds an item_metadata in the association map with key ’

val1’ and hash value ’val2’.

association_map_insert(val1, val2) - interests an item_metadata into the association map

with key ’val1’ and hash value ’val2’.

association_map_delete(val1, val2) - deletes an item_metadata from the association map with

key ’val1’ and hash value ’val2’.

freelist_global_lock - ’freelist’ lock. No input needed.

freelist_global_unlock - unlocks ’freelist’ lock. No input needed.

freelist_allocate() - allocated an item_metadata from freelist.

freelist_free(val1) - removes ’val1’ from freelist.

copy_value(val1, val2, val3, val4) - copies ’val1’ and ’val2’ into ’val3’. ’val4’ is either

APPEND or PREPEND, and defines the copy order.

lru_mode_get_count - a setting defining how many get queries needed before an LRU reordering

is performed.

item_metadata - metadata that is handled by the association map and the freelist.

item_metadata is not replicated directly. item_metadta.item points to the item in the log.

item_data - the item itself, with its flags, key and value.

memlog_global_lock - ’memlog’ lock. No input needed.

memlog_global_unlock - unlocks ’memlog’ lock. No input needed.

memlog_allocate(val1) - allocated item_data of size ’val1’ from the log.

3.3. Pseudocode 13

Algorithm 3.3: Memcached item allocate

metadata.slab_id = calculate_slab_id(metadata.size)

index = 0

item = NULL

lru_pull_tail(metadata.size, NULL) // Try to reclaim memory first

while item not allocated and index < 10

slabs_global_lock

item = slabs_allocate(metadata.slab_id, metadata.size)

slabs_global_unlock

index = index + 1

if item not allocated:

lru_pull_tail(metadata.size, EVICT)

if item allocated:

item.metadata = metadata

return item

14 Chapter 3. LogMemcached Design

Algorithm 3.4: LogMemcached item allocate

index = 0

item_data = NULL

item_metadata = NULL

while item_data not allocated and index < 3

memlog_global_lock

it_data = memlog_allocate(metadata.size)

memlog_global_unlock

index = index + 1

if item_data not allocated:

sleep 1 millisecond

if item_data is allocated:

freelist_global_lock

item_metadata = freelist_allocate()

freelist_global_unlock

// if there was a place for it_data, there is also a place for item’s metadata

item_metadata.item = item_data

add ITEM_DIRTY to item_metadata.item.flags

return item_metadata

3.3. Pseudocode 15

Algorithm 3.5: Memcached Get and Gets

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

item = association_map_find(key, hash_value)

if item found and expired:

association_map_delete(item, hash_value)

lru_lock(item.slab_id)

lru_list_unlink(item)

lru_unlock(item.slab_id)

slabs_global_lock

slabs_free(item)

slabs_global_unlock

if item found and not expired and time since last updated ≥ 60 seconds:

lru_lock(item.slab_id)

lru_list_unlink(item)

lru_list_link(item)

lru_unlock(item.slab_id)

item_unlock(hash_value)

return item

// in "Gets" use: return item, item.cas

16 Chapter 3. LogMemcached Design

Algorithm 3.6: LogMemcached Get and Gets

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

item_metadata = association_map_find(key, hash_value)

if item_metadata found and expired:

association_map_delete(item_metadata, hash_value)

freelist_global_lock

freelist_free(item_metadata)

freelist_global_unlock

if item_metadata found and not expired and time since last updated ≥ 60 seconds:

if LRU mode enabled and item_metadata.get_count ≥ lru_mode_get_count:

new_item_metadata = item_allocate(key, metadata)

association_map_delete(item_metadata, hash_value)

freelist_global_lock

freelist_free(item_metadata)

freelist_global_unlock

association_map_insert(new_item_metadata, hash_value)

item_metadata = new_item_metadata

item_metadata.get_count = 0

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

else:

item_metadata.get_count = item_metadata.get_count + 1

item_unlock(hash_value)

return item_metadata.item

// in "Gets" use: return item, item.cas

3.3. Pseudocode 17

Algorithm 3.7: Memcached Set

key, metadata = read from TCP socket

item = item_allocate(key, metadata)

item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item = association_map_find(key, hash_value)

if old_item found and expired:

association_map_delete(old_item, hash_value)

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_unlock(old_item.slab_id)

slabs_global_lock

slabs_free(old_item)

slabs_global_unlock

if old_item found and not expired:

association_map_delete(old_item, hash_value)

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_unlock(old_item.slab_id)

association_map_insert(item, hash_value)

lru_lock(item.slab_id)

lru_list_link(item)

lru_unlock(item.slab_id)

item_unlock(hash_value)

18 Chapter 3. LogMemcached Design

Algorithm 3.8: LogMemcached Set

key, metadata = read from TCP socket

item_metadata = item_allocate(key, metadata)

item_metadata.item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item_metadata = association_map_find(key, hash_value)

if old_item_metadata found and expired:

association_map_delete(old_item_metadata, hash_value)

freelist_global_lock

freelist_free(old_item_metadata)

freelist_global_unlock

if old_item_metadata found and not expired:

association_map_delete(old_item_metadata, hash_value)

association_map_insert(item_metadata, hash_value)

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

item_unlock(hash_value)

3.3. Pseudocode 19

Algorithm 3.9: Memcached Add

key, metadata = read from TCP socket

item = item_allocate(key, metadata)

item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item = association_map_find(key, hash_value)

if old_item found and expired:

association_map_delete(old_item, hash_value)

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_unlock(old_item.slab_id)

slabs_global_lock

slabs_free(old_item)

slabs_global_unlock

else if old_item found and not expired and time since last updated ≥ 60 seconds:

//add only adds a nonexistent item, but promote to head of LRU

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_list_link(old_item)

lru_unlock(old_item.slab_id)

else if old_item not found:

association_map_insert(item, hash_value)

lru_lock(item.slab_id)

lru_list_link(item)

lru_unlock(item.slab_id)

item_unlock(hash_value)

20 Chapter 3. LogMemcached Design

Algorithm 3.10: LogMemcached Add

key, metadata = read from TCP socket

item_metadata = item_allocate(key, metadata)

item_metadata.item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item_metadata = association_map_find(key, hash_value)

if old_item_metadata found and expired:

association_map_delete(old_item_metadata, hash_value)

freelist_global_lock

freelist_free(old_item_metadata)

freelist_global_unlock

if old_item_metadata found and not expired and time since last updated ≥ 60 seconds:

//add only adds a nonexistent item, but promote to head of LRU

if LRU mode enabled and old_item_metadata.get_count ≥ lru_mode_get_count:

new_item_metadata = item_allocate(key, metadata)

association_map_delete(old_item_metadata, hash_value)

freelist_global_lock

freelist_free(old_item_metadata)

freelist_global_unlock

association_map_insert(new_item_metadata, hash_value)

item_metadata = new_item_metadata

item_metadata.get_count = 0

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

else:

old_item_metadata.get_count = item_metadata.get_count + 1

else if old_item_metadata not found:

association_map_insert(item_metadata, hash_value)

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

item_unlock(hash_value)

3.3. Pseudocode 21

Algorithm 3.11: Memcached Replace

key, metadata = read from TCP socket

item = item_allocate(key, metadata)

item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item = association_map_find(key, hash_value)

if old_item found and not expired:

association_map_delete(old_item, hash_value)

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_unlock(old_item.slab_id)

association_map_insert(item, hash_value)

lru_lock(item.slab_id)

lru_list_link(item)

lru_unlock(item.slab_id)

item_unlock(hash_value)

Algorithm 3.12: LogMemcached Replace

key, metadata = read from TCP socket

item_metadata = item_allocate(key, metadata)

item_metadata.item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item_metadata = association_map_find(key, hash_value)

if old_item_metadata found and not expired:

association_map_delete(old_item_metadata, hash_value)

association_map_insert(item_metadata, hash_value)

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

item_unlock(hash_value)

22 Chapter 3. LogMemcached Design

Algorithm 3.13: Memcached Append and Prepend

key, metadata = read from TCP socket

item = item_allocate(key, metadata)

item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item = association_map_find(key, hash_value)

if old_item found and not expired:

new_metadata.size = item.metadata.size + old_item.metadata.size

new_item = item_allocate(key, new_metadata)

copy_value(old_item, item, new_item, APPEND/PREPEND)

association_map_delete(old_item, hash_value)

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_unlock(old_item.slab_id)

association_map_insert(new_item, hash_value)

lru_lock(new_item.slab_id)

lru_list_link(new_item)

lru_unlock(new_item.slab_id)

item_unlock(hash_value)

3.3. Pseudocode 23

Algorithm 3.14: LogMemcached Append and Prepend

key, metadata = read from TCP socket

item_metadata = item_allocate(key, metadata)

item_metadata.item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item_metadata = association_map_find(key, hash_value)

if old_item_metadata found and not expired:

new_metadata.size = item_metadata.size + old_item_metadata.size

new_item_metadata = item_allocate(key, new_metadata)

copy_value(old_item_metadata, item_metadata, new_item_metadata, APPEND/PREPEND)

association_map_delete(old_item_metadata, hash_value)

association_map_insert(new_item_metadata, hash_value)

item_metadata = new_item_metadata

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

item_unlock(hash_value)

24 Chapter 3. LogMemcached Design

Algorithm 3.15: Memcached Incr and Decr

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item = association_map_find(key, hash_value)

if old_item found and not expired:

old_item.value = old_item.value + metadata.delta

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_list_link(old_item)

lru_unlock(old_item.slab_id)

item_unlock(hash_value)

Algorithm 3.16: LogMemcached Incr and Decr

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_metadata = association_map_find(key, hash_value)

if old_metadata found and not expired:

item_metadata = item_allocate(key, metadata)

item_metadata.item.value = old_metadata.item.value + metadata.delta

association_map_delete(old_item_metadata, hash_value)

association_map_insert(item_metadata, hash_value)

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

item_unlock(hash_value)

3.3. Pseudocode 25

Algorithm 3.17: Memcached Cas

key, metadata = read from TCP socket

item = item_allocate(key, metadata)

item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item = association_map_find(key, hash_value)

if old_item found and not expired and

old_item.cas_value = item.cas_value:

association_map_delete(old_item, hash_value)

lru_lock(old_item.slab_id)

lru_list_unlink(old_item)

lru_unlock(old_item.slab_id)

association_map_insert(new_item, hash_value)

lru_lock(new_item.slab_id)

lru_list_link(new_item)

lru_unlock(new_item.slab_id)

item_unlock(hash_value)

26 Chapter 3. LogMemcached Design

Algorithm 3.18: LogMemcached Cas

key, metadata = read from TCP socket

item_metadata = item_allocate(key, metadata)

item_metadata.item.value = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item_metadata = association_map_find(key, hash_value)

if old_item_metadata found and not expired and

old_item_metadata.cas_value = itemitem_metadatacas_value:

association_map_delete(old_item_metadata, hash_value)

association_map_insert(item_metadata, hash_value)

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

item_unlock(hash_value)

3.3. Pseudocode 27

Algorithm 3.19: Memcached Touch

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item = association_map_find(key, hash_value)

if old_item found and not expired:

old_item.expire_time = metadata.expire_time

item_unlock(hash_value)

Algorithm 3.20: LogMemcached Touch

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

old_item_metadata = association_map_find(key, hash_value)

if old_item_metadata found and not expired:

item_metadata = item_allocate(key, metadata)

item_metadata.item.value = old_item_metadata.item.value

item_metadata.expire_time = metadata.expire_time

association_map_delete(old_item_metadata, hash_value)

association_map_insert(item_metadata, hash_value)

remove ITEM_DIRTY from item_metadata.flags

add ITEM_STORED to item_metadata.flags

item_unlock(hash_value)

28 Chapter 3. LogMemcached Design

Algorithm 3.21: Memcached Delete

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

item = association_map_find(key, hash_value)

if item found:

association_map_delete(item, hash_value)

lru_lock(item.slab_id)

lru_list_unlink(item)

lru_unlock(item.slab_id)

slabs_global_lock

slabs_free(item)

slabs_global_unlock

item_unlock(hash_value)

Algorithm 3.22: LogMemcached Delete

key, metadata = read from TCP socket

hash_value = hash(key)

item_lock(hash_value)

item_metadata = association_map_find(key, hash_value)

if item_metadata found:

add ITEM_DELETED to metadata.flags

new_item_metadata = item_allocate(key, metadata)

association_map_delete(item_metadata, hash_value)

slabs_global_lock

slabs_free(item_metadata)

slabs_global_unlock

remove ITEM_DIRTY from new_item_metadata.flags

add ITEM_STORED to new_item_metadata.flags

item_unlock(hash_value)

Chapter 4

Evaluation

4.1 Environment

To evaluate LogMemcached we used Netgear’s ProSafe XS708E Switch, Intel’s Ethernet Con-

troller 10-Gigabit X540-AT2 and Mellanox’s ConnectX R©-3 Pro for RoCE communication. Each

server used eight Intel’s Core i7-4790 CPU at 3.60 GHz processors, two Conexant’s (Rockwell)

DIMM DDR3 Synchronous 1600 MHz System’s Memory, Intel’s 8 Series/C220 Series Chipset

Family PCI Express PCI bridge connected to X540-AT2 and Intel’s Xeon E3-1200 v3/4th Gen

Core Processor PCI Express x16 Controller connected to ConnectX R©-3. The servers ran un-

der Ubuntu 14.10, kernel 3.16.0-43 with OFED version 3.18, Memcached version 1.4.24 and

libMemcached version 1.0.18.

We strove to evaluate the following four benchmarks: 1) throughput in LogMemcached vs.

Memcached, 2) server-side replication throughput vs. client-side replication throughput, 3)

LRU eviction affect on throughput and 4) the impact of replication on the master machine’s

CPU load.

We simulated Memcached’s client using the Memaslap benchmarking tool, based on libMem-

cached [2]. Tests that used concurrency on the client side were configured with 8 concurrent

connections performed by 4 threads. Memcached was modified to support 1GB sized pages,

29

30 Chapter 4. Evaluation

Figure 4.1: Evaluation setup.

32B 64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

1: 0 0 0 0 0 0 0 0 0.02 0 0.02 -0.13 -0.06 0 -0.02 -0.01

2: 0.1 -0.12 0.03 -0.11 0 -0.04 0.01 0 -0.01 0.01 0.01 0.02 0 - - -

3: 0.01 -0.01 0.03 -0.01 0 0 0.15 -0.03 -0.12 0 0.03 -0.02 -0.02 -0.06 -0.08 -0.08

4: -0.05 -0.02 -0.04 -0.01 -0.02 -0.01 -0.04 0 0.03 0.01 -0.1 -0.11 -0.1 -0.1 -0.08 -0.07

5: -0.09 -0.07 -0.11 -0.14 -0.15 -0.3 -0.15 -0.18 -0.17 -0.18 -0.17 -0.02 -0.26 -0.27 -0.35 -0.4

6: -0.09 -0.09 -0.11 -0.15 -0.17 -0.29 -0.1 -0.19 -0.17 -0.55 -0.72 -0.77 -0.87 -0.9 -0.89 -0.9

7: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8: 1 1 1 1 1 1 1 1 1 1 1.06 1.24 1.33 1.49 1.89 1.3

Table 4.1: Results for tests (1)-(6), showing ∆Q, ∆QPM and ∆QPL as appropriate. The
results of tests (7) and (8) show the ratio between the throughput of the Set operation vs. the

throughput of the replication operation. Test (2) was limited to items sized up to 256KB
because of Memaslap limitations.

rather than using a hard-coded 1MB limitation, so as to effectively evaluate the behavior of large

items. Memaslap ran on machine A, while LogMemcached and Memcached ran on machines B

and C, as described in Figure 4.1.

4.2 Test Cases

The following tests were performed:

• Get throughput (ops/s) without and with concurrency, tests (1) and (2), re-

spectively: The client first set the maximal number of items possible without causing

eviction on Memcached and on LogMemcached separately. The client then performed

Get operations on these items. No misses occurred. See Table 4.1 and Figure 4.2.

4.2. Test Cases 31

• Set throughput (ops/s) without and with concurrency, tests (3) and (4), re-

spectively: The client performed Set operations on Memcached and on LogMemcached.

See Table 4.1 and Figure 4.3.

• Client side replication throughput (ops/s) without concurrency: The client per-

formed Set operations on a software proxy. The proxy replicated the requests to two Mem-

cached instances (test (5)) and to two LogMemcached instances (test (6)), and returned

an answer to the client after receiving answers from both Memcached/LogMemcached

servers. To neutralize the proxy’s effect on the throughput, we compare the throughputs

in this case to the throughput of Set operations without replication, performed on the

same proxy. See Table 4.1 and Figure 4.4.

• Server side replication throughput (ops/s) without and with concurrency,

tests (7) and (8), respectively: The client performed Set operations on LogMem-

cached Master, and a LogMemcached slave replicated the stored items. We then compare

the throughput of the Set operation with the throughput of the replication operation.

See Table 4.1 and Figure 4.4.

• LRU eviction affect on throughput with a client Get/Set ratio of 9:1: The client

performed Get and Set operation, using 9:1 ratio (reflective of real life workloads [10]).

The Client attempted to get the last set items within a predefined window (the window

size is the number of last set items by a single client). We performed four different tests:

1) Without concurrency with 1K window (9), 2) Without concurrency with 10K window

(10), 3) With concurrency with 1K window (11), and 4) With concurrency with 10K

window (12). See Figures 4.5 and 4.6

• Time spent in running user processes (without and with concurrency) and ker-

nel processes (without and with concurrency), tests (13), (14), (15) and (16),

respectively: The client performs only Set operations on four different servers: 1) A

Memcached server, 2) A LogMemcached master with no replication, 3) A LogMemcached

replication master, and 4) A LogMemcached replication slave. We show the percentage

of time spent by the CPU on these operations relative to the overall time spent by the

32 Chapter 4. Evaluation

CPU. See Figures 4.7 and 4.8.

4.3 Performance Analysis

Denote the number of served queries by LogMemcached and Memcached as LQ and MQ re-

spectively. We define ∆Q =
LQ−MQ

MQ
to represent the overhead of LogMemcached relative to

Memcached. We use ∆Q in tests (1)-(4) above. Positive ∆Q values indicate an advantage

of LogMemcached over Memcached, while negative values indicate the opposite. For tests

(5) and (6) we denote MRQ and LRQ to be the number of queries served by Memcached and

LogMemcached respectively with client side replication, and define ∆QPM =
MRQ−MQ

MQ
and

∆QPL =
LRQ−LQ

LQ
.

The results of tests (1)-(4) indicate that LogMemcached’s performance is comparable to that

of Memcached for both Get and Set operations. The results were consistent and repetitive,

thus we assume that the oscillation around zero is a result of the difference between memory

allocations in LogMemcached and Memcached.

Results for tests (5)-(6) show a noticeable advantage to LogMemcached owing to the high cost

of client side replication.

The results of tests (7) and (8) show that for small items LogMemcached’s replication is fast

enough to catch up with the Set operations, but a backlog is accumulated for large items

and under moderate load. Since Memcached is designed mainly for small item sizes, which

dominate real life loads [10], the slowdown for larger items is not significant. Moreover, since real

workloads operate mainly under Get-intensive loads [10], in real-life scenarios the replication

mechanism will have time to catch up with the pace of the Set mechanism. Additional solution

is to use a scatter-gather mechanism, which is natively supported by RDMA libraries, that

allows replication of multiple items via a single replication.

The results of (9)-(11) evaluations showed that although LogMemcached’s LRU implementation

is comparable to Memcached’s, LogMemcached nevertheless shows an increase in Get Misses

4.3. Performance Analysis 33

for large items, relative to Memcached. This occurs because LogMemcached evicts batches of

items from the memory, and not single items, as Memcached does. In large windows, the client

attempts to reach items that were already evicted. The gain in Get operation performance

appears because it’s faster to serve a Miss response than to return an item.

The results of tests (13) and (15) show that without concurrency LogMemcached master used

on average (averaged over all item sizes) 0.78% of the CPU without replication, and 13.22%

with replication. With concurrency it used on average 2.8% of the CPU without replication and

15.58% with replication. In both cases the replication increased the CPU use by about 12.5%.

The results of tests (14) and (16) show that, on average, the replication does not require any

additional CPU at kernel mode.

34 Chapter 4. Evaluation

Figure 4.2: From left to right: results for tests (1) and (2).

Figure 4.3: From left to right: results for tests (3) and (4).

Figure 4.4: From left to right: results for tests (5), (6) (left graph) and (8).

4.3. Performance Analysis 35

Figure 4.5: From left to right: results for tests (9) and (10). Test (9) does not presents the
miss rate, since it was 0 for all item sizes smaller than 1MB. LogMemcached had missed 38%

of all the Get requests for 1MB items while Memcached had 0 misses for 1MB items.

Figure 4.6: From left to right: results for tests (11) and (12).

36 Chapter 4. Evaluation

Figure 4.7: From left to right: results for tests (13) and (15), time spent running user
processes and time spent running kernel processes. The tests were performed without

concurrency, and presented in percentages of CPU utilization of the entire machine. Notice
that the difference in vertical scales.

Figure 4.8: From left to right: results for tests (14) and (16), time spent running user
processes and time spent running kernel processes. The tests were performed with

concurrency, and presented in percentages of CPU utilization of the entire machine. Notice
that the difference in vertical scales.

Chapter 5

Related Work

Enhancing Memcached by reducing its latency appears in several works. Jose et al. [17, 18]

extends the existing open-source Memcached software and makes it RDMA capable - Both in

libmemcached (client) and Memcached (server). In the first work they use RDMA USR (Uni-

fied Communication Runtime) RC (Reliable Connection) over Infiniband. The main claim is

that since sockets offers byte-stream oriented semantics, using them causes a conversion be-

tween Memcached’s memory-object semantics and Socket’s byte-stream semantics, imposing

an overhead. This is in addition to any extra memory copies in the Sockets implementation

within the OS. This overhead can be reduced by using RDMA, because, in addition to its

high raw performance, its memory based semantics fits well with Memcached’s memory-object

model. The communication model use RDMA Queue Pair (SEND/RECV), rather than native

RDMA verbs as READ and WRITE. In their following work, Jose et al modifies the commu-

nication model, since it has been shown that RC transport imposes scalability issues due to

high memory consumption per connection (standard configuration parameters requires around

64 KB of memory per connection). Such a characteristic is not favorable for middlewares like

Memcached, where the server is required to serve thousands of clients. The Unreliable Data-

gram (UD) transport offers higher scalability, but introduce other challenges, such as how to

efficiently handle the reliability, flow control and large message communication latency prob-

lems associated with InfiniBand’s UD transport. These issues are addressed in the paper. The

37

38 Chapter 5. Related Work

work introduces a hybrid transport model which uses both RC and UD to deliver scalability

and performance higher than that of a single transport.

Stuedi et al target clusters built from low-power CPUs, and propose a modified Memcached

architecture (named “Memcached/RDMA”) to leverage the one-side semantics of RDMA [29].

With those modifications in place, Memcached/RDMA uses fewer CPU cycles than the unmod-

ified Memcached due to copy avoidance, less context switching and removal of serverside request

parsing. As a result, this allows for 20% more operations to be handled by Memcached per

second. While RDMA is a network technology typically associated with specialized hardware,

the proposed solution uses soft-RDMA which runs on standard Ethernet and does not require

special hardware. The main idea in Memcached/RDMA is to allow chunks to be read remotely

without involving the Memcached user-level process. For this, Memcached/RDMA registers

every newly allocated chunk with the soft-RDMA provider. The SET operation transmits, as

part of the response message, the stag stored inside the chosen chunk. Clients maintain a table

(stag table) matching keys with stags for a later use. Before issuing a GET operation, the client

checks whether an entry for the given key exists in the stag table. If no entry is found, the

GET operation is initiated using the TCP-based protocol. The server, however, rather than

responding on the reverse channel of the TCP connection, will use a one-sided RDMA WRITE

operation to transmit the requested key/value pair to the client using additional RDMA in-

formation that was inserted into the client request. Besides the key/value pair, the respond

message from the server also includes the stag associated with the chunk storing the item at

the server; this stag is inserted into the local stag table by the client. If a stag entry is found

at the client before the GET request is issued, Memcached/RDMA will use a one-sided RDMA

READ operation to directly read from the server the chunk storing the requested key/value

pair.

Many works, such as Pilaf [23], HERD [19] and FaRM [14] propose designing new key-value

stores, so as to incorporate RDMA in their fundamental design.

In Pilaf [23], clients directly read from the server’s memory via RDMA to perform gets, which

commonly dominate key-value store workloads. By contrast, put operations are serviced by the

39

server to simplify the task of synchronizing memory accesses. In the basic design, a client looks

up a key in the hash table array using linear probing. Each probe involves two RDMA reads.

The first read fetches the hash table entry corresponding to the key. If the entry is currently

filled, the client initiates a second RDMA read to fetch the actual key and value strings from

the extents region according to the address information stored in the corresponding hash table

entry. The client checks whether the fetched key string matches the requested key. The Pilaf

server handles all put operations. In a more advanced design, to achieve good memory efficiency

with fewer probes than with linear probing (when the hash table is 60% full, the maximum

number of probes required can be as high as 70), Pilaf uses 3-way Cuckoo hashing (at a fill

ratio of 75%, the average and maximum number of probes in 3-way Cuckoo hashing is 1.6 and

3, compared to 2.5 and 213 respectively for linear probing).

HERD [19] focuses its design on reducing network round trips and uses a single round trip

while taking two unconventional decisions: First, it does not use RDMA reads, despite the

allure of operations that bypass the remote CPU entirely. Second, it uses a mix of RDMA

and messaging verbs, despite that the messaging primitives are considered slow. Because of

lack of richness of RDMA operations - an RDMA operation can only read or write a remote

memory location - it is not possible to do more sophisticated operations such as dereferencing

and following a pointer in remote memory, other works has focused on using RDMA reads

to traverse remote data structures, similar to what would have been done had the structure

been in local memory. This approach requires multiple round trips across the network. HERD

implement a key-value cache, in which clients transmit their request to the server’s memory

using RDMA writes. The server’s CPU polls its memory for incoming requests. On receiving

a new request, it executes the GET or PUT operation in its local data structures and sends

the response back to the client. As RDMA write performance does not scale with the number

of outbound connections, the response is sent as a SEND message over a datagram connection.

For small key-value items, HERD’s throughput is similar to native RDMA read throughput.

FaRM [14] exposes the memory of machines in the cluster as a shared address space. Applica-

tions can use transactions to allocate, read, write, and free objects in the address space with

location transparency. FaRM uses one-sided RDMA reads to access data directly and it uses

40 Chapter 5. Related Work

RDMA writes to implement a fast message passing primitive. This primitive uses a circular

buffer to implement a unidirectional channel. The buffer is stored on the receiver, and there is

one buffer for each sender/receiver pair. The receiver periodically polls the word at the “Head”

position to detect new messages. The sender uses RDMA to write messages to the buffer tail

and it advances the tail pointer on every send. The receiver makes processed space available

to the sender lazily by writing the current value of the head to the sender’s copy using RDMA.

FaRM’s shared address space consists of many shared memory regions. To access an object,

FaRM uses a form of consistent hashing to map the region identifier to the machine that stores

the object. If the region is stored locally, FaRM obtains the base address for the region and uses

local memory accesses. Otherwise, FaRM contacts the remote machine to obtain a capability

for the region, and then uses the capability, the offset in the address and the object size to

build an RDMA request. Transactions use optimistic concurrency control with an optimized

two-phase commit protocol that uses RDMA.

MICA [21] also builds a new key-value store, rather than relying on Memcached’s, and also

uses an append-only log similar to ours as one of its core data structures, but does not support

build in replication. MICA implements an unconventional choices in aspects of request handling,

including parallel data access, network request handling, and data structure design. Concurrent

access is used by most key-value systems, where multiple CPU cores can access the shared data.

The integrity of the data structure must be maintained using mutexes, optimistic locking, or

lock-free data structures. MICA uses Exclusive access, By partitioning the data (“sharding”),

each core exclusively accesses its own partition in parallel without inter-core communication.

MICA can fall back to concurrent reads if the load is extremely skewed, but avoids concurrent

writes. Regarding network, MICA uses direct NIC access. By targeting only small key-value

items, it needs fewer transport layer features. Clients are responsible for retransmitting packets

if needed. MICA uses Intel’s DPDK (Data Plane Development Kit) instead of standard socket

I/O. This allows the user-level server software to control NICs and transfer packet data with

low overhead. MICA uses NIC multi-queue support to allocate a dedicated RX and TX queue

to each core. Cores exclusively access their own queues without synchronization. MICA avoids

packet data copy throughout RX/TX and request processing. Upon receiving a request, MICA

41

avoids memory allocation and copying by reusing the request packet to construct a response.

In cache mode it uses circular logs to manage memory for key-value items and lossy concurrent

hash indexes to index the stored items. Each MICA partition consists of a single circular log

and lossy concurrent hash index.

Several other works propose a modification of Memcached’s internal data structures and en-

hancing of specific characteristics [15, 16], the use of proxies [24, 27, 28], modification of the

underlying network [31, 35, 36], specialized OSes [11, 25] or FPGA [12, 22] to boost Mem-

cached’s (and other caches’) performance.

The work on mcrouter by Facebook [24] describes how Facebook leverages memcached as a

building block to construct and scale a distributed key-value store that supports the world’s

largest social network. According the the paper, a social network’s infrastructure needs to allow

near realtime communication, aggregate content on-the-fly from multiple sources, be able to

access and update very popular shared content, and scale to process millions of user requests

per second. Facebook relies on memcache to lighten the read load on the databases. The

client logic is provided as two components: a library that can be embedded into applications

or as a standalone proxy named mcrouter. This proxy presents a memcached server interface

and routes the requests/replies to/from other servers. mcrouter is a core component of the

cache infrastructure at Facebook, and provides multiple functionalities, as connection pooling,

replicated pools, cold cache warm up, prefix routing and more.

Within some pools, Facebook use replication to improve the latency and efficiency of memcached

servers. The replication solves the problem provided in the following example: a memcached

server holds 100 items and capable of responding to 500k requests per second. Each request

asks for 100 keys. The difference in memcached overhead for retrieving 100 keys per request

instead of 1 key is small. To scale the system to process 1M requests/sec, supposedly they add

a second server and split the key space equally between the two. Clients now need to split each

request for 100 keys into two parallel requests for ∼50 keys. Consequently, both servers still

have to process 1M requests per second. However, if they replicate all 100 keys to multiple

servers, a client’s request for 100 keys can be sent to any replica. This reduces the load per

42 Chapter 5. Related Work

server to 500k requests per second. Each client chooses replicas based on its own IP address.

This approach requires delivering invalidations to all replicas to maintain consistency.

When they bring a new cluster online, an existing one fails, or perform scheduled maintenance

the caches will have very poor hit rates diminishing the ability to insulate backend services. A

system called Cold Cluster Warmup mitigates this by allowing clients in the “cold cluster” (i.e.

the frontend cluster that has an empty cache) to retrieve data from the “warm cluster” (i.e. a

cluster that has caches with normal hit rates) rather than the persistent storage. This takes

advantage of the aforementioned data replication that happens across frontend clusters. With

this system cold clusters can be brought back to full capacity in a few hours instead of a few

days.

Replication is normally performed via proxies or client-side libraries, as we see with mcrouter

by Facebook [24], NetKV [33], Zhang et al. [34], or libMemcached [2]. Repcached [8] modified

Memcached to support message-oriented server-side replication without RDMA; Cocytus [32]

modified Memcached to support replication and applied erasure coding to achieve memory

efficiency. Other server-side replication solutions, such as MemcacheDB [4] and Couchbase [1],

choose to support Memcached’s protocol as part of a persistent store, which enables a wide

range of database techniques for replication, but in doing so can no longer be considered cache

stores.

DARE [26] implements consistent RDMA-based replication of Replicated State Machines

(RSMs), replicating the state indirectly via the message log. Since large-scale datacenter archi-

tectures are more susceptible to faults of single components, DARE offer consistent services on

such unreliable systems to be a replicated state machines (RSMs). The work on DARE propose

a new set of protocols, Direct Access REplication, based on RDMA primitives, and evaluate

them with a strongly consistent key-value store; They show that RDMA introduces various

new options, such as log access management. In total, the work on DARE provide a complete

RDMA RSM protocol, an RDMA performance model of DARE in a failure-free scenario, a

failure model for RDMA systems in which they analyze both the availability and reliability of

DARE, and a demonstration of how DARE can be used to implement a strongly-consistent

43

key-value store.

Redis [7] - one of the most popular Memcached competitors in key-value cache systems - allows

message-oriented server-side replication without the use of RDMA. Redis uses asynchronous

replication. However, slaves periodically acknowledge the amount of data processed from the

replication stream. Aside from connecting a number of slaves to the same master, slaves can also

be connected to other slaves in a cascading-like structure. Redis replication is non-blocking on

the master side. This means that the master will continue to handle queries when one or more

slaves perform the initial synchronization. Replication is also non-blocking on the slave side.

While the slave is performing the initial synchronization, it can handle queries using the old

version of the dataset. However, after the initial sync, the old dataset must be deleted and the

new one must be loaded. The slave will block incoming connections during this window (that

can be as long as many seconds for very large datasets). Slaves support a read-only mode, in

which slaves will reject all write commands, so that it is not possible to write to a slave because

of a mistake. It is possible to configure a Redis master to accept write queries only if at least

N slaves are currently connected to the master. However, because Redis uses asynchronous

replication it is not possible to ensure the slave actually received a given write, so there is

always a window for data loss. Redis slaves ping the master every second, acknowledging the

amount of replication stream processed. Redis masters will remember the last time it received

a ping from every slave. The user can configure a minimum number of slaves that have a lag

not greater than a maximum number of seconds, If there are at least N slaves, with a lag less

than M seconds, then the write will be accepted.

Chapter 6

Conclusion

As caches become integral components of web services, system designers can no longer ignore

cache node failures as the overhead of warming the cache can greatly impact the service. High-

availability and fault tolerance of caches have thus become a key design consideration for

any caching system. Our work provides an innovative solution that implements these using

continuous state replication via RDMA. The replication frequency can be easily adjusted to

adapt to load and reliability requirements. Our system extends and uses the same client API

as Memcached and thus can be transparently plugged into existing cloud services. Future work

may explore ways to optimize log management via log compaction algorithms and splitting the

log into buckets for different sized items; Provide customized consistency requirements via a

modified replication scheme, and to evaluate scalability via the RDMA READ and WRITE

verbs.

44

Bibliography

[1] Couchbase: Nosql database. https://www.couchbase.com/.

[2] libmemcached. http://libmemcached.org/.

[3] Memcached. https://github.com/memcached/memcached/wiki/Overview.

[4] Memcachedb. http://memcachedb.org/.

[5] Project voldemort. http://www.project-voldemort.com.

[6] reddit’s may 2010 “state of the servers” report.

https://redditblog.com/2010/05/11/reddits-may-2010-state-of-the-servers-report/.

[7] Redis. https://redis.io/.

[8] Repached. http://repcached.lab.klab.org.

[9] Logmemcacged. 2017. https://github.com/HUJI-DANSS/LogMemcached.

[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload analysis of a large-scale key-value store. In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE Joint International Conference on Measurement

and Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64, New York, NY,

USA, 2012. ACM.

[11] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,

and Edouard Bugnion. Ix: A protected dataplane operating system for high through-

put and low latency. In 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 49–65, CO, 2014. USENIX Association.

45

https://www.couchbase.com/
http://libmemcached.org/
https://github.com/memcached/memcached/wiki/Overview
http://memcachedb.org/
http://www.project-voldemort.com
https://redditblog.com/2010/05/11/reddits-may-2010-state-of-the-servers-report/
https://redis.io/
http://repcached.lab.klab.org
https://github.com/HUJI-DANSS/LogMemcached

46 BIBLIOGRAPHY

[12] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bär, and Zsolt István.

Achieving 10gbps line-rate key-value stores with fpgas. In Presented as part of the

5th USENIX Workshop on Hot Topics in Cloud Computing, San Jose, CA, 2013.

USENIX.

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Pro-

ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles,

SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.

Farm: Fast remote memory. In 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), pages 401–414, Seattle, WA, 2014. USENIX

Association.

[15] Bin Fan, David G. Andersen, and Michael Kaminsky. Memc3: Compact and con-

current memcache with dumber caching and smarter hashing. In Presented as part

of the 10th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 13), pages 371–384, Lombard, IL, 2013. USENIX.

[16] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song

Jiang, and Zhenlin Wang. Lama: Optimized locality-aware memory allocation for

key-value cache. In 2015 USENIX Annual Technical Conference (USENIX ATC 15),

pages 57–69, Santa Clara, CA, 2015. USENIX Association.

[17] Jithin Jose, Hari Subramoni, Krishna Kandalla, Md. Wasi-ur Rahman, Hao Wang,

Sundeep Narravula, and Dhabaleswar K. Panda. Scalable memcached design for in-

finiband clusters using hybrid transports. In Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012), CC-

GRID ’12, pages 236–243, Washington, DC, USA, 2012. IEEE Computer Society.

BIBLIOGRAPHY 47

[18] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi-ur

Rahman, Nusrat S. Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur, and Dha-

baleswar K. Panda. Memcached design on high performance rdma capable intercon-

nects. In Proceedings of the 2011 International Conference on Parallel Processing,

ICPP ’11, pages 743–752, Washington, DC, USA, 2011. IEEE Computer Society.

[19] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using rdma efficiently

for key-value services. In Proceedings of the 2014 ACM Conference on SIGCOMM,

SIGCOMM ’14, pages 295–306, New York, NY, USA, 2014. ACM.

[20] Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and sub-

millisecond quality-of-service. In Proceedings of the Ninth European Conference on

Computer Systems, EuroSys ’14, pages 4:1–4:14, New York, NY, USA, 2014. ACM.

[21] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. Mica:

A holistic approach to fast in-memory key-value storage. In 11th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 14), pages 429–444,

Seattle, WA, 2014. USENIX Association.

[22] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and

Thomas F. Wenisch. Thin servers with smart pipes: Designing soc accelerators

for memcached. In Proceedings of the 40th Annual International Symposium on

Computer Architecture, ISCA ’13, pages 36–47, New York, NY, USA, 2013. ACM.

[23] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided rdma reads to

build a fast, cpu-efficient key-value store. In Presented as part of the 2013 USENIX

Annual Technical Conference (USENIX ATC 13), pages 103–114, San Jose, CA,

2013. USENIX.

[24] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache at facebook.

48 BIBLIOGRAPHY

In Presented as part of the 10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 13), pages 385–398, Lombard, IL, 2013. USENIX.

[25] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-

murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system is

the control plane. In 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 1–16, CO, 2014. USENIX Association.

[26] Marius Poke and Torsten Hoefler. Dare: High-performance state machine replication

on rdma networks. In Proceedings of the 24th International Symposium on High-

Performance Parallel and Distributed Computing, HPDC ’15, pages 107–118, New

York, NY, USA, 2015. ACM.

[27] Manju Rajashekhar. Twemproxy: A fast, light-weight proxy for memcached. 2012.

https://blog.twitter.com/2012/twemproxy.

[28] Manju Rajashekhar and Yao Yue. Caching with twemcache. 2012.

https://blog.twitter.com/2012/caching-with-twemcache.

[29] Patrick Stuedi, Animesh Trivedi, and Bernard Metzler. Wimpy nodes with 10gbe:

Leveraging one-sided operations in soft-rdma to boost memcached. In Presented as

part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages

347–353, Boston, MA, 2012. USENIX.

[30] Douglas B Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,

Marcos K Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agree-

ments for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, pages 309–324. ACM, 2013.

[31] A. F. R. Trajano and M. P. Fernandez. Two-phase load balancing of in-memory

key-value storages through nfv and sdn. In 2015 IEEE Symposium on Computers

and Communication (ISCC), pages 409–414, July 2015.

[32] Heng Zhang, Mingkai Dong, and Haibo Chen. Efficient and available in-memory

kv-store with hybrid erasure coding and replication. In FAST, pages 167–180, 2016.

https://blog.twitter.com/2012/twemproxy
https://blog.twitter.com/2012/caching-with-twemcache

BIBLIOGRAPHY 49

[33] W. Zhang, T. Wood, and J. Hwang. Netkv: Scalable, self-managing, load balanc-

ing as a network function. In 2016 IEEE International Conference on Autonomic

Computing (ICAC), pages 5–14, July 2016.

[34] Wei Zhang, Jinho Hwang, Timothy Wood, K.K. Ramakrishnan, and Howie Huang.

Load balancing of heterogeneous workloads in memcached clusters. In 9th Inter-

national Workshop on Feedback Computing (Feedback Computing 14), Philadelphia,

PA, 2014. USENIX Association.

[35] Wei Zhang, Guyue Liu, Ali Mohammadkhan, Jinho Hwang, K. K. Ramakrishnan,

and Timothy Wood. Sdnfv: Flexible and dynamic software defined control of an

application- and flow-aware data plane. In Proceedings of the 17th International

Middleware Conference, Middleware ’16, pages 2:1–2:12, New York, NY, USA, 2016.

ACM.

[36] Wei Zhang, Timothy Wood, K.K. Ramakrishnan, and Jinho Hwang. Smartswitch:

Blurring the line between network infrastructure & cloud applications. In 6th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14), Philadel-

phia, PA, 2014. USENIX Association.

[37] Yiying Zhang, Gokul Soundararajan, Mark W. Storer, Lakshmi N. Bairavasundaram,

Sethuraman Subbiah, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Warming up storage-level caches with bonfire. In Presented as part of the 11th

USENIX Conference on File and Storage Technologies (FAST 13), pages 59–72, San

Jose, CA, 2013. USENIX.

	Abstract
	Abstract - Hebrew
	Acknowledgements
	Introduction
	Motivation and Objectives
	Thesis Outline

	Background
	RDMA
	Memcached

	LogMemcached Design
	Objectives
	Architecture Design
	Pseudocode

	Evaluation
	Environment
	Test Cases
	Performance Analysis

	Related Work
	Conclusion
	Bibliography

