
Bridging the Gap: Byzantine
Faults and Self-stabilization

Thesis submitted for the degree of
DOCTOR of PHILOSOPHY

by

Ezra N. Hoch

Submitted to the Senate of

The Hebrew University of
Jerusalem

September 2010

This work was carried out under the
supervision of:

Prof. Danny Dolev.

Acknowledgements
As someone I know once said, the acknowledgements section is the only real
part of the PhD thesis that is actually read. So I would like to take a moment,
and thank those that helped me on this adventure.

First, I would like to thank both of my parents, but not just because
I wouldn’t be here without them. I grew up in a house which appreciated
education and encouraged knowledge. My parents took special care to ensure
that I get a good eduction, by caring for extra curriculum lessons during
junior high, and especially by choosing the high school I went to. All in all,
I think that my love for learning stems from the choices my parents made
way way back.

Second, I thank my advisor, professor Danny Dolev. Luckily, I had the
pleasure and honor to have Danny as my advisor for both my MA and PhD.
It all started on the last year of my BA. I took the distributed algorithms
course (taught by Danny) and was amazed: it was so interesting, and so chal-
lenging. Danny teaches the course in a way that students are encouraged to
participate and to think about solutions by themselves. After three lessons,
I was so fascinated by the subject I asked Danny to tutor me on a project;
which lead, after several years, to this thesis. During all that time, Danny
helped me evolve. He has this very special ability to guide in a way that is
both supportive and independent. He always gave me the freedom of choos-
ing what problems to work on, while commenting and suggesting directions
which helped me focus. For me, Danny was the perfect advisor: combining
successfully both having the time to meet and discuss research issues and
providing the leeway so many times required during a PhD.

Third, I learned a lot from the people I collaborated with: professor
Michael Ben-Or, Dr. Danny Bickson, Dr. Ariel Daliot and professor Yoram
Moses. I would like to specially thank Michael: in the last two years I worked
a lot with Michael, and I truly appreciate the amount of time he spent with
me. Michael introduced me to the wonders of randomization in distributed
algorithms. The more I learn about the subject, and the more I read papers
on the subject, the more I’m astonished and bewildered at the beautiful and
intricate ideas that govern this field. I was fortunate to have the chance
to study this area, and more so, to be acquainted to it by a researcher like
Michael.

Fourth, I want to thank my friends. From the DANSS group, from other
floors in Ross building and those from outside the campus grounds. The last

few years were hard at times and joyous at others. In both cases, it is good
to have friends to share it with. In addition, I think I should apologize
to all those for whom I’ve wasted so many research hours in conversations,
discussions, and just updates on day-to-day life.

Last, but definitely not least, I owe so much to my (newlywed) wife.
Daphna has seen, at least once, every single presentation I ever gave during
my PhD. She has understandingly accepted all the evenings I had to work on
during deadline periods, and all the ups-and-downs immanent to the peer-
review process. She listened to new ideas, when they were still immature;
and her questions helped shape those ideas. These are just the direct contri-
butions Daphna had to my PhD; there are infinitely many indirect ones.

Abstract

Distributed systems are everywhere. As everyday lives become more and
more dependent on distributed systems, they are expected to withstand dif-
ferent kinds of failures. Different models of failures exist which aim at mod-
eling network errors, hardware failures, soft errors, etc. This thesis concen-
trates on dealing with a combination of two different kinds of fault tolerance.

The Byzantine failure model aims at modeling hardware failures. A sys-
tem is said to be tolerant to Byzantine failures if it can withstand any arbi-
trary behavior of (usually) up to a constant percentage of its nodes. That is,
a constant percentage of the nodes may behave in any way and may collude
together to try and prevent the system from operating correctly. Clearly,
if a system is Byzantine tolerant then it will be able to overcome hardware
failures, as long as enough nodes operate correctly.

The self-stabilizing failure model aims at modeling soft errors. A system is
said to be self-stabilizing if starting from any memory state, it will eventually
converge to an operating condition. For example, a self-stabilizing clock
synchronization will eventually (even if it is started when different nodes are
out of sync) have all nodes in the system agree on the same time. If a system
is self-stabilizing and a soft error occurred, then eventually (if there are no
more soft errors) it will converge to an operational state.

Combining self-stabilizing and Byzantine failures is a challenging task.
It requires the algorithm to tolerate both external errors (i.e., neighboring
nodes which are Byzantine) and internal errors (i.e., soft errors which may
lead to an arbitrary memory state). However, an algorithm that is both self-
stabilizing and Byzantine tolerant has highly desired robust properties: Even
if the assumed working conditions are invalidated, when they are eventually
re-guaranteed the algorithm will converge to an operating state.

Three different problems are discussed herein. First, the self-stabilizing
Byzantine tolerant clock synchronization problem; in which the system may
start in any arbitrary state, and eventually (in the ongoing presence of Byzan-
tine nodes) all nodes should agree on the same clock value, and increase it
regularly. Two different solutions to this problem are given. One operates
in a synchronous network and provides an expected constant convergence
rate; while the other operates in a semi-synchronous (sometimes denoted
“bounded-delay”) network and provides a (deterministic) linear convergence
time.

Second, the stability of a system’s output is investigated. Specifically,

i

assume that a system has some changing input which is transformed (via
some computation) into the output of the system. In addition, suppose that
eventually the input does not change (for example, since the temperature in
a server room becomes stable), what can be said on the output? Can it be
guaranteed to stabilize? A self-stabilizing Byzantine tolerant algorithm that
solves this problem in an optimal way is given.

The third problem considers a variation of the Byzantine model. The
classical Byzantine model assumes any subset of nodes may fail, as long as the
subset is of limited size. Such a model is less useful when considering failures
that are locally bounded. For example, suppose there is some manufacturing
error causing every tenth sensor to be faulty. In addition, suppose that the
sensors are dispersed from an airplane in a uniform manner. The hardware
failure distribution is most likely not to concentrate at a specific location.
When considering a Byzantine adversary that is locally confined (i.e., it is
limited by the number of nodes it can control in every local area), a solution
to the Byzantine consensus problem is achieved, which is more efficient than
the classical one, both in space, time and message complexities.

ii

Contents

1 Introduction 1
1.1 Background and Related Work 2

1.1.1 Timing Models . 2
1.1.2 Byzantine Failures . 2
1.1.3 Self-stabilization . 4
1.1.4 Combining Byzantine Failures and Self-stabilization . . 4
1.1.5 Clock Synchronization vs. Byzantine Agreement 6
1.1.6 Clock Synchronization vs. Pulse Synchronization . . . 7

1.2 Thesis Structure . 8
1.2.1 Byzantine Self-stabilizing Pulse in a Bounded-Delay

Model . 8
1.2.2 Fast Self-Stabilizing Byzantine Tolerant Digital Clock

Synchronization . 9
1.2.3 OCD: Obsessive Consensus Disorder (or Repetitive Con-

sensus) . 9
1.2.4 Constant-space Localized Byzantine Consensus 9

2 Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 11
2.1 Introduction . 12
2.2 Model and Problem Definition 14
2.3 Solution Overview . 16
2.4 The Q Primitive . 16
2.5 Implementing Q(p), the ss-Byz-Q Algorithm 18
2.6 Constructing the Erratic-Pulser Algorithm 23
2.7 Erratic-Pulser’s Correctness Proofs 24
2.8 Creating the Balanced-Pulser 27
2.9 Discussion . 28
2.10 References . 29

iii

CONTENTS iv

2.11 The Use of ss-Byz-Agree . 30

3 Fast Self-Stabilizing Byzantine Tolerant Digital Clock Syn-
chronization 31
3.1 Introduction . 32
3.2 Model and Definitions . 33
3.3 The Digital Clock Synchronization Problem 36
3.4 Solving the 4-Clock Problem 38
3.5 Solving the k-Clock Problem (for any k) 38
3.6 Discussion . 40
3.7 References . 41

4 OCD: Obsessive Consensus Disorder
(or Repetitive Consensus) 42
4.1 Introduction . 43
4.2 Computational Model . 44
4.3 Impossibility Results . 45
4.4 Repetitive Consensus . 46
4.5 Solving SS-Repetitive Consensus 48
4.6 Range Validity . 49
4.7 Discussion . 51
4.8 References . 52

5 Constant-space Localized Byzantine Consensus 53
5.1 Introduction . 54
5.2 Model and Problem Definition 55
5.3 Byzantine Consensus . 56
5.4 Constant-Space Byzantine Consensus 61
5.5 Constructing 1-lightweight Entwined Structures 64
5.6 Conclusion and Future Work 67
5.7 References . 68

6 Conclusions and Discussion 69

Chapter 1

Introduction

The field of fault tolerance in distributed systems branches in many di-
rections, a few of which are the subject of this thesis. Specifically, self-
stabilization and Byzantine tolerance. Informally, a self-stabilizing system is
a system which can start in any initial state and converge to an operating
state. A Byzantine tolerant system can continue operating while some of the
nodes are faulty and try to “bring the system down”. A system that is both
self-stabilizing and Byzantine tolerant is one which starting from any state,
in the continuous presence of Byzantine nodes, will eventually convergence
to an operating state. The main results of this thesis are algorithms which
are both self-stabilizing and Byzantine tolerant.

When designing fault-tolerant algorithms there are many pitfalls and
obstacles to overcome. Modular planing of algorithms using fault-tolerant
building blocks helps construct solutions and helps in the correctness proofs
(it is not uncommon for self-stabilizing algorithms to be short, while their
proofs are long and intricate). A main focus of this thesis is to create such
building blocks, that will help in simplifying the building of fault-tolerant
algorithms, and consequently increase the fault tolerance of distributed sys-
tems. In particular, the thesis focuses on the fundamental problem of agree-
ment / synchronization (either on a specific value or on the current time) in
distributed systems, while withstanding both self-stabilizing and Byzantine
failures.

1

1.1 Background and Related Work 2

1.1 Background and Related Work

1.1.1 Timing Models

There are 3 major time models used in distributed algorithms: synchronous,
asynchronous and semi-synchronous (also termed bounded-delay). (See [17]
for a formal definition of different timing models). In the synchronous model
nodes advance in synchronous rounds. I.e., all nodes start a round by sending
their messages, the messages are received by their recipients, and then the
round ends and the following round starts. Each node p receives all of the
i-th round messages together and is aware that these messages correspond
to the i-th round.

In the semi-synchronous model (bounded-delay) there is an a priori bound
d on the time a message takes to reach its recipient. I.e., if node p sends a
message to node q, it is guaranteed to arrive at q after no more than d time
units. Usually all nodes are assumed to be able to measure time intervals,
thus allowing node p to send a message to node q and reason that if q returns
a message immediately when receiving a message, then p should have received
a message back within 2 · d time units.

In the asynchronous model there is no bound on message delivery time.
The only guarantee is that every message that is sent is eventually delivered.
Usually in an asynchronous setting nodes are oblivious of passing time and
are event-driven in the sense that their operations occur due to receiving
messages.

The algorithms presented herein operate in the synchronous and semi-
synchronous models: Chapter 2 operates in the semi-synchronous model
while Chapter 3, Chapter 4 and Chapter 5 all operate in the synchronous
model.

1.1.2 Byzantine Failures

Byzantine failures aim to model any arbitrary node failure. A system is said
to be Byzantine tolerant if it reaches its goal while some of the nodes are
Byzantine - they can behave in any way (even collude together) to prevent
the system from acquiring its target.

Since the first appearance of Byzantine failures in the literature [21, 16],
they have become a central failure model in distributed computing. The most
known problem relating to Byzantine failures is the Byzantine agreement (BA

1.1 Background and Related Work 3

for short) problem. In the BA each node p of the n nodes in the system has
an input value vp and an output value op. There are two requirements:

1. all non-faulty nodes agree on the same output value
(i.e., op = oq for every non-faulty p, q);

2. the agreed output value is an input value of some non-faulty node.

The BA problem has been thoroughly researched and produced a plethora
of results, including many lower bounds: O(f) rounds lower bound [14] where
f is the number of Byzantine nodes, a lower bound on the number of Byzan-
tine nodes [21, 12] (f must be less than 1

3
n), lower bounds on the connectivity

requirements [7] (there must be at least 2f + 1 distinct routes between any
two non-faulty nodes), etc.

In addition, BA has been shown to be impossible in asynchronous systems
[13]. This impossibility result can be overcome by adding randomization [1,
23]. Randomization is used to implement a distributed shared-coin primitive,
which every round has probability c to produce the same random bit at
all non-faulty nodes. Using a shared-coin it is possible to solve BA within
expected O(1

c
) rounds.

When considering randomized algorithms it is interesting to differentiate
between a few classes of Byzantine adversaries. The adversary can be static,
in which case it must choose the Byzantine nodes before the algorithm starts;
or the adversary can be dynamic, in which case it can choose the Byzantine
nodes during the execution (after it has seen the outcome of the coin flips).
Another classification is whether the adversary has full-information (i.e.,
the adversary knows the state of each node), or there are some pieces of
information which the adversary does not have access to. Specifically, in
Chapter 3 private-channels are assumed; i.e., the adversary cannot read the
state of the non-faulty nodes and cannot read the content of messages sent
between non-faulty nodes.

The above categories lead to a few classes of adversaries: dynamic full-
information (such as in [1]), dynamic with private-channels (such as in [11]),
static full-information (such as in [20]). Chapter 3 assumes the same Byzan-
tine adversary model as in [11].

In deterministic algorithms (such as [21, 16]) there is no difference be-
tween the above classes, since the adversary also controls the input values
and together with the determinism of the algorithm, the state of each node
can be concluded. Thus, there is no difference between full-information and

1.1 Background and Related Work 4

non-full-information and between dynamic or static adversaries. Chapter 2,
Chapter 4 and Chapter 5 all operate in a deterministic setting.

1.1.3 Self-stabilization

Self-stabilization models transient failures. A system is self-stabilizing if
starting from any arbitrary state it eventually reaches a state in which it
operates correctly. More specifically, a state of a system is represented by
the state of each node in addition to the state of the message buffers (or
other communication devices). A self-stabilizing system, starting from any
arbitrary state, will eventually reach a state in which it operates according to
its specification. The motivation behind self-stabilizing systems is to handle
soft errors such as buffer overruns, electronic interference and other transient
failures. If a system is indeed self-stabilizing then once there are no more
transient errors (i.e., the electronic interference has ceased), the system will
converge to an operating state.

Usually, self-stabilizing systems exhibit two properties: closure and con-
vergence. Convergence ensures that starting from any initial state, the sys-
tem will eventually (within a finite number of rounds) converge to a legal
state (a state in which it operate correctly). Closure ensures that once the
system is in a legal state it will continue to be in legal states (i.e., any execu-
tion from a legal state stays in legal states). Thus, convergence and closure
together ensure that the system will eventually reach a state from which it
operates correctly forever.

The field of self-stabilization started with [6] and flourished there af-
ter. See [9] for many examples of self-stabilizing results. Self-stabilizing
problems and solutions prevail in many different models: in synchronous,
semi-synchronous and asynchronous timing models; in message passing and
in shared memory models; in deterministic and randomized algorithms, etc.
In the current work, Chapter 2, Chapter 3 and Chapter 4 all contain self-
stabilizing solutions; while Chapter 5 operates in a non-self-stabilizing set-
ting.

1.1.4 Combining Byzantine Failures and Self-stabilization

Combining Byzantine failures with self-stabilization is an interesting chal-
lenge. To illustrate the difficulties that arise in such a setting, consider the
problem of digital clock synchronization: each node has a bounded integer

1.1 Background and Related Work 5

counter which should eventually be the same at all nodes and increase by one
(modulo the size of the counter) in every round. In the following discussion,
assume the network is synchronous and fully connected (i.e., every pair of
nodes can send messages among themselves).

Solving the digital clock synchronization when there are only Byzantine
failures is quite simple: each node p starts a Byzantine agreement on its
current clock value and at round f + 1 p will update its clock value to be the
median of all the results of the different BAs. Since by round f + 1 all BAs
have terminated, all non-faulty nodes see the same set of values and thus all
update their clock in the same way. In all following rounds, p will increase
its clock value by one each round. Clearly, the above solves the digital clock
synchronization in a Byzantine tolerant manner. Notice that if the nodes
start in an arbitrary state, the algorithm immediately stops working: for
example, if a node starts while thinking it is in round f + 2, it might never
synchronize its clock value with the other nodes.

Solving the digital clock synchronization in a self-stabilizing manner (when
there are no Byzantine failures) is even simpler: every round each node will
send its current clock value plus one to all other nodes, and will take the
maximum among all received values. Since all nodes are non Byzantine, in
every round they all receive the same set of value and thus they always agree
on the same clock value. In addition, after the first round the clock value
will increase by one each round. Clearly, the above solves the digital clock
synchronization in a self-stabilizing fashion. Notice that if there is even a
single Byzantine node in the system, it can send different clock value to dif-
ferent nodes, thus ensuring that there is never an agreement on the current
clock value.

In the Byzantine tolerant solution, all non-faulty nodes start with a
“clean” state, and can thus utilize Byzantine-tolerant primitives to overcome
the Byzantine failures. In the self-stabilizing solution, all nodes “know” they
can trust the values received from their neighbors, and can thus use a very
simple update rule. In other words, in first case non-faulty nodes can trust
themselves (but cannot trust their neighbors), while in the second case the
nodes can trust their neighbors (but cannot trust themselves).

When combining self-stabilization with Byzantine failures, the nodes in
the algorithm cannot trust their neighbors (which might be Byzantine) while
they cannot trust themselves (since their initial state might be faulty). There-
fore, it is a challenging task to constructing self-stabilizing and Byzantine
tolerant algorithms.

1.1 Background and Related Work 6

Due to the challenges of the field there are few works that combine self-
stabilization and Byzantine tolerance [24, 19, 18, 10, 5, 2, 4]. These results
can be divided into two classes: algorithms in which nodes that are close
to other Byzantine nodes may reach undesired states (i.e., [24, 19, 18]) and
algorithms which require all non-Byzantine nodes to behave correctly. In this
thesis, all self-stabilizing and Byzantine tolerant algorithms assume a fully
connected network. Thus, allowing Byzantine neighbors to be in inconsistent
states will invalidate the entire system (hence all following algorithms are of
the second class).

1.1.5 Clock Synchronization vs. Byzantine Agreement

Byzantine agreement (BA) is probably the most fundamental problem in
distributed algorithm, since it tackles the most basic issue of having more
than one computer operate together: synchronization. Specifically, it requires
the different nodes to reach agreement on their initial values, while there are
permanent Byzantine failures.

Digital clock synchronization, in a sense, is the self-stabilizing equivalent
of the BA problem. In self-stabilizing algorithms there is no notion of starting
time, and therefore, there is no meaning for “initial values”. Thus, the
natural extension of BA into the self-stabilizing world is to require agreeing on
some value in a non-trivial way. Specifically, the digital clock synchronization
problem requires to agree on the current (integer) clock value and increase
it every round (which requires a non-trivial solution).

In [5, 8] it is shown how BA can be used to achieve self-stabilizing Byzan-
tine tolerant clock synchronization (SS-Byz-CS, for short). I.e., any algo-
rithm A that solves BA (in a none self-stabilizing system) within ` rounds
can be used to solve SS-Byz-CS in a self-stabilizing and Byzantine tolerant
manner, with O(`) convergence time and with the same connectivity require-
ments of A.

Moreover, any algorithm B that solves the SS-Byz-CS problem and con-
verges within ` rounds induces a BA algorithm that terminates within O(`)
rounds (in a none self-stabilizing system). To see why this holds, consider a
synchronous algorithm B that runs is self-stabilizing and supports f Byzan-
tine failures. Therefore, there is some global memory state (i.e., a vector
of local memory states) such that if the system starts with s then all non-
Byzantine nodes will have clock value “0” (and increase it by one each round);
denote this state as s0. Similarly, there is a global memory state s1 for the

1.1 Background and Related Work 7

clock value “1”. In addition, since B solves the SS-Byz-CS problem, there is
some value k = O(`) such that if B is run for k rounds, all non-Byzantine
nodes agree on the same clock value.

Now, consider the algorithmA, running in a synchronous non-self-stabilizing
system: each node p starts with its local view of s0 or s1 according to whether
p’s initial value is “0” or “1”. Each node runs B for k rounds, and considers
the clock value at round k: if it is k, return “0”; otherwise, return “1”.

Notice the following properties:

1. At the end of A’s execution, all non-Byzantine nodes have the same
output value, since they all execute B for k rounds, and therefore they
all see B’s same clock value.

2. If all non-faulty nodes start with initial value “0” then they all agree on
the value “0”, since if all non-fault nodes start with initial value “0”,
then they start with memory state s0, which ensures that the clock
value of B is “0” and therefore, after k rounds, the clock value of B will
be k, and all nodes will return “0” in A.

3. If all non-faulty nodes start with initial value “1” then they all agree
on the value “1” (for similar reasons to the case of “0”).

The above discussion shows that BA (in a non-self-stabilizing system) and
SS-Byz-CS (in a self-stabilizing system) are equivalent and different lower
(resp. upper) bounds which apply to BA induce lower (resp. upper) bounds
on SS-Byz-CS, and vice versa.

1.1.6 Clock Synchronization vs. Pulse Synchroniza-
tion

The self-stabilizing Byzantine tolerant pulse synchronization problem (SS-
Byz-PS for short) consists of eventually converging to a state where all non-
Byzantine nodes pulse together at regular intervals. I.e., at some time all
non-Byzantine nodes pulse, then they do not pulse for Cycle time, then they
all pulse again, and so on.

The SS-Byz-CS problem is equivalent (up to a constant factor) to the
SS-Byz-PS problem. In [3] it is first shown that SS-Byz-CS can be achieved
by a SS-Byz-PS algorithm. In [8] a more simple solution (for the synchronous
case) is given. In Chapter 2 a solution for the bounded-delay model is given.

1.2 Thesis Structure 8

The above results show that given a SS-Byz-PS algorithm, it is possible to
construct a SS-Byz-CS algorithm with similar convergence time and Byzan-
tine resiliency ratio. To conclude the equivalence of SS-Byz-CS to SS-Byz-PS,
it is required to show that SS-Byz-CS can be used to solve SS-Byz-PS: sup-
pose A is an algorithm solving SS-Byz-CS, then construct and algorithm B
that runs A and pulses every time A’s clock equals “0”. Clearly, once A
converges, all non-Byzantine nodes see the same clock value, and therefore,
all pulse together exactly when A’s clock is “0”, and then do not pulse again
until it is again “0”.

1.2 Thesis Structure

1.2.1 Byzantine Self-stabilizing Pulse in a Bounded-
Delay Model

The work in Chapter 2 operates in the bounded-delay timing model. It
investigates the pulse synchronization problem in a way that is both self-
stabilizing and Byzantine tolerant. Such a solution can be used to achieve
a self-stabilizing Byzantine tolerant clock synchronization algorithm (one
which allows for continuous clock values, i.e., not necessarily integer clock
values).

The main result builds upon a self-stabilizing Byzantine tolerant agree-
ment protocol (from [4]) and utilizes it to solve the pulsing algorithm. The
pulsing algorithm is constructed in two layers: the first one creates an algo-
rithm that has an erratic pulsing pattern. The second layer smooths out the
pulsing pattern so that it is regular, as required.

Denote by d the bound on the time it takes a message to reach its des-
tination. The algorithms in Chapter 2 solve the self-stabilizing Byzantine
tolerant pulsing problem and achieve pulse tightness of 3d (the time dif-
ference between two non-Byzantine nodes’ pulses). The solution converges
within linear time and is resilient up to 1

3
n Byzantine nodes (I.e., it is optimal

in both the convergence time and Byzantine resiliency).

1.2 Thesis Structure 9

1.2.2 Fast Self-Stabilizing Byzantine Tolerant Digital
Clock Synchronization

The work in Chapter 3 operates in a synchronous model, while assuming
private channels. It considers the digital clock synchronization problem and
presents a probabilistic algorithm that solves the digital clock synchroniza-
tion problem in a self-stabilizing manner while tolerating up to 1

3
n Byzantine

nodes. The expected convergence rate of the solution is O(1), which is opti-
mal.

Moreover, Chapter 3 contains a building block that produces a stream of
random bits in a self-stabilizing manner. That is, eventually it will produce
every round, at all non-Byzantine nodes, a new random bit that with constant
probability is “0” and with constant probability is “1”.

1.2.3 OCD: Obsessive Consensus Disorder (or Repet-
itive Consensus)

The work in Chapter 4 operates in a synchronous model and the solution
is deterministic (thus, the adversary has full-information and is dynamic).
The work investigates the stability of iterative multiple consensuses. More
specifically, assuming that the input values of the non-Byzantine nodes do
not change (over a long period of time), what can be said on the output value
of repetitive consensuses?

Chapter 4 contains both upper and lower bounds, one of which shows
that the Byzantine adversary can change the output of the consensuses at
least once, and the adversary can delay this change indefinitely (i.e., there is
no round after which the system’s output can be guaranteed not to change).
Moreover, the solution is shown to be self stabilizing.

1.2.4 Constant-space Localized Byzantine Consensus

The work in Chapter 5 operates in a synchronous model and the solution
is deterministic. The adversarial model assumes the Byzantine nodes are
“local”; instead of allowing the adversary to control any node (up to some
fraction of n), the adversary is disallowed to control too many nodes in a
small area. This model was first suggested in [15, 22], and is motivated by
a more realistic approach to Byzantine failures. For example, consider a
sensor network scattered over a large area, and assume Byzantine behavior

1.2 Thesis Structure 10

aims at modeling hardware manufacturing problems. Assuming the sensors
are dispersed in some random manner (i.e., by an airplane), it is highly
unlikely that the Byzantine nodes will all be concentrated in one location.

The locality restriction on the adversary yields improved solutions to
previous problems. Specifically, in Chapter 5 it is shown how Byzantine con-
sensus can be solved (on a family of graphs) in O(log n) time and O(n log n)
messages.

Chapter 2

Byzantine Self-stabilizing Pulse
in a Bounded-Delay Model

Danny Dolev and Ezra N. Hoch, Proceedings of the 9th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS
’07), Paris, France, Pages: 234-252, Nov. 2007.

11

Byzantine Self-stabilizing Pulse in a

Bounded-Delay Model

Danny Dolev� and Ezra N. Hoch

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

{dolev,ezraho}@cs.huji.ac.il

Abstract. “Pulse Synchronization” intends to invoke a recurring dis-
tributed event at the different nodes, of a distributed system as simulta-
neously as possible and with a frequency that matches a predetermined
regularity. This paper shows how to achieve that goal when the system
is facing both transient and permanent (Byzantine) failures.

Byzantine nodes might incessantly try to de-synchronize the correct
nodes. Transient failures might throw the system into an arbitrary state
in which correct nodes have no common notion what-so-ever, such as
time or round numbers, and thus cannot use any aspect of their own
local states to infer anything about the states of other correct nodes.
The algorithm we present here guarantees that eventually all correct
nodes will invoke their pulses within a very short time interval of each
other and will do so regularly.

The problem of pulse synchronization was recently solved in a system
in which there exists an outside beat system that synchronously signals
all nodes at once. In this paper we present a solution for a bounded-delay
system. When the system in a steady state, a message sent by a correct
node arrives and is processed by all correct nodes within a bounded time,
say d time units, where at steady state the number of Byzantine nodes,
f, should obey the n > 3f inequality, for a network of n nodes.

1 Introduction

When constructing distributed systems, fault tolerance is a major consideration.
Will the system fail if part of the memory has been corrupted (e.g. by a buffer
overrun)? Will it withstand message losses? Will it overcome network discon-
nections? To build distributed systems that are fault tolerant to different types
of faults, two main paradigms have been used: The Byzantine model and the
self-stabilizing model

The Byzantine fault paradigm assumes that up to some fraction of the nodes
in the system (typically one-third) may behave arbitrarily. Moreover, these nodes
can collude in order to try and bring the system down (for more on Byzantine
faults, see [1]).
� Part of the work was done while the author visited Cornell university. The work was

funded in part by ISF, ISOC, NSF, CCR, and AFOSR.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 234–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 235

The self-stabilization model assumes that the system might be thrown out of
its assumed working conditions for some period of time. Once the system is back
to its normal boundaries, all nodes should converge to the desired solution. For
example, starting from any memory state, after a finite time, all nodes should
have the same clock value (for more on self-stabilization, see [2]).

The strength of self-stabilizing systems emerges from their ability to continue
functioning after recovering from a massive disruption of their assumed working
conditions. The advantage of Byzantine tolerant systems comes from being able
to withstand any kind of faults while the system operates in its known bound-
aries. By combining these two fault models, a distributed system can continue
operating properly in the presence of faults as long as “everything is going well”;
however, if “things aren’t going well”, the system will be able to recover once
the conditions hold again, and the ratio of Byzantine nodes hold.

Clock synchronization is a fundamental building block in many distributed
systems; hence, creating a self-stabilizing Byzantine tolerant clock synchroniza-
tion is a desirable goal. Once such an algorithm exists, one can stabilize Byzantine
tolerant algorithms that were not designed for self-stabilization (see [3]). Clock
synchronization can be created upon a pulseing algorithm (see [4]), which is
the main motivation behind the current paper.

The main contribution of the current paper is to develop a pulse synchroniza-
tion algorithm that converges once the communication network resumes deliv-
ering messages within bounded, say d, time units, and the number of Byzantine
nodes, f, obeys the n > 3f inequality, for a network of n nodes. The attained
pulse synchronization tightness is 3d with a deterministic convergence time of a
constant number of pulse cycles (each containing O(f) communication rounds).

1.1 Related Work

Algorithms combining self-stabilization and Byzantine faults, can be divided
into two classes. The first consists of problems in which the state of each node
is determined locally (see [5,6,7]). The other class contains problems such that a
node’s state requires global knowledge - for example, clock synchronization such
that every two nodes’ clocks have a bounded difference that is independent of
the diameter of the network (see [8,9,4]). The current paper is of the latter class.

The current paper makes use of the self-stabilizing Byzantine agreement al-
gorithm (ss-Byz-Agree) presented in [10]. The above work operates in exactly
the same model as the current paper, and its construction will be used as the ba-
sic building block in our current solution. Appendix A lists the main properties
of this building block.

When discussing clock synchronization, it is common to represent the clocks
as an integer value that progresses linearly in time (see [11]). This was previously
termed digital clock synchronization ([12,13,14,15]) or “synchronization of phase-
clocks” ([16]). In the current paper we provide a pulseing algorithm; however,
when comparing it to other results, we consider the digital clock synchronization
algorithm that can be built upon it (as in [4]).

236 D. Dolev and E.N. Hoch

The first ever algorithm to address self-stabilizing Byzantine tolerant clock
synchronization is presented in [8]. [8] discusses two models; one is synchronous,
that is, all nodes are connected to some global “tick” system that produces
“ticks” that reach all nodes at the same time, and messages sent at any given
tick reach their destination before the following tick. The second model is a
bounded-delay network, in which there is no common tick system, but messages
have a bounded delay on their delivery time. There is no reason to consider
an asynchronous model, since even a single fail-stop failure can’t be overcome
(see [17]). Note that the bounded-delay model contains the first (synchronous)
one. [8] gives two solutions, one for each model, both of which converge in ex-
pected exponential time; both algorithms support f < n

3 .
In [9] clock synchronization is reached in deterministic linear time. However,

[9] addresses only the synchronous model, and supports only up to f < n
4 . In [18],

a pulseing algorithm that operates in the synchronous model is presented, which
converges in deterministic linear time, and supports f < n

3 , matching the lower
bounds both in the maximal number of Byzantine nodes, and in the convergence
time (see [19] for lower bounds). In [20] a very complicated pulse synchronization
protocol, in the same model as the current paper, was presented.

The current paper presents a pulse-synchronization algorithm, which has de-
terministic linear convergence time, supports f < n

3 , and operates in a bounded-
delay model.

2 Model and Problem Definition

The model used in this paper consists of n nodes that can communicate via
message passing. Each message has a bounded delivery time, and a bounded
processing time at each node; in addition the message sender’s identity can be
validated. The network is not required to support broadcast.

Each node has a local clock. Local clocks might show different readings at
different nodes, but all clocks advance at approximately the real-time rate.

Nodes may be subject to transient faults, and at any time a constant fraction
of nodes may be Byzantine, where f , the number of Byzantine nodes satisfies
f < n

3 .

Definition 1. A node is non-faulty if it follows its algorithm, processes mes-
sages in no more than π time units and has a bounded drift on its internal clock.
A node that is not non-faulty is considered faulty (or Byzantine). A node is
correct if it has been non-faulty for Δnode time units.1

Definition 2. A communication network is non-faulty if messages arrive at
their destinations within δ time units, and the content of the message, as well as
the identity of the sender, arrive intact. A communication network is correct
if it has been non-faulty for Δnet time units.2

1 The value of Δnode will be stated later.
2 The value of Δnet is stated below.

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 237

The value of Δnet is chosen so if at time t1 the communication network is non-
faulty and stays so until t1 + Δnet, then only messages sent after t1 are received
by non-faulty nodes.

Definition 3. A system is coherent if the network is correct and there are at
least n − f correct nodes.

Once the system is coherent, a message between two correct nodes is sent, re-
ceived and processed within d time units, where d is the sum of δ, π and the
upper bound on the potential drift of correct local timers during such a period.
Δnet should be chosen in such a way as to satisfy Δnet ≥ d.. Since d includes the
drift factor, and since all the intervals of time will be represented as a function
of d, we will not explicitly refer to the drift factors in the rest of the paper.

2.1 Self-stabilizing Byzantine Pulse-Synchronization

Intuitively, the pulse synchronization problem consists of synchronizing the cor-
rect nodes so they invoke their pulses together Cycle time apart. That is, all
correct nodes should invoke pulses within a short interval, then not invoke a
pulse for approximately Cycle time, then invoke pulses again within a short
interval, and so on. Adding “Self-stabilizing Byzantine” to the pulse synchro-
nization problem, means that starting from any memory state and in spite of
ongoing Byzantine faults, the correct nodes should eventually invoke pulses to-
gether Cycle time apart.

Since message transmission time varies and also due to the Byzantine presence,
one cannot require the correct nodes to invoke pulses exactly Cycle time apart.
Instead, cyclemin and cyclemax are values that define the bounds on the actual
cycle length in a correct behavior. The protocol presented in this paper achieves
cyclemin = Cycle ≤ cycle ≤ Cycle + 12d = cyclemax.

To formally define the pulse synchronization problem, a notion of “pulseing
together” needs to be addressed.

Definition 4. A correct node p invokes a pulse near time unit t if it invokes a
pulse in the time interval [t − 3

2 · d, t + 3
2 · d]. Time unit t is a pulsing point if

every correct node invokes a pulse near t.

Definition 5. A system is in a synchronized pulsing state in the time in-
terval [r1, r2] if

1. there is some pulsing point t0 ∈ [r1, r1 + cyclemax] ;
2. for every pulsing point ti ≤ r2 − cyclemax there is another pulsing point ti+1,

ti+1 ∈ [ti + cyclemin, ti + cyclemax];
3. for any other pulsing point t̄ ∈ [r1, r2], there exists i, such that |ti − t̄| ≤ 3

2 ·d.

Intuitively, the above definition says that in the interval [r1, r2] there are pulsing
points that are spaced at least cyclemin apart and no more than cyclemax apart.

238 D. Dolev and E.N. Hoch

Definition 6. Given a coherent system, The Self-Stabilizing Pulse Synchroniza-
tion Problem requires that:

Convergence: Starting from an arbitrary system state, the system reaches a
synchronized pulsing state within a finite amount of time.
Closure: If the system is in a synchronized pulsing state in some interval [t1, t2]
(s.t. t2 > t1 + cyclemax), then it is also in a synchronized pulsing state in the
interval [t1, t] for any t > t2.

3 Solution Overview

The main algorithm, Erratic-Pulser, assumes a self-stabilizing, Byzantine
tolerant, distributed agreement primitive, Q, which is defined in the following
section. A protocol providing the requirements of Q is presented in Section 5.

Using Q, the Erratic-Pulser algorithm produces agreement among the
correct nodes on different points in time at which they invoke pulses; and
these points become sparse enough. Using this basic point-in-time agreement,
a full pulse algorithm is built, named Balanced-Pulser. By using the basic
pulseing pattern produced by Erratic-Pulser, Balanced-Pulser manages
to solve the pulse-synchronization problem.

During the rest of this paper, the constants Cycle, cyclemin and cyclemax are
used freely. However, it is important to note that Cycle must be chosen such
that it is large enough. The exact limitations on the possible values of Cycle will
be stated later. An explanation on how to create a pulseing algorithm with an
arbitrary Cycle value is presented in Section 9.

4 The Q Primitive

Q is a primitive executed by all the nodes in the system. However, each invocation
of a specific Q is associated with some node, p, hence a specific invocation will
sometimes be referred to as Q(p). That is, Q(p) is a distributed algorithm,
executed by all nodes, and triggered by p (p’s special role in the execution of
Q(p) will be elaborated upon later). In the following discussion several instances
of Q(p) may coexist, but it will be clear from the context to which instance Q(p)
refers. Each instance is a separate copy of the protocol and each node executes
each instance separately.

Q(p) is a “consensus primitive”, that is, each node q has an input value vq,
and upon completing the execution of Q(p) it produces some output value Vq.
The input values and output values are boolean, i.e., vq, Vq ∈ {0, 1}. Denote by
τq the local-time at node q at which Vq is defined; that is τq is the local time at
node q at which q determines the value of Vq (and terminates Q(p)).

The un-synchronized and distributed nature of Q(p) requires distinguishing
between two stages. The first stage is when p attempts to invoke Q(p); this at-
tempted invocation involves exchanging messages among the nodes. The second
stage is when enough correct nodes agree to join p’s invocation of Q(p), and

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 239

hence start executing Q(p). When p is correct, the first stage and the second
stage are close to each other; however, when p is faulty, no a priori bound can
be set on the time difference between the first and the second stages. Note that
p itself joins the instance of Q(p) only after the preliminary invocation stage.

Informally, joinq is the time at which q agrees to join the instance of Q(p)
(which is also the time at which q determines its input value vq.) Following
this stage it actively participates in determining the output value of Q(p). The
implementation of Q(p) needs to explicitly instruct a node when to determine
its input value.

In the following discussion, rtinvoke will denote the time at which p invoked
Q(p) and joinfirst will denote the time value at which the first correct node
joins the execution of Q(p); joinlast will denote the time value at which the last
correct node joins p in executing Q(p). That is, joinfirst = mincorrect q{joinq}
and joinlast = maxcorrect q{joinq}.

Q(p) is self-stabilizing, and its properties hold once the system executing it is
coherent for at least ΔQ time. In other words, no matter what the initial values
in the nodes’ memory may be, after the system has been coherent for ΔQ time,
the properties of Q(p) will hold.3

Q(p)’s properties follow. Observe that there are different requirements, de-
pending on whether p is a correct node or not.

1. For any node p invoking Q(p), the following holds:
(a) Agreement: all correct nodes that have terminated have the same out-

put value. That is, for any pair of correct nodes, q and q′, which have
completed Q(p), Vq = Vq′ . V denotes this common output value.

(b) Validity: if all correct nodes have the same input value ν then V = ν.
(c) Termination: if some correct node joins Q(p) then all correct nodes ter-

minate within Δmax time units from joinfirst but no quicker than Δmin.
That is, for a correct q, rt(τq) ∈ [joinfirst +Δmin, joinfirst +Δmax], where
τq is the local time at which q determines the value of Vq, and rt(τq) is
the time at which this takes place.

(d) Tightness: if a correct node terminates, then for any correct nodes q, q′:
|rt(τq) − rt(τq′)| ≤ 3 · d.

(e) Collaboration: if one correct node joins the execution of Q(p), then all
correct nodes join the execution of Q(p) within 3 · d of each other; that
is, |joinlast − joinfirst| ≤ 3 · d.

2. For a correct node p, starting the execution of Q(p) at time rtinvoke, the
following holds:
(a) Strong Termination: joinfirst ≤ rtinvoke + 3 · d. That is, the first correct

node to join p in executing Q(p) does so within 3 · d time from p’s
invocation of Q(p). Combined with termination, this property means
that all correct nodes terminate by rtinvoke + 3 · d + Δmax.

(b) Separation: p does not start Q(p) more than once every 3 · Δmax time
units.

3 ΔQ is defined below.

240 D. Dolev and E.N. Hoch

3. The following holds for a faulty p, invoking Q(p):
(a) Separation: if a correct node q assigns an output value for Q(p) at some

time t1, then it does not assign an output value for Q(p) again before
t1 + 2 · Δmin.

Remark 1. According to “termination” if joinfirst is not defined, all correct nodes
do not terminate. This implies that all correct nodes terminate if and only if some
correct node joins p in executing Q(p).

Note that p may require the invocation of several Q(p) instances concurrently.
To differentiate between these instances, they are marked with an additional
index, e.g Q1(p),Q2(p), etc. Each such instance has its own memory space, and
hence is independent of other instances. According to the separation property,
a correct node does not execute the same instance of Q(p) too often. That is,
Q1(p) is not executed until the previous Q1(p) has terminated. A faulty node p
may try to invoke Q1(p) as often as it likes, however correct nodes will ignore
the multiple executions.

5 Implementing Q(p), the ss-Byz-Q Algorithm

The implementation of Q(p) makes use of ss-Byz-Agree ([10]). The proper-
ties of ss-Byz-Agree and its guarantees are listed in Appendix A. In ss-Byz-
Agree, when a node p wants to start an agreement on some value, it sends
(Initiator, p, vp) to all other nodes. Nodes receiving this message, initiate the ss-
Byz-Agree algorithm, and start participating in the agreement. Other nodes,
that have not received the (Initiator, p, vp) message (in case p is Byzantine),
join the ss-Byz-Agree algorithm once they are “convinced” that enough cor-
rect nodes are already executing ss-Byz-Agree on p’s value.

This leads to the following insight. If a correct node q ignores an (Initiator, p,
vp) message sent by a Byzantine node (for any reason), it does not change the
properties of ss-Byz-Agree. Since due to p’s Byzantine nature, if p would have
not sent this specific message to q, ss-Byz-Agree’s properties would still hold.
Hence, whether p sends the message and a correct node ignores it, or p doesn’t
send the message at all, the properties of ss-Byz-Agree remain the same. Note
that this is true only if p is Byzantine. In what follows, when a node rejects a
message it ignores it, and when it accepts a message it continues to execute the
protocol as instructed.

Figure 1 presents an algorithm that implements the Q primitive. If node p
wants to invoke Q(p), it does so by executing ss-Byz-Agree (p, start Q) (this
is the Init stage), which means it sends (Initiator, p, start Q) messages to other
nodes. This action triggers the prolog stage of the protocol. If this stage completes
successfully, each correct node peforms a timing test to determine whether to
join the computation of the primitive Q(p). The algorithm is executed in the
background continuously, and it responds to messages / events that are triggered
by p’s execution of ss-Byz-Agree (p, start Q).

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 241

Algorithm ss-Byz-Q
(implementing Q(p)) /* executed at node q */

Init: If p = q invoke ss-Byz-Agree (p, start Q));
/* by sending (Initiator, p, start Q)) message to all */

Prolog: On receiving (Initiator, p, start Q) message from p

if localq > lastq[p] + 2 · Δmax then accept the message;
else ignore the message;

The Primitive Q(p):

1. On returning from ss-Byz-Agree for p with value “start Q” do
if localq > lastq[p] + Δmax + 3 · d then

begin
determine the input value vq; /* this is when q joins Q(p) */

startq[p] := localq;
reset valq[p,];
wait for 3 · d and then invoke ss-Byz-Agree (q, (p, vq));

/* by sending (Initiator, q, (p, vq)) message to all */
end

lastq[p] := localq;
2. On receiving (Initiator, p′, (p, vp′))

if localq ≤ startq[p] + 7 · d then accept the message;
else ignore the message;

3. On returning from ss-Byz-Agree for p′ with value (p, vp′) do
valq[p, p′] = vp′ ;

4. At time localq = startq[p] + Δ + 17 · d
for all p′, check the agreement values valq[p, p′]

if there are n − f 1’s, then set Vq[p] := 1, otherwise set Vq[p] := 0;
return Vq[p] as Q(p)’s output value;

Cleanup:

for any p: if lastq[p] > localq then lastq[p] := localq
for any p: if startq[p] > localq then startq[p] := localq

Fig. 1. An algorithm that implements Q(p)

The values of the constants for the ss-Byz-Q algorithm are: Δmax := Δ+20·d
and Δmin := Δmax − 3 · d, where Δ represents the maximal time required to
complete ss-Byz-Agree (Δ := 7(2f + 3)d, see Appendix A).

In the Q(p) protocol in Figure 1, localq represents the local time at each node
q; in addition there are two arrays of values: startq , lastq. These arrays hold
local-time values (per node p) of events regarding Q(p)’s execution at q. lastq[p]
is used to ensure that q doesn’t participate in Q(p) too often. startq[p] is used
so that all correct nodes know when to stop collecting values of other nodes
(regarding Q(p)’s instance); these values are stored in valq[p, p′].

Remark 2. In the protocols, all the comparisons of the value of localq to some
other value, always compare values that are at most some bounded range apart,
say D. To deal with the possible wraparound of the counter localq, it is enough

242 D. Dolev and E.N. Hoch

that the range of values of localq will be D′ > 2D. The “cleanup” stage of the
protocol (See Figure 1) ensures that comparisons over a circle of size D′ are
uniquely determined.

Note that the protocol parameters n, f and Cycle (as well as the system
characteristic d) are fixed constants and thus considered part of the incorruptible
correct code.4 Thus we assume that non-faulty nodes do not hold arbitrary values
of these constants.

The value of Δnode is crucial for the following claims. Δnode is used to ensure
that non-faulty nodes “run” for some time before they become correct. In the
context of this paper, a non-faulty node should not be considered correct when it
executes ss-Byz-Q that it might have joined before it was non-faulty. Moreover,
since ss-Byz-Q uses ss − Byz-Agree which has its own requirements for a
node’s correctness, we set Δnode := Δnode-ss-byz-agree + Δmax + 3 · d .5

Lemma 1. Once the system is coherent, if all correct nodes pass the condition
in Line 1 during a time interval [t1, t2] s.t.
1. t2 − t1 ≤ 3 · d, and
2. at t1 for any correct node q it holds that localq > startq[p] + Δmax,

then Agreement, Validity, Termination, Tightness and Collaboration hold.

Proof. First we show that no ss − Byz-Agree(p′, (p, vp′)) that was initiated
before t1, terminates after t1. By assumption, at time t1, each correct node q
has localq > startq[p] + Δmax, which means that no correct node has accepted
(Initiator, p′, (p, vp′)) in the time interval [t1 − Δmax + 7 · d, t1]. In the protocol,
any correct node that accepts (Initiator, p′, (p, vp′)) before t1−Δmax+7 ·d, must
have terminated the ss-Byz-Agree no later than t1 − Δmax + 7 · d + Δ + 7 · d,
and hence all correct nodes must have terminated the ss-Byz-Agree no later
than t1 − Δmax + 17 · d + Δ. Since Δmax := Δ + 20 · d, we conclude that any
ss-Byz-Agree that was invoked before t1 terminated before t1.

In addition, due to setting of lastq[p] in Line 1, no correct node will pass the
condition in Line 1 again, before t1 + Δmax + 3 · d. Hence, during the interval
[t2, t2 + Δmax] no correct node passes the condition in Line 1. Note that each
correct node passes the condition in Line 1 exactly once in the interval [t1, t2].
Hence, all correct nodes reset valq[p,] in the interval [t1, t2] and never do so
again before t2 + Δmax. In a sense, the above means that all correct nodes join
p in the interval [t1, t2] and do not join p again, until after time t2 + Δmax.

From the lemma’s condition; for any two correct nodes q, q′, it holds that
|rt(startq [p]) − rt(startq′ [p])| ≤ 3 · d. At this stage, each correct node joins p’s
execution of Q(p) and hence Collaboration holds.

For any pair of correct nodes, q, q′, |rt(startq [p]) − rt(startq′ [p])| ≤ 3 · d.
Moreover, q sends its (Initiator, q, (p, vq)) message 3 · d after its startq[p]. Since
|rt(startq [p]) − rt(startq′ [p])| ≤ 3 · d, q′ has already set its startq′ [p] value when
it receives q’s (Initiator, q, (p, vq)) message. Similarly, q′ receives q’s (Initiator,
q, (p, vq)) message within 7 ·d of startq′ [p] (3d is the waiting of 3d in Line 1 of the

4 A system cannot self-stabilize if the entire code space can be perturbed, see [21].
5 Δnode-ss-byz-agree := 14(2 · f + 3) · d + 10 · d (see [10]).

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 243

protocol, additional 3d is the time difference in startq, and d is the uncertainty
in message delivery), and thus does not ignore it.

This last argument implies that for every correct node q, any other correct
node q′ accepts its (Initiator, q, (p, vq)) message, and hence finishes ss-Byz-
Agree (q, vq) before time startq′ + Δ + 7 · d. Therefore, every correct node
“hears” every other correct node’s value. That is, for any triplet of correct nodes,
q, q′, q′′ it holds that valq[p, q′′] = valq′ [p, q′′].

Consider a Byzantine node q. If some correct node q′ has accepted its (Initia-
tor, q, (p, vq)) message, then according to point 3 of the “Timeliness-Agreement”
property (see Appendix A), ss-Byz-Agree will terminate within Δ + 7 · d time
units. Hence, any other correct node q′′ will terminate within 3·d. Since |startq′ −
startq′′ | ≤ 3 · d, node q′′ will have accepted the same value no later than
startq′′ + Δ + 16 · d (7d come from above, 3d come from the difference in startq,
3d come from the difference in the termination of ss-Byz-Agree and another
3d from the waiting after setting startq[p]; all together 7d+3d+3d+3d = 16d).
Note that this proof holds even though correct nodes may ignore an (Initiator,
q, (p, vq)) message sent by a Byzantine node q. Since no ss-Byz-Agree that was
invoked before t1 is accepted after t1, it holds that valq′ [p, q] = valq′′ [p, q]. As
a result all correct nodes have the same set of values when they consider the
output value vq[p], hence they all agree on the same output value. In addition,
if all correct nodes started with “0”, they will see at most f “1”s, and hence
decide V = 0. Moreover, if all correct nodes started with “1”, then all correct
nodes will decide 1. Thus Agreement and Validity hold.

Each correct node terminates within Δ+17 ·d of returning from p’s invocation
of ss-Byz-Agree (which is the joining point of each correct node to Q(p)),
and they all terminate within 3 · d time units of each other (since |rt(startq) −
rt(startq′)| ≤ 3 · d). Hence Termination and Tightness hold. ��

The following shows that ss-Byz-Q converges in ΔQ := 4·Δmax+Δss−Byz-Agree.
For ss-Byz-Q to operate correctly, ss-Byz-Agree must converge as well. Hence,
in the following, we will assume that Δss−Byz-Agree time has already passed. 6

Lemma 2. Once the system has been coherent for 4 ·Δmax time units, then for
a faulty p, the properties of Q(p) hold for ss-Byz-Q.

Proof. Note that once the system is coherent, startq[p], lastq[p] ≤ localq. Notice
that startq[p] can only be updated at Line 1.

Consider the first 2 · Δmax time units following the time at which the system
became coherent. If some correct node terminates ss-Byz-Agree (p, start Q)
during this period, then all correct nodes do so within 3 ·d of each other. Hence,
they all set their lastq[p] variable within 3 · d time units of each other. That is,
the values rt(lastq[p]) are at most 3 ·d units apart from each other. If no correct
node terminates ss-Byz-Agree (p, start Q) for 2·Δmax, then all lastq[p] haven’t
been updated for 2 · Δmax and hence all lastq[p] + 2 · Δmax < localq for every
correct node q.

6 Δss−Byz-Agree := 2Δ + 10d (see [10]).

244 D. Dolev and E.N. Hoch

Thus, we conclude that after 2 ·Δmax time units either all correct nodes have
rt(lastq[p]) within 3·d of each other or all correct nodes have lastq[p]+2·Δmax <
localq. Note that this state continues to hold as long as no correct node enters
Line 1 since lastq[p] is not updated at any correct node. If some correct node
does update lastq[p] at Line 1, then all correct nodes do so 3 ·d time units apart.

Now consider the period between 2·Δmax and 4·Δmax time units following the
time the system became coherent. If no correct node terminated ss-Byz-Agree
(p, start Q), then each correct node, q, has localq > startq[p] + Δmax (since
startq[p] had not been updated for at least 2 · Δmax time units). Otherwise,
if some correct node q′ has terminated ss-Byz-Agree (p, start Q), it means
that there exists some correct node q̄ that accepted (Initiator, p, start Q) at the
Prolog stage. Thus, localq̄ > lastq̄[p] + 2 · Δmax, which means that until lastq̄[p]
is reset, localq̄ > lastq̄[p] + Δmax + 3 · d. Remember that either the rt(lastq[p])
of each correct node q̄ is within 3 · d time units of all other correct nodes, or
each correct node has lastq[p]+2 ·Δmax < localq. Therefore, we have that for all
correct nodes, until lastq[p] is reset, localq > lastq[p]+Δmax +3 ·d; which means
that when q terminates ss-Byz-Agree (p, start Q) it passes the condition of
Line 1, along with all other correct nodes (within a 3 ·d interval). Therefore, the
rt(startq [p]) of all correct nodes are within 3 · d time units.

Thus, after 4 · Δmax, the rt(startq [p]) of all correct nodes are within 3 · d
time units and rt(lastq[p]) within 3 · d time units of each other or all correct
nodes have lastq[p] + 2 · Δmax < localq. Note that the next time p invokes
ss-Byz-Agree, all correct nodes values of startq[p] will be greater than their
localq by at least 2 · Δmax. Hence, if p invokes ss-Byz-Agree and some correct
node terminates that instance of ss-Byz-Agree, then all correct nodes pass the
condition of Line 1 within 3 ·d of each other, and each correct node has localq >
startq[p] + Δmax. Hence, by Lemma 1 all properties except for Separation hold.

To show that Separation holds, notice that once a correct node has passed
Line 1, it won’t do so again for at least 2 ·Δmax − 3 ·d time units. In addition, it
will terminate the current instance of Q within Δmax. Hence, the next invocation
of Q cannot terminate before 2 · Δmin. And Separation holds. ��
Lemma 3. Once the system has been coherent for 4 · Δmax time units, then
for a correct p, the properties of Q(p) hold for ss-Byz-Q, given that p does not
initiate ss-Byz-Agree (p, start Q) earlier than 3 · Δmax time units following
its previous invocation.

Proof. Since Agreement, Validity, Termination, Tightness and Collaboration
were proven to hold even if p is faulty (under the lemma’s conditions), they
clearly hold if p is correct. Hence, we still need to prove Strong Termination and
Separation. To prove Strong Termination, note that if p is correct, and it has
not invoked Q(p) for 3 · Δmax time units, then when it does invoke Q(p), all
correct nodes will accept the message (Initiator, p, start Q) and hence, accord-
ing to item 2 of the “Timeliness-Agreement” property of ss-Byz-Agree (see
Appendix A), all correct nodes will terminate within 3 · d time units following
p’s invocation of ss-Byz-Agree (p, start Q) and join the execution of Q(p).
Separation follows from the conditions of the lemma. ��

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 245

From the above lemmas, we conclude that after 4 · Δmax + Δss−Byz-Agree time
units, ss-Byz-Q behaves according to Q’s properties. Setting ΔQ := 4 ·Δmax +
Δss−Byz-Agree satisfies the claim that if the system has been coherent for ΔQ
time units, then the properties of Q hold.

Since ss-Byz-Q implements Q’s properties correctly, in the rest of the paper
we will use ss-Byz-Q and Q interchangeably.

6 Constructing the Erratic-Pulser Algorithm

The Erratic-Pulser algorithm (Figure 2) is written in an event-driven fash-
ion; that is, it is continuously executed in the background and no explicit ini-
tialization is needed. The algorithm requires invoking two Q instances per node
(Qstart and Qend). In addition, each node has three timers timerstart,timerend

and timermain with elapsed time of cyclestart,cycleend and cyclemain, respec-
tively. When timerstart or timerend elapse, an instance of ss-Byz-Q is invoked
(Qstart for timerstart and Qend for timerend). timermain is used to determine the
value of WantToPulse, which is used as the input value for Qstart and Qend.
If timermain is elapsed, then WantToPulse := 1, and once timermain is reset,
WantToPulse := 0 until it elapses again.

The intuition behind the algorithm is that WantToPulse determines when p
is willing to invoke a pulse. Once all correct nodes have WantToPulse = 1, the
next time a ss-Byz-Q instance is invoked, all of them will invoke pulses.
Remark: Notice that there is a difference between timerstart, timerend and
timermain. timerstart, timerend are timers that when they elapse, an event
occurs, and the algorithm performs some action. These timers are always set,
that is, once they elapse, they are reset immediately. timermain, on the other

Algorithm Erratic-Pulser /* executed at node p */
/* the Qs are executed in the background */

/* the input value vq for each Q instance, is the
value of WantToPulse at the time q joins Q */

1. when timerstart elapses
reset timerstart with cyclelarge;
reset timerend;
invoke Qstart(p);

2. when timerend elapses
reset timerend with cyclelarge;
invoke Qend(p);

3. WantToPulse := 1 if timermain has elapsed, and WantToPulse := 0, otherwise;
4. on returning from either Qstart(q) or Qend(q) for some q with value V = 1

(a) invoke a pulse;
(b) reset timermain;
(c) reset timerstart;

cleanup:
if a timer is set with invalid value (below 0 or above its maximal value),
reset it; for timermain, 0 is a valid value;

Fig. 2. An algorithm achieving basic synchronized pulseing

246 D. Dolev and E.N. Hoch

hand, will remain in its elapsed state until it is reset. That is, Line 3 is not
executed only when timermain elapses, but rather it is executed continuously. In
a sense, when q wants to read its WantToPulse variable value, it checks whether
timermain has elapsed; if so then it considers WantToPulse = 1, otherwise it
reads WantToPulse = 0.

The following are the values of the constants used in Erratic-Pulser.

cyclestart := cyclemain := Cycle − Δmax − Δmin;
cycleend = Δmin − 10 · d;
cyclelarge := 2 · (Δmax + cyclestart + cycleend).

Note: cyclemain needs to be larger than Δmax +9 ·d time units, hence, Cycle
must be larger than 2 · Δmax + Δmin + 9 · d time units.

7 Erratic-Pulser’s Correctness Proofs

Definition 7. A correct node p pulses-in-unison, there is a pulsing point t,
such that p invokes a pulse near t each time that p invokes a pulse. The system
pulses-in-unison, if for every correct node p , p pulses-in-unison

Remark 3. The definition of “near t” implies that if p pulses-in-unison then
each time p invokes a pulse there is a time interval [t1, t2] such that |t2−t1| ≤ 3·d
and each correct node (including p) invokes a pulse within this interval. This
also implies that if there exists a correct node p that pulses-in-unison then the
system pulses-in-unison.

Lemma 4. Once the system has been coherent for ΔQ time, the system pulses-
in-unison.

Proof. According to Lemma 2 and Lemma 3 (in Section 5), once the system has
been coherent for ΔQtime units, all copies of ss-Byz-Q behave according to
the requirements of Q. This means that all correct nodes see the same output
values. Since a correct node invokes a pulse only in accordance with the output
of a Q, if some correct node invokes a pulse, then within 3 · d time units from
its pulse, all correct nodes will also invoke pulses. This means that every correct
node pulses-in-unison, which means that the system pulses-in-unison. ��

The following lemma proves that a correct node will eventually invoke a pulse.
The previous lemma claims that after some time, if a correct node invokes a
pulse, then all the correct nodes invoke pulses.

Lemma 5. Eventually some correct node will invoke a pulse. This happens no
later than ΔQ+Δmax +cyclelarge +cyclemain +3 ·d time units after the point
at which the system becomes coherent.

Proof. Consider the system ΔQ after it becomes coherent: If a correct node in-
vokes a pulse, the lemma holds. Otherwise, after cyclemain time units, all correct
nodes will have WantToPulse as 1. Eventually, after no more than cyclelarge,

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 247

timerstart at some correct p will expire, which will initiate Qstart(p), that termi-
nates no more than Δmax + 3 · d time units afterwards (by strong termination),
and will have the output value V = 1 (since all correct nodes had the input value
of v = 1). By line 4, of the Erratic-Pulser, p will invoke a pulse. ��

Lemma 6. Once the system pulses-in-unison, let t1 be a time unit at which a
correct node p invokes a pulse. Let t2 be the last time at which p invokes a pulse
in the interval [t1, t1 + Δmax + 3 · d]. p does not invoke a pulse in the interval
[t2, t2 + cyclemain − 3 · d + Δmin]. p invokes a pulse at some time t3, where
t3 ≤ t2 + cyclemain + 6 · d + Δmax.

Proof. According to the lemma’s assumption the system pulses-in-unison. Hence,
when p invokes a pulse at t1 all correct nodes invoke pulses before time t1 +3 ·d.
Define [ts, te] to be the time interval in which all correct nodes have invoked
a pulse, such that t1 ∈ [ts, te] and te − ts ≤ 3 · d. All correct nodes execute
lines 4.a, 4.b and 4.c during the interval [ts, te]. Therefore, the correct nodes’
timers timermain,timerstart are reset. Hence, after te all correct nodes’ values
of WantToPulse are 0, and hence any correct node that joins any Q instance
after te has an input value vq = 0. This holds until timermain elapses at some
correct node, that is until ts + cyclemain. In other words, no correct node joins
any Q instance in the interval [te, ts + cyclemain] with input value of 1.

By definition, t2 is the last time that p invoked a pulse in the interval [t1, t1 +
Δmax + 3 · d]. Hence, after t2 + 3 · d all correct nodes have invoked pulses,
and hence have WantToPulse as 0 for at least cyclemain − 3 · d time units.
Therefore, in the interval [t2 + 3 · d, t2 + cyclemain − 3 · d] no correct node joins
any instance ofQ with an input value of 1. Since cyclemain ≥ Δmax + 9 · d,
it holds that t2 + 3 · d ∈ [te, ts + cyclemain], hence during the time interval
[te, t2 + cyclemain − 3 · d] no correct node joins any Q instance with an input
value of 1. Hence, in the time interval [te + Δmax, t2 +cyclemain − 3 · d + Δmin]
no correct node invokes a pulse. Since t1 + 3 · d + Δmax ≥ te + Δmax and since
t2 is the last time p invoked a pulse before t1 + 3 · d + Δmax, it holds that p did
not invoke a pulse in the time-interval [t2, t2 + cyclemain − 3 · d + Δmin].

Lastly, after t2 + 3 · d time units have elapsed, all correct nodes have reset
timermain and timerstart. Since cyclemain = cyclestart, we have that when
timerstart elapses at some correct node, then WantToPulse = 1 at that correct
node. By time t2 + 3 · d + cyclemain all correct nodes have set their value of
WantToPulse to 1. Consider the last correct node to do so, it starts executing
Q, as instructed by Line 1 (the elapsing of timerstart), and since the input values
of all correct nodes are 1, it terminates with an output value of 1. This happens
no later that t2 + 6 · d + cyclemain + Δmax. That is, p invokes a pulse no later
than t3 = t2 + 6 · d + cyclemain + Δmax. ��

Note that the above lemma shows that a correct node p invokes a pulse in some
pattern. That is, after each pulse there is a period of uncertainty, and afterwards
there is a long period of no pulseing. Then p invokes a pulse again, and so on.
Note that in the above lemma, the timerend was never used; it will be used
in the following lemma, which claims the “uncertainty” period is of a constant

248 D. Dolev and E.N. Hoch

length, and at the end of it a pulse is invoked. This lemma will give us the
required properties, since with it the pulseing pattern of a correct node p will
be constant, and since the system pulses-in-pattern, the entire pulseing pattern
of the system will be determined.
Lemma 7. Consider t1, t2 to be as defined in Lemma 6. Once the system pulses-
in-unison, the value of t2 is in the interval [t1 + Δmin − 13 · d, t1 + Δmax + 3 · d].

Proof. According to Lemma 6, after the last pulse there is a silent period during
which timermain and timerstart tick away. Once they elapse (they both elapse
together), the following happens. First, WantToPulse is set to 1 (until the next
pulse). Second, timerend is reset; and third, a Q instance is initiated.

Since the system pulses-in-unison, after the last pulse (at time t2) all correct
nodes reset timerstart. This means that timerstart elapses at all correct nodes
within a 3 · d interval, which implies that timerend elapses at all correct nodes
within a 3 · d interval. Consider the last node q to have had timerstart elapse
(at time t′). No correct node has had timerstart elapse before time t′ − 3 · d,
hence at time t′ − 3 · d + Δmin all correct nodes still have WantToPulse = 1
(no Q instance managed to finish yet). Therefore, when q’s timerend elapses at
time t′ − 10 · d + Δmin (since cycleend = Δmin − 10 · d), all correct nodes are
guaranteed to join q’s Q(q) instance with input value of 1, and hence in time
interval [t′ + Δmin − 10 · d + Δmin, t′ + Δmin − 7 · d + Δmax] q invokes a pulse.

t′1, t
′
2 represent the same meaning as t1, t2, just for the “pulseing cycle” that

starts after t2. Consider t′1 to be the first time value at which a correct q′ invokes
a pulse after t2 (note that according to Lemma 6, t′1 ∈ [t2 + cyclemain − 3 ·
d + Δmin, t3]). For q′ to invoke a pulse, at least one correct node should have
WantToPulse = 1 in the interval [t′1 − Δmax, t′1 − Δmin]. Since t′1 is the first
time some node invokes a pulse, and since t′− 3 · d is the first time some correct
node has WantToPulse = 1 in the current “pulseing cycle”, we have that
t′ ∈ [t′1 −Δmax, t′1 −Δmin +3 ·d]. Therefore, q invokes a pulse due to timerend’s
elapsing is in the interval [t′1 − Δmax + Δmin − 10 · d + Δmin, t′1 − 4 · d + Δmax].
Since Δmax = Δmin + 3 · d, we have that the above time interval is [t′1 − 13 ·
d + Δmin, t′1 − 4 · d + Δmax]. This implies that t′2 ≥ t′1 − 13 · d + Δmin. Which
means that starting from the first pulse, the next “pulseing cycle” will have
that t2 ≥ t1 − 13 · d + Δmin. ��
The above lemmata show that if the system has been coherent for ΔErratic-Pulser

:= ΔQ+3 ·Cycle, then all correct nodes invoke pulses together, and they have a
distinctive pulseing pattern: say a node invokes a pulse at some time t1; during
the interval [t1, t1 + Δmin − 13 · d] there could be some additional pulses, then
during the interval [t1 + Δmin − 13 · d, t1 + Δmax + 3 · d] at least one pulse is
invoked, and then there is an interval of at least cyclemain + Δmin − 3 · d time
units during which no pulse is invoked, and finally, within the next 12 · d there
will be new pulses and a new pulseing “cycle” will start.

Note that the length of this “cycle” is bounded from below by Δmax +
cyclemain+Δmin, and bounded from above by Δmax+cyclemain+Δmin+12·d.
In addition, notice that each such “cycle” starts with a “possibly noisy period”
of length Δmax +3 ·d, and ends with a “quiet period” of cyclemain +Δmin −3 ·d

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 249

time. Since cyclemain ≥ Δmax + 9 · d, we have that the quiet period is at least
Δmin longer than the first period. This remark is important for the next section.

8 Creating the Balanced-Pulser

The above Erratic-Pulser synchronizes the correct nodes into some repet-
itive pulseing pattern. However, to solve the pulse-synchronization problem,
an additional algorithm is required. We now present the Balanced-Pulser
algorithm, which starting from an arbitrary state, shortly after the system is
coherent, produces pulses approximately once in a Cycle, despite the permanent
presence of Byzantine nodes.

Algorithm Balanced-Pulser /* executed at node p */

1. execute an instance A of Erratic-Pulser in the background;
2. when A produces a pulse

if A has not produced a pulse for at least cyclemain + Δmin − 3 · d time,
invoke a pulse.

Fig. 3. An algorithm solving the pulse-synchronization problem

Theorem 1. Algorithm Balanced-Pulser solves the pulse-synchronization
problem in a self-stabilizing and Byzantine tolerant manner.

Proof. Once the system is coherent for ΔQ time, by Lemma 4 the system pulses-
in-unison. Hence, each time a correct node sees A pulseing, within 3·d time units
all other correct nodes see the same. In addition, by Lemma 6 and Lemma 7, the
pulses that A produces have a distinct pattern. That is, a pulse, then a period
of length Δmax + 3 · d with possible pulses and a period of length cyclemain +
Δmin − 3 · d with no pulses. Then, within 12 · d, another pulse.

If a correct node hasn’t heard A producing a pulse for cyclemain+Δmin−3 ·d
time, it must mean that A has undergone the “quiet period”, since the “possible
noisy period” is short. Hence, the next pulse produced must be the beginning of
a new “cycle”. Therefore, all correct nodes invoke pulses together in Balanced-
Pulser. In addition, all correct nodes invoke pulses only at the beginning of a
“cycle”, and they invoke pulses 3 · d apart of each other. Since all correct nodes
invoke pulses only at the beginning of a “cycle”, we need only to argue about
the length of the “cycle”.

According to the lemmata in the previous section, the difference between
the “long-cycle” and the “short-cycle” is at most 12 · d time units. Setting
cyclemin := Δmax + cyclemain + Δmin, and cyclemax := cyclemin + 12 · d,
we have that the system is in a synchronized pulsing state. That is, starting
from any state, the system reaches a synchronized pulsing state; this proves con-
vergence. In addition, according to the previous section, the pulseing pattern
remains as long is the system is coherent, thus closure also holds. ��

250 D. Dolev and E.N. Hoch

The convergence time of Balanced-Pulser is the same as the convergence of
Erratic-Pulser + Cycle; that is, ΔQ + 4 · Cycle time units.

9 Discussion

Time complexity: Once the system has become coherent, the Balanced-
Pulser algorithm converges in O(f) + O(Cycle) time.

Message complexity: The Balanced-Pulser algorithm executes 2 · (n − f)
ss-Byz-Q instances each Cycle. Since ss-Byz-Q has O(f ·n2) message complex-
ity, then the message complexity becomes O(f · n3) per cycle.

Executing fewer ss-Byz-Q: The main feature of Erratic-Pulser is that
“eventually there will be a correct node that executes ss-Byz-Q”. As pre-
sented, Erratic-Pulser has each correct node execute ss-Byz-Q once its
timers elapse. The algorithm can be adapted such that only f + 1 of the nodes
(predetermined and considered as part of the program, not memory) can invoke
Q. Since there will always be a correct node that invokes Q, the correctness of
the algorithm holds. This reduces the message complexity to O(f2 · n2).

Clock synchronization: The Digital clock synchronization problem consists
of having all correct nodes agree on an integer value that progresses linearly
with time. To build a digital clock synchronization algorithm using a pulseing
algorithm, all that is needed is to execute an agreement on the next clock’s value
each time a pulse is invoked. Setting the cycle of the pulse to be long enough for
the agreement algorithm to terminate, ensures that all correct nodes will agree
on the clock value, and advance it appropriately. Note that the convergence time
of such an algorithm is the convergence time of the underlying pulse algorithm,
plus an additional cyclemaxtime units. See [4] for a more detailed discussion.

Arbitrary Cycle values: According to the constraints of the Balanced-
Pulser algorithm, Cycle must be larger than 2 · Δmax + Δmin + 9 · d time
units. For the purpose of clock synchronization it is enough to have Cycle in the
order of Δ; for example, Cycle = 5 · Δ would suffice for a linear convergence of
the digital clock synchronization algorithm.

However, if one wishes to use pulseing for other reasons, it is desired to be
able to pulse in any Cycle. To pulse every Cycle′ < 2 ·Δmax +Δmin +9 ·d, set
Cycle to be some multiplication of Cycle′ such that it falls within the constraints.
Now, each time that Balanced-Pulser produces a pulse, reset a timer of Cycle′

long, and when it elapses, invoke a pulse and reset the timer again. The pulseing
pattern will be a pulse by Balanced-Pulser every Cycle and Cycle/Cycle′

pulses in between. This scheme is similar to what is done in [18]. The tricky part
is to notice that if a pulse is invoked less than Cycle′ time before a pulse by
Balanced-Pulser then the timer for the “small” pulses is reset, and hence
a pulse is invoked again only in Cycle′ time units. Note that the difference
between cyclemax and cyclemin is still 12 · d, hence there is no meaning to having
Cycle′ ≤ 12 · d. That is, Cycle′ should always be larger than 12 · d time units.

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 251

References

1. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

2. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

3. Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Tixeuil, S., Her-
man, T. (eds.) SSS 2005. LNCS, vol. 3764, Springer, Heidelberg (2005)

4. Daliot, A., Dolev, D., Parnas, H.: Linear time byzantine self-stabilizing clock
synchronization. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003.
LNCS, vol. 3144, Springer, Heidelberg (2004), A corrected version appears in
http://arxiv.org/abs/cs.DC/0608096

5. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

6. Nesterenko, M., Arora, A.: Local tolerance to unbounded byzantine faults. In: IEEE
SRDS 2002, pp. 22–31 (2002), citeseer.ist.psu.edu/nesterenko02local.html

7. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes. In:
22nd Int. Conference on Distributed Computing Systems (2002)

8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. Journal of the ACM 51(5), 780–799 (2004)

9. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock syn-
chronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
Springer, Heidelberg (2006)

10. Daliot, A., Dolev, D.: Self-stabilizing byzantine agreement. In: PODC 2006. Proc.
of the Twenty-fifth ACM Symposium on Principles of Distributed Computing,
Denver, Colorado (July 2006)

11. Liskov, B.: Practical use of synchronized clocks in distributed systems. In: Pro-
ceedings of 10th ACM Symposium on the Principles of Distributed Computing,
ACM Press, New York (1991)

12. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel
Processing Letters 1, 11–18 (1991)

13. Dolev, S.: Possible and impossible self-stabilizing digital clock synchronization in
general graphs. Journal of Real-Time Systems 12(1), 95–107 (1997)

14. Dolev, S., Welch, J.L.: Wait-free clock synchronization. Algorithmica 18(4), 486–
511 (1997)

15. Papatriantafilou, M., Tsigas, P.: On self-stabilizing wait-free clock synchronization.
Parallel Processing Letters 7(3), 321–328 (1997)

16. Herman, T.: Phase clocks for transient fault repair. IEEE Transactions on Parallel
and Distributed Systems 11(10), 1048–1057 (2000)

17. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

18. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine
attacks. In: DISC2007. LNCS, vol. 4731, pp. 193–207. Springer, Heidelberg (2007)

19. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distributed Computing 1, 26–39 (1986)

20. Daliot, A., Dolev, D.: Self-stabilizing byzantine pulse synchronization. Technical
report, Cornell ArXiv, (August 2005), http://arxiv.org/abs/cs.DC/0608092

21. Freiling, F.C., Ghosh, S.: Code stabilization. In: Tixeuil, S., Herman, T. (eds.) SSS
2005. LNCS, vol. 3764, Springer, Heidelberg (2005)

252 D. Dolev and E.N. Hoch

A The Use of ss-Byz-Agree

The mode of operation of the ss-Byz-Agree, a self-stabilizing Byzantine agree-
ment protocol presented in [10] is as follows: A node that wishes to initiate
agreement on a value does so by disseminating an initialization message to all
nodes that will bring them to (explicitly) invoke the ss-Byz-Agree protocol.
Nodes that did not invoke the protocol may join in and execute the protocol in
case enough messages from other nodes are received during the protocol. The
protocol requires correct initiating nodes not to disseminate initialization mes-
sages too often. In the context of the current paper, an (Initiator, p, *) message
serves as the initialization message.

When the protocol terminates, the ss-Byz-Agree protocol returns (in each
correct node q) a triplet (p, m, τp

q), where m is the agreed value that p has sent.
The value τp

q is an estimate, on the receiving node q’s local clock, as to when
node p has sent its value m. We also denote it as the “recording time” of (p, m).
Thus, a node q’s decision value is 〈p, m, τp

q 〉 if the nodes agreed on (p, m). If the
sending node p is faulty then some correct nodes may agree on (p,⊥), where ⊥
denotes a non-value, and others may not invoke the protocol at all. The function
rt(τq) represents the time at which the local clock of q reads τq.

The ss-Byz-Agree protocol satisfies the following typical Byzantine agree-
ment properties:

Agreement: If the protocol returns a value (
=⊥) at a correct nodes, it returns
the same value at all correct nodes;
Validity: If all correct nodes are triggered to invoke the protocol ss-Byz-Agree
by a value sent by a correct node p, then all correct nodes return that value;
Termination: The protocol terminates within a finite time;

The proof uses the following properties of the ss-Byz-Agree protocol ([10]):

Timeliness-Agreement Properties:
1. (agreement) For every two correct nodes q and q′ that decide 〈p, m, τp

q 〉 and
〈p, m, τp

q′〉 at local times τq and τq′ respectively: |rt(τq) − rt(τq′)| ≤ 3d.
2. (validity) If all correct nodes invoked the protocol in the interval [t0, t0 + d],

as a result of some initialization message containing m sent by a correct
node p that spaced the sending by at least 6d from the completion of the
last agreement on its message, then for every correct node q, the decision
time τq, satisfies t0 − d ≤ rt(τq) ≤ t0 + 3d.

3. (termination) The protocol terminates within Δ time units following its ex-
plicit invocation, and within Δ + 7d time units, in case it was not explicitly
invoked7.

4. (separation) Let q be any correct node that decided on any two agreements
regarding p at local times τq and τ̄q, then t2 + 5d < t̄1 and rt(τq) + 5d <
t̄1 < rt(τ̄q), where t2 is the latest time at which a correct node invoked
ss-Byz-Agree in the earlier agreement, and t̄1 is the earliest time that
ss-Byz-Agree was invoked by a correct node in the later agreement.

7 Δ := 7(2f + 3)d.

Chapter 3

Fast Self-Stabilizing Byzantine
Tolerant Digital Clock
Synchronization

Michael Ben-Or and Danny Dolev and Ezra N. Hoch, Proceedings of the
twenty-seventh ACM symposium on Principles of distributed computing (PODC
’08), Toronto, Canada, Pages: 385-394, Aug. 2008.

31

Fast Self-Stabilizing Byzantine Tolerant Digital Clock
Synchronization∗

Michael Ben-Or†
Hebrew University

benor@cs.huji.ac.il

Danny Dolev
Hebrew University

dolev@cs.huji.ac.il

Ezra N. Hoch
Hebrew University

ezraho@cs.huji.ac.il

ABSTRACT
Consider a distributed network in which up to a third of the
nodes may be Byzantine, and in which the non-faulty nodes
may be subject to transient faults that alter their memory in
an arbitrary fashion. Within the context of this model, we
are interested in the digital clock synchronization problem;
which consists of agreeing on bounded integer counters, and
increasing these counters regularly.

It has been postulated in the past that synchronization
cannot be solved in a Byzantine tolerant and self-stabilizing
manner. The first solution to this problem had an expected
exponential convergence time. Later, a deterministic solu-
tion was published with linear convergence time, which is
optimal for deterministic solutions.

In the current paper we achieve an expected constant con-
vergence time. We thus obtain the optimal probabilistic so-
lution, both in terms of convergence time and in terms of
resilience to Byzantine adversaries.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Reliability, Theory

Keywords
Distributed computing, fault tolerance, self-stabilization, Byzan-
tine failures, clock synchronization, digital clock synchro-
nization.

∗This work was funded in part by Israel Science Foundation.
†Incumbent of the Jean and Helena Alfassa Chair in Com-
puter Science.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

1. INTRODUCTION
Clock synchronization is a fundamental building block of

distributed systems. The vast majority of distributed tasks
require some sort of synchronization; clock synchronization
is a very straightforward and intuitive tool for supplying
this. Thus, it is desirable to have a highly robust clock syn-
chronization mechanism available. A typical self-stabilizing
algorithm seeks to re-establish synchronization once lost;
a Byzantine tolerant algorithm assumes synchronization is
never lost and focuses on containing the influence of the per-
manent presence of faulty nodes. The robustness we provide
achieves both synchronization and Byzantine tolerance.

We consider a system in which the nodes execute in lock-
step by regularly receiving a common “pulse” (or “tick”
or “beat” - we will use the term “beat” in order to stay
clear of any confusion with “pulse synchronization” or “clock
ticks”). The digital clock synchronization problem seeks to
ensure that all correct nodes eventually hold the same value
for the beat counter (digital clock) and as long as enough
nodes remain correct, they will continue to hold the same
value and to increase it by “one” at each beat.

Clock synchronization in a similar model has earlier been
denoted as “digital clock synchronization” (see [1, 8, 16])
or “synchronization of phase-clocks” (see [14]); we will sim-
ply use the term “clock synchronization”. However, these
solutions do not consider Byzantine adversaries. In recent
years there has been major advancement in self-stabilizing
digital clock synchronization algorithms that are Byzantine
tolerant. Starting from [9] which gives an expected expo-
nential convergence time, and continuing with [7] which has
deterministic linear convergence time. The current work
continues this line, by providing a solution with expected
constant convergence time.

In the classical “Byzantine field”, it was shown that deter-
ministic Byzantine agreement protocols require linear run-
ning time (see [13]). Randomization can be used to break
this linear-time barrier, for example see [2], [4], [3] and [12].
The main idea behind such algorithms is to agree on a com-
mon coin with some probability. Each time all non-faulty
nodes have the same random bit, they have a certain prob-
ability of reaching an agreement (on the input values).

The structure of such agreement protocols implies that
their expected convergence time depends highly on the prob-
ability p that the common-coin algorithm will produce the
same coin at all non-faulty nodes; specifically, their expected
convergence time is O(1

p
).

385

Our solution can use any common-coin protocol1 operat-
ing in a synchronous network, provided that the protocol
has a constant probability of producing the same random
bit at all non-faulty nodes upon termination (such as the
protocol described in [12]). By re-executing this protocol
anew each round, a “stream” of random bits is produced
- one bit each round. Combining this with a single round
“agreement phase” produces the basis for our self-stabilizing
Byzantine tolerant clock synchronization.

The main contribution of the paper is a self-stabilizing,
Byzantine-tolerant digital clock synchronization algorithm
that converges in expected constant time; the algorithm is
optimal in its convergence time and in its resiliency (it is
resilient to f < n

3
Byzantine nodes.)

Aside from the clock synchronization algorithm, we show
how to turn a non-self-stabilizing common-coin algorithm
into a self-stabilizing one that produces a random bit every
round.

1.1 Previous Self-stabilizing Byzantine Toler-
ant Clock Synchronization Algorithms

Previously, two different models were considered within
the scope of the self-stabilizing Byzantine tolerant clock syn-
chronization problem. The Global Beat System model (also
known as the “synchronous” model), and the Bounded-Delay
model (also known as the “semi-synchronous” model). In
the synchronous model there is some device which is con-
nected to all nodes and simultaneously delivers a signal to
all nodes regularly. The semi-synchronous model assumes a
bound on the message delivery time between two nodes.

The clock synchronization problem is slightly different in
the different models: in the synchronous model, all nodes
have an integer counter, and all non-faulty nodes must agree
on the counter’s value and increment it every time they re-
ceive a signal from the global device; this problem is some-
times referred to as “digital clock synchronization”. In the
semi-synchronous model, each node is equipped with a phys-
ical clock that can only measure the passing of time (but
cannot tell the current time). All non-faulty nodes’ physical
clocks advance (more or less) at the same rate. In this set-
ting, the clock synchronization problem consists of all non-
faulty nodes having clock variables s.t. the difference be-
tween any two non-faulty nodes’ clocks is bounded. Clearly,
it is easier to solve the clock synchronization problem in the
synchronous model.

The self-stabilizing Byzantine-tolerant clock synchroniza-
tion problem was first tackled in [10] (see [9] for the full
version). It was solved in both models using probabilis-
tic algorithms, with expected exponential convergence time.
The Byzantine resiliency supported by [10] is optimal.

Later on, a series of papers addressed the clock synchro-
nization problem in both models using deterministic algo-
rithms. In the bounded-delay model the first determinis-
tic polynomial solution was presented in [5]. The polyno-
mial convergence was obtained using a pulse synchroniza-
tion protocol as a building block.2 [6] provides an optimal
(deterministic) solution in terms of convergence time and

1Due to self-stabilizing issues, the common coin protocol
cannot rely on special initialization of all non-faulty nodes,
such as assumed in [17].
2The pulse synchronization protocol in the original version
of [5] had a flaw, but any other pulse synchronization proto-
cols can be used, as appears in the corrected version there.

Byzantine resiliency for the bounded delay model, using a
much simpler pulse producing protocol.

In the synchronous model, [15] solved the digital clock
synchronization problem with deterministic linear conver-
gence time. The main drawback of [15] is its Byzantine-
resiliency, which was limited to f < n

4
, as opposed to the

optimal f < n
3
. The result of [7] supports f < n

3
Byzantine

nodes, while maintaining the deterministic linear conver-
gence time. In [7] the clock synchronization problem is
solved via an underlying “pulse algorithm” (see [7] for more
information).

In the current work we solve the digital clock synchro-
nization problem in the synchronous model, in a probabilis-
tic manner, with expected constant convergence time. This
solution is optimal in terms of its convergence time and in
terms of its Byzantine resiliency.

Table 1 presents a summary of previous results as com-
pared to the current paper.

Table 1: Summary of previous results

Paper Model Convergence Resiliency

[10] sync, probabilistic O(22(n−f)) f < n
3

[10] semi-sync, probabilistic O(n6(n−f)) f < n
3

[15] sync, deterministic O(f) f < n
4

[7] sync, deterministic O(f) f < n
3

[6, 5] semi-sync, deterministic O(f) f < n
3

current sync, probabilistic O(1) f < n
3

The paper is structured as follows: in Section 2 the model
is presented along with a self-stabilizing coin-flipping proto-
col. Section 3 defines the k-Clock problem and solves it for
k = 2, Section 4 solves the 4-Clock problem, Section 5 in-
cludes a solution to the k-Clock problem for any k; and
lastly, Section 6 concludes with a discussion of the results.

2. MODEL AND DEFINITIONS
Our model consists of a distributed network of n nodes,

which are fully connected to each other. Nodes communicate
via message passing, and are all connected to a global beat
system that provides “beats” at regular intervals; each beat
reaches all nodes simultaneously. Each message m that is
sent from p to q at beat r is guaranteed to reach q before
beat r+1. In the following discussion, the term “round” will
be used in the context of non-self stabilizing synchronous
algorithms, and “beat” will be used when talking about self-
stabilizing synchronous algorithms. Notice that “beat” can
be used to denote the signal received from the global beat
system, as well as the interval between such two signals;
when not stated otherwise, “beat” will refer to the second
meaning.

A percentage of the nodes may be Byzantine, and be-
have arbitrarily; the presented algorithms are resilient to
f < 1

3
·n such faulty nodes. We assume an information theo-

retic adversary with private channels. That is, the Byzantine
adversary has access to all communications between faulty
and non-faulty nodes; however, it does not have access to
communications among non-faulty nodes. Moreover, the
non-faulty nodes cannot use any computational assumptions
(e.g. signatures) to guard against the adversary.

In addition to the faulty nodes, non-faulty nodes may un-
dergo transient faults that change their memory in an ar-
bitrary manner. Any resilient protocol is thus required to

386

converge from any memory state. More specifically, follow-
ing a long-enough period without any new transient faults,
the system is required to converge to a state in which all
correct nodes have synchronized digital clocks.

Definition 2.1. A node is non-faulty when it follows
the given protocol. A node is faulty if it violates its protocol
in any way. The terms Faulty and Byzantine will be used
interchangeably.

At times of transient failures one cannot assume anything
about the state of any node, and the communication network
may also behave erratically. Eventually the system becomes
coherent again. In such a situation the system may find
itself in an arbitrary state.

Definition 2.2. The communication network is non-faulty
when the following conditions hold:

1. A message by a correct node p sent upon a receipt of
a beat from the global beat system, arrives (and is pro-
cessed) at its destination before the following beat is
issued by the global beat system;

2. The sender’s identity and the message context of any
message received are not tampered with.

3. A message received by p was sent by some node no
more than one beat ago. That is, “phantom” messages
are not delivered.

In real-world networks, it may take some time for the com-
munication network to overcome transient faults. Specifi-
cally, the communication networks’ buffers may contain mes-
sages that were not recently sent by any currently operating
node, and the network may eventually deliver them. We
consider the communication network to be non-faulty only
after all of these “phantom” messages have been delivered
or cleared away.

According to the above definition, once the network is
non-faulty, it adheres to the global-beat-system model. Which
means that messages cannot be lost and old messages cannot
be stored for an arbitrarily long time.

Since a non-faulty node may find itself in an arbitrary
state, there should be some period of continuous non-faulty
behavior before it can be considered “correct”.

Definition 2.3. A non-faulty node is considered correct
only if it remains non-faulty for ∆node beats during which
the entire communication network is non-faulty.3

Intuitively, for the system to converge to its desired state,
it is required that a “critical mass” of non-faulty nodes have
been clear of transient faults for a “long enough” period of
time.

Definition 2.4. The system is coherent when the com-
munication network is non-faulty and there are n−f correct
nodes.

Definition 2.5. A beat interval T = [r1, r2] is a coher-
ent beat interval if during T the system is coherent and there
is a set of the same n− f nodes that are correct throughout
T .4

3The assumed value of ∆node in the current paper will be
defined later.
4The indexing of the beats is not available to the nodes, it
is used only for presentation purposes.

Note that in the above definition, the set of non-faulty
nodes may not change from beat to beat. Alternatively, we
could require that at each beat r ∈ T there must be n − f
correct nodes, but they do not need to be the same correct
nodes each beat. However, such a definition would compli-
cate the proofs. The algorithms presented below are valid
under both definitions; for the sake of clarity, the stronger
assumption is used.

Remark 2.1. The values of n and f are fixed constants
and are considered part of the “code” and therefore non-
faulty nodes cannot initialize with arbitrary values for these
constants.

2.1 Common Coin-Flipping
Our clock synchronization algorithm uses a common coin-

flipping (coin-flipping for short) algorithm as a building block.
A coin-flipping algorithm is a distributed algorithm that,
with some constant probability, produces an output bit that
is common to all non-faulty nodes. Different coin-flipping
algorithms exist (see [12] and [11]), with different proper-
ties. Our formalization and requirements of a coin-flipping
algorithm are as follows:

Definition 2.6. An algorithm A is said to be a proba-
bilistic coin-flipping algorithm if A has the following prop-
erties:
(model): A operates in a synchronous network, communi-
cates only via message passing, and is resilient to f < n

3
Byzantine nodes;
(termination): There exists a constant ∆A, such that A
terminates within ∆A rounds of sending-and-receiving mes-
sages;
(binary output): The output of A at each node i is di,
di ∈ {0, 1};
(event E0): The event that all non-faulty nodes have the
same output “0”, occurs with constant probability p0 > 0;
(event E1): The event that all non-faulty nodes have the
same output “1”, occurs with constant probability p1 > 0;
(unpredictability): If either E0 or E1 occurs, then the
probability of any f nodes to predict the output of A by the
end of round ∆A − 1 is no more than 1−min{p0, p1}.

Intuitively, when executing a probabilistic coin-flipping al-
gorithm A there is a constant probability that all non-faulty
nodes have the same output value. Moreover, the Byzantine
nodes do not “know” which of the possible outputs will be
the common output until the very last round.

Remark 2.2. The probability space of the above defini-
tion is valid for any choice of Byzantine adversary. That is,
an algorithm A is a probabilistic coin-flipping algorithm, if
for any Byzantine adversary, the properties of Definition 2.6
hold regarding all possible runs. (for more details see [12]).

In the following section, a probabilistic coin-flipping al-
gorithm A is assumed to be “self-contained”, in the sense
that multiple invocations of A do not affect the probabil-
ity of the events E0 or E1 occurring within each invocation,
or the probability of Byzantine nodes predicting the output
before round ∆A of each invocation. This “self-contained”-
ness is required to allow multiple concurrent executions of
A to run properly.

Ensuring such “self-contained”-ness could be a problem
in asynchronous systems. However, it is easy to implement

387

Algorithm ss-Byz-Coin-Flip /* executed at each node, each beat */
/* A is a probabilistic coin-flipping algorithm */

/* the Ai’s are ∆A instances of A */
On beat (signal from global beat system):

1. For i := 1 to ∆A
execute the ith round of Ai;

2. Output the value of A∆A ;

3. For i := 1 to ∆A − 1
Ai+1 := Ai;

4. Initialize A1 to be a new instance of A;

Figure 1: A self-stabilizing coin-flipping algorithm.

in the global-beat-system model when each instance of A
terminates within a finite number of rounds: simply add a
“session number” to each instance of A, and differentiate
messages of co-executing instances using this session num-
ber. Since only a finite number of instances are concurrently
executed at any round, the session numbers can be “recy-
cled”, thus avoiding problems of infinite counters in the set-
ting of self-stabilization.

Observation 2.1. The common coin protocol of [12] ad-
heres to Definition 2.6. In [12] the common coin protocol is
based on graded verifiable secret sharing (GVSS), which has
3 “phases”: share, decide, recover. Up until the last phase,
the secret is unrecoverable by any set of f or less nodes.
Moreover, the recover phase is one round long. Thus, the
“unpredictability” property of Definition 2.6 holds.

[12]’s common coin protocol executes a GVSS protocol for
each node in the system. However, the last step of the com-
mon coin protocol consists of executing the recover phase of
all the GVSS instances, which conserves the property that
the output of the common coin is unpredictable by any set of
≤ f nodes, until the very last round.

Lastly, the protocols of [12] operate in a synchronous model
and are tolerant to f < n

3
Byzantine nodes. Moreover, the

adversarial model assumed in [12] allows “rushing”; thus,
when using [12], our solution is also tolerant to rushing.

Remark 2.3. The protocol of [12] requires the values of
n, f as input, as well as additional constants; for example,
the secret sharing protocol of [12] requires a prime p > n.
These constants are assumed to be part of the “code” and
non-faulty nodes do not initialize with arbitrary values of
these constants.5

2.2 Self-stabilizing Coin-flipping
When considering a system that is self-stabilizing, round

numbers become a problematic notion, since different nodes
may have different values as their current “round number”.
Thus, statements such as “A terminates within ∆A rounds”
require some explanation. To this end, we define pipelined
probabilistic coin-flipping, and later use it to define a self-
stabilizing coin-flipping algorithm.

5These constants can be computed in a single way given the
value of n (for example, let p be the smallest prime that is
larger than n). Thus, this assumption does not weaken the
result.

Definition 2.7. An algorithm B is said to be a pipelined
probabilistic coin-flipping algorithm if B has the following
properties:
(model): B operates in a synchronous network, communi-
cates only via message passing, and is resilient to f < n

3
Byzantine nodes;
(binary output): Each round, the output of B at each node
i is di, di ∈ {0, 1};
(event E0): Each round, the event that all non-faulty nodes
have the same output value “0”, occurs with constant prob-
ability p0 > 0;
(event E1): Each round, the event that all non-faulty nodes
have the same output value “1”, occurs with constant prob-
ability p1 > 0;
(unpredictability): The probability that either E0 or E1

occurs at some round is independent of the previous rounds.
If either E0 or E1 occurs, then the probability that any f
nodes will predict the output of B at round r by the end of
round r − 1 is no more than 1−min{p0, p1}.

Remark 2.4. The “unpredictability” property means that
as far as the adversary can know (considering all informa-
tion it has access to) the output of the random bit at each
round is independent of previous rounds. However, this is
not the usual meaning of “independent”, as if the adversary
has all the information of all correct nodes, the random bits
can be predicted. (see [12] for more information).

In the rest of this paper we use the term “independent”
to mean “as far as the adversary can tell, the events are
independent”.

Informally, the above definition states that at every round,
with constant probability, all non-faulty nodes agree on a
common random bit.

Definition 2.8. An algorithm C is said to be a self-stabilizing
probabilistic coin-flipping algorithm if C has the following
properties:
(model): C operates in a self-stabilizing synchronous net-
work (i.e. with a global beat system), communicates only via
message passing, and is resilient to f < n

3
Byzantine nodes;

(convergence): Starting from any arbitrary state, C con-
verges within ∆C beats to be a pipelined probabilistic coin-
flipping algorithm.

Given an algorithm A that is a probabilistic coin-flipping
algorithm, one can construct an algorithm C that is a self-
stabilizing probabilistic coin-flipping algorithm. See Figure 1.

388

Algorithm ss-Byz-2-Clock /* executed at node u each beat */
/* C is self-stabilizing probabilistic coin-flipping algorithm */

On beat (signal from global beat system):

1. broadcasta u.clock; /* u.clock ∈ {0, 1,⊥} */

2. execute a single beat of C, and set rand to be the output of C;
3. consider each message with “⊥” as carrying the value rand; /* rand ∈ {0, 1} */

4. set maj to be the value that appeared the most, /* maj ∈ {0, 1} */
and #maj the number of times it appeared;

5. if #maj ≥ n− f then u.clock := 1−maj;

6. else u.clock :=⊥;

aIn the context of this paper, “broadcast” means “send the message to all nodes”. (We do not
assume broadcast channels.)

Figure 2: An algorithm that solves the 2-Clock problem.

Lemma 1. Given a probabilistic coin-flipping algorithm
A, the algorithm ss-Byz-Coin-Flip is a self-stabilizing coin-
flipping algorithm, with convergence time ∆ss-Byz-Coin-Flip =
∆A.

Proof. Consider a system that has been coherent for ∆A
beats, and a set of n−f non-faulty nodes G, where each node
has been non-faulty for ∆A beats. The nodes in G, when
executing Line 2, output the value of a probabilistic coin-
flipping algorithm that has been initialized and executed
properly for ∆A rounds, and therefore its properties hold.
This situation continues to hold for as long as the nodes
in G are not subject to transient faults. ss-Byz-Coin-Flip
therefore converges, within ∆A beats, to become a pipelined
probabilistic coin-flipping algorithm.

Theorem 1. There exists a self-stabilizing probabilistic
coin-flipping algorithm, with constant stabilization time.

Proof. Denote the coin-flipping algorithm in [12] by OC;
OC has the properties of a probabilistic coin-flipping al-
gorithm, as defined in Definition 2.6 (see Observation 2.1).
Thus, the algorithm ss-Byz-Coin-Flip (when executed with
A := OC) is a self-stabilizing probabilistic coin-flipping al-
gorithm, according to Lemma 1. In addition, ∆OC is con-
stant, leading to a constant stabilization time of ss-Byz-
Coin-Flip, as required.

3. THE DIGITAL CLOCK SYNCHRONIZA-
TION PROBLEM

In the digital clock synchronization problem each node
u has an integer variable u.clock representing the node’s
clock-value. The goal is to synchronize all correct nodes’
clock variables.

Definition 3.1. A system is clock-synched at beat r
with value Clock(r), if at the end of beat r, all correct nodes
have the same clock-value, and it is equal to Clock(r).

Definition 3.2. The k−Clock problem consists of the
following:
(convergence) starting from any state, eventually (at some
beat r) the system becomes clock-synched with value Clock(r);
(closure) from this point on the system stays clock-synched
s.t. at beat r + i it is clock-synched with value Clock(r) + i
mod k.

3.1 Overview of the Solution
The first step is to construct a 2-Clock algorithm ss-Byz-

2-Clock using the self-stabilizing coin-flipping algorithm
ss-Byz-Coin-Flip. Then, by using 2 instances of ss-Byz-
2-Clock, a 4-clock algorithm ss-Byz-4-Clock is built. Us-
ing ss-Byz-4-Clock one can have four send-and-receive
“phases” before a wrap-around of the clock value occurs. Us-
ing ss-Byz-4-Clock, ss-Byz-Clock-Sync is constructed,
which runs ss-Byz-4-Clock, and sends messages each time
ss-Byz-4-Clock’s clock value changes. Thus, between two
wraparounds of ss-Byz-4-Clock’s clock it is possible to
try to achieve an agreement on the clock value of ss-Byz-
Clock-Sync, with a constant probability of success. This
allows ss-Byz-Clock-Sync to solve the k-Clock problem
for any k, in an expected constant number of beats.

Observe that each algorithm uses the previous algorithms
as building blocks. On a beat received from the global-
beat-system, each algorithm performs a step in each of the
appropriate building blocks. We call such a step “execution
of a single beat” of the relative algorithm.

3.2 Solving the 2-Clock Problem
Let C be a self-stabilizing probabilistic coin-flipping al-

gorithm. At each beat, C produces some random bit. In
ss-Byz-2-Clock (see Figure 2), C is executed in the back-
ground, and each beat rand holds the random output bit of
C. The algorithm ss-Byz-2-Clock requires that ∆node ≥ ∆C.

Remark 3.1. Consider some beat r. Notice that in the
algorithm of Figure 2 the value of rand at beat r is used to
“replace” ⊥ values sent in beat r−1. One may try to use the
value of rand at beat r− 1, and have each node send “rand”
instead of “⊥” (during beat r − 1). The problem with such
a solution is that the Byzantine nodes can “decide” which
value they send at beat r − 1 according to the result of rand
at beat r− 1. This way we lose the power of randomization,
since the Byzantine nodes’ action can depend on the value
of the random bit.

To avoid this, rand of beat r is used only after all nodes
(including the Byzantine ones) sent their messages in beat
r−1. That is, rand is used only after the Byzantine nodes are
committed to the values they sent. Thus, rand is independent
of the clock values sent by Byzantine nodes.

Observation 3.1. Consider two vectors ~A, ~B of length n
that differ in at most f entries, where n > 3f . If ~A contains

389

n− f copies of vA, and ~B contains n− f copies of vB, then
vA = vB.

Definition 3.3. Let T be a coherent beat interval. For
any r ∈ T :
clocksstart

r is the set of all clock values of correct nodes at
the beginning of beat r.
clocksend

r is the set of all clock values of correct nodes at the
end of beat r.

Let G be the set of correct nodes during beat r ∈ T ; recall
that G does not change throughout T (see Definition 2.5).
clocksstart

r := {u.clock | u ∈ G} before the execution of Line 1,
and clocksend

r := {u.clock | u ∈ G} after the execution of
Line 6. Notice that clocksend

r = clocksstart
r+1 . Note also that

the system is clock-synched at beat r with value v ∈ {0, 1}
if (and only if) clocksend

r = {v}.

Lemma 2. Let T be a coherent interval. If at some beat
r ∈ T , clocksstart

r = {v}, (where v ∈ {0, 1}), then clocksend
r =

{1− v}.
Proof. If clocksstart

r = {v}, then there are n− f correct
nodes at the beginning of beat r with clock = v; when they
execute Line 1, they all send the same value v. Since v ∈
{0, 1}, each correct node receives at least n−f messages with
the same value v (see Observation 3.1), therefore maj = v
and #maj ≥ n − f . Thus, in Line 5, all correct nodes set
clock := 1−maj = 1− v.

Definition 3.4. A beat r is called “safe” if all correct
nodes have the same value of rand during r.

Lemma 3. Let T be a coherent interval. If r ∈ T is a safe
beat, then clocksend

r ⊂ {v,⊥} for v ∈ {0, 1}.
Proof. Correct nodes set clock either in Line 5 or in

Line 6. Those that set clock in Line 6 set it to “⊥”. Consider
all correct nodes that set clock at Line 5; we show that they
all set clock to the same value v. r is a safe beat, therefore,
all correct nodes that sent “⊥” in Line 1 will be considered
to have sent the same value by all correct nodes. Thus, two
correct nodes can differ by at most f values when setting
maj and #maj in Line 4. By Observation 3.1, all nodes
that have #maj ≥ n − f have the same value for maj.
Thus, all nodes that update clock in Line 5 update it to the
same value.

Lemma 4. Let T be a coherent interval. If r ∈ T is a
safe beat in which clocksstart

r ⊂ {v,⊥} for v ∈ {0, 1}, then
with probability at least min{p0, p1}, clocksend

r = {v′} for
v′ ∈ {0, 1}.

Proof. If clocksstart
r = {v} for v ∈ {0, 1}, then, by

Lemma 2 we are done. Otherwise assume that clocksstart
r 6=

{v} for v ∈ {0, 1}.
r is a safe beat, therefore, all correct nodes have the same

value of rand. Consider two cases: clocksstart
r = {⊥} and

clocksstart
r 6= {⊥}. In the first case, all nodes consider (in

Line 3) to have received at least n− f messages with value
rand; thus they set #maj ≥ n − f and maj = rand, and
therefore, (after Line 5) clocksend

r = {1− rand}.
In the second case, clocksstart

r 6= {⊥}; thus, under the
lemma’s assumption we have that clocksstart

r = {v,⊥} for
v ∈ {0, 1}. Recall that clocksend

r−1 = clocksstart
r , thus, the

values of clocksstart
r have been determined in beat r−1. The

“unpredictability” property implies that rand is indepen-
dent of “what happened” during beat r−1 (see Remark 3.1).
We thus conclude that with probability at least min{p0, p1},
rand = v. In this case, all correct nodes have #maj ≥ n−f
and maj = v, thus all correct nodes have (after Line 5)
clocksend

r = {1− v}.
Thus, with probability of at least min{p0, p1} we have

that clocksend
r = {v′} for v′ ∈ {0, 1}.

Lemma 5. Let T be a coherent interval. Any beat r ∈ T
is safe with probability p0 + p1.

Proof. Consider some beat r ∈ T ; since T is coherent,
there is a set of n − f correct nodes during beat r. Since
∆node ≥ ∆C, they have all executed C for ∆C beats (C’s
required convergence time). Thus, properties “event E0”
and “event E1” hold; which means that with probability p0

all correct nodes have rand = 0 and with probability p1 all
correct nodes have rand = 1. Thus, with probability p0 +p1

the beat is safe.

Theorem 2. ss-Byz-2-Clock solves the 2-Clock prob-
lem with expected constant convergence time.

Remark 3.2. When talking about the expected conver-
gence time of ss-Byz-2-Clock, it is convenient to think
of an infinitely long coherent interval T = [r,∞]. However,
the above theorem holds also for short finite intervals, but
would require saying: “T is of length of at least l, where at
any beat after r + l there is a constant probability that the
algorithm converges”. Instead, we simply say that T is “long
enough”.

Proof. Let T = [r1, r2] be a “long enough” coherent in-
terval. By Lemma 5, for each beat r ∈ T there is a constant
probability c1 := p0 + p1 that r is a safe beat. By the “un-
predictability” property, the probability of the event E that
two consecutive beats r, r + 1 are safe is at least c2

1. From
Lemma 3 and Lemma 4, given that E occurred, there is a
probability of c2 = min{p0, p1}, and thus all correct nodes
have the same clock value at the end of beat r + 1, and by
Lemma 2, they continue to agree on it at the end of any
beat r′ ≥ r + 1, r′ ∈ T .

Thus, during each beat r, r ∈ [r1 + 1, r2], there is a con-
stant probability of c2 · c2

1 that r is safe, and that r − 1 is
safe, and that all correct nodes have the same clock value by
the end of r. Therefore, after an expected constant number
of beats (starting from r1 + 1), all correct nodes agree on
the clock value, and by Lemma 2, they all continue to agree
on the clock value and change it from “1” to “0” and vice
versa each beat. Hence, ss-Byz-2-Clock solves the 2-Clock
problem and has expected constant convergence time.

Theorem 2 states that ss-Byz-2-Clock converges with
expected constant time. However, as can be seen by the
proof of Theorem 2, the result is actually much stronger: if
at some beat the algorithm has not yet converged, then it
has a constant probability of converging in the next beat.
Thus, denote by ∆ss-Byz-2-Clock the expected convergence
time of ss-Byz-2-Clock; the probability that ss-Byz-2-
Clock does not converge within l ·∆ss-Byz-2-Clock beats de-
creases exponentially with l. Therefore, not only does ss-
Byz-2-Clock converge in expected constant time, it also
does so with high probability.

390

Algorithm ss-Byz-4-Clock /* executed at node u each beat */
/* A1,A2 are instances of ss-Byz-2-Clock */

On beat (signal from global beat system):

1. execute a single beat of A1;

2. if u.clock(A1) = 0 then
execute a single beat of A2;

3. set u.clock := 2 · u.clock(A2) + u.clock(A1)
a;

aTo differentiate between the output clock value of ss-Byz-4-Clock and that
of ss-Byz-2-Clock, consider u.clock to be the output of ss-Byz-4-Clock,
u.clock(A1) is the output of A1 and u.clock(A2) is the output of A2.

Figure 3: An algorithm that solves the 4-Clock problem.

4. SOLVING THE 4-CLOCK PROBLEM
The previous section solved the 2-Clock problem. The

following describes how to solve the 4-Clock problem, using
2 instances of ss-Byz-2-Clock, A1,and A2. The presented
solution requires that ∆node ≥ max{∆A1 , 2 ·∆A2}; since
A1,A2 are both instances of ss-Byz-2-Clock, ∆node is set
to be 2 ·∆ss-Byz-2-Clock.

Theorem 3. ss-Byz-4-Clock (Fig. Figure 3) solves the
4-Clock problem with expected constant convergence time.

Proof. Let T = [r1, r2] be a “long enough”6 coherent
interval. A single beat of A1 is executed for every beat
r ∈ T ; thus A1 is executed properly by all correct nodes
during T , and all lemmata regarding A1 hold. Therefore,
A1 converges with expected constant time.

Let rA1 ∈ T be the beat at which A1 has converged.
Thus, for any beat r ≥ rA1 , r ∈ T all correct nodes alternate
between executing a single beat of A2 and not executing A2.
Thus, a single beat of A2 is executed every other beat in
[rA1 , r2] by all correct nodes. Therefore, due to Theorem 2,
A2 converges in expected constant time.

Let rA2 , rA2 ≥ rA1 denote the beat at which A2 has con-
verged. During the interval [rA2 , r2], A1 andA2 have the fol-
lowing pattern: (clock(A1) = 0, clock(A2) = 0), (clock(A1) =
1, clock(A2) = 0), (clock(A1) = 0, clock(A2) = 1), (clock(A1) =
1, clock(A2) = 1); this pattern continues until beat r2. Thus,
during the interval [rA2 , r2] the clock variable (that is up-
dated in Line 3) has the following pattern: 0, 1, 2, 3; and
this pattern continues until beat r2.

To conclude, the linearity of expectations implies that
rA2 − r1 is constant in expectation. That is, ss-Byz-4-
Clock converges in expected constant time.

Remark 4.1. ss-Byz-4-Clock uses two different pipelines
of coin-flipping. Actually, it could be improved to use a sin-
gle coin-flipping pipeline, and reduce both the message com-
plexity and expected convergence time. However, these im-
provements are only by a constant factor, and therefore are
omitted for the sake of clarity.

5. SOLVING THE K-CLOCK PROBLEM
(FOR ANY K)

The construction of ss-Byz-4-Clock can be similarly
used to solve the 8-Clock problem from A1 that solves the
4-Clock problem and A2 that solves that 2-Clock problem.

6See Remark 3.2.

In general, any 2k+1-Clock problem can be solved with A1

that solves 2k-Clock andA2 that solves the 2-Clock problem.

Even better, any 22k+1
-Clock problem can be solved with

A1,A2 that solve the 22k

-Clock problem. Thus, the k-Clock
problem can be solved for infinitely many values. However,
such constructions have log n overhead (or log log n, depend-
ing on which of the above schemas is used) in their message
complexity and at least the same overhead in their expected
convergence time.

The following ss-Byz-Clock-Sync (see Figure 4) algo-
rithm has a constant overhead both in message complexity
and in its expected convergence time. It uses a 4-Clock al-
gorithm to construct a k-Clock algorithm for any value of
k. The schema used is similar to the algorithm of Turpin
and Coan (see [18]) when combined with the algorithm of
Rabin (see [17]). More specifically, ss-Byz-Clock-Sync is
constructed of 4 “phases”, each executed in a consecutive
beat. The first phase sends the clock value to everyone. In
the second phase, each node votes on the majority clock
value it received, or ⊥ if no such value exists. The third
phase determines whether enough nodes voted on a value
6=⊥, thus ensuring that those nodes that have voted, voted
on the same value in phase 2. Lastly, in the fourth phase the
new clock value is set either to be the majority clock value
of phase 2, or (if there were not enough votes) is randomly
selected using the output of the coin-flipping algorithm.

In the context of ss-Byz-Clock-Sync, ∆node is the same
as in ss-Byz-4-Clock.
A is an instance of ss-Byz-4-Clock. The following dis-

cussion assumes that all correct nodes have the same value
of clock(A); it takes expected constant time until this hap-
pens. By this assumption, all correct nodes perform the
same portion of the code on each beat. That is, they all
perform Block 3.a on some beat, then on the next beat they
perform Block 3.b, and so on. In the following lemmata,
we assume that correct nodes operate in the following cycle:
they all perform Block 3.a, the following beat they perform
Block 3.b, then Block 3.c, then Block 3.d, and then they go
back to performing Block 3.a.

Definition 5.1. Let T be a coherent interval; For any
beat r ∈ T :
full clocksstart

r is the set of all full clock values of correct
nodes at the beginning of beat r.
full clocksend

r is the set of all full clock values of correct nodes
at the end of beat r.

Notice that full clocksstart
r , full clocksend

r ⊂ {0, 1, . . . , k − 1}
for all r.

391

Algorithm ss-Byz-Clock-Sync /* executed at node u each beat */
/* A solves the 4-Clock problem */

On beat (signal from global beat system):

1. execute a single beat of A;

2. set u.full clock := u.full clock + 1 mod k;

3. case u.clock(A) of: /* consider u.clock(A) at the beginning of the beat */

(a) u.clock(A) = 0: broadcasta u.full clock to all;

(b) u.clock(A) = 1: if received n− f same value v in previous beat
set propose := v;

else
set propose :=⊥;

fi
broadcast propose to all;

(c) u.clock(A) = 2: let save be the majority value 6=⊥ of the received values;
(if all values are ⊥, set save :=⊥)
if save 6=⊥ appeared n− f times

set bit := 1;
else

set bit := 0;
fi
broadcast bit to all;
if save =⊥

set save := 0;

(d) u.clock(A) = 3: if received n− f “1” in previous beat
set u.full clock := save + 3;

else if received n− f “0” in previous beat
set u.full clock := 0;

else if rand = 1
set u.full clock := save + 3;

else if rand = 0
set u.full clock := 0;

fi
aIn the context of this paper, “broadcast” means “send the message to all nodes”.

Figure 4: An algorithm that solves the k-Clock problem for any k.

Lemma 6. Let T be a coherent interval and let r ∈ T be
a beat at which clock(A) = 3; if full clocksend

r = {v} then
for every beat r′ > r, r′ ∈ T it holds that

full clocksstart
r′ =

{
v + (r′ − r − 1) mod k

}
.

Proof. Assume the lemma holds for any beat r′, r ≤
r′ ≤ r + 5. Recall that full clocksend

r+4 = full clocksstart
r+5 .

The assumption on r′ implies that full clocksend
r+4 = {v + 4

mod k}. In addition, notice that at beat r +4, it holds that
clock(A) = 3. Now, repeatedly applying the above assump-
tion leads to full clocksend

r+i = {v+i mod k} (for i ≥ 0, r+i ∈
T). In other words, full clocksend

r′ = {v + (r′ − r) mod k}
and full clocksstart

r′ = {v + (r′ − r − 1) mod k}. It is left to
prove that the lemma holds for any beat r′, r ≤ r′ ≤ r + 5.

For r′ = r + 1 the claim holds immediately; additionally,
up until beat r + 5, the correct nodes update full clock only
in Line 2. Therefore, they all update full clock in the same
way. Thus, full clocksstart

r+1 = {v}; full clocksstart
r+2 = {v + 1};

full clocksstart
r+3 = {v + 2}; full clocksstart

r+4 = {v + 3}, (where
“+” is modulo k).

It remains to show that full clocksstart
r+5 = {v + 4}. We

will do this by proving an equivalent claim, namely, that:
full clocksend

r+4 = {v + 4}. To show this, consider the mes-
sages sent during beats r + 1, . . . , r + 4.

At beat r+1 all correct nodes send v+1 to everyone, and

so all correct nodes receive at least n − f copies of v + 1.
At beat r + 2 all correct nodes set propose := v + 1. At
beat r + 3 all correct nodes have save = v + 1 and they
set bit := 1 and therefore all of them receive n − f copies
of “1”. This implies that at beat r + 4 all correct nodes
set full clock := save + 3 = v + 1 + 3 = v + 4. That is,
full clocksend

r+4 = {v + 4}.

Lemma 7. Let T be a coherent interval; At most one
value v 6=⊥ can be sent in Block 3.b by correct nodes at
some beat r ∈ T .

Proof. Immediate from Observation 3.1.

Lemma 8. Let T be a coherent interval; If r ∈ T is a safe
beat at which clock(A) = 3, then with probability at least
min {p0, p1} all correct nodes have the same full clock value.

Proof. First, consider the case in which no correct node
sees n− f copies of the same value. In this case, all correct
nodes set full clock := 0, with probability p0.

If some correct node p receives n−f copies of some value v,
then all correct nodes that receive n−f copies of some value,
receive the same value v (by Observation 3.1). Notice that
v is calculated according to messages determined at beat
r − 1, and rand was chosen at beat r. Therefore, due to

392

“unpredictability”, rand and v are independent of each other.
Thus, with probability at least min {p0, p1}, all correct nodes
update full clock in the same manner: either full clock := 0
or full clock := save+3. If v = 0 then we are done. If v = 1
then we are left to show that all correct nodes have the same
value of save.

Since p has received n − f copies of “1” it means that
some correct node q has sent “1” in beat r− 1. Thus, q has
received at least n − f copies of saveq 6=⊥ at beat r − 2.
Thus, all other correct nodes have received at least n − 2f
copies of saveq. By Lemma 7, correct nodes either sent ⊥
or saveq in beat r − 2. Thus, correct nodes can receive at
most f < n − 2f values that are not ⊥ and are not saveq.
Hence, all correct nodes have save = saveq.

Theorem 4. ss-Byz-Clock-Sync solves the k-Clock prob-
lem for any value of k, and converges in expected constant
time.

Proof. The proof is very similar to the proof of Theorem 2
and Theorem 3. By Lemma 8, after an expected constant
number of beats all correct nodes have the same full clock
value. By Lemma 6, the correct nodes continue to agree
on their full clock value and increase it by “1” at each beat
(modulo k).

Therefore, ss-Byz-Clock-Sync solves the k-Clock prob-
lem for any value of k; and converges in expected constant
time.

6. DISCUSSION

6.1 Self-stabilizing Coin-flipping
The main result in this paper is the expected constant

time digital clock synchronization algorithm. However, to
reach this result an important tool has been developed: the
self-stabilizing probabilistic coin-flipping algorithm, which
provides a stream of common random bits to all correct
nodes. This tool can be useful in developing randomized self-
stabilizing solutions to various problems, since it provides a
self stabilizing access to a stream of shared coins.

For example, the algorithm in [9] could be adapted to use
ss-Byz-Coin-Flip as a self-stabilizing coin-flipping building
block. Such a change would lead to an exponential reduction
in the convergence time of [9]. However, [9]’s convergence
time is dependent upon the wraparound clock value, and
therefore would still not be constant.

Notice that the random bit produced at beat r is “inde-
pendent” of events occurring up to beat r−1. However, the
adversary can “see” the result of the coin at beat r and take
it into consideration when sending messages at beat r. Thus,
one must be careful when using the stream of random bits;
specifically, one must ensure that the states to choose from
(using the random bit) have been decided in the previous
beat, and not in the current beat. The technique presented
in this paper can be adapted in dealing with such situations.

6.2 Self-stabilizing Pipelining
To the best of our knowledge, pipelining as means of trans-

forming non-self-stabilizing Byzantine tolerant algorithms
into self-stabilizing Byzantine tolerant algorithms, was first
suggested in [15]. The current work is another example of
employing the “pipeline concept” in a self-stabilizing and
Byzantine tolerant protocol. It is interesting to classify the
class of problems that can be solved using this technique.

6.3 Future Research
We consider two main points for future research; the first,

regards the bounded-delay model, which assumes there is
a bound on messages’ delivery time (replacing the global-
beat-system assumption). Previously, clock synchroniza-
tion in the bounded-delay model was solved using an un-
derlaying pulsing algorithm with linear convergence time.
Can the ideas in the current paper be transported to the
bounded-delay model, and reduce the convergence time to
expected constant? This can be done either by directly solv-
ing the clock synchronization problem, or by reducing the
convergence time of the underlying pulsing algorithm. If
so, what extra overhead will be required? Notice that au-
tomatic translators from the global-beat-system model to
the bounded-delay model exist, but they require linear run-
ning time. Therefore, they cannot efficiently transport the
current ideas into the bounded-delay model.

The second point regards asynchronous systems. Without
probability, it is impossible to solve the clock synchroniza-
tion problem in an asynchronous network with Byzantine
nodes. However, once probability is introduced, such a so-
lution might be feasible. It is interesting to see what form
the clock synchronization problem takes in an asynchronous
setting, and what kind of probabilistic solutions apply.

7. REFERENCES
[1] A. Arora, S. Dolev, and M.G. Gouda. Maintaining

digital clocks in step. Parallel Processing Letters,
1:11–18, 1991.

[2] M. Ben-Or. Another advantage of free choice
(extended abstract): Completely asynchronous
agreement protocols. In PODC ’83: Proceedings of the
second annual ACM symposium on Principles of
distributed computing, pages 27–30, New York, NY,
USA, 1983. ACM.

[3] G. Bracha. An O(log n) expected rounds randomized
byzantine generals protocol. J. ACM, 34(4):910–920,
1987.

[4] R. Canetti and T. Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In STOC ’93:
Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 42–51, New
York, NY, USA, 1993. ACM.

[5] A. Daliot, D. Dolev, and H. Parnas. Linear time
byzantine self-stabilizing clock synchronization. In
Proc. of 7th Int. Conference on Principles of
Distributed Systems (OPODIS’03), La Martinique,
France, Dec 2003. A corrected version appears in
http://arxiv.org/abs/cs.DC/0608096.

[6] D. Dolev and E. N. Hoch. Byzantine self-stabilizing
pulse in a bounded-delay model. In Proc. of 9th
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’07), Paris,
France, Nov 2007.

[7] D. Dolev and E. N. Hoch. On self-stabilizing
synchronous actions despite byzantine attacks. In
Proc. the 21st Int. Symposium on Distributed
Computing (DISC’07), Lemesos, Cyprus, Sep. 2007.

[8] S. Dolev. Possible and impossible self-stabilizing
digital clock synchronization in general graphs.
Journal of Real-Time Systems, 12(1):95–107, 1997.

[9] S. Dolev and J. L. Welch. Self-stabilizing clock

393

synchronization in the presence of byzantine faults.
Journal of the ACM, 51(5):780–799, 2004.

[10] S. Dolev and J. L. Welch. Self-stabilizing clock
synchronization in the presence of byzantine faults
(abstract). In PODC, page 256, 1995.

[11] C. Dwork, D. Shmoys, and L. Stockmeyer. Flipping
persuasively in constant time. SIAM Journal on
Computing, 19(3):472–499, 1990.

[12] P. Feldman and S. Micali. An optimal probabilistic
algorithm for synchronous byzantine agreement. In
ICALP ’89: Proceedings of the 16th International
Colloquium on Automata, Languages and
Programming, pages 341–378, London, UK, 1989.
Springer-Verlag.

[13] M.J. Fischer and N.A. Lynch. A Lower Bound for the
Time to Assure Interactive Consistency. Information
Processing Letters, 14:183–186, 1982.

[14] T. Herman. Phase clocks for transient fault repair.
IEEE Transactions on Parallel and Distributed
Systems, 11(10):1048–1057, 2000.

[15] E. N. Hoch, D. Dolev, and A. Daliot. Self-stabilizing
byzantine digital clock synchronization. In Proc. of 8th
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’06), Dallas,
Texas, Nov 2006.

[16] M. Papatriantafilou and P. Tsigas. On self-stabilizing
wait-free clock synchronization. Parallel Processing
Letters, 7(3):321–328, 1997.

[17] M. Rabin. Randomized Byzantine generals.
Proceedings of the 24th Annual IEEE Symposium on
Foundations of Computer Science, pages 403–409,
1983.

[18] R. Turpin and B. Coan. Extending binary Byzantine
agreement to multivalued Byzantine agreement.
INFO. PROC. LETT., 18(2):73–76, 1984.

394

Chapter 4

OCD: Obsessive Consensus
Disorder
(or Repetitive Consensus)

Danny Dolev and Ezra N. Hoch, Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing (PODC ’08), Toronto,
Canada, Pages: 395-404, Aug. 2008.

42

OCD: Obsessive Consensus Disorder
(or Repetitive Consensus)

Danny Dolev∗
Hebrew University

dolev@cs.huji.ac.il

Ezra N. Hoch
Hebrew University

ezraho@cs.huji.ac.il

ABSTRACT
Consider a distributed system S of sensors, where the goal is
to continuously output an agreed reading. The input read-
ings of non-faulty sensors may change over time; and some
of the sensors may be faulty (Byzantine). Thus, the system
is required to repeatedly perform consensus on the input
values.

This paper investigates the following question: assuming
the input values of all the non-faulty sensors remain un-
changed for a long period of time, what can be said about
the agreed-upon output reading of the entire system? We
prove that no system’s output is stable, i.e. the faulty sen-
sors can force a change of the output value at least once.

We show that any system with binary input values can
avoid changing its output more than once, thus matching the
lower bound. For systems with multi-value inputs, we show
that the output may change at most twice; when n = 3f +1
this solution is shown to be tight. Moreover, the solutions
we present are self-stabilizing.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Reliability, Theory

Keywords
Distributed computing, fault tolerance, self-stabilization, Byzan-
tine failures, repetitive consensus, long-lived consensus.

∗This work was funded in part by ISF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

1. INTRODUCTION
Consensus is one of the fundamental problems in dis-

tributed algorithms, and a vast body of literature exists on
the subject (see [8], [10] and [1]). The “common” consensus
problem consists of nodes with static input values that are
required to agree on some output value within a finite time.
Different extensions of the consensus problem study differ-
ent directions; in this paper we consider the case where a
sequence of multiple consensuses takes place.

Executing multiple consensus comes in different flavors;
Continuous Consensus aims at continuously agreeing on the
history of inputs of all nodes in the system (see [12]). Multi-
consensus efficiently executes multiple consensuses sequen-
tially (see [2]), Committee Decision executes multiple con-
sensuses concurrently (see [9]); and others, such as [13]. We
are interested in a different aspect of executing multiple con-
sensuses.

When executing m consensuses, there are m agreed-upon
output values. This raises the following question: What is
the connection between the different outputs of the different
consensuses? Is there any way to guarantee that consecutive
consensuses output the same value - i.e. that the output
of the different consensuses is stable? None of the above
papers has investigated the stability of the output of the
different consensuses in the sequence. The first paper to
discuss the stability of “long-lived” consensus is [7] (from
which the term “long-lived” is taken). [7] (and later, [4])
also defines measurements to estimate solutions of the “long-
lived” consensus problem; in the current work, we consider
similar measurements (see Section 2).

Consider a system consisting of n nodes, where each node
receives an input value from the set V, V = {0, . . . , v − 1};
these input values can change over time, and hence the nodes
need to repeatedly agree on their collective output value.
For example, consider a network of sensors that needs to
agree on a single output: assume some of the nodes are mal-
functioning (Byzantine), and consider the following ques-
tion: if the input of the nodes changes overtime and even-
tually stabilizes, is it possible to ensure that the output will
also stabilize eventually? As will be shown below, the an-
swer is “No”. However: if the input does not change, then
(under certain restrictions) the output can change at most
once. For example, assume a system with V = {0, 1} in
which at some time the input values of all non-faulty nodes
have stopped changing. If no faulty nodes exist, the output
will eventually stop changing. However, we show that even a
single Byzantine node can delay this transition indefinitely.

The above impossibility result is true for any system with

395

Byzantine presence, regardless of the communication model
(synchronous, asynchronous, etc). However, our solution to
reducing output changes operates in a highly-fault tolerant
manner: it is self stabilizing1 and Byzantine tolerant. That
is, starting from any initial state, in the presence of perma-
nent f Byzantine nodes, the number of output changes is
bounded.
Related work: Overcoming faults in sensors by averaging
the input values has been done in [11]; however the averaging
is done by one node connected to all sensors, and has low
fault resiliency.

Quantifying faulty nodes’ effect on the system’s output
was investigated in [7] and [4]. These papers consider a
geodesic path, which is a list of input vectors (representing
the inputs to each node) in which each node changes its
input value at most once. The two papers concentrate on
the stability assurances that can be guaranteed for geodesic
paths. However, they do not consider the Byzantine case,
in which a small set of faulty nodes repeatedly face changes
in their input values.

Recently, [15] has extended [7]’s worst-case scenario re-
sults to the average case, as well as showing the importance
of memory for the output’s stability. [15] considers paths
that are randomly selected, and thus examines the average
case scenario. However, [15] does not incorporate Byzantine
behavior, which coordinates its failures in a malicious (and
non-random) fashion.

[4] and [7] show that for memory-less consensus functions,
even with a single faulty node, the output may change in-
finitely many times. However, the behavior of Byzantine-
tolerant consensus functions with memory has not been in-
vestigated yet. In addition, the results of [7], [4] and [15]
have not been shown to be self-stabilizing.
Contribution: We define an oblivious path, which is a list
of input vectors in which at most f nodes change their input
values (arbitrarily many times). We then quantify a system
output’s stability for such paths, giving both lower and up-
per bounds. The solution is shown to be self-stabilizing.

2. COMPUTATIONAL MODEL
Following [4] and [7], we begin this paper with an analysis

that ignores the communication and timing model of the
system. Let V , V = {0, . . . , v−1} be the set of allowed input
values, and let F : V n → V ∪{⊥} be a function on an input
vector ~x ∈ V n. Given a list of input vectors ~x0, ~x1, . . . , ~xl,
we are interested in the behavior of F(~x0),F(~x1), . . . ,F(~xl).
To allow F to have memory (adding states to the system)
we consider F : V n ×M → V ∪ {⊥}, and a state transition
function τ : V n ×M → M .

Intuitively, an input vector ~x ∈ V n represents the inputs
of each node in the distributed system, while the state tran-
sition function τ represents the change in the state of the
distributed system (sending/reciving messages and their ef-
fects on each node’s internal memory). Lastly, F represents
the output of all non-faulty nodes in the system. The formal
definitions are as follows (based on those of [4]):

Definition 2.1. A system is defined by a 6-tuple S =
〈n, v, f, M, τ,F〉 , where n is the number of nodes, v is the
size of the input space V = {0, . . . , v − 1}, f is a bound on
the number of faulty nodes, M is a set of memory states, τ

1For more on self-stabilizing see [14].

is a state transition function τ : V n×M → M and F is the
output function F : V n ×M → V ∪ {⊥}.

For the above definition to be “interesting” a “validity”
requirement on F is added: the output of F must be the
input of some correct node. Since F does not “know” which
nodes are faulty and which are not, it can output a value
ν only if it has seen at least f + 1 copies of ν in the input
vector; otherwise it must output ⊥.

We also require that if some value ν′ appears n − f (or
more) times in the input vector, then the output of F is ν′.
More formally, let #ν(~x) be the number of occurrences of ν
in ~x: if F(~x) = ν ∈ V then #ν(~x) ≥ f + 1; if F(~x) =⊥ then
∀ν∈V #ν(~x) < n− f .

The above validity is considered throughout the paper. In
Section 6 a different validity measure is presented.

Definition 2.2. An input path (path for short) P (of
some system S) is a list of input vectors ~x0, ~x1, . . . , ~xl−1 ∈
V n. Component k is said to change on path P if there is
some input vector ~xi such that ~xi[k] 6= ~xi+1[k], where ~x[k] is
the kth entry in the vector ~x.

Definition 2.3. A run of a system S from memory state
m0 on some path P is the sequence m1 = τ(~x0, m0), m2 =
τ(~x1, m1), . . . , ml = τ(~xl−1, ml−1);

The decision output of the above run is the sequence
F(~x0, m0),F(~x1, m1), . . . ,F(~xl−1, ml−1). Denote by Oi :=
F(~xi, mi). The decision output changes at index i > 0 if
Oi−1 6= Oi.

[4] and [7] define a geodesic input path as an input path
in which each component changes at most once. In addition,
they define the instability of a system S as the maximal
number of decision output changes for any geodesic input
path, starting from S’s initial state. In the current work
we are interested in a somewhat different stability measure-
ment, so we henceforth refer to the instability of [4] and [7]
as geodesic-instability, in order to differentiate it from
our usage of the term ”instability”.

Note that Byzantine nodes may “pretend” that their in-
puts are consistently changing. It is therefore important to
design systems that are robust in the face of such behavior,
i.e. , that do not change their output if the correct nodes’
inputs do not change. In other words, the target should be
a system that is oblivious to changes in Byzantine nodes’
input values (as long as the other nodes have stable input
values). Hence, we define the following:

Definition 2.4. An f-oblivious input path (oblivious
path, for short) of a system S is an input path P in which
at most f components change.

Notice that a geodesic path’s length is bounded by n, since
each of its components can change at most once. However,
an oblivious path can be arbitrarily long, since f components
can repeatedly change. Faulty nodes can behave arbitrarily
at any point during the execution of S. Moreover, the in-
put values of non-faulty nodes may change due to external
readings. Thus, we aim at expressing the robustness with
respect to all memory states and to all oblivious paths.

Definition 2.5. Let CT (S, m, P) be the (possibly infi-
nite) number of times the decision output of S changes when

396

running on oblivious path P from memory state m. Let
MaxCT (S, m) := maxP {CT (S, m, P)}.

Similarly, CL(S, m, P) is the (possibly infinite) largest in-
dex for which the decision output of S changes when running
on oblivious path P from memory state m.
Let MaxCL(S, m) := maxP {CL(S, m, P)}.

Definition 2.6. The count-instability of a system S
is the maximal number of decision output changes during
a run from any memory state m and for any oblivious in-
put path P . Formally, we can define count-instability as:
maxm{MaxCT (S, m)}.

The length-instability of a system S is the smallest in-
dex after which no change occurs to the decision output dur-
ing a run from any memory state m and for any oblivious
input path P . Formally, length-instability can be expressed
as: maxm{MaxCL(S, m)}.

It has been shown (in [4], [7]) that in memory-less sys-
tems S (systems in which M = {m0}) in which some com-
ponent may change its input infinitely many times, a path
can be constructed to cause any number of decision output
changes. In other words, for memory-less S with f ≥ 1,
the count-instability of S is ∞. This is the reason that [4]
and [7] discuss only geodesic-instability, but do not discuss
count-instability or length-instability at all. An interesting
extension to the above oblivious-path definition (and there-
fore to the count/length instability definitions) that is not
discussed in the current paper is one which considers changes
to input values of non-faulty nodes. Notice that the lower
bounds of Section 3 hold for this extension as well.

Table 1 presents the lower and upper bounds appearing
in the following sections.

Table 1: Summary of results

parameters count-instability theorem#
f > 0 ≥ 1 Theorem 1

n ≥ 3f + 1 ≤ 2 Theorem 4
n = 3f + 1, |V | > 2 ≥ 2 Theorem 3
n ≥ 3f + 1, |V | = 2 1 Theorem 5

2.1 A General System Model
The computational model presented above captures com-

mon requirements of any distributed system that tries to
repeatedly reach consensus on changing input values. There-
fore, any lower bound presented in this computational model
holds for any distributed system.

A distributed system T may have richer semantics than
the proposed computational model. However, the properties
of the computational model encompass the very basic behav-
ior of repeatedly reaching consensus; therefore, it should be
possible to “embed” the computational model in T ’s seman-
tics. That is, in certain scenarios (such as when restricting
the behavior of T) there is a reduction from T to the com-
putational model.

For example, suppose that T is a sparsely connected net-
work of nodes that gathers inputs from different nodes, waits
until they do not change (to avoid fluctuations in the out-
put), propagates them throughout the system, and only then
decides on an output. In any system, on a run of T , at some
time t−1, the input will change to ~x−1 and stay there. Even-
tually, T outputs some value O−1 at time t0. Consider m0

to be the state of the system at t0. At some time t′0 ≥ t0
the input changes to ~x0 and eventually - at time t1 - the
system outputs O0. Mark by m1 the state of the system at
t1. In general, at time ti the system is at some state mi, at
time t′i ≥ ti the input changes to ~xi and at time ti+1 ≥ t′i
the system outputs a value Oi; the run continues in this
manner.

Consider the scenario where t′i = ti for all i; that is, the
input changes immediately after the output has been de-
termined. T must also operate correctly in the described
scenario. However, in such a setting the following reduction
can be used: m0, m1, . . . will be the states of the system;
~x0, ~x1, . . . will be the input vectors; τ will denote the sys-
tem’s state change between 2 consecutive outputs; and F
will denote the system’s output, given the previous system’s
state and the new input. Notice that T might change its
state more than once between ti and ti+1; however, we are
only interested in the change of state from the state at ti

(mi) to the state at ti+1 (mi+1).
The above example demonstrates how a system that pro-

duces outputs every so often, in accordance to inputs that
change over time, has scenarios in which it can be abstracted
using the computational model. This observation is the
motivation behind using the computational model and the
lower bounds proven in this paper.

3. IMPOSSIBILITY RESULTS
Theorem 1. For any system S with f ≥ 1 the count-

instability of S is at least 1.

Proof. Consider the path P : ~x0 := 0n−f1f , ~x1 :=
0n−f−11f+1, . . . , ~xi := 0n−f−i1f+i, . . . , ~xn−2f := 0f1n−f .
Let m0 be some state of S and consider S’s run on P from
m0. Denote the decision output of S’s run from m0 on
P as O0 := F(~x0, m0), O1 := F(~x1, τ(m0, ~x0)), etc. De-
note by mi the ith memory state of the above run; that is
mi+1 = τ(~xi, mi).

By validity, since #0(~x0) ≥ n − f it holds that O0 = 0,
and for similar reasons On−2f = 1. Let j be the first Oj

that is 1; more formally let j be j = min{i|F(~xi, mi) = 1}
(note that j ≥ 1). Consider the memory state mj−1: when
S is at state mj−1, given the input vector ~xj−1, S’s output
is 0 and it moves to state mj . Then, for ~xj as input, S’s
output is 1. Thus, the path P := ~xj−1, ~xj is a path that
causes S’s run starting from mj−1 to change once. Notice
that P is an oblivious path (for f > 0), since ~xj−1, ~xj differ
by exactly one component.

This implies that for any system S (with f > 0) there
exists an oblivious path P and a state m such that S’s run
starting from m on P changes its decision output at least
once. And so,S’s count-instability is ≥ 1.

Theorem 1 states that any system that is designed to be
tolerant of even a single Byzantine node, must have states
from which the Byzantine nodes can change the decision out-
put value. The following theorem shows that the Byzantine
node(s) can delay this output change indefinitely.

Theorem 2. For any system S with f ≥ 1 the length-
instability of S is ∞.

Proof. Let ~xi := 0n−f−i1f+i and consider the path

P k := ~x0, . . . , ~x0︸ ︷︷ ︸
k

, . . . , ~xi, . . . , ~xi︸ ︷︷ ︸
k

, . . . , ~xn−2f , . . . , ~xn−2f︸ ︷︷ ︸
k

.

397

P k is a path consisting of n − 2f + 1 “sections”, each of
length k. Each such section consists of a single input vector,
where the ith section consists of k repetitions of ~xi. P k is
k · (n− 2f + 1) vectors long. Denote by ~xj the jth vector in
P k (j ∈ [0, k ·(n−2f +1)]); note that ~xj = ~xb j

k
c. For a given

j, let mj be the memory state before the input vector ~xj is
processed, and let Oj be the decision output of F(mj , ~x

j).
Due to validity, since #0(~x0) ≥ n−f it holds that O0 = 0

and Oj = 0 for j < k. For similar reasons Ok·(n−2f) = 1.
Therefore, Oj 6= Oj−1 for some j ≥ k. Consider the first
such j. Denote the path P := ~xj−k, ~xj−k+1, . . . , ~xj ; P is an
oblivious path, since at most one component changes in P .
When running S from memory state mj−k on the path P
the output starts as “0” and changes to “1” after k input
vectors; that is, CL(S, mj−k, P) ≥ k.

Notice that the above proof is independent of k’s value.
Thus for any k, there exists a memory state m and an obliv-
ious path P such that CL(S, m, P) ≥ k. That is, the length-
instability of S is ∞.

Theorem 2 implies that even a single Byzantine node can
cause a decision output change in a system “whenever it
wants”. More specifically, there is a state of the system
such that even if the inputs of all non-Byzantine nodes do
not change, there is no bound on when a Byzantine node
can cause the decision output of the system to change.

Theorem 3. For any system S with n = 3f+1 and |V | ≥
3 the count-instability of S is at least 2.

Proof. Let m0 be some initial state and let ~x := 02f+11f .
Due to validity, F(~x, m0) = 0. Now, consider the vector
~y := 0f+11f+12f−1 and m1 := τ(~x, m0). F(~y, m1) can be
“0”, “1” or ⊥.

If it is “1” or ⊥, then the path P := ~x, ~y, ~x causes S to
change its output twice.

Similarly, assume that F(~y, m1) = 0 and let m2 := τ(~y, m1).
Let ~z := 0f1f+12f . Now, F(~z, m2) can be either “1” or ⊥.
If it is ⊥ then the path P := ~y, ~z, 0f12f+1 causes the sys-
tem S to change its output twice. On the other hand, if
F(~z, m2) = 1 then the path P := ~y, ~z, 0f1f2f+1 changes the
output twice. Thus, there exists an f -oblivious path that
causes S to change its output twice.

Remark 3.1. The |V | ≥ 3 limit (in Theorem 3) is re-
quired. Moreover, if |V | = 2 then it is possible to construct
a system S that has count-instability of 1. In Theorem 5 we
show how to achieve exactly that.

4. REPETITIVE CONSENSUS
In the above sections a formal analysis of the computa-

tional model was given, together with lower bounds regard-
ing the count-instability of any distributed system. In the
rest of the paper we concentrate on a more “practical” ap-
proach; that is, the repetitive consensus problem is defined
and solved in a “synchronous” network in a self-stabilizing
and Byzantine tolerant manner.

We start by defining the Global-Beat-System (a self-stabilizing
equivalent of the classical synchronous network); then we
present and solve the repetitive consensus problem as ap-
plied to this model.

4.1 Model and Definitions
The “Global Beat System” model (GBS for short) consists

of n nodes that can communicate via message passing, where
the sender of each message can be identified. Nodes have
access to a common “global beat system”, which produces
signals/beats at regular intervals, such that a message sent
by any node p to any node q upon receiving some beat,
reaches q before the following beat. All nodes receive a
signal/beat at the same time, and can perform computations
and/or send messages upon its receipt. The beats are spaced
in such a way as to allow a correct node to send one message
to each correct node (and process such messages) in the time
span between two consecutive beats.

In non-self-stabilizing synchronous systems, usually there
is a common counter that all correct nodes are aware of (the
current round number). This is not the case in the GBS
model; however, for the sake of clarity we will refer to an
“external” beat/round number r, that the nodes are not
aware of. In the rest of this paper, “rounds” and “beats”
will be used interchangeably. These terms are not to be
confused with “pulses”, which refer to the output of pulsing
algorithms.

While the system is “unstable” (due to transient faults),
any number of nodes may behave in a Byzantine manner and
the communication network may behave arbitrarily. How-
ever, once the system “stabilizes”, there will be at most f
Byzantine nodes, the global beat system will produce beats
regularly and the communication network will deliver mes-
sages on time (before the following beat).

Definition 4.1. A node is non-faulty when it follows
the given protocol2, and faulty otherwise.

Remark 4.1. In the current work processing time of in-
coming messages is ignored. This assumption does not weaken
the result, it only simplifies the exposition.

Definition 4.2. The communication network is non-faulty
when the following conditions hold:

1. A message by a correct node p sent upon a receipt of
a beat from the global beat system, arrives (and is pro-
cessed) at its destination before the following beat is
issued by the global beat system;

2. The sender’s identity and the message context of any
message received are not tampered with.

3. A message received by p was sent by some node no
more than one beat ago. That is, “phantom” messages
are not delivered.

In real-world networks, it may take some time for the com-
munication network to overcome transient faults. Specifi-
cally, the communication networks’ buffers may contain mes-
sages that were not sent by any node, and the network may
eventually deliver them. We consider the communication
network to be non-faulty only after all of these “phantom”
messages have been delivered or cleared away.

According to the above definition, once the network is
non-faulty, it adheres to the GBS model. Which means that

2Notice that a non-faulty node p may exhibit unwanted be-
havior, due to its arbitrary state. However, given p’s state,
its behavior is determined by the protocol.

398

messages cannot be lost and old messages cannot be stored
for an arbitrarily long time.

The transition from being faulty to becoming a “valid”
participant of the protocol can’t be instantaneous. There-
fore, a continuous period of non-faulty behavior is required
before the system or a node can be considered correct.

Definition 4.3. A node is correct following ∆node beats
of continuous non-faulty behavior in which the communica-
tion network is non-faulty.

Definition 4.4. The system is coherent when the com-
munication network is non-faulty and there are n−f correct
nodes.

The values of n and f are fixed constants and are consid-
ered part of the “code” of the protocols and thus non-faulty
nodes cannot initialize with arbitrary values for these con-
stants.

4.2 The Repetitive Consensus Problem
Let Ir

p and Or
p be the input and output value of p at beat

r. Input values are from some finite set V , and output values
are from V ∪ {⊥}. Let Gr be the set of non-faulty nodes at
beat r; (we will use G when r is clear from the context.)

Definition 4.5. The inputs (of non-faulty nodes) are sta-
ble during [r1, r2] if for every node p ∈ G the value of Ir

p

does not change, for all r ∈ [r1, r2]. This condition can be
expressed formally as: ∀p∈G∀r1≤r≤r2 [I

r
p = Ir1

p].
Similarly, we say that the outputs are stable during [r1, r2]

if ∀p∈G∀r1≤r≤r2 [O
r
p = Or1

p].

Let Ir denote the vector of inputs of all nodes Ir :=
(Ir

p1 , . . . , Ir
pn

) and let Or denote the vector of outputs at
beat r. When talking about outputs we consider only out-
puts of non-faulty nodes, since no requirements can be given
on outputs of Byzantine nodes. Likewise, only non-faulty
nodes’ inputs are considered, as a Byzantine node can have
any input it wishes.

Definition 4.6. The outputs are in agreement at some
beat r if ∀p,p′∈G [Or

p = Or
p′]; denote by Vr the agreement value

and let Vr := Or
p for some p ∈ G.

The outputs are decisive during beat interval R = [r1, r2]
if the outputs are stable during R and the outputs are in
agreement during beat r1. Denote by V [r1,r2] the agreement
value and let V [r1,r2] := Vr1 .

For the outputs to become stable, the inputs must not
change for a “long-enough” period of time, leading to the
following definition:

Definition 4.7. A beat interval R = [r1, r2] is ∆-applicable
if r2 − r1 ≥ ∆ and the inputs are stable during R. We use
the notation R|∆ := [r1 + ∆, r2].

Hopefully, there exists some ∆, s.t. for any ∆-applicable
interval R, the outputs are decisive in R|∆. That is, if the
inputs do not change for long enough, then as long as they
continue not to change, the outputs are in agreement and
do not change. However, due to Theorem 1 and Theorem 2
this is impossible; we therefore add the following definitions:

Definition 4.8. The outputs are k-decisive during beat
interval R = [r1, r2] if the outputs are in agreement during
R; and R consists of k disjoint intervals R1, . . . , Rk, such
that: a.

⋃
Ri = [r1, r2]; b. for each interval Ri the outputs

are stable.

Definition 4.9. A system k-changes its mind in the
interval [r1, r2] if k is the minimal value such that the out-
puts are (k+1)-decisive. Alternatively, we say that the system
changes its mind k times.

Notice that “decisive” as defined in Definition 4.6 is the
same as “0-changes its mind” as defined in Definition 4.9.

The system is considered to uphold (k, ∆)-repetitive con-
sensus behavior, if (for ∆-applicable intervals) the non-faulty
nodes agree on their output, “validity” holds, and the out-
put does not change more than k times. The following is a
formal definition:

Definition 4.10. A system upholds a (k, ∆)-repetitive
consensus behavior during interval R, if for any ∆-applicable
interval R′ ⊂ R:

1. Agreement: The outputs are in agreement in R′|∆;

2. Validity: For any beat r ∈ R′|∆, if Vr 6=⊥ then some

non-faulty node has Vr as its input value (during R′);
if all non-faulty nodes have the same input value ν
(during R′), then Vr = ν;

3. Bounded changes: The system changes its mind
during R′|∆ at most k times.

Note that the above definition is applicable only for R’s
larger than ∆. Definition 4.10 defines “desired behavior”,
in the context of the repetitive consensus problem. It refers
to any subinterval R′ = [r1, r2] of length at least ∆, saying
that if the inputs are stable throughout R′ then the follow-
ing holds: “agreement” states that all outputs in the interval
[r1 + ∆, r2] are the same at all non-faulty nodes. “validity”
extends the definition from Section 2 to the distributed syn-
chronous model at hand. Lastly, “bounded changes” states
that the output of the system (in the interval [r1 + ∆, r2])
may change at most k times. The motivation behind such a
definition is straightforward: if the inputs are stable for long
enough, then the system agrees on its output, the output is
related (in a reasonable way) to the input, and the output
does not change more than k times.

Definition 4.11. The k-repetitive consensus prob-
lem (k-RC for short) is solved by an algorithm A if there
exists a constant ∆ such that for any interval R the system
upholds a (k, ∆)-repetitive consensus behavior.

Definition 4.12. The self-stabilizing k-repetitive con-
sensus problem (k-SSRC for short) states that: there exist
constants ∆, ∆stabilize, s.t. for any interval [r1, r2] with no
transient faults, where r2 − r1 ≥ ∆stabilize, the system up-
holds the (k, ∆)-repetitive consensus behavior in the interval
[r1 + ∆stabilize, r2]. ∆stabilize is called the convergence
time.

The distributed model presented above is a weaker model
(has less assumptions) than the computational model of

399

Algorithm ss-Rep-Cons /* executed at node p */
/* P is a self-stabilizing pulse with Cycle > ∆agree

a */
On beat: (signal from global beat system)

1. Execute a single beat of P;

2. If P invoked a pulse at the current beat:

/* “vals” represents the agreed input vector */

(a) If vals contains (at least) n− f same value ν then set Outputp := ν;
Else if Outputp does not appear f + 1 times in vals, set Outputp :=⊥;

(b) Start executing Byzantine agreement on Ip; /* Ip is p’s current input */
(denoted by Byz-Agreep)

(c) Start executing Byzantine consensus on Outputp;
(denoted by Byz-Cons)

/* vals[q] holds q’s input value */

3. Once a q’s Byz-Agreeq agreement terminates with v, update vals[q] := v;

4. Once the Byz-Cons consensus terminates with v′, update Outputp := v′;

5. Set Op := Outputp; /* Op is p’s current output */

a∆agree is the number of rounds to execute Byzantine agreement.

Figure 1: An algorithm that solves the 2-SSRC problem in the GBS model.

Section 2. Therefore, the lower bounds of Section 3 hold
for the distributed model as well. 3

Corollary 1. The 0-RC problem cannot be solved; The
0-SSRC problem cannot be solved, for any value of ∆stabilize.

Proof. Immediate from Theorem 1, Theorem 2 and the
discussion in Section 2.1.

Remark 4.2. Notice that the first part of the above corol-
lary holds for both self-stabilizing and non-self-stabilizing mod-
els. That is, the 0-RC problem cannot be solved even in
a non-self-stabilizing synchronous model in the presence of
even a single Byzantine fault.

5. SOLVING SS-REPETITIVE CONSENSUS
It is impossible to solve the 0-SSRC problem (or even

the 0-RC problem) for any value of f > 0; in addition, for
n = 3f +1, |V | ≥ 3 it is impossible to solve the 1-SSRC (and
the 1-RC) problem. In the following section we present a
solution for the 2-SSRC problem for any value of n ≥ 3f +1
(see Figure 1).

The ss-Rep-Cons algorithm (see Figure 1) has three main
goals: to have all correct nodes agree on the same vector of
input values vals, to agree on Outputp and to have Outputp

change as little as possible. The first goal is achieved by ex-
ecuting Byzantine agreements on each node q’s input value
(Line 2.b) and by storing the result in vals[q] (Line 3). This
ensures that, all correct nodes have a vector, vals, of agreed
input values.

The second and third goals are achieved by the update
rule in Line 2.a; however, this update is dependent on the
previous value of Outputp. Thus, all correct nodes are also
required to agree on the previous value of Outputp; which is
done by executing a Byzantine consensus Byz-Cons (Line 2.c).
The feedback update rule used in Line 2.a (specifically, the

3For a detailed discussion on the applicability of the com-
putational model’s lower bounds, see Section 2.1.

second line) is essential to the stabilizing nature of ss-Rep-
Cons. If there was a “static” update rule instead (one which
ignores the previous value of Outputp) it would incur more
output changes than required by the present value.

To facilitate the above method of operation, the Byz-Cons
instance and the different Byz-Agreep instances must start
their execution at all correct nodes at the same round, and
be executed properly by all correct nodes (Byz-Cons, and
Byz-Agreep are not self-stabilizing). Thus, a self-stabilizing
pulsing algorithm P is used as a building block4.
P’s convergence time is ∆P and P’s Cycle is set to be long

enough to execute Byz-Cons and Byz-Agree between two
consecutive pulses. Once P stabilizes, each time it pulses the
correct nodes start executing a new instance of Byz-Cons
and the different Byz-Agreeps. These algorithms terminate
before the next pulse of P and thus all correct nodes have an
agreed view of vals and of Outputp. From this point on, all
correct nodes continue to agree on vals and on the previous
value of Outputp and thus also on the new value of Outputp

(Outputp is dependent only on the value of vals and on the
previous value of Outputp).

Remark 5.1. In the context of ss-Rep-Cons ∆node is
defined to be equal to ∆P .

5.1 Correctness Proof

Lemma 1. If the system has been coherent for ∆P beats,
then for as long as the system stays coherent: all correct
nodes enter Line 2 once every Cycle beats and do so in uni-
son.

Proof. Follows immediately from the properties of a self-
stabilizing Byzantine tolerant pulsing algorithm. See [5] for
more information on pulsing algorithms.

4A pulsing algorithm invokes “pulses” every Cycle rounds
at all correct nodes simultaneously (see [5]).

400

P is a self-stabilizing pulsing algorithm. Thus, after ∆P
rounds, P stabilizes and starts pulsing in a regular pattern.
Denote the round at which P has stabilized by rstabilize.
Consider rstart to be the first round at which P invokes a
pulse after rstabilize; in other words, rstart is the first round
in which a pulse is invoked after P has stabilized.

Lemma 2. If the system is coherent for Cycle rounds af-
ter rstart, then for as long as the system stays coherent: all
correct nodes have the same value of vals and the same value
of Outputp.

Proof. Starting at round rstart, all correct nodes start
executing Byz-Agreep for each node p. Since P’s Cycle is
long enough to allow a Byzantine agreement to terminate, all
correct nodes terminate all the Byz-Agreep instances (even
for a Byzantine node p) with agreed output values. Thus,
when updating the values of the vector vals at Line 3, all
correct nodes update it in the same manner. Since Line 3 is
the only line in which vals is updated, we have that starting
from round rstart + Cycle, all correct nodes have the same
value for vals.

Notice that Outputp is updated in two locations: Line 1.a
and Line 4. For the same reason as in the above para-
graph, all correct nodes update Outputp in the same man-
ner in Line 4. In addition, since all correct nodes have
the same view of vals and Outputp (starting from round
rstart + Cycle), they all update Outputp in the same way
also in Line 1.a. And we have that starting from round
rstart + Cycle, all correct nodes have the same view of vals
and of Outputp.

Lemma 2 implies that the “agreement” property holds
from round rstart + Cycle and onwards. This is because the
output Op of node p is determined by Line 5 - which sets
Op := Outputp - and from the above lemma all correct nodes
have the same value of Outputp = Op.

Let rstart be as defined above, and let rend, rend ≥ rstart +
3 · Cycle be any round such that the system is coherent in
the interval [rstart, rend].

Lemma 3. “Validity” of the (k, 2 · Cycle)-repetitive con-
sensus behavior holds for ss-Rep-Cons during the interval
[rstart + Cycle, rend] (for any k).

Proof. According to the previous lemma, all correct nodes
have the same view of vals in the interval [rstart+Cycle, rend].
Let [r1, r2] ⊂ [rstart + Cycle, rend] be the round interval in
which all non-faulty nodes have stable input values. Within
Cycle rounds of r1, a pulse will be invoked by P, causing
all non-faulty nodes to start executing Byz-Agreep; all the
Byz-Agreep instances terminate before the next pulse is
invoked (no later then r1 + 2 · Cycle). Thus, during the
interval [r1 + 2 · Cycle, r2] all correct nodes have the same
view of vals, which reflects the “real” input values of each
correct node. Since correct nodes enforce Outputp’s adher-
ence to the validity requirement (see Line 2.a), then during
the interval [r1 + 2 · Cycle, r2] the output of ss-Rep-Cons
conforms to validity.

Lemma 4. The “Bounded changes” property of the
(2, 2 ·Cycle)-repetitive consensus behavior holds for ss-Rep-
Cons during the interval T = [rstart + Cycle, rend].

Proof. Let [r1, r2] ⊂ T (where r2− r1 ≥ 2 ·Cycle) be an
interval in which the inputs are stable. Recall that all nodes

see the same value of vals, and that vals reflects the input
values of the correct nodes. Let Cv be the number of non-
faulty nodes with input value v. Clearly,

∑
v Cv = n − f .

Assume by contradiction that two different Cv, Cv′ ≥ n−2f ;
therefore Cv + Cv′ ≥ 2n − 4f ; and since 3f < n we have
that Cv + Cv′ > n − f . But this contradicts the fact that
Cv + Cv′ ≤

∑
v Cv = n− f . Thus, Cv ≥ n− 2f holds for at

most one Cv.
First, consider the case in which no Cv is ≥ n − 2f . In

this case, when executing Line 2.a, the value of Outputp is
either unchanged or changes to ⊥. That is, it changes at
most once.

Now consider the case in which some Cv is ≥ n − 2f . In
this case, when executing Line 2.a, the value of Outputp is
either unchanged, v, or ⊥. In addition, notice that once
Outputp = v it cannot change to some other value unless a
correct node has changed its value. Thus, Outputp changes
at most twice (to ⊥ and then to v).

Theorem 4. ss-Rep-Cons solves the 2-SSRC problem,
for ∆ := 2 · Cycle (with ∆stabilize := ∆P + 4 · Cycle).

Proof. From Lemma 1, Lemma 2, Lemma 3 and Lemma 4
we have that if the system has been coherent for a period of
∆P + 4 · Cycle, then the following holds:

1. P “stabilizes” after ∆p rounds; denote by rstabilize the
round at which P “stabilizes”.

2. P will invoke a pulse at some round in the interval
[rstabilize, rstabilize+Cycle]; let rstart denote this round.

3. Let rend be the maximal round such that during the
interval [rstart + Cycle, rend] no transient faults occur.
The properties of the (2, 2 ·Cycle)-repetitive consensus
behavior hold during [rstart + Cycle, rend].

From the above, ss-Rep-Cons solves the 2-SSRC prob-
lem, for ∆ := 2 ·Cycle, and ∆stabilize := ∆P +4 ·Cycle.

In the binary setting (the input value range contains 2
values) ss-Rep-Cons matches the lower bound.

Theorem 5. ss-Rep-Cons solves the 1-SSRC problem
when |V | = 2.

Proof. The proof is the same as above, with the follow-
ing observation: when |V | = 2, the output can change only
once.

We can thus follow the lines of the proof of Lemma 4, with
a single change: in the case where some Cv ≥ n − 2f , exe-
cuting Line 2.a can change Outputp only to v: if Outputp =
v then Outputp never changes. If Outputp = 1 − v, then it
cannot change to ⊥, since if Outputp does not appear f + 1
times in vals then 1− Outputp = v appears n− f times in
vals. Thus, Outputp is changed to v.

With the above modification, Lemma 4 proves that when
|V | = 2 there is at most a single change in output. Thus,
together with the rest of the lemmata, ss-Rep-Cons solves
the 1-SSRC problem.

6. RANGE VALIDITY
In the above sections, the “exact value” (EV for short)

validity was discussed. It is interesting to consider a differ-
ent validity requirement: the “range value” validity (RV for

401

short)5, which states that the output of the function F is
in the range of input values of correct nodes. Notice that
EV may output ⊥, while RV must always output a value
v ∈ V . Formally, RV is defined as follows: if F(~x) = ν then∑

ν′≤ν #ν′(~x) ≥ f + 1 and
∑

ν′≥ν #ν′(~x) ≥ f + 1.
In the next subsections, we show that 0-SSRC cannot be

solved for RV-validity, for any value of f > 0. In addition, we
also show how to solve the 1-SSRC problem for RV-validity,
when n > 4f , thus matching the lower bound. Table 2
presents the lower and upper bounds regarding RV-validity.

Table 2: Summary of results for RV-validity

parameters count-instability theorem#
f > 0 ≥ 1 Theorem 6

v ≥ n, n + bn−1
2
c < 5f ≥ 2 Theorem 7

n ≥ 4f + 1 1 Theorem 8

We start with the impossibility results followed by upper
bounds.

6.1 Impossibility Results: Lower Bounds
Both Theorem 1 and Theorem 2 hold for RV-validity, as

Theorem 6 states. Theorem 7 extends the bounds for RV-
validity only.

Theorem 6. For any RV system S with f ≥ 1 the count-
instability of S is at least 1, and the length-instability of S
is ∞.

Proof. Same proof as for EV-validity.

Theorem 7. For any RV system S with v ≥ n and n +
bn−1

2
c < 5f the count-instability of S is at least 2.

Proof. Let m0 be any state and ~x0 = (0, 1, . . . , n − 1).
Due to RV-validity, f ≤ F(~x0, m0) ≤ n − f − 1. There are
2 cases: F(~x0, m0) ≤ bn−1

2
c and F(~x0, m0) > bn−1

2
c; for

symmetry reasons they are equivalent.
We can thus consider only the case F(~x0, m0) ≤ bn−1

2
c.

Mark by k := F(~x0, m0), thus f ≤ k ≤ bn−1
2
c < 2f . Let

~x1 = (n, n, . . . , n︸ ︷︷ ︸
k−f+1

, k − f + 1, k − f + 2, . . . , n− 1︸ ︷︷ ︸
n−k+f−1

) .

Consider F(~x1, m1), where m1 := τ(~x0, m0). Notice that ~x1

contains k−f+1 values of “n”, thus (due to RV-validity) f−
(k−f +1) = 2f−k−1 additional values are “to be ignored”.
Therefor, the output must be ≤ n − 1 − (2f − k − 1) =
n+k−2f . That is, due to RV-validity we have that k+1 ≤
F(~x1, m1) ≤ n + k − 2f . Since k = F(~x0, m0) it holds that
F(~x0, m0) 6= F(~x1, m1).

Define k′ = F(~x1, m1). If k′ < 2f then define

~x2 := (n, n, . . . , n︸ ︷︷ ︸
f

, f, f + 1, . . . , n− 1︸ ︷︷ ︸
n−f

) .

In this case, 2f ≤ F(~x2, m2) ≤ n−1 (where m2 := τ(~x1, m1)).
And we have that F(~x1, m1) 6= F(~x2, m2). Therefore, the
run from m0 on the path ~x0, ~x1, ~x2 has 2 output changes.

On the other hand, consider the case where k′ ≥ 2f . Let

~x2 := (0, .., 0︸ ︷︷ ︸
k−f+1

, k − f + 1, k − f + 2, .., n + k − 2f︸ ︷︷ ︸
n−f

, 0, .., 0︸ ︷︷ ︸
2f−k−1

) .

5RV’s definition is taken from [7]. Note that the current
paper’s EV definition differs from the EV in [7].

Notice that ~x2 contains exactly f “0”s. Moreover, ~x2 con-
tains exactly f values that are > n + k − 3f ; thus, due to
RV-validity we have that F(~x2, m2) ≤ n + k − 3f . Since
k ≤ bn−1

2
c, it holds that that F(~x2, m2) ≤ n + bn−1

2
c − 3f .

We assumed k′ ≥ 2f and since n + bn−1
2
c < 5f , thus

F(~x2, m2) < k′ = F(~x1, m1). That is, there were 2 output
changes.

6.2 Solving 1-SSRC for RV-validity

6.2.1 Definitions
Prior to solving the 1-SSRC problem, a definition of the

problem in the context of RV-validity is required. The only
change in the definition from EV-validity is in the “Validity”
property of the (k, ∆)-repetitive consensus behavior defini-
tion. We thus adapt this definition in the following manner:

Definition 6.1. For RV-validity let the “Validity” prop-
erty of the (k, ∆)-repetitive consensus behavior be:
For any beat r ∈ R′|∆, if Vr is the output value then some
non-faulty node has input value ν1 ≤ Vr and some non-
faulty node has input value ν2 ≥ Vr.

Corollary 2. If v ≥ n and n + bn−1
2
c < 5f , the 1-RC

(and 1-SSRC) problem cannot be solved for RV-validity.

Proof. Follows immediately from Theorem 7.

6.2.2 Algorithm
The algorithm ss-Rep-Cons also solves the 1-SSRC prob-

lem - for n ≥ 4f + 1 - in the RV-validity setting, provided
that we replace Line 2.a with the following:

• Remove f lowest and f highest values from vals. Let
high be the new highest value in vals, and low be the
new lowest value (after the removal);

• If Outputp /∈ [low, high] then set Outputp to be the
median value in vals.

This change incorporates the difference between EV-validity
and RV-validity.

6.2.3 Proofs

Theorem 8. ss-Rep-Cons (with the above changes) solves
the 1− SSRC problem for n ≥ 4f + 1.

Proof. Notice that Lemma 1, Lemma 2 and Lemma 3
all hold for RV-validity. Thus, it is left to show that once
the system has stabilized, it does not change its output more
than once. Consider v′ to be the value of Outputp at all
nodes after ss-Rep-Cons has stabilized (v′ is well defined
due to Lemma 2).

Consider the first beat in which Outputp changes to v 6=
v′; Sort the input values of the correct nodes, and let vlow

be the f +1st input value from the bottom, and vhigh be the
f +1st from the top. The median value v has at least 2f +1
values that are lower or equal to it. There are at most f
faulty nodes, and thus there are at least f +1 correct nodes
lower or equal to v. Thus, vlow ≤ v. For the same reason
vhigh ≥ v. Thus, the calculated median is in the range
[vlow, vhigh]; in other words, v ∈ [vlow, vhigh].

In any future beat, when values are removed from vals,
the values vlow and vhigh are not discarded, since only the f

402

lowest and f highest values are removed. Thus, when calcu-
lating low and high (see algorithm in previous subsection)
the following holds: low ≤ vlow and high ≥ vhigh. Thus,
Outputp ∈ [low, high], which means that Outputp is not up-
dated; i.e. , Outputp = v. Thus, the output value of the
correct nodes changes at most once after ss-Rep-Cons has
converged.

7. DISCUSSION

7.1 Related Problems
There are two problems that seem to be related to repet-

itive consensus: self-stabilizing Byzantine agreement, and
continuous consensus. However, both problems differ from
repetitive consensus on the same major issue.

Self-stabilizing Byzantine Agreement (SSBA):
This problem consists of having a Byzantine agreement that
is self-stabilizing (see [3] for more information). That is,
starting from an arbitrary memory state, any node p can
initiate an agreement procedure on its value. Due to the
self-stabilizing property, p can repeatedly initiate agreement
procedures on its value; thus, in a sense, SSBA can be seen
as a repetitive Byzantine agreement. The main difference
between repetitive consensus and SSBA lies in the difference
in their validity property. SSBA requires that if the leader
is non-faulty, then all non-faulty nodes agree on the leader’s
value. Since SSBA requires an agreement on a single (leader)
node’s value, if this value changes then the agreement should
change with it. However, in repetitive consensus, we require
a consensus of all nodes’ values: thus, if one node’s value
changes, and this node is Byzantine, then the output value
should not change. Therefore, in repetitive consensus, a sin-
gle node changing its input value must not lead to a change
in the output, where as in SSBA a single node’s change of
input value should lead (if it is the leader) to the change of
the output value.

Continuous Consensus (CC):
The CC problem involves continuously agreeing on all the
inputs of all the nodes in the system. That is, each node
should have a list of all the inputs that each node in the
system has had until now (see [12] for more information).
However, the property that all nodes agree on the input
values of all other nodes during the entire execution is still
not sufficient to solve the 0-RC problem.

As in SSBA, the essence of this impossibility lies in the
requirement that if a Byzantine node changes its input value,
the output value of the repetitive consensus does not change.
Thus, in CC, even if all non-faulty nodes have all the input
values of all nodes, they cannot differentiate between a non-
faulty node that has changed its value, and a Byzantine node
mimicking a new input value.

Remark 7.1. The above comparison leads to the conclu-
sion that the impossibility result of Corollary 1 stems from
the requirements of the repetitive consensus problem, and
not from the ability to gather information from the entire
system. In other words, it is not missing data that prohibits
the repetitive consensus output; there simply does not exist a
function on the nodes’ inputs that satisfies the requirements
of the 0-RC problem.

7.2 Pseudo Self-stabilization
In the context of self-stabilization, algorithms that con-

verge to a “safe” state and leave the safe states at most a

constant number of times are called “pseudo self-stabilizing”
algorithms (see [6]). Depending on how one defines a safe
configuration in the context of Byzantine faults, the algo-
rithms presented in the current paper may be considered as
pseudo self-stabilizing, where the constant number of times
they may leave “safe” states is 1 or 2.

7.3 Bounded-delay Network
In the full paper the results herein are extended to the

bounded-delay model, in which there is no global-beat-system;
instead, a bound on messages’ delivery time is assumed. The
main idea behind this extension is the usage of a “trans-
former” from the global-beat-system model to the bounded-
delay model, which conserves the properties of ss-Rep-Cons.

7.4 Open Questions
We have shown that for any system with f > 0 the count-

instability is at least 1, and that this is tight for |V | = 2.
In addition, for systems with n = 3f + 1 (where |V | ≥ 3)
we have shown that the count-instability is at least 2, and
ss-Rep-Cons reaches this bound. This raises the following
question: what is the exact relation between |V |, n and f
regarding count-instability and what algorithm can achieve
it?

When considering the RV-validity scenario it becomes even
more interesting: we have shown how to solve the 1-SSRC
problem for any n ≥ 4f + 1. What happens for smaller n?
For n ≤ 4f we have only given lower bounds. Can upper
bounds be given for n ≤ 4f?

Acknowledgements
We would like to thank Yoni Peleg for contributing Theorem 5.

8. REFERENCES
[1] Hagit Attiya and Jennifer Welch. Distributed

Computing: Fundamentals, Simulations and Advanced
Topics (2nd edition). John Wiley Interscience, March
2004.

[2] A. Bar-Noy, X .Deng, J. Garay, and T. Kameda.
Optimal amortized distributed consensus. Information
and Computation, 120(1):93–100, 1995.

[3] A. Daliot and D. Dolev. Self-stabilizing byzantine
agreement. In Proc. of the Twenty-fifth ACM
Symposium on Principles of Distributed Computing
(PODC’06), Denver, Colorado, Jul 2006.

[4] L. Davidovitch, S. Dolev, and S. Rajsbaum. Stability
of multivalued continuous consensus. SIAM Journal
on Computing, 37(4):1057–1076, 2007.

[5] D. Dolev and E. N. Hoch. On self-stabilizing
synchronous actions despite byzantine attacks. In
Proc. the 21st Int. Symposium on Distributed
Computing (DISC’07), Lemesos, Cyprus, Sep. 2007.

[6] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[7] S. Dolev and S. Rajsbaum. Stability of long-lived
consensus. J. Comput. Syst. Sci., 67(1):26–45, 2003.

[8] Michael J. Fischer. The consensus problem in
unreliable distributed systems (a brief survey). In
Marek Karpinski, editor, FCT, volume 158 of Lecture
Notes in Computer Science, pages 127–140. Springer,
1983.

403

[9] Eli Gafni, Sergio Rajsbaum, Michel Raynal, and
Corentin Travers. The committee decision problem. In
José R. Correa, Alejandro Hevia, and Marcos A. Kiwi,
editors, LATIN, volume 3887 of Lecture Notes in
Computer Science, pages 502–514. Springer, 2006.

[10] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[11] Keith Marzullo. Tolerating failures of
continuous-valued sensors. ACM Trans. Comput.
Syst., 8(4):284–304, 1990.

[12] Tal Mizrahi and Yoram Moses. Continuous consensus
via common knowledge. In TARK ’05: Proceedings of
the 10th conference on Theoretical aspects of
rationality and knowledge, pages 236–252, Singapore,
Singapore, 2005. National University of Singapore.

[13] Roberto De Prisco, Butler Lampson, and Nancy
Lynch. Revisiting the PAXOS algorithm. Theoretical
Computer Science, 243(1–2):35–91, 2000.

[14] Marco Schneider. Self-stabilization. ACM Comput.
Surv., 25(1):45–67, 1993.

[15] F. Becker and S. Rajsbaum and I. Rapaport and E.
Re’mila. Average binary long-lived Consensus:
quantifying the stabilization role played by memory.
In Proc. 15th International Colloquium on Structural
Information and Communication Complexity
(SIROCCO’08), Switzerland, June. 2008.

404

Chapter 5

Constant-space Localized
Byzantine Consensus

Danny Dolev and Ezra N. Hoch, Proceedings of the 22nd international sym-
posium on Distributed Computing (DISC ’08), Arcachon, France, Pages: 167
- 181, Sep. 2008.

53

Constant-Space Localized Byzantine Consensus

Danny Dolev� and Ezra N. Hoch

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

{dolev,ezraho}@cs.huji.ac.il

Abstract. Adding Byzantine tolerance to large scale distributed sys-
tems is considered non-practical. The time, message and space require-
ments are very high. Recently, researches have investigated the broadcast
problem in the presence of a f�-local Byzantine adversary. The local ad-
versary cannot control more than f� neighbors of any given node. This
paper proves sufficient conditions as to when the synchronous Byzantine
consensus problem can be solved in the presence of a f�-local adversary.

Moreover, we show that for a family of graphs, the Byzantine consen-
sus problem can be solved using a relatively small number of messages,
and with time complexity proportional to the diameter of the network.
Specifically, for a family of bounded-degree graphs with logarithmic di-
ameter, O(log n) time and O(n log n) messages. Furthermore, our pro-
posed solution requires constant memory space at each node.

1 Introduction

Fault tolerance of a distributed system is highly desirable, and has been the
subject of intensive research. Byzantine faults have been used to model the most
general and severe failures. Classic Byzantine-tolerant research has concentrated
on an “all mighty” adversary, which can choose up to f “pawns” from the n
available nodes (usually, f < n

3). These Byzantine nodes have unlimited compu-
tational power and can behave arbitrarily, even colluding to “bring the system
down”. Much has been published relating to this model (for example, [11], [12],
[2]), and many lower bounds have been proven.

One of the major drawbacks to the classic Byzantine adversarial model is its
heavy performance cost. The running time required to reach agreement is linear
in f (which usually means it is also linear in n), and the message complexity is
typically at least O(n2) (when f = O(n), see [7]). This drawback stems from the
“global” nature of the classic Byzantine consensus problem - i.e., the Byzantine
adversary has no restrictions on the spread of faulty nodes. Thus, the communi-
cation graph must have high connectivity (see [6] for exact bounds) - which leads
to a high message load. Moreover, the global nature of the adversary requires
every node to agree with every other node, leading to linear termination time
and to a high out degree for each node (at least 2f + 1 outgoing connections,

� Supported in part by ISF.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 167–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 D. Dolev and E.N. Hoch

see [6]). Such algorithms cannot scale; thus - as computer networks grow - it
becomes infeasible to address global Byzantine adversaries.

To overcome this limitation, some research has assumed computationally-
bounded adversaries, for example [5]. Alternatively, recent work has considered
a f�-local Byzantine adversary. The f�-local adversary is restricted in the nodes it
can control. For every node p, the adversary can control at most f� neighboring
nodes of p. We call this stronger model “local” and the classic model “global”.
[10] has considered the Byzantine broadcast problem, which consists of all non-
Byzantine nodes accepting a message sent by a given node. [13] classifies the
graphs in which the broadcast problem can be solved, in the presence of a f�-local
adversary. In the current work we consider the Byzantine consensus problem,
which consists of all non-Byzantine nodes agreeing on the same output value,
which must be in the range of the input values of the non-Byzantine nodes.
Sufficient conditions are given to classify graphs on which the problem can be
solved, in the presence of a f�-local adversary.

Solving the Byzantine consensus problem when facing a global adversary re-
quires O(n) memory space. When considering a local adversary, the memory
space requirements can be reduced. This raises the question of possible tradeoff
between fault tolerance and memory space requirement, which has been previ-
ously investigated in the area of self-stabilizing (see [3], [8], [9]). The current
work provides a new tradeoff: for a family of graphs, consensus can be solved
using constant memory space, provided that the Byzantine adversary is f�-local.

Contribution: This work solves the Byzantine consensus problem in the local
adversary model. For a large range of networks (a family of graphs with constant
degree and logarithmic diameter), Byzantine consensus is solved within O(log n)
rounds and with message complexity of O(n·log n), while requiring O(1) space at
each node1. These results improve exponentially upon the classic setting which
requires linear time, O(n2) messages, and (at least) linear space for reaching a
consensus. We also present two additional results which are of special interest
while using constant memory: first, we show a means of retaining identities in
a local area of the network (see Section 4.1); second, we present a technique for
waiting log n rounds using O(1) memory space at each node (see Section 4.2).

2 Model and Problem Definition

Consider a synchronous distributed network of n nodes, {p0, . . . , pn−1} = P ,
represented by an undirected graph G = (E, V), where V = P and (p, p′) ∈ E
if p, p′ are connected. Let Γ (p) be the set of neighbors of p, including p. The
communication network is assumed to be synchronous, and communication is
done via message passing; each communication link is bi-directional.

Byzantine nodes have unlimited computational power and can communicate
among themselves. The Byzantine adversary may control some portion of the
nodes; however, the adversary is limited in that each node may not have more
1 Formally, we show that each node uses space polynomial in its degree; for constant

degree it is O(1).

Constant-Space Localized Byzantine Consensus 169

than f� Byzantine neighbors, where f� is a system-wide constant. Formally, a
subset S ⊂ P is f�-local if for any node p ∈ P it holds that |S ⋂

Γ (p)| ≤ f�. A
Byzantine adversary is said to be f�-local if (in any run) the set of Byzantine
nodes is f�-local.

2.1 Problem Definition

The following is a formal definition of the Byzantine consensus problem, followed
by a memory-bounded variant of it.

Definition 1. The Byzantine consensus problem consists of the following:
Each node p has an input value vp from an ordered set V; all nodes agree on
the same output V ∈ V within a finite number of rounds (agreement), such that
vp ≤ V ≤ vq for some correct nodes p, q (validity).

The goal of the current work is to show that for f�-local adversaries, efficient
deterministic solutions to the Byzantine consensus problem exist; efficient with
respect to running time, message complexity and space complexity. A node p’s
memory space depends solely on the local network topology - i.e. p’s degree or
the degree of p’s neighbors.

Denote by �-MaxDeg(p) the maximal degree of all nodes that are up to �
hops away from p. Notice that 0-MaxDeg(p) = |Γ (p)|.
Definition 2. The �-hop local Byzantine consensus problem is the Byzantine
consensus problem with the additional constraint that each correct node p can
use memory space that is polynomially bounded by �-MaxDeg(p).

Informally, the above definition states that a node cannot “know” about all the
nodes in the system, even though it can access all its local neighbors. That is,
consensus must be reached with “local knowledge” only.

Remark 1. Definition 2 can be replaced by a requirement that the out degree
of each node as well as the memory space are constant. We choose the above
definition instead, as it generalizes the constant-space requirement.

3 Byzantine Consensus

In this section sufficient conditions for solving the Byzantine consensus problem
for a f�-local adversary are presented. First we discuss solving the Byzantine
consensus problem in a network that is fully connected. We later give some
definitions that allow us to specify sufficient conditions to ensure that Byzantine
consensus can be solved in networks that are not fully connected.

3.1 Fully Connected Byzantine Consensus

We now define ByzCon, which solves the Byzantine consensus problem in a fully
connected network. Take any Byzantine agreement2 algorithm (for example, see
2 Byzantine agreement is sometimes called Byzantine broadcast. This problem consists

of a single leader broadcasting some value v using point-to-point channels.

170 D. Dolev and E.N. Hoch

[14]), and denote it by BA. ByzCon executes n instance of BA, one for each
node p’s input value, thus agreeing on the input value vp. As a result, all correct
nodes have an agreed vector of n input values (notice that this vector may
contain “⊥” values when BA happens to return such a value for a Byzantine
node). The output value of ByzCon is the median of the values of that vector,
where “⊥” is considered as the lowest value.

Claim. ByzCon solves the Byzantine consensus problem in a fully-connected
network.

Definition 3. Given an algorithm A and a set of nodes S ⊂ P, Valid(A, S)
= true if the set S upholds the connectivity requirements of A. Faulty(A, S)
denotes the maximal number of faulty nodes that A can “sustain” when executed
on S (for example, Faulty(BA, S) = � |S|−1

3 �).
In a similar manner, Time(A, S) is the maximal number of rounds it takes

A to terminate when executed on S, and Msg(A, S) is the maximal number of
messages sent during the execution of A on S.

Notice that for all S: Valid(ByzCon, S)= Valid(BA, S), Faulty(ByzCon,
S)= Faulty(BA, S), Time(ByzCon, S) = Time(BA, S) Msg(ByzCon, S) =
|S| ·Msg(BA, S). That is, ByzCon’s connectivity requirements, fault tolerance
ratio and running time, are the same as in the Byzantine agreement algorithm
of [14]; i.e., ByzCon requires a fully connected graph among the nodes partici-
pating in ByzCon and it supports up to a third of them being Byzantine.

3.2 Sparsely Connected Byzantine Consensus

Consider a given algorithm that solves the Byzantine consensus problem when
executed on a set of nodes S. ByzCon, defined in the previous section, requires
S to be fully-connected. The following discussion assumes ByzCon’s existence
and correctness.

The following definitions hold with respect to any f�-local adversary.

Definition 4. Given a subset S ⊂ P, denote by f�-Byz(S) the maximal number
of nodes from S that may be Byzantine for a f�-local adversary.

Definition 5. A non-empty subset S, ∅ 	= S ⊂ P, is a f�-decision group if
Valid(ByzCon, S) = true and Faulty(ByzCon, S) ≥ f�-Byz(S).

When considering ByzCon as constructed in Section 3.1, the above definition
states that S must be fully connected, and |S| > 3 · f�. Since 0-local adversaries
are of no interest, the minimal size of S satisfies, |S| ≥ 4.

Definition 6. A non-empty subset S′ ⊆ S of a f�-decision group is a f�-common
source if f�-Byz(S′) + |S − S′| ≤ Faulty(ByzCon, S).

Claim. If S′ ⊆ S is a common source and all correct nodes in S′ have the same
initial value, ν, then the output value of ByzCon when executed on S, is ν.

Constant-Space Localized Byzantine Consensus 171

Proof. Denote by W the set of correct nodes in S′ and by Y the set of all
nodes in S that are not in W ; i.e., Y := S −W . Since S′ is a common source,
|Y | ≤ Faulty(ByzCon, S). Assume by way of contradiction that all nodes in W
have the same initial value ν, and the output of ByzCon (when executed on S)
is not ν; denote this execution by R. If all the nodes in Y are Byzantine and they
simulate their part of R, then it holds that all correct nodes in S have the same
initial value ν, the number of Byzantine nodes is less than Faulty(ByzCon, S),
and yet the output is not ν. In other words, the “validity” of ByzCon does not
hold. Therefore, if all nodes in W = S −Y are correct and have the same initial
value ν, that must be the output value of ByzCon when executed on S. �

Definition 7. Two subsets S1, S2 ⊂ P are f�-connected if S1, S2 are f�-decision
groups, and if S1 ∩ S2 is a f�-common source for both S1 and S2.

Definition 8. A list C = S1, S2, . . . , Sl is a f�-value-chain between S1 and Sl

if the subsets Si, Si+1 are f�-connected, for all 1 ≤ i ≤ l − 1. The length of the
value-chain C is l − 1.

Definition 9. Let G be a set of f�-decision groups, i.e., G ⊆ 2P . G is an f�-
entwined structure if for any two subsets g, g′ ∈ G there is a f�-value-chain
C = g1, g2, . . . , gl ∈ G between g, g′. The distance between g, g′ is the minimal
length among all f�-value-chains between g, g′.

Definition 10. The diameter D of an f�-entwined structure G is the maximal
distance between any two f�-decision groups g, g′ ∈ G.

Definition 11. An f�-entwined structure G is said to cover graph G if for any
node p in G there is a subset g ∈ G such that p ∈ g. Formally:

⋃
g∈G{g} = P.

Remark 2. All entwined structures in the rest of this paper are assumed to cover
their respective graphs. We will therefore sometimes say “an entwined structure
G” instead of “an entwined structure G that covers graph G”.

Some of the above definitions were parameterized by f�. When f� is clear from
the context, we will remove the prefix f�. (i.e., “decision group” instead of “f�-
decision group”).

Definition 12. Let G be a graph. Denote by Φ(G) the maximal value f� s.t.
there is a f�-entwined structure that covers G.

The following theorem states the first result of the paper.

Theorem 1. The Byzantine consensus problem can be solved on graph G for
any Φ(G)-local adversary.

Section 3.3 contains the algorithm LocalByzCon that given a f�-entwined
structure G, solves the Byzantine consensus problem for any f�-local adversary.
Section 3.4 proves the correctness of LocalByzCon, thus completing the proof
of Theorem 1.

172 D. Dolev and E.N. Hoch

Algorithm LocalByzCon /* executed at node p */
/* BCi is an instance of ByzCon */

Initialization:

1. set vp := p’s initial value;
2. set Outputp := ∅; /* Gp := {g ∈ G|p ∈ g} */
3. for all gi ∈ Gp start executing BCi with initial value vp;

For Δmax · (2D + 1) rounds: /* Δmax := maxi{Time(ByzCon, gi)} */

1. execute a single round of each BCi that p participates in;
2. for each BCi that terminated in the current round with value V :

set Outputp := Outputp

⋃
{V };

3. for each BCi that terminated in the current round:
start executing BCi with initial value min{Outputp};

Return value:
return output as min{Outputp};

Fig. 1. Solving the Byzantine consensus problem for a f�-local adversary

3.3 Algorithm LocalByzCon

Figure 1 introduces the algorithm LocalByzCon that solves the Byzantine
consensus problem for f�-local adversaries, given an f�-entwined structure G. The
main idea behind LocalByzCon is to execute ByzCon locally in each decision
group. Each node takes the minimal agreement value among the decision groups
it participated in. The fact that any two decision groups in G have a value-chain
between them ensures that the minimal agreement value among the different
invocations of ByzCon will propagate throughout G. Since G covers G, all nodes
will eventually receive the same minimal value.

Consider G to be a f�-entwined structure, and g1, g2, . . . , gm ∈ G to be all the
decision groups (of P) in G. For a node p, Gp is the set of all decision groups
that p is a member of; that is, Gp := {g ∈ G|p ∈ g}. Each node p participates in
repeated concurrent executions of ByzCon instances, where for each gi ∈ Gp,
node p will execute a ByzCon instance, and once that instance terminates p will
execute another instance, etc. For each gi ∈ Gp denote by BC1

i the first execution
of ByzCon by all nodes in gi; BC2

i denotes the second instance executed by all
nodes in gi, and so on.

According to Definition 1 all nodes participating in ByzCon terminate within
some finite time Δ. Furthermore, each node can wait until Δ rounds elapse and
terminate, thus achieving simultaneous termination. Therefore, in LocalByz-
Con, all nodes that participate in BCj

i terminate it at the same round and start
executing BCj+1

i together at the following round.

3.4 Correctness Proof

For every gi ∈ G denote by ri(1) the round at which the first consecutive in-
stance of ByzCon executed on gi has terminated. Denote by r(1) := max{ri(1)}.
Let Outputrp denote the value of Outputp at the end of round r. Notice that
Outputrp ⊆ Outputr+1

p for all correct p and all r. Denote Outputr :=
⋃{Outputrp},

Constant-Space Localized Byzantine Consensus 173

the union of all Outputp (for correct p) at the end of some round r. Using this
notation, Outputr(1) represents all the values in any Outputp (for correct p) af-
ter at least one instance of ByzCon has terminated for each g ∈ G. Consider
some instance of ByzCon that terminates after round r(1): it must be (at least)
a second execution of that instance, thus all correct nodes that participated
in it had their input values chosen from Outputr(1). Thus, due to validity, the
output value is in the range of [min{Outputr(1)}, max{Outputr(1)}]. Hence, we
conclude that min{Outputr} ≥ min{Outputr(1)} for any r ≥ r(1). Denote by
vmin := min{Outputr(1)}; clearly no correct node p will hold a lower value (in
Outputp) for any r ≥ r(1).

Lemma 1. If a correct node p has min{Outputrp} = vmin then it will never have
a lower value in Outputp for any round r′ ≥ r.

Lemma 2. At round r(1), there exists gi ∈ G such that for every correct node
p ∈ gi it holds that min{Outputp} = vmin.

Proof. By definition, vmin ∈ Output
r(1)
p . Thus, vmin was the output of some BCi

instance (on decision group gi) at some round r ≤ r(1). Consider the nodes in
gi, they have all added vmin to their Outputp. Thus, vmin ∈ Output

r(1)
p and by

definition it is the lowest value in Outputp at round r(1). Thus, at round r(1),
all correct nodes in gi have min{Outputp} = vmin. �

Lemma 3. If LocalByzCon has been executed for at least Δmax · (2D + 1)
rounds, then all correct nodes have min{Outputp} = vmin.

Proof. Divide the execution of LocalByzCon into “stages” of Δmax rounds
each. Clearly there are at least 2D + 1 stages, and in each stage each BCi is
started at least once. From the above lemma, for some decision group gi, all
correct nodes p ∈ gi have min{Outputp} = vmin at the end of the first stage.

Let g′ be some decision group, and let gi = g1, g2, . . . , gl = g′ be a value-chain
between gi and g′; there exists such a value-chain because G is an entwined
structure, and its length is ≤ D.

Consider the second stage. Since g1, g2 are connected, and since all nodes in
g1 have the same initial value (vmin) during the entire stage 2, then in g1∩g2 all
nodes have vmin as their initial value during stage 2. Since g1 ∩ g2 is a common
source of g2, it holds that instance BC2 that is started in stage 2 is executed with
all nodes in g1 ∩ g2 having initial value vmin. Thus, when BC2 terminates (no
later than the end of stage 3), it terminates with the value vmin, thus all nodes
in g2 also have vmin ∈ Outputp. By Lemma 1, all nodes in g2 choose vmin as
their initial value for any instance of ByzCon started during stage 4 and above.
Repeating this line of proof leads to the conclusion that after an additional 2D
stages all correct nodes in g′ have vmin ∈ Outputp.

Since any decision group g′ has a value-chain of no more than D length to
gi, we have that after 2D + 1 stages, all correct nodes in all decision groups
have vmin ∈ Outputp. Since G covers G, each correct node is a member of some
decision group, thus all correct nodes in G have vmin ∈ Outputp. Since vmin is
the lowest possible value, min{Outputp} = vmin for all p ∈ P . �

174 D. Dolev and E.N. Hoch

Remark 3. Consider the value-chain g1, g2, . . . , gl in the proof above. The proof
bounds the time (in rounds) it takes vmin to “propagate” from g1 to gl. The given
bound (2 · l · Δmax) is not tight. In fact, instead of assuming 2 · Δmax rounds
for each “hop along the chain”, one can accumulate 2 ·Time(ByzCon, gi) when
moving from gi−1 to gi. Thus, define Timedist(g, g′) to be the shortest such sum
on any value-chain between g, g′, and Dtime as the maximal Timedist(g, g′) on
any g, g′ ∈ G; and we can conclude that it is enough to run LocalByzCon for
Dtime rounds. Notice that this analysis it tight up to a factor of 2.

Lemma 4. Given an f�-entwined structure G that covers G, LocalByzCon
solves the Byzantine consensus problem, for a f�-local adversary.

Proof. From the above lemmas, after Δmax · (2D + 1) rounds, all correct nodes
terminate with the same value, vmin. Notice that vmin is the output of some
ByzCon instance. Thus, there are two correct nodes p, q such that vp ≤ vmin ≤
vq. Therefore, both “agreement” and “validity” hold. �

3.5 Complexity Analysis

The time complexity of LocalByzCon is (2D + 1) ·Δmax. In other words, let
gmax be the largest decision group in G, that is gmax := argmaxgi∈G{|gi|}; using
this terminology we have that, Time(LocalByzCon,P) = (2D+ 1) ·O(gmax).

Similarly, the message complexity of LocalByzCon per round is the sum
of all messages of all ByzCon instances each round, which is bounded by∑

gi
|gi|3 ≤ |G| · |gmax|3. Thus, Msg(LocalByzCon,P) ≤ (2D + 1) · |G| ·

O(|gmax|4) (messages per round times rounds).

4 Constant-Space Byzantine Consensus

Section 3 proves a sufficient condition for solving the Byzantine consensus prob-
lem on a given graph G for a f�-local adversary. The current section gives a
sufficient condition for solving the �-hop local Byzantine consensus problem.

Definition 13. An f�-entwined structure G is called �-hop local if for every
g ∈ G, � bounds the distance between any two nodes in g.

For ByzCon constructed in Section 3.1, any entwined structure G is 1-hop local,
since for every decision group g ∈ G, it holds that Valid(ByzCon, g) =true, thus
g is fully connected. However, the following discussion holds for any algorithm
that solves the Byzantine consensus problem, even if it does not require decision
groups to be fully connected.

Definition 14. An f�-entwined structure G is called �-lightweight if G is �-hop
local and for every p ∈ P, |Gp| and |g| (for all g ∈ Gp) are polynomial in |Γ (p)|.
Definition 15. Let G be a graph. Denote by �-Ψ(G) the maximal value f� s.t.
there is a f�-entwined structure that is �-lightweight and covers G.

Constant-Space Localized Byzantine Consensus 175

The following theorem states the second contribution of this paper.

Theorem 2. The �-hop local Byzantine consensus problem can be solved on
graph G for any [�-Ψ(G)]-local adversary.

By Theorem 1, any f�-entwined structure G that covers graph G can be used
to solve the Byzantine consensus problem on G, for a f�-local adversary. To
prove Theorem 2 we show that when LocalByzCon is executed using an �-
lightweight f�-entwined structure, each node p’s space requirements are poly-
nomial in �-MaxDeg(p). There are 3 points to consider: first, we show that
the memory footprint of the different ByzCon instances that p participates in
is “small”. Second, ByzCon assumes unique identifiers, which usually require
log n space. We need to create identifiers that are locally unique (thus requiring
space that is independent of n), such that ByzCon can be executed properly
on each decision group. Third, the main loop of LocalByzCon requires to
count at least up to D, which requires logD bits, possibly requiring space that
is dependent on n.

The second point is discussed in Section 4.1 and the third in Section 4.2.
To solve the first point notice that G is �-lightweight, thus each node partici-
pates in no more than poly(|Γ (p)|) ByzCon instances concurrently, and each
such instance contains poly(|Γ (p)|) nodes. Assuming that the identifiers used
by ByzCon require at most polylog(�-MaxDeg(p)) bits (see Section 4.1), p re-
quires at most poly(�-MaxDeg(p)) space to execute the ByzCon instances of
LocalByzCon.

4.1 Locally Unique Identifiers

Consider the algorithm LocalByzCon in Figure 1 and an �-lightweight en-
twined structure G. Different nodes communicate only within decision groups,
i.e., node p sends or receives messages from node q only if p, q ∈ g for some
g ∈ G. Thus, the identifiers used can be locally unique.

To achieve this goal, node p numbers each node q in each decision group
g ∈ Gp, sequentially. Notice that the same node q might “receive” different
numbers in different decision groups that p participates in. Thus, we can define
Num(p, g, q) to be the number p assigns to q for the decision group g ∈ Gp. Notice
that for an �-lightweight entwined structure, Num(p, ∗, ∗) requires polynomial
space in |Γ (p)|. Each node z holds Num(p, g, ∗) for all g ∈ Gz

⋂Gp, along with a
mapping between Num(p, g, q) and Num(z, g, q). The memory footprint of this
mapping is again polynomial in |Γ (z)| (for �-lightweight entwined structures).

In addition, each node p numbers the decision groups it is a member of: let
Indx(p, g) be the “number” of g ∈ Gp according to p’s numbering. Any node
z (such that Gp

⋂Gz 	= φ) holds a mapping between Indx(p, g) and Indx(z, g),
for all g ∈ Gp

⋂Gz. Notice that Indx(p, ∗) is polynomial in |Γ (p)|, and the
mapping requires memory space of size polynomial in max{|Γ (p)|, |Γ (z)|}. For
�-lightweight entwined structures, the distance between p and z is ≤ �, thus
max{|Γ (p)|, |Γ (z)|} ≤ �-MaxDeg(p), resulting in a memory space footprint (of
all the above structures) that is polynomial in �-MaxDeg(p) for any node p.

176 D. Dolev and E.N. Hoch

When node p wants to send node q’s identifier to z regarding decision group g
(notice that p, q, z ∈ g and g ∈ Gp,Gq,Gz), it sends “(Num(p, g, q), Indx(p, g))”
and node z uses its mapping to calculate Indx(z, g), from which node z can
discern what g is, and use its Num mapping to calculate Num(z, g, q). Therefore,
nodes can identify any node in their decision groups and can communicate these
identities among themselves. Thus, “identities” can be uniquely used locally,
with a low memory footprint. i.e., the required memory space is polynomial in
�-MaxDeg(p). Notice that the above structures are constructed before executing
LocalByzCon, once the system designer knows the structure of G.

4.2 Memory-Efficient Termination Detection

LocalByzCon as given in Figure 1 loops for Δmax ·(2D+1) rounds. Therefore,
for D that depends on n, the counter of the loop will require too much memory.
From the analysis of the execution of LocalByzCon it is clear that any node
terminating after it ran for more than Δmax · (2D + 1) rounds, terminates with
the same value. Thus, it is only important that all nodes eventually terminate,
and that they do so after at least Δmax · (2D+ 1) rounds; how can this be done
without counting rounds? The following is an example of a solution requiring
constant memory, using a simpler model.

Consider a synchronous network without any Byzantine nodes, where each
node p has poly(|Γ (p)|) memory. Given that D (the diameter of the network) is
not constant, how can one count until D in such a network? Mark two nodes
u, v as “special” nodes, such that the distance between u and v is D (clearly
there exist u, v that satisfy this condition). When the algorithm starts, u floods
the network with a “start” message. When v receives this message, it floods the
network with an “end” message. When any node receives the “end” message, it
knows that at least D rounds have passed, and it can therefore terminate.

Using the above example, we come back to our setting of entwined structures
and f�-local Byzantine adversaries: consider two “special” decision groups g1, g2

from G, such that the Timedist between g1 and g2 is Dtime (see Remark 3). Each
node p, in addition to its initial value vp, has two more initial values v1

p, v2
p which

are both set to “1”. All nodes in g1 set v1
p :=“0”. Instead of executing a single

LocalByzCon, each node executes 3 copies of LocalByzCon: one on vp, one
on v1

p (denoted LocalByzCon1) and one on v2
p (denoted LocalByzCon2).

Only nodes in g2 perform the following rule: once g2’s output in LocalByzCon1

is “0”, set v2
p := “0”. Lastly, all nodes terminate one repetition after Outputp of

LocalByzCon2 contains “0”.
The analysis of this addition is simple: the value “0” in LocalByzCon1 prop-

agates throughout the network until it reaches g2. Once it reaches g2, the value
“0” of LocalByzCon2 propagates throughout the network, causing all nodes to
terminate. Notice that before g2 updates its input value of LocalByzCon2, no
correct node will have a value of “0” for LocalByzCon2. Lastly, notice that at
least 1

2Dtime rounds must pass before g2 changes the input value to the third Lo-
calByzCon (see Remark 3). Thus, if the second and third LocalByzCon are

Constant-Space Localized Byzantine Consensus 177

executed “at half speed” (every round, the nodes wait one round), then all correct
nodes terminate not before Dtime rounds pass, and no later than 2Dtime rounds.

The above schema requires the same memory space as the “original” Lo-
calByzCon (i.e. independent of n), up to a constant factor, while providing
termination detection, as required.

The decision groups g1, g2 must be selected prior to LocalByzCon’s execu-
tion. An alternative option is to select g1 using some leader election algorithm,
and then use an MST algorithm to find g2. However, in addition to Byzantine
tolerance, these algorithms’ memory requirements must not depend on n, which
means that global identifiers cannot be used. There is a plethora of research
regarding leader election / spanning trees and their relation to memory space
(see [1], [3], [4], [15]). However, as far as we know, there are no lower or upper
bounds regarding the exact model this work operates in (e.g. local identities,
but no global identities). Thus, it is an open question whether it is required to
choose g1, g2 a priori, or if they can be chosen at runtime.

4.3 Complexity Analysis

Consider graph G with maximal degree dmax, and an �-lightweight entwined struc-
ture G (with diameter D) that covers G. Denote gmax := argmaxgi∈G{|gi|}, since
G is �-lightweight, gmax is polynomial in dmax, and |G| = n · poly(dmax). There-
fore, by Section 3.5, LocalByzCon’s time complexity is O(D) · poly(dmax), and
its message complexity is O(D) · n · poly(dmax).

From the above, if G’s maximal degree is independent of n, and if D =
O(log n), then the running time of LocalByzCon is O(log n) and its mes-
sage complexity is O(n log n), while using O(1) space. (Section 5 shows entwined
structures that reach these values). This achieves an exponential improvement
on the time and message complexity of Byzantine consensus in the “global”
model, which are O(n) and O(n2) respectively. 3

5 Constructing 1-Lightweight Entwined Structures

In this section we present a family of graphs for which 1-lightweight entwined
structures exist. The family of graphs is given in a constructive way: for each
graph G′ = (V ′, E′) (where |V ′| = n′) and for any value of f� (f� << n′)
we construct a graph G = (V, E) (|V | = n) with a 1-lightweight f�-entwined
structure G. Our construction achieves |G| = O(n) and |g| is small for all g ∈ G,
thus ensuring that G is indeed 1-lightweight. Furthermore, G’s diameter and
maximal degree are a function of those of G′s, thus ensuring that for G′ with
bounded degree and logarithmic diameter, G has similar properties.

First we show how to construct an entwined structure, given a graph with
“ring topology”. Then we show how “to combine” two graphs with ring topolo-
gies. Lastly, for every graph G′, we create a graph G that “blows up” each node p

3 In fact, known algorithms that use the transformation in [6] to operate in not-fully-
connected graphs might even require O(n3) messages.

178 D. Dolev and E.N. Hoch

1p

2p

0p

2np

1np

Fig. 2. p0’s neighbors in an extended ring
topology of order 2

1p

2p

0p

2np

1np

3p 4p 5p
6p

7p

0g

...

ip

ig
ip k

Fig. 3. g0 for f� = 1 and k = 3(f� + 1) = 6

in G′ to be a ring (containing O(|Γ (p)|) nodes), and then combines the different
rings of G′.

5.1 A Simple “Ring” Entwined Structure

This section presents a simple construction of an entwined structure G for a ring
topology network. The constructed G has |gmax| constant (independent of n),
but a diameter of O(n).

Definition 16. A graph G = (V, E) is said to have an extended ring topol-
ogy of order k, if E =

⋃
pi∈V

⋃
1≤j≤k{(pi, pi+j)} (addition is done modulo n).

Informally, an extended ring topology of order k means that each node is con-
nected to the k neighbors “ahead” of it in the ring; since G is bi-directional,
each node is also connected to the k neighbors “behind” it (see Figure 2 for an
example). Notice that a “regular” ring topology is actually an extended ring
topology of order 1.

Consider a graph G = (V, E) with extended ring topology of order k = 3 ·
(f� + 1). Define G as follows: gi := {pi, pi+1, pi+2, . . . , pi+k} (see Figure 3).

Claim. Any g ∈ G is af�-decision group.

Claim. For any i, gi and gi+1 are f�-connected.

Lemma 5. G is an f�-entwined structure with diameter at most n, and |g| =
3 · f� + 4 for any g ∈ G.

Proof. By definition of gi ∈ G, |gi| = k + 1 = 3 · f� + 4. Let gi, gj ∈ G be some
decision groups. 0 ≤ i, j ≤ n− 1 and either i ≥ j or j ≥ i. Assume w.l.o.g. that
j ≥ i. Consider the list C := gi, gi+1, . . . , gj. By the previous claim, gi and gi+1

are f�-connected, and therefore C is a value chain. Thus, there exists a f�-value
chain between any two decision groups in G of length at most n. Thus, G is an
f�-entwined structure with diameter at most n. �

Constant-Space Localized Byzantine Consensus 179

a a a ... a a

b b b ... b b

a

b

0

0

1

1

2

2

k- 1

k- 1

k

k

g'1

a a a ... a a

b b b ... b b

a

b

0

0

1

1

2

2

k- 1

k- 1

k

k

g'2

a a a ... a a

b b b ... b b

a

b

0

0

1

1

2

2

k- 1

k- 1

k

k

g'k

Fig. 4. The original decision groups a, b and the constructed decision groups g′
1, g

′
2 and

g′
k

5.2 Connecting Rings Together

Consider two extended ring topology graphs G1, G2 and their respective f�-
entwined structures G1,G2 (as built in the previous subsection). Let a ∈ G1

and b ∈ G2 be 2 decision groups that are fully connected and are of the same
size, e.g. |a| = |b| = k + 1.

Mark by ai the nodes in a and by bi the nodes in b (for 0 ≤ i ≤ k). Define
g′j := {aj , aj+1, . . . , ak, b0, . . . , bj−1} for 1 ≤ j ≤ k; see Figure 4 for an example.
Add edges such that each g′j is fully connected. Notice that |g′j| = k+1 and that
for 1 ≤ j < k, it holds that g′j and g′j+1 are f�-connected. In addition a and g′0
are f�-connected, as well as b and g′k.

Take G′ = G1

⋃G2

⋃{g′j}. G′ is a f�-entwined structure over the graph that is
the union of G1, G2 with edges that are induced by the different g′js. Notice that
the diameter of G′ is the diameter of G1 plus the diameter of G2 plus k + 1 (the
length of the distance between a and b). Furthermore, |G′| = |G1|+ |G2|+ k. In
addition every node p ∈ a

⋃
b participates in no more than k additional decision

groups.

5.3 General Entwined Structure Construction

Let G′ be any graph on n′ nodes, and let dv be the degree of node v; denote
dmax := maxv∈G′dv. Consider a graph Gv per node v with dv · k nodes, such
that Gv has an extended ring topology of order k. Consider the “ring” entwined
structure constructed in the previous sections Gv with decision groups denoted
as g1(v), g2(v), · · ·. Notice that gi(v)∩ gi+k(v) = φ (see Figure 5). For each node
v ∈ G′, consider the list of its neighbors Γ (v) = v1, v2, . . . , vdv , and define a
function N(u, v) that returns the index of v as a neighbor of u; i.e., N(v, vi) = i.

Using the operation defined in the previous subsection: for any edge (u, v)
in G′, “connect” the rings in the following way: gN(u,v)∗k(u) with gN(v,u)∗k(v).
That is, let v be the ith neighbor of u (N(u, v) = i or ui = v), and u be the jth
neighbor of v (N(v, u) = j, vj = u) (see Figure 6); the following two decision
groups are to be combined: gi∗k(u) with gj∗k(v). Denote the new decision groups
created due to each such “connection” as Gu,v.

Consider G to be the union of all Gv (both nodes and edges), and let G be
the union of the entwined structures. That is, G = (

⋃
v∈G′ Gv) ∪ (

⋃
u,v∈G′ Gu,v).

Claim. Let g ∈ Gv and g′ ∈ Gu such that (v, u) is an edge in G′, then there is a
f�-value-chain between g and g′ of length ≤ (dmax + 1) · k.

180 D. Dolev and E.N. Hoch

v

v

u

v u1
2

3

2

v u1

u

g (u)
k

g (u)
2k

Fig. 5. A graph with 5 nodes, and node
u’s “ring” Gu and 2 decision groups
gk(u), g2k(u)

v u1

v u2

...

...

...

...

g (v)
2k

g (u)k

Fig. 6. v, u connecting, combining
g2k(v), gk(u)

Claim. G is a f�-entwined structure with diameter D ≤ DG′ · (dmax + 1) · k+ 2k,
where DG′ is the diameter of G′.

Theorem 3. G is a 1-lightweight f�-entwined structure.

5.4 Analysis

The above construction shows that for any graph G′ there is a graph G and
an f�-entwined structure G (covering G) s.t. the diameter of G is linear in the
diameter of G′, the maximal degree of G′, and in k. Thus, by taking G′ to be
any graph with constant degree and logarithmic diameter, we have that the
diameter of G is O(DG′ · k). In other words, D = O(k · logn); by taking k to be
constant as well (this means that the graph G has a constant degree), we have
that D = O(logn). Therefore, the above construction produces graphs and their
respective entwined structures, such that the diameter is logarithmic and the
degree is constant, fulfilling the promise of Section 4.3.

6 Conclusion and Future Work

A sufficient condition for solving Byzantine consensus in the presence of a local-
ized Byzantine adversary was given. Furthermore, for a family of graphs it was
shown how to solve the Byzantine consensus problem using memory space that
is constant (independent of the size of the network).

We consider few points for future research: first, find tighter bounds for when
Byzantine consensus can be solved on a graph G. Second, allow for dynamic
changes in the system, such as nodes joining or leaving or even constructing the
entwined structure on-the-fly. Third, adapt the entwined structure-construction
such that if some portion of the network does not uphold the required Byzantine-
to-correct threshold, then the rest of the network may still reach consensus.
Lastly, it would be interesting to find other constructions of entwined structures
and see what additional types of graphs can solve Byzantine consensus.

Constant-Space Localized Byzantine Consensus 181

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

References

1. Afek, Y., Stupp, G.: Optimal time-space tradeoff for shared memory leader election.
J. Algorithms 25(1), 95–117 (1997)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons, Chichester (2004)

3. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-
stabilizing leader election protocols. In: PODC 1999: Proceedings of the eighteenth
annual ACM symposium on Principles of distributed computing, pp. 199–207.
ACM, New York (1999)

4. Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space
optimal leader election under arbitrary scheduler on rings. Distributed Comput-
ing 20(1), 75–93 (2007)

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

6. Dolev, D.: The byzantine generals strike again. Journal of Algorithms 3, 14–30
(1982)

7. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement.
J. ACM 32(1), 191–204 (1985)

8. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
9. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-

tion. In: PODC 1996: Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pp. 27–34. ACM, New York (1996)

10. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behav-
ior. In: PODC 2004: Proceedings of the twenty-third annual ACM symposium on
Principles of distributed computing, pp. 275–282. ACM, New York (2004)

11. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 301–382 (1982)

12. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
13. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Pro-

cess. Lett. 93(3), 109–115 (2005)
14. Toueg, S., Perry, K.J., Srikanth, T.K.: Fast distributed agreement. SIAM Journal

on Computing 16(3), 445–457 (1987)
15. Yamashita, M., Kameda, T.: Computing on anonymous networks. i. characterizing

the solvable cases. Parallel and Distributed Systems, IEEE Transactions 7(1), 69–
89 (1996)

Chapter 6

Conclusions and Discussion

The above thesis shows several fault tolerant building blocks: self-stabilizing
Byzantine tolerant clock synchronization, self-stabilizing Byzantine agree-
ment and a self-stabilizing Byzantine tolerant shared coin. The importance
of fault tolerant building blocks is self evident. For example, by constructing
a self-stabilizing Byzantine tolerant shared coin, another tool is available for
system designers that wish to add self-stabilization to randomized Byzantine
protocols.

In order to make building blocks useful, it is important to ensure they are
efficient and that they operate in as many models as possible. The first result
(Chapter 2) solves the self-stabilizing Byzantine tolerant clock synchroniza-
tion problem in a bounded-delay model. This solution extends ideas from
synchronous solutions into the bounded-delay model, thus expanding the
range of models in which a self-stabilizing Byzantine clock can be employed.

The second result (Chapter 3) improves the previous deterministic linear
convergence time (of self-stabilizing Byzantine tolerant digital clock) to an
expected constant convergence time. Thus making it much more efficient
and accessible. It would be interesting to try and make the same transition
from ideas in the synchronous model to the bounded delay model (as done
in Chapter 2) regarding the randomized solution in Chapter 3. Such a tran-
sition would (hopefully) produce a self-stabilizing Byzantine tolerant clock
algorithm for the bounded-delay model with expected constant convergence
time. As part of the randomized solution of Chapter 3 another synchronous
building is presented: a self-stabilizing Byzantine tolerant shared coin.

The first two results as well as the last one give upper bounds, i.e., specific
algorithms that solve different problems. However, the third result proves

69

70

different lower bounds. Specifically, it shows that when considering a sta-
ble agreement (i.e., one in which the output does not change over time) the
Byzantine adversary has the ability to delay the stability of the output in-
definitely. That is, the adversary can disrupt the output stability at least
once, and can delay the disruption for as long as it wants.

Lastly, in Chapter 5 the consensus problem is considered, against a local
Byzantine adversary. One of the main motivations of the choice of adversary
is to improve the message and round complexity. In the standard Byzantine
model it is not possible to solve consensus within less than a linear number of
rounds or in less than square number of messages. Under the local Byzantine
adversary, Chapter 5 shows a solution improving both message and round
bounds. The solution is non-self-stabilizing. As was previously shown, con-
sensus and clock synchronization are closely related problems. It would be
interesting to build upon the consensus solution to achieve a self-stabilizing
Byzantine tolerant clock which operates against a local adversary. Such a
solution would (hopefully) have low message complexity and low round com-
plexity while solving clock synchronization in a self-stabilizing, Byzantine
tolerant and realistic manner.

An important scheme used thoroughly in this thesis, is that of pipelin-
ing. Pipelining is a scheme used to take an algorithm A which is Byzantine
tolerant but is not self-stabilizing, and construct an algorithm B that is both
Byzantine tolerant and self-stabilizing. Specifically, in Chapter 3, pipelining
is used to create a self-stabilizing Byzantine tolerant shared coin algorithm.
Chapter 2 is based on a synchronous algorithm with heavily relies on pipelin-
ing, and thus the bounded-delay solution’s intuition is based on pipelining.
It is interesting to see if there are any other possible usages of pipelining in
the world of self-stabilization and Byzantine tolerance.

Bibliography

[1] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In PODC ’83: Proceed-
ings of the second annual ACM symposium on Principles of distributed
computing, pages 27–30, New York, NY, USA, 1983. ACM.

[2] A. Daliot and D. Dolev. Self-stabilization of byzantine protocols. In
In Proc. of the 7th Symposium on Self-Stabilizing Systems (SSS’05),
Barcelona, Spain, Oct 2005.

[3] A. Daliot and D. Dolev. Self-stabilizing byzantine pulse syn-
chronization. Technical report, Cornell ArXiv, Aug 2005. url:
http://arxiv.org/abs/cs.DC/0608092.

[4] A. Daliot and D. Dolev. Self-stabilizing byzantine agreement. In In
Proc. of the Twenty-fifth ACM Symposium on Principles of Distributed
Computing (PODC’06), Denver, Colorado, Jul 2006.

[5] A. Daliot, D. Dolev, and H. Parnas. Linear time byzantine self-
stabilizing clock synchronization. In Proc. of 7th Int. Confer-
ence on Principles of Distributed Systems (OPODIS’03), La Mar-
tinique, France, Dec 2003. A corrected version appears in
http://arxiv.org/abs/cs.DC/0608096.

[6] W. Dijkstra. Self-stabilization in spite of distributed control. Commun.
of the ACM, 17:643–644, 1974.

[7] D. Dolev. The byzantine generals strike again. Journal of Algorithms,
3:14–30, 1982.

71

BIBLIOGRAPHY 72

[8] D. Dolev and E. N. Hoch. On self-stabilizing synchronous actions despite
byzantine attacks. In In Proc. the 21st Int. Symposium on Distributed
Computing (DISC’07), Lemesos, Cyprus, Sep. 2007.

[9] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[10] S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the
presence of byzantine faults. Journal of the ACM, 51(5):780–799, 2004.

[11] Paul Feldman and Silvio Micali. An optimal probabilistic algorithm for
synchronous byzantine agreement. In ICALP ’89: Proceedings of the
16th International Colloquium on Automata, Languages and Program-
ming, pages 341–378, London, UK, 1989. Springer-Verlag.

[12] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1:26–39, 1986.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985.

[14] M.J. Fischer and N.A. Lynch. A Lower Bound for the Time to Assure
Interactive Consistency. Information Processing Letters, 14:183–186,
1982.

[15] Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine ad-
versarial behavior. In PODC ’04: Proceedings of the twenty-third annual
ACM symposium on Principles of distributed computing, pages 275–282,
New York, NY, USA, 2004. ACM.

[16] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–
301, 1982.

[17] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[18] T. Masuzawa and S. Tixeuil. A self-stabilizing link-coloring protocol
resilient to unbounded byzantine faults in arbitrary networks. Technical
Report 1396, Laboratoire de Recherche en Informatique, Jan 2005.

[19] Toshimitsu Masuzawa and Sébastien Tixeuil. Bounding the impact of
unbounded attacks in stabilization. In SSS, pages 440–453, 2006.

BIBLIOGRAPHY 73

[20] Michael B. Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine
agreement in the full-information model in o(log n) rounds. In STOC
’06: Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pages 179–186, New York, NY, USA, 2006. ACM.

[21] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, Apr 1980.

[22] Andrzej Pelc and David Peleg. Broadcasting with locally bounded
byzantine faults. Inf. Process. Lett., 93(3):109–115, 2005.

[23] M. Rabin. Randomized Byzantine generals. Proceedings of the 24th
Annual IEEE Symposium on Foundations of Computer Science, pages
403–409, 1983.

[24] Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Masuzawa. A self-
stabilizing link-coloring protocol resilient to byzantine faults in tree net-
works. In OPODIS, 2004.

	Introduction
	Background and Related Work
	Timing Models
	Byzantine Failures
	Self-stabilization
	Combining Byzantine Failures and Self-stabilization
	Clock Synchronization vs. Byzantine Agreement
	Clock Synchronization vs. Pulse Synchronization

	Thesis Structure
	Byzantine Self-stabilizing Pulse in a Bounded-Delay Model
	Fast Self-Stabilizing Byzantine Tolerant Digital Clock Synchronization
	OCD: Obsessive Consensus Disorder (or Repetitive Consensus)
	Constant-space Localized Byzantine Consensus

	Byzantine Self-stabilizing Pulse in a Bounded-Delay Model
	Introduction
	Model and Problem Definition
	Solution Overview
	The Q Primitive
	Implementing Q(p), the ss-Byz-Q Algorithm
	Constructing the Erratic-Pulser Algorithm
	Erratic-Pulser's Correctness Proofs
	Creating the Balanced-Pulser
	Discussion
	References
	The Use of ss-Byz-Agree

	Fast Self-Stabilizing Byzantine Tolerant Digital Clock Synchronization
	Introduction
	Model and Definitions
	The Digital Clock Synchronization Problem
	Solving the 4-Clock Problem
	Solving the k-Clock Problem (for any k)
	Discussion
	References

	OCD: Obsessive Consensus Disorder(or Repetitive Consensus)
	Introduction
	Computational Model
	Impossibility Results
	Repetitive Consensus
	Solving SS-Repetitive Consensus
	Range Validity
	Discussion
	References

	Constant-space Localized Byzantine Consensus
	Introduction
	Model and Problem Definition
	Byzantine Consensus
	Constant-Space Byzantine Consensus
	Constructing 1-lightweight Entwined Structures
	Conclusion and Future Work
	References

	Conclusions and Discussion

