
Self-Stabilizing Byzantine Agreement in a

Synchronous Network

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

by

Tomer Harpaz

Supervised by

Prof. Danny Dolev

School of Engineering and Computer Science

The Hebrew University of Jerusalem

Israel

October 2, 2011

2

Acknowledgments

First, I would like to express my deepest gratitude to Prof. Danny Dolev, my advisor,

for his endless patience, support and guidance during my studies, and for coping

with the difficulties I posed by combining research work with Talpiot. No doubt that

without his positive attitude and belief I would have turned Byzantine myself by now.

Second, I would also like to thank (now Dr.) Ezra N. Hoch, who supervised my

DANSS Lab project and also shared ideas and thoughts about this work. From Ezra

I got the passion for distributed algorithms, and I was truly inspired by his deep

understanding of the field.

Third, I would like to gratefully thank Michael Mashkautsan for his support during

the past 2 years and for making my degree and training happen — if it was not for

him, I doubt I would have managed to do this.

I would also like to thank my commanders from Talpiot and my friends from home

and Talpiot for supporting me during the period of my research and for keeping up

with me disappearing for weeks in order to work.

At last, I would like to thank my parents and brother for their endless support

and love.

Abstract

This thesis presents an algorithm that provides self-stabilizing Byzantine agreement

in a synchronous fully-connected network. The synchrony of the network, when the

system functions correctly, is in the form of a common external “beat” which occurs

in regular intervals, longer than the bound on message delivery time.

Our algorithm tolerates up to n
3

Byzantine failures and can recover from transient

failures that bring all nodes to arbitrary memory states. After convergence from an

arbitrary state, our primitive provides a reliable broadcast channel on top of the faulty

network.

The convergence time and the running time of an agreement are both bounded by

O(f) where f is the actual number of Byzantine nodes during the execution. This

infers that our algorithm has the “early stopping” property, meaning that it can

converge and run in constant time in case there are no faulty nodes disturbing its

execution.

Moreover, our algorithm does not strongly depend on the synchrony of the system,

and uses it only match received messages to their appropriate phases. This allows our

algorithm to be adapted to work in the the semi-synchronous model, which does not

provide common “beats”, only a bound on message delivery time. The translation to

the semi-synchronous model is also discussed in this thesis, but not provided.

Hebrew Abstract

TODO: replace me

Table of Contents

Acknowledgments 3

Abstract 4

Hebrew Abstract 5

1 Introduction 8

1.1 Contribution . 9

1.2 Thesis Outline . 9

2 Related Work 11

2.1 Agreement Problems . 11

2.2 Self-Stabilizing Algorithms Tolerant to Byzantine Failures 12

3 Model and Problem Statement 13

3.1 Model . 13

3.2 The Agreement Problem . 16

4 The 4-cast Primitive 17

4.1 Chapter Outline . 17

4.2 The 4-cast Problem . 17

4.3 Motivation . 18

4.4 Intuition for the Algorithm . 19

4.5 The 4-cast Algorithm . 21

4.6 Complexity Analysis . 21

5 The Agreement Primitive 23

5.1 Chapter Outline . 23

Table of Contents 7

5.2 The Agreement Problem . 23

5.3 Intuition for the Algorithm . 24

5.4 The Agreement Algorithm . 29

5.5 Complexity Analysis . 29

6 Conclusions and Future Work 33

6.1 Turning Byzantine Failures to Fail-Stop 33

6.2 Node-invoked Self-Stabilizing Byzantine Algorithms 33

6.3 Future Work . 34

7 Appendix: Proofs for the 4-cast Primitive 35

8 Appendix: Proofs for the Agreement Primitive 40

9 Appendix: Concept for the Semi-Synchronous Model 63

Bibliography 65

Chapter 1

Introduction

One of the most basic building blocks in distributed algorithms is a reliable broadcast

channel: it can be used to conceal underlying faults in the communication network and

participating nodes by providing a robust communication primitive that is ensured to

invoke the same messages for all correct nodes participating.

In turn, this primitive may be used to perform tasks such as agreeing on clock

values in order to achieve clock synchronization (see [1]), which can in turn be used to

self-stabilize other Byzantine fault-tolerant algorithms (see [2, 3]). These immediate

advantages explain why implementing a fast and fault-tolerant broadcast channel

is highly beneficial. The problem of creating a reliable broadcast primitive in an

unreliable model is typically called the Agreement problem.1

This thesis addresses the Agreement problem in a highly faulty model which includes

both permanent Byzantine failures of up to a third of the nodes, and transient failures

that may affect all nodes up to a certain point in time. Our model is synchronous

in the way it assumes there exists a global beat system common to all correct nodes,

but our solution is such that can be adapted to work without a global beat system

but with a constant bound on message delivery time between non-Byzantine nodes

(sometimes called a semi-synchronous model).

1Sometimes the term Agreement is used to refer to a similar problem we will denote as Consensus,
which involves all nodes having a specific input value and the primitive is supposed to output a single
common value for all correct nodes. It is trivial to implement Consensus using Agreement by having
each node broadcast its input value using the Agreement primitive, and then choose the majority of
the outputs of all of the Agreements.

1.1 Contribution 9

1.1 Contribution

This thesis introduces a primitive called 4-cast which is a generalization of the

Gradecast primitive first presented in [4]. 4-cast basically extends the properties of

Gradecast in order to use it in a model which does not provide “phase synchrony”.2

We then use 4-cast to solve the Agreement problem in a way that does not strongly

depend on the synchrony of the system. Previous solutions such as [5] use a paradigm

known as “pipelining” to convert a Byzantine-tolerant primitive such as Common

Coin-Flipping (like that presented in [6] or [7]) to a self-stabilizing version that is

executed in the background constantly and provides the algorithm with common input

on each beat.

The primitives our solution uses are all “node invoked” in the way that they are

executed using state-transition rules which depend only on messages received in past

intervals and on timeout events. That is, the nodes do not share any common starting

state, and the process begins by a specific node sending an invocation message.

This means that our solution uses the global beat system only to separate received

messages to intervals for the state-transition rules, and therefore it should be relatively

technical to convert it to an environment without a global beat system but with

a constant bound on message delivery time between correct nodes.3 We discuss

the conversion to the semi-synchronous model (also called bounded-delay model) in

Chapter 9.

Our solution works and converges in time linear in the number of faulty nodes,

and has the “early-stopping” property, meaning that its running time is linear in the

number of actual Byzantine nodes during execution, and not in the n
3

bound.

1.2 Thesis Outline

The thesis is organized in the following way: Chapter 2 describes other works related

to our model and problem. The model and the Agreement problem themselves are

described in Chapter 3. Chapter 4 describes the 4-cast problem and the 4-cast

2By “phase synchrony” we mean that nodes are aware of the global beat number, and not only
the beat itself.

3There will be, of course, added redundancy in time, as nodes will need to wait between sending
messages in order for their destination node to be able to separate them into different intervals.
However, we expect this redundancy to be by a small factor.

10 Introduction

primitive solving it. Chapter 5 describes the Agreement problem and our solution to

it. Lastly, Chapter 6 discusses our conclusions and future work.

The proofs of correctness for the 4-cast primitive and the Agreement primitive

appear as appendices in Chapters 7 and 8, and as stated above, Chapter 9 discusses

the conversion to the semi-synchronous model.

Chapter 2

Related Work

2.1 Agreement Problems

The Agreement problem was first introduced in [8]. As discussed in the previous

chapter, it is considered a fundamental problem in distributed algorithms, and as such,

many variations of it have been widely researched for the past 30 years and algorithms

have been developed for various models (see [9, 10]).

For the synchronous model with Byzantine faults, optimal probabilistic solutions

have been found with expected constant running time (see [11, 7]) and optimal

deterministic solutions have been found that execute in O(f) rounds (see [12]).

In [4], the Gradecast primitive has been introduced and used to solve Agreement in

expected constant time. As mentioned in the previous chapter, we use a generalization

of Gradecast called 4-cast to implement our solution. Gradecast was also used as a

basic primitive in [13] in order to solve several variants of the Agreement problem in

an elegant manner.

Self-stabilizing algorithms themselves, designed for models with transient faults,

have also been researched thoroughly (see [14]). Designing an algorithm with this

property is highly beneficial, since it has the ability to continue functioning even after

suffering from a complete disruption of its normal working conditions.

12 Related Work

2.2 Self-Stabilizing Algorithms Tolerant to Byzan-

tine Failures

Designing algorithms that are both self-stabilizing and Byzantine fault-tolerant poses

a special challenge: the usual methods used to tolerate Byzantine faults make as-

sumptions on the initial states of the correct nodes, and the usual methods used to

stabilize after transient faults requires trusting the others nodes. As a result, very

few algorithms have been designed for this model, and the few that were are typically

both complicated and have long convergence and running times (see [2] for a review).

An expected constant time clock synchronization algorithm for the synchronous

model with both Byzantine and transient faults was described in [5]. However, it

strongly depends on the synchrony of the system, and thus cannot be generalized to

the semi-synchronous model.

A linear time agreement algorithm for the semi-synchronous model (with transient

and Byzantine faults) was described in [15] but has a flaw. Other linear time solutions

to similar problems in the semi-synchronous model (e.g. [16]) require a preexisting

Agreement primitive. Therefore, further work of generalizing the algorithm presented

in this thesis to the semi-synchronous model will provide a needed Agreement

primitive for the semi-synchronous model that will operate in optimal deterministic

time.

Chapter 3

Model and Problem Statement

This chapter contains the formal definition of the model in which the Agreement

problem is defined and solved, and the definition of the problem itself.

3.1 Model

The definitions presented below are similar to those of [5] and those appearing in

standard literature. There are, however, a few significant differences in notations and

terms. Therefore, the familiar reader is advised to continue reading this chapter as

well.

Our distributed model consists of a fully connected network with n nodes P =

{P1, . . . , Pn}. Communication is done using message passing, and all nodes are

connected to a global beat system, which generates beats on regular intervals.

After each beat, every node processes the messages it has received up to the beat,

and sends out new messages. There is a bound on the message processing and delivery

time, which assures that messages sent after a specific beat will reach their destination

before the next beat. We will therefore call the time interval between two consecutive

beats a round, and subsequently refer to the flow of the algorithms using this term: in

a specific round nodes process messages sent by others in the previous round.

We use the notation r to denote the external beat number, which the nodes are

not aware of. We use this notation in order to define timeliness properties and ease

their analysis. The round between beats r and r + 1 is denoted as round r. Moreover,

we assume that each node p keeps a local beat number ρp which is incremented on

each beat and is used by the node to compare relative times of events.

14 Model and Problem Statement

In order to distinguish between the global round number and a node’s local round

number we will use r for the former and ρ for the latter. We also define the external

functions rt(ρp) that returns the global round number when the local round number

of a non-faulty node p read ρp at the current execution; and lt(r, p), which is the

inverse function and represents the local round number of a non-faulty node p s.t.

rt(lt(r, p)) = r.

Nodes in our model may be subject to two types of faults:

(1) Byzantine faults:

A percentage of the nodes may be Byzantine, and behave arbitrarily. We

assume an information theoretic adversary with private channels and access to

all communication in the network. Moreover, the non-faulty nodes cannot use

any computational assumptions (e.g. signatures and/or encryption) to protect

against the adversary.

We denote the bound on the number of Byzantine nodes as t, and require

that t < n
3
. For complexity analysis purposes, we denote the actual number of

Byzantine nodes in a specific execution as f ≤ t.

We will use the terms Byzantine and faulty interchangeably to refer to the

Byzantine nodes, and use the terms non-faulty and correct to refer to the

non-Byzantine nodes.

Note that we assume n and t to be fixed constants, and thus they are used as

part of the algorithm and will not be changed by transient faults.

(2) Transient faults:

In addition to the Byzantine nodes, all nodes may undergo transient faults that

leave their memory in an arbitrary state. Therefore, algorithms solving the

problems we present will be required to converge and provide the properties

required by the problem starting from any memory state and after a bounded

number of rounds.

We denote by ι0 the number of the global beat after which there are no more

transient faults, and say that after beat ι0 the system is coherent. Moreover,

after ι0 the set of Byzantine nodes cannot change.

3.1 Model 15

Observe that the external functions rt(·) and lt(·, ·) are only meaningful from

global round ι0 and on. Also, observe that since we assume transient faults, the local

time at a node may wrap around. However, the problems and primitives presented

below require only measuring intervals of time and so it is assumed that the local time

wrap-around is larger than a constant factor of the maximal interval of time needed to

be measured. This way a non-faulty node can uniquely measure any necessary interval

of time.

As stated above, once the system is coherent, all messages sent in round r ≥ ι0 will

be received before the beginning of round r + 1. In the description of the algorithms

in this thesis, we use the term “received” regarding messages to denote “received

between the last beat and the one before” — that is, sent during the previous round.

Since the transient faults might destroy any kind of synchrony among the nodes

besides the global beat system, the problems described in this thesis cannot require

that their solutions return values to an upper layer at the end of execution (since it

cannot be locally known when an execution begins or ends). Therefore, the primitives

are continuously executed and notify the upper layer that an event has occurred using

a local signals mechanism, which allows signals to be raised and caught.

For ease of reading we use different notations for signals and messages: messages

are enclosed between angled brackets, e.g. 〈example-msg, v1, v2〉, while signals are

enclosed between braces, e.g. {example-sig, v1, v2}. Also, as shown in these examples,

the typeface of the labels of messages and signals differ as well: both have prefixes

in small-caps, but messages have names in normal text while signals have names in

small-caps.

Unlike the term “received” regarding messages, when using the term “raised”

regarding signals we denote “raised in the current round (previously to executing the

current instruction)”.

Lastly, some more notations: we denote by bvcr the value of a variable v in the

beginning of global round r (during global beat r), and by dver the value of v in the

end of global round r (during global beat r + 1). Observe that dver = bvcr+1.

We also denote the group of rounds {r1, r1 + ∆4c, r1 + 2∆4c, . . . , r2} as the round

interval [r1, r2]∆4c (assuming r2 = r1 + k∆4c, k ≥ 0). ∆4c is a constant that will be

later defined

16 Model and Problem Statement

3.2 The Agreement Problem

As mentioned, the problem we address in this thesis is known in standard distributed

algorithms literature as the Agreement problem and is described as follows:

Definition 3.1 (Agreement). A protocol for n parties P = {P1, . . . , Pn} where a

distinguished leader G ∈ P wishes to broadcast an initial value m solves the Agreement

problem if it conforms with the following two conditions:

Agreement If a correct node signals that G broadcasted a certain value, all

correct nodes will signal the same.

Validity If the leader is correct, all correct nodes will signal that it has broad-

casted m.

A more technical and rigorous definition of the problem is given in Chapter 5

Chapter 4

The 4-cast Primitive

4.1 Chapter Outline

This chapter presents the 4-cast problem, which is a building block we use in the

solution of the Agreement problem in the next chapter. It also describes an algorithm

which solves the problem in the given model, denoted as the 4-cast primitive.

The problem is described in Section 4.2. Section 4.3 describes the similarity and

added value of 4-cast over the Gradecast problem first introduced in [4], and to which

it is closely related. The algorithm of the 4-cast primitive is provided in Section 4.5,

and a more intuitive description of its flow is given in Section 4.4.

4.2 The 4-cast Problem

An algorithm solving 4-cast is a protocol for n parties P = {P1, . . . , Pn}, in which a

distinguished leader G ∈ P wishes to send a value v to all other nodes. An algorithm

solving the 4-cast problem is designed to tolerate or identify Byzantine initiators by

appending a confidence level the signals it raises.

That is, 4-cast is in fact a graded relaxation of a broadcast channel — in every

round, each non-faulty node p may raise signals of type {4C-Accept, G, vp, cp} to

indicate that it believes with confidence cp ∈ {0, 1, 2} that G has 4-casted the value

vp , ∆4c rounds ago (∆4c depends on the solution).

In Section 4.3 we will explain why the “option” a non-faulty node has to not raise

a signal, is in fact like adding a fourth grade of −1 to Gradecast .

18 The 4-cast Primitive

As the problem is defined for a model with transient faults, a solution for it must

also provide a constant ∆4c
stb s.t. ι1 = ι0 + ∆4c

stb is defined to be the round by which

the system became 4C-stable. From round ι1 and on the properties required by the

problem must hold.

Finally, an algorithm solving the 4-cast problem is one which provides an operation

Start4-cast(v), raises signals of type {4C-Accept, G, v, c} s.t. c ∈ {0, 1, 2}, and

satisfies the following properties:

(1) Validity: Had a non-faulty node G invoked Start4-cast(v) in r, r ≥ ι1, then

every non-faulty node p will raise {4C-Accept, G, v, 2} in r + ∆4c.

(2) Value Agreement: For every two non-faulty nodes p, q that have raised

{4C-Accept, G, vp, cp} and {4C-Accept, G, vq, cq}, respectively, in the same global

round r s.t. r ≥ ι1, if cp > 0 and cq > 0 then vp = vq.

(3) Confidence Agreement:

(a) For every two non-faulty nodes p, q that have raised {4C-Accept, G, vp, cp}
and {4C-Accept, G, vq, cq}, respectively, in the same global round r s.t.

r ≥ ι1, then |cp − cq| ≤ 1.

(b) Had a non-faulty node p raised {4C-Accept, G, ∗, cp} with cp > 0 in global

round r s.t. r ≥ ι1, then every non-faulty node will raise {4C-Accept, G, ∗, ∗}
in r.

(4) Unforgeability: Had a non-faulty node p raised {4C-Accept, G, v, cp} for a

non-faulty G in r s.t. r ≥ ι1, then G has invoked Start4-cast(v) in r −∆4c.

(5) Uniqueness: A non-faulty p will not raise more than one {4C-Accept, G, ∗, ∗}
signal per G ∈ P in r, for r ≥ ι1.

4.3 Motivation

The Gradecast problem, as described in [4], is designed for a model without transient

faults. In that model, besides being synchronized, all nodes have the same “phase”

(they are all aware of the global round number). Therefore, it was possible to design

Gradecast in a way that assumed all nodes to “know” when to expect each phase of

the algorithm, and to return a value-confidence pair in the same global round.

4.4 Intuition for the Algorithm 19

In our model, the nodes may have “stepped out of phase” because of transient

faults, and so they need to try and identify when an instance is running in the network

and decide whether to “join in”, raise a signal, or do something else. Trying to solve

Gradecast in our model could result in 0-graded signals being raised for non-faulty

nodes which simply did not invoke a Gradecast ∆gc rounds ago, but were “framed”

by the Byzantine nodes. As our goal is to use 4-cast to castrate or identify the

Byzantine nodes in the Agreement algorithm, it is intolerable to identify non-faulties

as Byzantine.

As mentioned in the previous section, in 4-cast a non-faulty node has the option to

not raise a signal, which is in fact a fourth possible grade. If we will denote this fourth

possibility as confidence −1, we may note that property (b) of confidence agreement

is in fact an extension of property (a): had a non-faulty node had confidence −1, no

non-faulty node will have confidence > 0.

As a whole, note that 4-cast essentially turns Byzantine errors to fail-stop errors:

had a 4C-Accept signal been raised about a faulty node with confidence ≥ 1 — either

all non-faulties raised it with the same value or they all have confidences in {0, 1} and

know that this node is faulty. As said, the fourth grade is required to ensure that

in case a non-faulty node p did not invoke Start4-cast, the Byzantine will not be

able to confuse the others to raise {4C-Accept, p, ∗, c} with c ∈ {0, 1}. Signals about

non-faulty nodes will only have confidence 2 or −1.

4.4 Intuition for the Algorithm

The algorithm is based on four 1-round phases:

(1) Phase 1: The Start4-cast procedure was invoked by an upper layer for some

distinguished leader G with some value m. As a result, G sends a 4C-init

message with value m to all other nodes.

(2) Phase 2: Nodes which have received a 4C-init message (at most one per G per

round) respond by echoing it to all others encapsulated in a 4C-flood message.

(3) Phase 3: Nodes which have received at least n− t 4C-flood messages for some

(G, vG) pair respond by echoing it to all others encapsulated in a 4C-support

message.

20 The 4-cast Primitive

(4) Phase 4: Nodes may raise appropriate 4C-Accept signals regarding G according

to rules which inspect the 4C-support messages received and an internal state.

These rules will be described shortly.

It is important to note that since this algorithm is designed for an environment

with transient faults, it is essentially rule-based: in the beginning of each round, every

non-faulty node executes a set of procedures in a predefined order, in which it inspects

the messages it has received during the previous round and responds by changing its

internal state and/or by sending messages.

As for the rules used to invoke 4C-Accept signals in phase 4:

(1) Had a node received at least n− t 4C-support messages for some (G, vG) pair,

it will raise the signal with vG and confidence 2.

(2) Had a node received at least t+ 1 4C-support messages for some (G, vG) pair, it

will raise the signal with vG and confidence 1.

Had none of these rules held, we need to know whether or not to raise a signal at

all (with confidence 0). Moreover, we need to make sure that the difference between

confidences raised by every two non-faulty nodes will not exceed 1.

From the above rules, we have that had any non-faulty node raised a 4C-Accept

signal with confidence 1 for (G, vG), at least one non-faulty node has sent a 4C-support

message for (G, vG) one round before. From the description of phase 3, we have that

this node must have received at least n− t 4C-flood messages for the pair (G, vG) and

so every non-faulty node must have received at least t+ 1 of these (since n ≥ 3t+ 1).

By setting a timeout-next-round event upon receiving at least t + 1 4C-flood

messages in phase 3, we can assure that it will expire in phase 4 if any non-faulty will

have confidence of at least 1. Hence, in phase 4, we will raise with confidence 0 if

timeout expires, and not raise at all if it does not.

The detailed proof of correctness shows why all of these rules together assure that

the properties required by the problem hold.

Lastly, in addition to the rules described above, a procedure 4C-Cleanup is

executed by every non-faulty node in the beginning of each round in order to reset

possible invalid internal states created by the transient faults.

4.5 The 4-cast Algorithm 21

4.5 The 4-cast Algorithm

An algorithm which solves the 4-cast problem is detailed in Algorithm 4.1.

Our algorithm requires that a non-faulty sender G will also conform with the

following criteria when invoking Start4-cast:

Definition 4.1 (4-cast Sending Validity Criteria). G does not invoke Start4-cast

more than once every ∆4c
wait rounds.

Note that although this generally prevents a node from 4-casting multiple messages

at the same time, it is possible to run multiple instances of the primitive in parallel

by appending unique indices representing the parallel instance index to the messages.

Therefore, if the number of multiple messages required is bounded (which is the case

for every realistic application) it is possible to replace every message passing with a

4-cast (e.g. by using UUIDs [17]). When using multiple parallel instances of 4-cast in

our solution to the Agreement , we assume that this solution is transparently applied.

As mentioned in the last section, there are n+ 1 procedures in the algorithm that

are executed in every round: Cleanup and 4C-JoinIn(G) for every G ∈ P. Note

that Cleanup is executed first, and then 4C-JoinIn(G) is executed for every G ∈ P
(possibly in parallel).

The proof of correctness of the algorithm is detailed in Chapter 7.

4.6 Complexity Analysis

As proved in Chapter 7, the 4-cast algorithm presented in the previous section solves

the 4-cast problem with ∆4c
stb = ∆4c = 3. Hence, it finishes a valid 4-cast in 3 rounds,

and converges from an arbitrary state in 3 rounds.

As for message complexity, in every round each node can send up to n messages

regarding every on-going 4-cast, summing to a total maximum of (n− 1) · n2 = O(n3)

messages per round. As for the number of messages needed to complete a valid 4-cast

initiated by a non-faulty leader, it is exactly 1+n2 +n2 = O(n2) messages accumulated

over the four phases.

22 The 4-cast Primitive

Algorithm 4.1 4-cast

1: procedure Start4-cast(m) ; executed by a sender G
2: send 〈4C-init,m〉 to all ; phase 1
3: end procedure

4: procedure 4C-JoinIn(G) ; executed by p in every round for every G ∈ P
5: if received 〈4C-flood,G,m〉 from ≥ t+ 1 nodes then ; phase 3
6: if received 〈4C-flood,G,m〉 from ≥ n− t nodes then
7: send 〈4C-support,G,m〉 to all
8: end if

9: timeoutp(G)← ρp + 1
10: end if

11: if received 〈4C-init,m〉 from G and ρp > timeoutp(G) then ; phase 2
12: send 〈4C-flood,G,m〉 to all
13: timeoutp(G)← ρp + 2
14: end if

let maj be the value received the most amongst the 4C-support messages received; phase 4
let #maj be the number of occurrences of maj

15: if #maj ≥ n− t then
16: raise {4C-Accept, G,m, 2}
17: else if #maj ≥ t+ 1 then
18: raise {4C-Accept, G,m, 1}
19: else if ρp = timeoutp(G) then
20: raise {4C-Accept, G,⊥, 0}
21: end if
22: end procedure

23: procedure 4C-Cleanup ; executed by p in the beginning of every round
24: if timeoutp(G) > ρp + 1 then
25: timeoutp(G)← −∞
26: end if
27: end procedure

Chapter 5

The Agreement Primitive

5.1 Chapter Outline

This chapter gives the formal description of the Agreement problem described in

Section 3.2. It also describes an algorithm that solves the problem in the given model,

denoted as the Agreement primitive.

The problem is described in Section 5.2, while Sections 5.3 and 5.4 provide an

intuitive description of the algorithm flow and the formal description of the algorithm.

Section 5.5 discusses the time and message complexity of the algorithm.

5.2 The Agreement Problem

An algorithm solving Agreement is a protocol for n parties P = {P1, . . . , Pn}, in which

a distinguished leader G ∈ P wishes to send a value v to all other nodes. An algorithm

solving the problem provides a broadcast channel in which any distinguished node G

may broadcast any value m.

As in the previous chapter — since the problem is defined for a model with transient

faults, a solution must also provide a constant ∆a
stb s.t. ι1 = ι0 + ∆a

stb is defined to be

the round in which the system became A-stable. From round ι1 and on the properties

required by the problem must hold.

An algorithm solving the Agreement problem is one which provides an operation

StartAgreement(m), raises signals of type {A-Accept, G,m, ρ0}, and satisfies the

following properties:

24 The Agreement Primitive

(1) Validity: Had a non-faulty G invoked StartAgreement(m) in r0 s.t. r0 ≥ ι1,

then every non-faulty node p will raise {A-Accept, G,m, ρp0} in r0 + ∆valid, s.t.

rt(ρp0) = r0.

(2) Agreement: Had a non-faulty node p raised {A-Accept, G,m, ρp0} in global

round r s.t. r ≥ ι1, then every non-faulty node q has raised {A-Accept, G,m, ρq0}
within the global round interval [r − Φ, r − Φ + ∆agr] (for some Φ ∈ [0, ∆agr]),

s.t. rt(ρq0) = rt(ρp0).

(3) Unforgeability: Had a non-faulty node p raised {A-Accept, G, ∗, ρp0} in global

round r s.t. r ≥ ι1 and G is non-faulty, then G has invoked StartAgreement

in global round rt(ρp0) = r −∆valid.

(4) Termination: Had a non-faulty node p been executing RunningLoop(G) in the

end of global round r s.t. r ≥ ι1, then p must have restarted RunningLoop(G)

in some round r′ s.t. r −∆term ≤ r′ ≤ r.

Like ∆a
stb, the constants ∆valid,∆agr and ∆term are properties of the algorithm.

Essentially, the definition of the problem assures that if a non-faulty node asserts

that some G broadcasted m in global round r0, all others will assert the same within

a ∆agr interval. Moreover, the Byzantine nodes will not be able to forge a broadcast

of a correct node, and will not be able to make a correct node run RunningLoop

indefinitely (RunningLoop(G) is a procedure that keeps the state of an on-going

broadcast by G, and is not invoked automatically each round).

5.3 Intuition for the Algorithm

In the highest level, a node executing our algorithm tries to identify on-going broadcast

agreements either by receiving an A-init 4-cast from the leader, or by receiving enough

A-share 4-casts from nodes already taking part in the broadcast. Nodes that decide to

“join in” on a broadcast agreement initiated by G start executing RunningLoop(G)

which sends appropriate A-share 4-casts to others. When reaching a certain assurance

level, a node will raise an A-Accept signal and stop executing RunningLoop.

In fact, the Agreement primitive never uses direct message-passing to pass mes-

sages, but use the underlying 4-cast primitive for all communication. This allows

nodes to be certain that if they triggered a rule of type “received X appropriate 4-casts

5.3 Intuition for the Algorithm 25

with confidence 2”, all other correct nodes will trigger the rule “received X appropriate

4-casts with confidence ≥ 1”.

Hence, for agreement to hold, our algorithm needs only to make sure that a node

executing RunningLoop(G) will raise an A-Accept signal only when it will be certain

that all other correct nodes will raise this signal as well within the ∆agr interval. In

fact, this works by setting the “join in” condition to receiving at least n− t appropriate

4-casts with confidence ≥ 1, and setting the “raise signal” condition to receiving at

least n− t appropriate 4-casts with confidence 2.

As stated in Section 4.4, it is important to note that since this algorithm is designed

for an environment with transient faults, it is essentially rule-based: in the beginning

of each round every non-faulty node executes a set of procedures in a predefined order,

in which it inspects the 4-casts it has received this round and responds by changing

its internal state and/or by sending more 4-casts. To provide the communication

infrastructure, the procedures of the 4-cast primitive are executed in the beginning

of each round in the background. Technically, the Agreement primitive inspects the

4-casts received in the current round by inspecting the 4C-Accept signals raised by

the underlying 4-cast primitive.

The main difficulty in solving the Agreement problem is conforming to both

the agreement property and the validity property. The main idea presented a few

paragraphs above is almost enough to provide agreement — a correct node p will only

agree once it will be sure from the confidence levels of the 4-cast messages it received

and from the dynamics of the algorithm that all other nodes will subsequently agree

as well. However, in case G is Byzantine, it might wait until p agrees and then send

a new A-init message to the other nodes and “pull them out” of the the previous

agreement right before they raised their signals (but after p did). Hence, to provide

agreement we need to add a second rule that will make nodes participating in an

agreement by G ignore new A-init messages from G in the mean while.

This new rule, however, is now possibly conflicting with validity — what if in a

different scenario the Byzantine nodes trick some correct nodes to start executing

RunningLoop(G) for a correct G, just before G actually tried to invoke a broadcast

agreement? The correct nodes already executing will not take part, possibly breaking

validity !

The solution we found is to use 4-cast to essentially turn the Byzantine errors

to fail-stop errors, as explained in Section 4.3. The definition of 4-cast assures that

4-casts sent by Byzantine node are either received with the same value for all correct

26 The Agreement Primitive

nodes, in which case they cannot cause any disruption, or the faulty sender will be

identified and “burned” because its 4-cast will be received with confidence 0 or 1 by

all correct nodes. Correct nodes can then subsequently ignore nodes identified as

Byzantine and intuitively after t disruptions all faulty nodes will be ignored by all

correct nodes.

As presented above, our problem was that Byzantine nodes could trick correct

nodes to execute RunningLoop(G) for a correct G without G explicitly invoking an

agreement. We will later prove that in our algorithm, the Byzantine adversary will

have to “burn” (identify and make ignored by the correct nodes) at least one faulty

node per 2 rounds it makes a non-faulty node execute RunningLoop(G) without G’s

consent. Therefore, making sure that a correct G will not invoke StartAgreement

more than once every O(2f) rounds will make sure no correct nodes will be running

RunningLoop(G) at that time.

We will now describe the flow of the algorithm in more depth, and point out the

important details and how they correspond to the ideas presented above.

As we have already explained, our algorithm uses 4-cast as its communication

infrastructure and ignores nodes it identifies as Byzantine. In practice this is done by

continuously executing two copies of the 4-cast primitive in parallel in the background:

one is the normal 4-cast presented in the previous chapter, and the other is a wrapper

we denote as 4-cast which ignores the nodes that were in the set BAD in the beginning

of each round. The exact details of 4-cast are described in Algorithm 5.1, and as can

be seen there, we denote the signals raised by 4-cast as 4C-Accept, and those of the

original 4-cast remain 4C-Accept.

In fact, the Agreement primitive uses the 4C-Accept signals only to identify

Byzantine nodes and add them to the BAD list, and uses the 4C-Accept signals for

all of the state-transition rules. As we will prove in Corollary 8.3, the properties

required by 4-cast hold for the 4C-Accept signals as well after a certain point in time.

In addition, it is important to remove nodes from the BAD list after a period of time,

or else correct nodes may be kept there from the transient faults phase.

The actual bookkeeping of the BAD list is done in the Cleanup and Snitch

procedures, and can be seen in detail in the next section.

The next subtle detail is that we replaced message passing with 4-casts, but 4-casts

take ∆4c rounds to complete rather than 1. Therefore, in order to make sure nodes

executing RunningLoop(G) at the same time will be able to communicate coherently,

we make sure that they are kept “in phase”: meaning that they all initiate 4-casts in

5.3 Intuition for the Algorithm 27

Algorithm 5.1 4-cast

1: procedure 4C-JoinIn(G)
2: for every q ∈ BADp do
3: ignore messages received from q when executing the following

instruction (Line 5)
4: end for

5: execute 4C-JoinIn(G) and catch raised signals to the set S
6: for every {4C-Accept, G, v, c} signal in S do
7: if G /∈ BADp then
8: raise {4C-Accept, G, v, c}
9: else

10: pass
11: end if
12: end for
13: end procedure

Figure 5.1: The 4-cast wrapper for 4-cast, as executed by a node p

the same global rounds and expect 4-casts to finish in the same global rounds. In fact,

we define these “valid” global rounds to be r0 + k∆4c, k ∈ N where r0 is the round in

which G supposedly invoked StartAgreement and sent the first 4-cast regarding the

on-going agreement.

Therefore, a node executing RunningLoop(G) — that is, participating in an

agreement for a value broadcasted by G — will always be participating with respect to

some alleged invocation time r0. The value of lt(r0, p) will be kept in the startedp(G)

variable, and will only be set when “restarting” RunningLoop(G). Every A-share

message passed between correct nodes will also contain the pair of G and the “age” of

the broadcast by the time the message was sent — how many rounds passed since r0.

This way, we can make sure that nodes will restart RunningLoop only “in phase”

with nodes already executing it, and that correct nodes will know to which specific

broadcast invocation an exchanged message is referring to. We will subsequently

use the term “in phase” regarding nodes that are executing RunningLoop(G) with

started(G) values that correspond to the same global round (this term is accurately

defined in Definition 8.1).

We will now describe what is done in the JoinIn and RunningLoop procedures,

which are the heart of the algorithm:

(1) RunningLoop:

A node p executing RunningLoop(G) has three important state variables:

28 The Agreement Primitive

startedp(G), statep(G) and vp(G).

startedp(G) was discussed in the previous paragraphs; vp(G) is the current

agreement value p holds for the on-going broadcast; and statep(G) ∈ {0, 1, 2}
will be explained shortly.

RunningLoop(G) works in phases of ∆4c rounds: it updates its state variable

using UpdateState(G) which inspects the A-share 4-casts received from other

in-phase nodes; 4-casts a new A-share message to all others with its current vp(G)

value; and then waits ∆4c rounds to receive the next round of communication.

UpdateState(G) sets vp(G) to the majority value among the in-phase A-share

messages received with confidence ≥ 1, and increments statep(G) in case the

majority value was received with confidence 2 from at least n− t nodes.

In case a node has set statep(G) = 2, it will raise an A-Accept signal with vp(G)

and startedp(G) and stop RunningLoop(G).

RunningLoop(G) also uses a timeoutp(G) variable to make sure it does not

execute for more than one round unless it is actively “kept alive” using a specific

condition in JoinIn. We will later prove that the dynamics of the algorithm

ensure that RunningLoop(G) will not execute indefinitely, but at most O(f)

rounds.

(2) JoinIn:

There are two rules in JoinIn, corresponding to the ones presented in the main

idea in the beginning of this section:

(a) If p received an A-init message from G with confidence 2 and is not

currently executing RunningLoop(G), it will restart RunningLoop(G)

and set startedp(G) = ρ−∆4c.

(b) If p received at least n− t signals in phase with (G, r0), all with the same

value and confidence ≥ 1, then:

i. If it is not currently executing RunningLoop(G) or is executing it with

a different phase, it will restart it to be in phase with r0;

ii. If it is currently executing RunningLoop(G) in phase with r0, it will

reset its timeoutp(G) variable in order to keep it alive for another

∆4c-round phase.

5.4 The Agreement Algorithm 29

The resulting dynamics are that if a node sets statep(G) = 1, all correct nodes will

be executing RunningLoop(G) in the next round (Lemma 8.12); and if a node sets

statep(G) = 2 all correct nodes will set v(G) to the same majority value, increment

statep(G), and so raise A-Accept in the current round or the next (Claim 8.6).

One final detail is that after a node raises an A-Accept signal, it has to ignore

A-share messages in-phase with this broadcast for the next ∆4c rounds, in order not

to rejoin the broadcast using the first condition in JoinIn.

5.4 The Agreement Algorithm

We will now present the formal description of our solution of the Agreement problem.

The algorithm is detailed in Algorithms 5.2 and 5.3.

Our algorithm requires that a non-faulty sender G will also conform with the

following criteria when invoking StartAgreement:

Definition 5.1 (Agreement Sending Validity Criteria). G does not invoke

StartAgreement more than once every ∆a
wait rounds.

As with the 4-cast algorithm and as mentioned in the previous section, there are

several procedures in this algorithm that are executed in every round. The order of

execution among these procedures in each round for every non-faulty node is:

(1) Cleanup;

(2) The procedures of 4-cast and 4-cast;

(3) Snitch;

(4) JoinIn(G) for every G ∈ P (may be executed in parallel);

(5) Instances of RunningLoop that may be running

The proof of correctness of the algorithm is detailed in Chapter 8.

5.5 Complexity Analysis

As proved in Chapter 8, the Agreement algorithm presented in the previous section

solves the Agreement problem with ∆valid = 2∆4c = 6, ∆agr = ∆4c = 3, and ∆a
wait =

30 The Agreement Primitive

∆a
stb = O(f) rounds. Hence, valid broadcasts are finished in 6 rounds, and the

algorithm converges from an arbitrary state in O(f) rounds (in fact, ∆a
stb = 36f + 55

and ∆a
wait = 12f + 19).

As for message complexity, every ∆4c rounds each node invokes one 4-cast for

every on-going Agreement (in RunningLoop), summing to a total maximum of O(n2)

4-casts per round. As for the number of messages needed to complete a valid 4-cast

initiated by a non-faulty leader, it takes a total of 1 + 2n 4-casts, which sum to O(n3)

messages.

5.5 Complexity Analysis 31

Algorithm 5.2 Agreement wrapper
1: procedure StartAgreement(m) ; executed by the leader G
2: Start4-cast(〈A-init,m〉)
3: end procedure

4: procedure JoinIn(G) ; executed by p in the beginning of every round for every G ∈ P
5: if raised {4C-Accept, G, 〈A-init,m〉, 2} and not running RunningLoop(G) then ; init
6: vp(G)← m
7: startedp(G)← ρp −∆4c

8: start RunningLoop(G)
9: end if

10: if raised ≥ n− t signals si ={4C-Accept, pi, 〈A-share,G,m, age〉, ci} with ci ≥ 1
for some age = k∆4c, k ≥ 1 then

11: if running RunningLoop(G) and startedp(G) = ρp − (age+ ∆4c) then ; stay
12: timeoutp(G)← ρp

13: else ; join
14: startedp(G)← ρp − (age+ ∆4c)
15: stop RunningLoop(G) if it is running; start RunningLoop(G)
16: end if

17: end if
18: end procedure

19: procedure Snitch ; executed by p in the beginning of every round
20: for every q ∈ P do
21: if raised {4C-Accept, q, 〈∗〉, c} with 0 ≤ c ≤ 1 then ; detect faulty nodes
22: BADp ← BADp ∪ {q}
23: ρ-BADp(q)← ρp

24: end if
25: end for
26: end procedure

27: procedure Cleanup ; executed by p in the beginning of every round
28: for every q ∈ P do
29: if q ∈ BADp and ρ-BADp(q) /∈ (ρp −∆rmv, ρp] then ; forget transient faults
30: BADp ← BADp − {q}
31: end if

32: if joinedp(q) ≥ ρp or timeoutp(q) ≥ ρp or startedp(q) ≥ ρp −∆4c ; clean local
or statep(q) /∈ {0, 1} then ; transient faults

33: joinedp(q)← −∞ ; startedp(q)← −∞
34: timeoutp(q)← −∞ ; statep(q)← 0
35: stop RunningLoop(q)
36: end if
37: end for
38: end procedure

32 The Agreement Primitive

Algorithm 5.3 Agreement running loop
39: procedure RunningLoop(G) ; executed by p trying to agree in a value broadcasted by G
40: joinedp ← ρp ; in this procedure ψp refers to ψp(G)
41: timeoutp ← ρp

42: statep ← 0

43: if startedp > ρp −∆4c then
44: UpdateState(G)
45: end if

46: while ρp ≤ timeoutp and statep < 2 do
47: Start4-cast(〈A-share,G, vp, ρp − startedp〉) and wait for ∆4c rounds
48: UpdateState(G)
49: end while

50: if statep = 2 then
51: Start4-cast(〈A-share,G, vp, ρp − startedp〉)
52: ignore {4C-Accept, ∗, 〈A-share,G, ∗, ρp − startedp + k∆4c〉, 2} signals in rounds

ρp + (k + 1)∆4c for k ∈ {0, 1}
53: ignore {4C-Accept, G, 〈A-init, ∗〉, 2} signals in the next ∆4c rounds
54: raise {A-Accept, G, vp, startedp}
55: statep ← 0 ; this is for ease of proofs
56: end if
57: end procedure

58: procedure UpdateState(G) ; in this procedure ψp refers to ψp(G)
59: if not

(
ρp = joinedp + k1∆4c = startedp + k2∆4c s.t. k2 > k1 ≥ 0

)
then ; terminate

60: stop RunningLoop(G) ; transient runs
61: return
62: end if

let 〈q, v, c〉 represent that we raised {4C-Accept, q, 〈A-share,G, v, ρp−startedp(G)−∆4c〉, c}

let maj be the value which appears the most among those with confidence ≥ 1
let #maj be the number of occurrences of maj with confidence 2

63: if vp 6= maj then ; update vp

64: vp ← maj
65: statep ← 0
66: end if

67: if #maj ≥ n− t then ; update statep

68: statep ← statep + 1
69: else
70: statep ← 0
71: end if
72: end procedure

Chapter 6

Conclusions and Future Work

6.1 Turning Byzantine Failures to Fail-Stop

The main idea we used in the Agreement algorithm is to replace all message-passing

with 4-casts and use the implemented 4-cast primitive to provide the communication

infrastructure.

This incapacitated the Byzantine nodes by depriving them from the ability to

confuse the correct nodes by sending them different values. The 4-cast channel ensured

that in case a faulty node tried to confuse correct nodes, it would have been identified

and further ignored.

We believe that this method and primitive can be used as a building block for

many more algorithms, as [13] did with Gradecast .

6.2 Node-invoked Self-Stabilizing Byzantine Algo-

rithms

The main contribution of the algorithm presented in this thesis is the fact that it

can be translated to work in the semi-synchronous model. The general idea for the

adaptation is described in Chapter 9, and is supposed to generally work for any “node

invoked” self-stabilizing Byzantine-tolerant algorithm.

The concept of “node invoked” algorithms was briefly described in Section 1.1,

but generally means that the algorithm is independent of any initial synchrony. If a

round-based distributed algorithm communicating using message passing is “invoked”

34 Conclusions and Future Work

by a single node we call it “node invoked”. For example, Gradecast , 4-cast and

Agreement are node invoked, while Consensus is not.

6.3 Future Work

The main future work we expect is to complete the translation of the 4-cast primitive

to the semi-synchronous model and then use it to either create a general translation

mechanism for node-invoked algorithms, or to directly translate our Agreement

primitive.

Another possible direction after translating the 4-cast primitive, is to try and

implement VSS or m-VSS and continue in the path of [11] or [7] in order to achieve

Agreement in expected constant time in the semi-synchronous model.

Chapter 7

Appendix: Proofs for the 4-cast

Primitive

Claim 7.1. Let p be a non-faulty node and let r ≥ ι0 be a global round, then

dtimeoutp(G)er ≤ lt(r, p) + 2.

Proof. First, note that after executing Cleanup, timeoutp(G) ≤ lt(r, p) + 1.

Had p also changed timeoutp(G) using 4C-JoinIn, it must have been in Lines 13

or 9 and then timeoutp(G) ≤ lt(r, p) + 2 as well.

Corollary 7.1. Let p be a non-faulty node and let r ≥ ι0 + 1 be a global round. The

condition on Line 24 will not hold for p in r.

Proof. Note that by applying Claim 7.1 to r− 1 ≥ ι0, we have that btimeoutp(G)cr =

dtimeoutp(G)er−1 ≤ lt(r− 1, p) + 2 ≤ lt(r, p) + 1 and the condition on Line 24 will be

false in r.

Lemma 7.1. Let G be a non-faulty node and let r ≥ ι0 + 2. Had a non-faulty

node p set timeoutp(G) ≥ lt(r, p) in round r, then G has invoked Start4-cast in

rt(dtimeoutp(G)er)− 3.

Proof. Since r ≥ ι0, p must have set timeoutp(G) using Lines 13 or 9.

Had p set timeoutp(G) using Line 13, the required follows immediately from Line 11

and the fact that r − 1 ≥ ι0.

Had p set timeoutp(G) using Line 9, then Line 5 implies that at least 1 non-faulty

node q has sent 〈4C-flood,G, ∗〉 in r − 1. Hence, q must have executed Line 13 in

r − 1 and the required follows from the previous paragraph.

36 Appendix: Proofs for the 4-cast Primitive

Corollary 7.2. Let G be a non-faulty node and let r ≥ ι0 + 4. Has a non-faulty

node p had btimeoutp(G)cr ≥ lt(r, p) in round r, then G has invoked Start4-cast in

rt(btimeoutp(G)cr)− 3.

Proof. Assume to the contrary that p has not set timeoutp(G) in round r − 1 or

r − 2, it would have dtimeoutp(G)er−3 = btimeoutp(G)cr ≥ lt(r, p) = lt(r − 3, p) + 3

in contradiction to Claim 7.1.

Therefore, by applying Lemma 7.1 to r − 1 or r − 2 (both are ≥ ι0 + 2) we have

the required.

Lemma 7.2. Had a non-faulty G invoked Start4-cast(v) in global round r, r ≥ ι0+3,

then the condition in Line 11 will not hold for any non-faulty node p in round r + 1.

Proof. First, note that since r ≥ ι0 G will send a 〈4C-init, v〉 message to all other

nodes in r, which will be received by all non-faulty nodes in round r + 1.

Assume to the contrary that the condition in Line 11 will not hold for some

non-faulty node p in r + 1.

That is, btimeoutp(G)cr+1 ≥ lt(r + 1, p). By applying Corollary 7.2 to p on r + 1,

we have that G has invoked Start4-cast in rt(btimeoutp(G)c) − 3.

From Claim 7.1 we have that btimeoutp(G)cr+1 ≤ lt(r + 1, p) + 1, therefore G has

invoked Start4-cast in r − 1 or r − 2 (both ≥ ι0) in contradiction with the fact that

G is conforming with Definition 4.1 in r.

Claim 7.2 (Validity). Had a non-faulty node G invoked Start4-cast(v) in r0, r0 ≥
ι0 + 3, then every non-faulty node p has raised {4C-Accept, G, v, 2} in r0 + 3.

Proof. From Lemma 7.2 we have that in round r0 + 1 the condition in Line 11

will hold for every non-faulty node. It follows that every non-faulty node will send

〈4C-flood,G,m〉 to all others in r + 1.

Hence, in round r+2 every non-faulty node will receive at least n−t 〈4C-flood,G,m〉
messages and pass the conditions on Lines 5 and 6. All of them will then send

〈4C-support, G,m〉 to all others. Note that they will not enter the condition on

Line 11, because p will not invoke Start4-cast(∗) in round r + 1 (by conforming to

Definition 4.1).

On round r + 3 every non-faulty node will receive the 4C-support messages sent

by all others in r + 2, and so they will all pass the condition on Line 15 and raise

{4C-Accept, G,m, 2} as required.

37

Lemma 7.3. If two non-faulty nodes p, q send messages 〈4C-support, G,mp〉 and

〈4C-support, G,mq〉, respectively, in global round r, r ≥ ι0 + 1, then mp = mq.

Proof. Assume to the contrary that mp 6= mq. Since p and q sent the said messages,

they have both entered the condition on Line 6 in global round r ≥ ι0 + 1. Each of

them received the value it has sent as a 4C-flood message from a majority of n− t
nodes sent in r − 1.

Suppose 0 ≤ k ≤ t of p’s messages are from faulty nodes, then q must have received

mp flooded from at least n− t− k non-faulty nodes (as r− 1 ≥ ι0). Also, suppose the

rest of the non-faulty nodes sent mq 6= mp to q, and all of the faulty nodes sent mq to q.

We have that q received mq from at most t+ (n− t− (n− t− k)) = t+ k ≤ 2t < n− t
nodes, where the last inequality follows from the fact that n ≥ 3t + 1. This is in

contradiction to the fact that q passed the condition on Line 6 with mq.

Claim 7.3 (Value Agreement). For every two non-faulty nodes p, q that have raised

{4C-Accept, G, vp, cp} and {4C-Accept, G, vq, cq}, respectively, in the same global

round r, r ≥ ι0 + 2, if cp > 0 and cq > 0 then vp = vq.

Proof. According to the conditions on Lines 15 and 17, p and q had to receive the

same value supported by at least t+ 1 nodes in round r − 1 ≥ ι0 + 1.

Assume to the contrary that vp 6= vq, then p has received vp from at least one

non-faulty node, and so did q for vq. This stands in contradiction to Lemma 7.3

applied to round r − 1.

Lemma 7.4. Had a non-faulty node p raised {4C-Accept, G, vp, cp} with cp ≥ 1 in

global round r, r ≥ ι0 + 2, then every non-faulty q will have rt(dtimeoutq(G)er) = r.

Proof. Since cp > 0, p has received vp from at least t+ 1 nodes in r. Since r ≥ ι0 + 2,

at least one non-faulty node p̄ sent 〈4C-support, G, vp〉 in round r − 1 ≥ ι0 + 1. It

follows from Line 6 that p̄ had received vp flooded from n− t nodes in round r− 1 and

at least t+ 1 of these floods had to be non-faulty (since n ≥ 3t+ 1 and r − 2 ≥ ι0).

Therefore, in round r − 1, every non-faulty node had to receive the same flooded

value from at least t+1 nodes, pass the condition on Line 5 and set dtimeoutp(G)er−1 =

lt(r, p). Also, no non-faulty node will execute Line 13 or send 〈4C-flood,G, ∗〉 in r− 1

because none will pass the condition in Line 11 after updating timeoutp(G).

Let q be a non-faulty node. In round r q will not change timeoutq(G) again,

because the condition in Line 11 will be false and so will the one in Line 5 since

38 Appendix: Proofs for the 4-cast Primitive

no non-faulty node has sent 〈4C-flood,G, ∗〉 in r − 1 (and Corollary 7.1). Thus,

dtimeoutq(G)er = dtimeoutq(G)er−1 = lt(r, q) as required.

Claim 7.4 (Confidence Agreement 1). For every two non-faulty nodes p, q that raised

{4C-Accept, G, vp, cp} and {4C-Accept, G, vq, cq}, respectively, in the same global

round r, r ≥ ι0 + 2, we have |cp − cq| ≤ 1.

Proof. First, assume that either p or q has c = 2, and assume w.l.o.g that it is p. From

the condition in Line 15, p has received vp from at least n− t nodes. Assume to the

contrary that q has cq < 1 (iff q has received its majority supported value from less

than t+ 1 nodes). Since r ≥ ι0 + 1, at least n− 2t of p’s received values were from

non-faulty nodes (and received by q as well). However, n− 2t ≥ t+ 1 in contradiction

(since n ≥ 3t+ 1).

Hence, had a non-faulty node decided with c = 2, all other non-faulty nodes will

decide with c ≥ 1.

Second, assume that either p or q has c = −1, and assume w.l.o.g that it is

p. Assume to the contrary that q has cq > 0. From Lemma 7.4, p will have

dtimeoutp(G)er = lt(r, p) and so p will satisfy the condition in Line 19 in r in

contradiction to the fact that cp < 0.

Thus, had a non-faulty node decided with c = −1, all other non-faulty nodes will

decide with c ≤ 0, concluding the proof.

Corollary 7.3 (Confidence Agreement 2). Had a non-faulty node p raised a signal

{4C-Accept, G, ∗, cp} in r, r ≥ ι1 with cp > 0, then every non-faulty node has raised

{4C-Accept, G, ∗, ∗} in r.

Proof. From Lemma 7.4, every non-faulty node will have dtimeout(G)er = lt(r).

Therefore they will all raise {4C-Accept, G, ∗, ∗} signals in r.

Claim 7.5 (Unforgeability). Had a non-faulty node p raised {4C-Accept, G, vp, cp}
in r, r ≥ ι0 + 3 for a non-faulty G, and had G not invoked Start4-cast in r− 3, then

cp = −1.

Proof. Assume to the contrary that cp ≥ 1. Since r − 1 ≥ ι0, it follows from Lines 15

and 17 that p has received a support for vp from at least one non-faulty node p′, sent

in round r− 1. From Line 6 and since r− 2 ≥ ι0, p′ had received flood messages for vq
from at least t+ 1 non-faulty nodes, sent in round r − 2 (let p̄ be one of these nodes).

39

From Line 11, p̄ has received an A-init message from G sent in round r − 3 ≥ ι0, in

contradiction with the assumption.

Now, assume to the contrary that cp = 0. From Line 19, dtimeoutp(G)er = lt(r, p).

By applying Corollary 7.2 we have invoked Start4-cast in r− 3 in contradiction.

Claim 7.6 (Uniqueness). Let p be a non-faulty node, and let r ≥ ι0. p will not raise

more than one {4C-Accept, G, ∗, ∗} signal per G ∈ P in r.

Proof. Follows directly from the algorithm.

Theorem 7.1 (4-cast). 4-cast solves the 4-cast problem for ∆4c
stb = ∆4c = ∆4c

wait = 3.

Proof. Follows directly from all of the previous claims.

Chapter 8

Appendix: Proofs for the

Agreement Primitive

We first define some notations and add clarifications regarding phrases we will use.

We denote by ∪BAD =
⋃
p∈P ′

BADp the union of the BAD sets of all non-faulty

nodes. Similarly, we denote by ∩BAD =
⋂
p∈P ′

BADp the intersection of the BAD

variables for all non-faulty nodes.

When we say that a node p has been running RunningLoop(G) in the beginning

of round r, we imply that RunningLoop(G) was running after p has executed Cleanup

in round r. When we say that a node p is running RunningLoop(G) in the end of

r, we imply that it was executed in r and has not terminated. When we say that p has

been running RunningLoop(G) in r, we imply that it was executed (not necessarily

in the beginning, and could also have terminated).

We say that p has received a 4-cast from q with message m and confidence c

in round r, iff p has raised {4C-Accept, q,m, c} in r. Note that we only use the

4C-Accept signals to identify faulty nodes, and use the 4C-Accept signals as “received

communication”. Corollary 8.3 states that this usage is valid some time after ι0.

General claims

Definitions

Definition 8.1. We say that a non-faulty node p is in phase with (G, r0) in r iff

rt(startedp(G)) = r0 and r = r0 + k∆4c, k ≥ 1.

41

For example, if we say that p has been running RunningLoop(G) in phase with

(G, r0) in the beginning of r, we imply that p has been running RunningLoop(G) in

the beginning of r = r0 + k∆4c, k ≥ 1 and rt(bstartedp(G)cr) = r0.

Definition 8.2. Let r ≥ ι0 be a global round, and let p be a non-faulty node.

We say that an 〈A-share,G, ∗, age〉 message 4-casted by p in r is in phase with

(G, r0) if r − age = r0 and age = k∆4c, k ≥ 1.

We also say that an 〈A-share,G, ∗, age〉 4-cast received by p in r is in phase with

(G, r0) if r − (age+ ∆4c) = r0 and age = k∆4c, k ≥ 1.

Definition 8.3. Had a non-faulty node p returned from RunningLoop(G) in global

round r, r ≥ ι0, we say that it has returned successfully if p entered the conditional

on Line 50 before returning.

Corollary 8.1. Note that using these definitions, we can “translate” some of the

algorithm to a more intuitive language. Here are some of the intuitions (having r as

the current global round):

(1) Line 8 starts RunningLoop(G) in phase with (G, r −∆4c).

(2) Line 10 requires that we receive n− t 4-casts of A-share messages all with the

same phase (G, r0) s.t. r0 ≤ r − 2∆4c.

(a) Line 11 requires p to be running RunningLoop(G) in phase with (G, r0)

in the beginning of r.

(b) Line 15 resets RunningLoop(G) so that it would be in phase with (G, r0).

(3) Line 59 makes sure that p is in phase.

We will use some of these intuitions in the proofs below.

Definition 8.4. Let p be a non-faulty node, and let r ≥ ι0 be a global round. Had

p received at least n − t {4C-Accept, ∗, 〈A-share,G,m, age〉, ci} signals s.t. ci ≥ 1 in

round r, we say that the condition in Line 10 was satisfied for the (G, r0,m) triplet in

r, where r0 = r − (age+ ∆4c)

42 Appendix: Proofs for the Agreement Primitive

Cleanliness

Claim 8.1. Let p be a non-faulty node, let r ≥ ι0 and let G ∈ P , then:

(1) djoinedp(G)er < lt(r + 1, p);

(2) dtimeoutp(G)er < lt(r + 1, p);

(3) dstartedp(G)er < lt(r + 1, p)−∆4c;

(4) and dstatep(G)er ∈ {0, 1}.

Proof. First, note that after Cleanup was executed on r (and before anything else

was) it granted that:

(1) joinedp(G) < lt(r, p);

(2) timeoutp(G) < lt(r, p);

(3) startedp(G) < lt(r, p)−∆4c;

(4) and statep(G) ∈ {0, 1}.

Thus, had none of these variables changed during r, the required follows immedi-

ately since lt(r, p) ≤ lt(r + 1, p).

Had joinedp(G) changed during r, then as r ≥ ι0 it must have been set using

Line 40 to be lt(r, p) < lt(r + 1, p) as required. The same goes for timeoutp(G) with

Lines 12 and 41.

Had startedp(G) changed during r, then as r ≥ ι0 it must have been set using

Lines 7 or 14 to be ≤ lt(r, p)−∆4c < lt(r + 1, p)−∆4c.

Had statep(G) been changed during r then a r ≥ ι0, it must have been using

Lines 42, 55, 65 or 70 to be 0, or incremented using Line 68. Thus, it might have been set

to 2 while running UpdateState(G). If so — upon returning from UpdateState(G)

to RunningLoop(G) it would not pass the loop condition in Line 46, but enter the

one in Line 50 and set statep(G) = 0 using Line 55 before the end of the round.

Corollary 8.2. Let p be a non-faulty node and r ≥ ι0 + 1 be a global round. The

condition on Line 32 will not hold for p in r.

Proof. By applying Claim 8.1 to r − 1 ≥ ι0.

43

Fault detection and 4-cast validity

Definition 8.5. Let r be a global round number. The system is said to be 4C-Accept-

correct in r iff:

(1) the properties of 4-cast hold when considering the 4C-Accept signals raised by

non-faulty nodes in r, instead of the 4C-Accept signals.

(2) the agreement properties of 4-cast also hold when comparing the 4C-Accept

and 4C-Accept signals raised by some non-faulty node in r.

Lemma 8.1. Let r ≥ ι0 + ∆4c
stb be a global round number and assume b∪BADcr′

contained only faulty nodes for every r′ ∈ {r −∆4c
stb + 1, . . . , r}, then the system is

4C-Accept-correct in r.

Proof. First, note that since 4-cast requires only ∆4c
stb rounds to stabilize, 4C-Accept

(or 4C-Accept) signals raised in round r are affected only by the communication

received during rounds {r −∆4c
stb + 1, . . . , r}.

Now, for r′ ∈ {r −∆4c
stb + 1, . . . , r}, a non-faulty p running 4C-RunningLoop will

ignore the nodes in bBADpcr′ ⊆ b∪BADcr′ which are all faulty. Ignoring messages

from faulty nodes does not affect the properties of 4-cast, because it is equivalent to

these faulty nodes not sending those messages at all.

Therefore, signals raised by 4C-RunningLoop in r relate to the others like signals

from another non-faulty node might have related.

Lemma 8.2. Let p be a non-faulty node. Had p added q to BADp in global round r,

r ≥ ι0 + ∆4c
stb, then q is faulty.

Proof. Since r ≥ ι0, q must have been added using Line 22.

Had p entered the condition on Line 21 for some node q in r, then p received a

message that q 4-casted with confidence ∈ {0, 1}. Using the unforgeability and validity

properties of 4-cast, this implies that q is faulty.

Claim 8.2. Let r ≥ ι0 + ∆rmv + ∆4c
stb + 1, b∪BADcr contains only faulty nodes.

Proof. Let p, q be two non-faulty nodes, and assume to the contrary that q ∈ bBADpcr.
Note that from Lemma 8.2, q must have been added to BADp before round ι0 + ∆4c

stb.

Thus, bρ-BADp(q)cr = bρ-BADp(q)cr−1 = bρ-BADp(q)cι0+∆4c
stb

.

44 Appendix: Proofs for the Agreement Primitive

Note that bρ-BADp(q)cι0+∆4c
stb
≤ lt(ι0+∆4c

stb, p), or else p would have removed q from

BADp using Cleanup in round ι0 + ∆4c
stb in contradiction. Therefore, bρ-BADpcr−1 =

bρ-BADp(q)cι0+∆4c
stb
≤ lt(ι0 + ∆4c

stb, p).

However, note that lt(r − 1, p)−∆rmv ≥ lt(ι0 + ∆rmv + ∆4c
stb, p)−∆rmv = lt(ι0 +

∆4c
stb, p) ≥ bρ-BADp(q)cr−1 in contradiction with the fact that q was not removed from

BADp in r − 1.

All in all, there will be no non-faulty nodes in bBADpcr, and by replacing p with

every non-faulty node we have that there will be no non-faulty nodes in b∪BADcr.

Corollary 8.3. Let r ≥ ι0 + ∆rmv + 2∆4c
stb be a global round number, the system is

4C-Accept-correct in r.

Proof. Follows by using Claim 8.2 together with Lemma 8.1.

From here on, we will denote rclean = ι0 + ∆rmv + 2∆4c
stb.

Properties of joined and started

Lemma 8.3. Let p be a non-faulty node and let r ≥ ι0 be a global round. djoinedp(G)er
≤ lt(r, p) with equality iff p has restarted RunningLoop(G) in r.

Proof. Note that in the beginning of r Cleanup makes sure that joinedp(G) < lt(r, p).

Had joinedp(G) also been set during r, it must have been to lt(r, p) using Line 40.

Lemma 8.4. Let p be a non-faulty node and let r ≥ ι0 + 1 be a global round.

(1) djoinedp(G)er ≥ bjoinedp(G)cr with inequality iff p restarted RunningLoop(G)

in r;

(2) and dstartedp(G)er 6= bstartedp(G)cr only if p restarted RunningLoop(G) in r.

Proof. From Claim 8.1, bjoinedp(G)cr < lt(r, p). Also, from Corollary 8.2, p will not

change joinedp(G) or startedp(G) in r using Cleanup.

Hence, has joinedp(G) been changed in r it must have been on Line 40 — im-

plying that RunningLoop(G) was restarted in r. If so, djoinedp(G)er = lt(r, p) >

bjoinedp(G)cr and we have the required for (1). As for (2), simply note that p changes

startedp(G) only before restarting RunningLoop(G).

45

Corollary 8.4. Let p be a non-faulty node, let r ≥ ι0 + 1 be a global round, and let

r′ = max{rt(bjoinedp(G)cr), ι0 − 1}. p has not restarted RunningLoop(G) in any of

the rounds r′ + 1, . . . , r − 1.

Proof. First, note that r′ + 1 ≥ ι0. Assume to the contrary that p has restarted

RunningLoop(G) in r̂ ∈ {r′ + 1, . . . , r − 1}, then from Lemma 8.3 it had set

djoinedp(G)er̂ = lt(r̂, p). By iteratively applying Lemma 8.4 on the last we have

that bjoinedp(G)cr ≥ djoinedp(G)er̂ = lt(r̂, p).

Thus, rt(bjoinedp(G)cr) ≥ r̂ > r′ ≥ rt(bjoinedp(G)cr) in contradiction!

Corollary 8.5. Let p be a non-faulty node, let r ≥ ι0 + 1 be a global round, and let

r′ = rt(bjoinedp(G)cr). If r′ ≥ ι0, then p must have restarted RunningLoop(G) in r′.

Proof. First, from Corollary 8.4 we have that p has not restarted RunningLoop(G)

in any of the rounds r′ + 1, . . . , r − 1. Combined with Corollary 8.2 we have that

djoinedp(G)er′ = bjoinedp(G)cr′+1 = bjoinedp(G)cr = lt(r′, p).

By applying Lemma 8.3, we have that p must have restarted RunningLoop(G) in

r′.

Phase cleanliness

Lemma 8.5. Let p be a non-faulty node and let r ≥ ι0 be a global round. Had p

restarted RunningLoop(G) in r, then it would have been running RunningLoop(G)

in phase with (G, r0) in the end of r, s.t. r0 = r− k∆4c, k ≥ 1 and djoinedp(G)er = r.

Proof. From Lemma 8.3 we have that djoinedp(G)er = lt(r, p). Also, note that

r0 = dstartedp(G)er by Definition 8.1.

Had p restarted RunningLoop(G) in r using Line 8, then dstartedp(G)er =

lt(r, p) − ∆4c as required. Had p restarted RunningLoop(G) using Line 15, then

from Line 10 together with Line 14 we have that dstartedp(G)er = lt(r, p)− (k+ 1)∆4c

for k ≥ 1 as required.

Lemma 8.6. Let p be a non-faulty node, and let r ≥ ι0 + ∆4c. If p is running

RunningLoop(G) in r then, joinedp(G) = startedp(G) + k∆4c s.t. k ≥ 1 (after

executing JoinIn).

Proof. Had p restarted RunningLoop(G) in r, the required follows from Lemma 8.5.

Otherwise, p must have been running RunningLoop(G) in the beginning of r.

46 Appendix: Proofs for the Agreement Primitive

Had p restarted RunningLoop(G) in r′ ∈ {r − ∆4c, . . . , r − 1}, then by choos-

ing the maximal r′ and iteratively applying Lemma 8.4 to r′ + 1, . . . , r we have

that bjoinedp(G)cr = djoinedp(G)er′ and bstartedp(G)cr = dstartedp(G)er′ and the

required follows by applying Lemma 8.5 to r′.

Otherwise, since the only blocking line in RunningLoop(G) is Line 47 which

blocks for ∆4c rounds, we have that p must have executed UpdateState(G) in some

r′ ∈ {r −∆4c, . . . , r − 1}. Had p passed the condition in Line 59 in r′, it would have

stopped RunningLoop(G), in contradiction with the fact that it is still running in

the beginning of r. Therefore, by iteratively applying Lemma 8.4 to r′ + 1, . . . , r and

from the fact that the said condition did not hold for p in r′ we have the required.

Lemma 8.7. Let p be a non-faulty node, and let r ≥ ι0 + ∆4c be a global round. Has

p been running RunningLoop(G) in phase with (G, r0) in the beginning of r, then it

had been running RunningLoop(G) in phase with (G, r0) in the end of r −∆4c.

Proof. From Definition 8.1 we have that bstartedp(G)cr = r0 and that r = r0 + k1∆4c,

k1 ≥ 1.

From Lemma 8.6 we have that rt(bjoinedp(G)cr) = r0 + k2∆4c, k2 ≥ 1. Moreover,

from Claim 8.1 we have that rt(bjoinedp(G)cr) < r and therefore k2 < k1 ⇒ k1 ≥ 2,

and rt(bjoinedp(G)cr) ≤ r −∆4c.

Applying Corollary 8.4, we have that p has not have restarted RunningLoop(G)

in r − ∆4c + 1, . . . , r − 1. Hence, p has been running RunningLoop(G) in the end

of r −∆4c, and by iteratively applying Lemma 8.4 to r −∆4c + 1, . . . , r − 1 we have

that dstartedp(G)er−∆4c = bstartedp(G)cr = r0. That together with the fact that

r−∆4c = r0 + (k1−1)∆4c and k1−1 ≥ 1 implies that p has been in phase with (G, r0)

in the end of r −∆4c.

Claim 8.3. Let p be a non-faulty node, and let r ≥ ι0 + ∆4c. p has been running

RunningLoop(G) in phase with (G, r0) in r, and r ≥ r0 + 2∆4c iff p has executed

UpdateState(G) in r.

Proof. First we will prove the reversed direction, and note that UpdateState(G) is

executed only from within RunningLoop(G).

Had p restarted RunningLoop(G) in r using Line 8, it would have had

dstartedp(G)er = lt(r, p)−∆4c and could not have passed Line 43 in order to execute

UpdateState(G) in r, in contradiction to the assumption. Thus, either p has been

47

restarted RunningLoop(G) in r using Line 15 or it has been running RunningLoop(G)

in phase with (G, r0) in the beginning of r.

Had p restarted RunningLoop(G) in r using Line 15, then from Lemma 8.5

RunningLoop(G) would have been running in phase with (G, r0), and from Corol-

lary 8.1 it would have had r0 ≤ r − 2∆4c.

Had p been running RunningLoop(G) in the beginning of r, then since it has

executed UpdateState(G) in r, it could not have restarted RunningLoop(G) or

executed Line 47 in r − ∆4c + 1, . . . , r − 1 (or else it would have been blocking in

r). Therefore, p must have been running RunningLoop(G) in the end of r −∆4c and

executed Line 47 then. Since p has not stopped RunningLoop(G), we have that the

condition in Line 59 has been false in r − ∆4c. Combined with Definition 8.1 and

since r −∆4c ≥ ι0, this means that p has been running RunningLoop(G) in phase

with (G, r0) in r −∆4c ≥ r0 + ∆4c.

Since we have shown that p has not restarted RunningLoop(G) in r − ∆4c +

1, . . . , r−1, by iteratively applying Lemma 8.4, pmust still be running RunningLoop(G)

in phase with (G, r0) in r, and r ≥ r0 + 2∆4c.

Now for the forward direction.

First, had p restarted RunningLoop(G) in r, since r ≥ r0 + 2∆4c it would have

passed the condition in Line 43 and executed UpdateState(G) in phase with (G, r0)

in r.

Had p not restarted RunningLoop(G) in r, it must have been running it in phase

with (G, r0) in the beginning of r.

Combining with Lemma 8.5 and Lemma 8.4, we have that that p could not have

restarted RunningLoop(G) in any r′ ∈ {r − ∆4c + 1, . . . , r − 1}, or else it would

have had rt(bstartedp(G)cr) = r′ − k∆4c 6= r − k∆4c in contradiction. Thus, p

has been running RunningLoop(G) in phase with (G, r0) in the end of r − ∆4c as

well. By iteratively applying Lemma 8.4 to r′ ∈ {r − ∆4c, . . . , r − 1} we have that

dstartedp(G)er′ = dstartedp(G)er = r0 = r − k∆4c.

Therefore, had p executed UpdateState(G) in any r′ ∈ {r −∆4c + 1, . . . , r − 1},
the condition in Line 59 would have been false and RunningLoop(G) would have

stopped in contradiction to the assumption that it is still running in the beginning of

r.

Since the only blocking line in RunningLoop(G) is Line 47 which blocks for ∆4c

rounds, we have that p cannot still be blocking in r and so will execute UpdateState(G)

in phase with (G, r0) in r.

48 Appendix: Proofs for the Agreement Primitive

Corollary 8.6. Let p be a non-faulty node, and let r ≥ ι0 + ∆4c be a global round.

Had p executed UpdateState(G) in r, the condition on Line 59 must have held for p

in r.

Proof. Note that from Claim 8.3, had p executed UpdateState(G) in r, it must have

been in phase with (G, r0) s.t. r ≥ r0 + 2∆4c.

Also, from Lemma 8.6 and Lemma 8.3 we have that r ≥ joinedp(G) = startedp(G)+

k∆4c with k ≥ 1 when executing Line 59.

It follows that the condition in Line 59 will be false.

Corollary 8.7. The conditions in Line 32 and Line 59 will not hold for any non-faulty

node in rounds ≥ ι0 + ∆4c.

Proof. Follows from Corollary 8.2 and Corollary 8.6.

Therefore, when regarding the stopping of RunningLoop after round ι0 + ∆4c in

the following proofs we can assume that RunningLoop is stopped only by returning.

Claim 8.4. A non-faulty node p has 4-casted an A-share message in phase with

(G, r0) in global round r, r ≥ ι0 iff one of the following conditions has held:

(1) p has been running RunningLoop(G) in phase with (G, r0) in the end of r;

(2) or p has returned successfully from RunningLoop(G) in r after running

UpdateState(G) in phase with (G, r0).

Proof. First, it follows from the algorithm that in r ≥ ι0 a non-faulty node p 4-casts

only A-share messages that are in phase with (G, rt(dstartedp(G)er)) and only using

Lines 47 and 51.

In both cases, p restarted RunningLoop(G) or executed UpdateState(G) in

round r prior to 4-casting. Had p restarted RunningLoop(G) then it is in phase from

Lemma 8.5. Had it executed UpdateState(G), it is in phase from Claim 8.3.

The required follows immediately from the fact that Line 47 is executed iff p has

been running RunningLoop(G) in phase in the end of r, and that Line 51 is executed

iff p has returned successfully in r.

49

Algorithm logic cleanliness

Lemma 8.8. Let p be a non-faulty node and let r ≥ rclean. The condition in Line 10

will not be satisfied for more than one (G, r0,m) triplet in r.

Proof. First, from Corollary 8.3 and the fact that r ≥ rclean, we have that the received

4-casts in round r satisfy the properties of 4-cast. Second, note that from the

uniqueness property of 4-cast, p will not raise more than one 4C-Accept signal per

node in each round.

Therefore, and since n ≥ 3t+ 1, n− t must be a majority and so p cannot have

the condition in Line 10 satisfied for more than one (G, r0,m) triplet.

Claim 8.5. Let p be a non-faulty node, let r0 be a global round, and let r ≥
max{r0 + 2∆4c, rclean}. The condition in Line 10 has held for p with A-share 4-casts

in phase with (G, r0) and with value dvp(G)er in r iff one of the following has held:

(1) p has been running RunningLoop(G) in phase with (G, r0) in the end of r;

(2) or p has returned successfully from RunningLoop(G) in r after running

UpdateState(G) in phase with (G, r0).

Proof. First, we will prove the forward direction: assume the condition in Line 10

held for p with the triplet (G, r0,m) and we will show that it will be running

RunningLoop(G) in phase with (G, r0) in the end of r and that dvp(G)er = m.

Note that from Lemma 8.8, the said condition did not hold for p with any other

triplet in r.

Had p not been running RunningLoop(G) in phase with (G, r0) in the beginning

of r, then from Corollary 8.1 it will not pass the condition in Line 11 but execute

Line 15 and restart RunningLoop(G) to be running in phase with (G, r0) in the end

of r.

Otherwise, from Corollary 8.1, p will pass the condition in Line 11 and set

timeoutp(G) = lt(r, p). Therefore, either p will not break from the loop when execut-

ing RunningLoop(G) and be running RunningLoop(G) in phase with (G, r0) in the

end of r or p has set statep(G) = 2 in UpdateState(G) in which case it will return

successfully in r after running UpdateState(G) in phase with (G, r0).

In any case it follows from Corollary 8.1 that r ≥ r0 + 2∆4c. Therefore, it follows

from Claim 8.3 that p will execute UpdateState(G) in r. Thus, p will make sure

50 Appendix: Proofs for the Agreement Primitive

that dvp(G)e=m when going past Line 63, since n ≥ 3t+ 1 and so the n− t 4-casts

received with the same value m must be a majority.

As for the reversed direction: assume p has been running RunningLoop(G) in phase

with (G, r0) in the end of r ≥ r0 or has returned successfully from RunningLoop(G)

after running UpdateState(G) in phase with (G, r0), then the condition in Line 10

must have held for p with the triplet (G, r0,m).

Note that it is not possible that p restarted RunningLoop(G) in r using Line 8,

because then it would be in phase with (G, r −∆4c), and r −∆4c > r0 (from Corol-

lary 8.1).

Had p not been running RunningLoop(G) in phase with (G, r0) in the beginning

of r, then it must have restarted RunningLoop(G) in r using Line 15. Hence, the

condition in Line 10 must have held for messages in phase with (G, r0).

Otherwise, p has been running RunningLoop(G) in phase with (G, r0) in the

beginning of r. By applying Claim 8.1 to r − 1 ≥ ι0 we have that btimeoutp(G)cr <
lt(r, p). In the case p has not returned successfully — from the fact that p is still

running RunningLoop(G) in phase with (G, r0) in the end of r, we have that p must

have reset timeoutp(G) using Line 12 and so the condition in Line 10 must have held

for messages in phase with (G, r0) as well. Had p returned successfully — note that

the condition in Line 67 must have been true, and that the condition in Line 10 is

contained in that of Line 67.

It also follows from Claim 8.3 that p has executed UpdateState(G) in r and set

dvp(G)er to the value received in the majority of the in phase A-share 4-casts. From

Lemma 8.8 this must have been the value m of the said 4-casts.

Lemma 8.9. Let p be a non-faulty node, and let r ≥ rclean + ∆4c be a global round.

Had p returned successfully from RunningLoop(G) in r after running UpdateState(G)

in phase with (G, r0), it must have been running RunningLoop(G) in phase with

(G, r0) in the end of r −∆4c and had dstatep(G)er−∆4c = 1.

Proof. Note that from Claim 8.1, bstatep(G)cr ∈ {0, 1}. Since p has returned success-

fully in r, it must have had statep(G) = 2 when executing the conditional in Line 50.

The only possibility is that p has executed Line 68 in r and had statep(G) = 1 when

starting to execute UpdateState(G).

Had p restarted RunningLoop(G) in r, it would have set statep(G) = 0 using

Line 42 before executing UpdateState(G), in contradiction. Therefore, p must have

been running RunningLoop(G) in phase with (G, r0) in the beginning of r.

51

Therefore, from Lemma 8.7 we have that p has been running RunningLoop(G)

in phase with (G, r0) in the end of r − ∆4c as well. Moreover, dstatep(G)er−∆4c =

bstatep(G)cr = 1 as required.

Agreement once all are participating

Lemma 8.10. Let p be a non-faulty node. Had every non-faulty was running

RunningLoop(G) in phase with (G, r0) in the end of global round r∗, r∗ ≥ rclean, then

p will not restart RunningLoop(G) on any round r > r∗ unless either:

(1) p has returned from RunningLoop(G) unsuccessfully on r̄ s.t. r∗ < r̄ < r;

(2) p has returned from RunningLoop(G) successfully on r̄ s.t. r∗ < r̄ < r −∆4c;

(3) another non-faulty node has returned from RunningLoop(G) unsuccessfully on

r̄ s.t. r∗ < r̄ < r −∆4c;

(4) or another non-faulty node has returned from RunningLoop(G) successfully on

r̄ s.t. r∗ < r̄ < r − 2∆4c.

Proof. First, note that from Corollary 8.7, no non-faulty will stop RunningLoop(G)

on any round > r∗ without properly returning. Also, by applying Corollary 8.3 we

know that 4C-Accept messages raised on r∗ or later satisfy the properties of 4-cast

and we use this throughout this proof.

Now — note that p will not restart RunningLoop(G) using Line 8 until it has

returned from it, because of the condition in Line 5. Had p returned successfully it

will also ignore {4C-Accept, G, 〈A-init, ∗〉, 2} signals for the next ∆4c rounds. This

gives us the necessary condition [(1) or (2)] for restarting using Line 8.

We will now show that [(1), (2), (3) or (4)] is a necessary condition for restarting

using Line 15.

First, note that p will not be able to restart RunningLoop(G) using Line 15 to be

in phase with (G, r0) until it has returned from it, because the condition in Line 13

will stay false. Assuming p has returned from RunningLoop(G) in some round r̄: had

it returned unsuccessfully then condition (1) will hold in r ≥ r̄ + ∆4c. Had p returned

successfully in r̄ it will not be “pulled in” before r̄ + 3∆4c because it will ignore the

relevant share messages (from Line 52) and so condition (2) will hold in r ≥ r̄ + 3∆4c.

For restarting RunningLoop(G) with different phases, p must receive appropriate

A-share 4-casts from at least n− 2t non-faulty nodes. Note that we assumed that by

52 Appendix: Proofs for the Agreement Primitive

the end of round r∗ all non-faulty nodes are running RunningLoop(G) with the same

phase. Hence, other non-faulty nodes have to restart RunningLoop(G) with the new

phase at least ∆4c rounds prior to p’s restart for them to “pull” p with the condition

on Line 13.

Let q be the first non-faulty node to restart with a different phase after round

r∗. From the previous paragraph, as q is the first — it could not have been “pulled

out” and had to restart using Line 8. From the first paragraph, this means that

q must have previously returned unsuccessfully from RunningLoop(G) in round r̄

s.t. r̄ < r −∆4c, or returned unsuccessfully in round r̄ s.t. <̄(r −∆4c)−∆4c. This

completes the necessary condition [(1), (2), (3) or (4)] for restarting using Line 15.

Claim 8.6. Let r ≥ rclean and m, s.t.:

(1) Every non-faulty node has been running RunningLoop(G) in phase with (G, r0)

in the end of r;

(2) and every non-faulty node has had dv(G)er = m.

Then, every non-faulty node q will raise {A-Accept, G,m, ρq0} s.t. rt(ρq0) = r0 all

within the round interval [r + ∆4c, r + 2∆4c]∆4c .

Proof. First, note that from Claim 8.4 every non-faulty node will 4-cast an A-share

in phase with (G, r0) in round r, all with the value m. From Corollary 8.3 and the

validity property of 4-cast, in round r+∆4c every non-faulty node will receive at least

n− t A-share 4-casts in phase with (G, r0) with the value m and with confidence 2.

From Definition 8.1 we have that r ≥ r0 + ∆4c. Thus, r + ∆4c ≥ r0 + 2∆4c and

we can use Claim 8.5 to see that every non-faulty node will have dv(G)er+∆4c = m,

some will be running RunningLoop(G) in phase with (G, r0) in the end of r + ∆4c

and some might have returned successfully after running UpdateState(G) in phase

with (G, r0). We will denote the first set of nodes as S1 and the second as S2.

Note that:

(1) Before successfully returning, the nodes in S2 must have raised the signal

{A-Accept, G, v(G), startedp(G)}. Moreover, from Definition 8.1 we have that

rt(started(G)) = r0 as required, and from the previous paragraph we have that

v(G) = m.

53

(2) While running UpdateState(G), the nodes in S1 must have passed the condition

in Line 68. Combined with Claim 8.1 they have dstate(G)er+∆4c = 1 (had it

been 2 they would be in S2).

From Claim 8.4 again, in the end of round r + ∆4c both the nodes in S1 and the

nodes in S2 will 4-cast A-share messages in phase with (G, r0) and the value m.

Moving on to round r + 2∆4c — note that from Lemma 8.10, no non-faulty node

in S1 will restart RunningLoop(G) in r + ∆4c + 1, . . . , r + 2∆4c.

As in r + ∆4c, in round r + 2∆4c the nodes in S1 will again receive at least n− t
4-casts for A-share messages in phase with (G, r0) and with value m and confidence 2.

Every node p ∈ S1 will then pass the condition in Line 68, set statep(G) = 2,

break from the loop in RunningLoop(G), pass the condition in Line 50 and raise

{A-Accept, G, vp(G), startedp(G)}. As before, from Definition 8.1, we have that

rt(startedp(G)) = r0 as required, and from Claim 8.5 we have that vp(G) = m.

Combining all the above, we have shown that every non-faulty node q will raise

{A-Accept, G,m, ρq0} s.t. rt(ρq0) = r0, all within the round interval [r + ∆4c, r +

2∆4c]∆4c .

Decay

Lemma 8.11. Let p be a non-faulty node, and let r ≥ rclean be a global round. Had

the condition in Line 10 held for p in r with messages in phase with (G, r0), then at

least n− t− f + |bBADpcr| of these 4-casts were from non-faulty nodes.

Proof. First, note that from Corollary 8.1, p has received in r at least n− t 4-casts

A-share messages in phase with (G, r0) and with confidence ≥ 1.

From Corollary 8.3 and the fact that r ≥ rclean, only non-faulty nodes are in

bBADpcr, and note that 4-cast does not raise 4C-Accept signals in r for nodes

in bBADpcr. That, together with the fact that n ≥ 3t + 1, means that at least

n− t− f + |bBADpcr| of the received 4-casts must be from non-faulty nodes.

Corollary 8.8. Let r0 be a global round, let r ≥ max{r0 + 2∆4c, rclean}, and let

nBAD = |b∩BADcr|. If less than n − t − f + nBAD non-faulty nodes have 4-casted

A-share messages in phase with (G, r0) in r −∆4c, then no non-faulty node will run

RunningLoop(G) in phase with (G, r0) in any round r′ > r nor in the end of r.

Proof. By applying Claim 8.5 and then Lemma 8.11 to all non-faulty nodes in r, we

have that no non-faulty node will be running RunningLoop(G) in phase with (G, r0)

54 Appendix: Proofs for the Agreement Primitive

in the end of r. By iteratively applying these lemmata to the rounds in [r+ ∆4c, r
′]∆4c

and using Lemma 8.7 we have the required.

Corollary 8.9. Let r ≥ rclean and m, s.t.:

(1) Every non-faulty node has been running RunningLoop(G) in phase with (G, r0)

in the end of r;

(2) and every non-faulty node has had dv(G)er = m.

No non-faulty node q will be running RunningLoop(G) in phase with (G, r0) in any

round r′ > r + 2∆4c.

Proof. It follows from Claim 8.6 that all non-faulty nodes will return successfully from

RunningLoop(G) in phase with (G, r0) in the round interval [r + ∆4c, r + 2∆4c]∆4c .

The proof also implies that no non-faulty node will be running RunningLoop(G) in

phase with (G, r0) in the end of round r + 2∆4c.

Moreover, because of Line 52, we know that no non-faulty node will be able to

restart RunningLoop(G) in phase with (G, r0) in rounds [r + 2∆4c, r + 3∆4c]. From

Claim 8.4, we have that no non-faulty node will 4-cast an A-share message in phase

with (G, r0) in round r + 3∆4c.

By applying Corollary 8.8 to round r + 4∆4c and using the fact that no non-faulty

node will be running RunningLoop(G) in the beginning of r+4∆4c (from Lemma 8.7),

we have the required.

Claim 8.7. Let p be a non-faulty node, let r0 be a global round, and let r ≥
max{r0 + 2∆4c, rclean}. Had p been running RunningLoop(G) in phase with (G, r0)

in the end of global round r, then either the following two statements hold:

(1) Every non-faulty node will be running RunningLoop(G) in phase with (G, r0)

in the end of r;

(2) and every non-faulty node q will have dvq(G)er = dvp(G)er.

or there will be some q ∈ P s.t. q /∈ bBADpcr and q ∈ dBADper.

Proof. First, from Claim 8.5 we have that the condition in Line 10 held for p with

messages in phase with (G, r0) in r. Using Corollary 8.1 we have that p has received

at least n − t A-share 4-casts in phase with (G, r0) and all with the same value m

and confidence ≥ 1.

55

Had all other non-faulty nodes received exactly the same 4-casts (same G,m and

age) with confidences ≥ 1 as well, then from Claim 8.5 they will all be running

RunningLoop(G) in phase with (G, r0) in the end of r as well.

Moreover, from Claim 8.3 every non-faulty node will execute UpdateState(G) in

r. Thus, every non-faulty node q will set vp(G) to the same value m when executing

Line 64 in UpdateState(G), as n ≥ 3t+ 1 and so the n− t 4-casts received with the

same value m must be a majority.

Otherwise — if not all non-faulty nodes received these n−t 4-casts with confidences

≥ 1 — at least one non-faulty node p̂ 6= p has received one of the said 4-casts with

either: (1) a different value; (2) confidence < 1; or (3) not raised it at all. Assume

w.l.o.g that this “different” signal was for a 4-cast invoked by q.

Note that q /∈ bBADpcr or else p would not have raised the 4C-Accept signal

about q in the first place. Since r ≥ rclean and by applying Corollary 8.3, we know

that the properties of 4-cast hold between the 4C-Accept and 4C-Accept signals for

all non-faulty nodes.

That is, as p is non-faulty and has raised the signal about q with confidence ≥ 1,

we know that p̂ must have raised a signal about the 4-cast from q as well. Therefore,

p̂ has raised the signal about the 4-cast from q either with confidence < 1 or with

a different value (which implies confidence < 1 as well, from the value agreement

property of 4-cast). Therefore, from the confidence agreement properties of 4-cast,

we know that p has raised 4-cast on r with confidence 1 and not 2.

All in all, p will add q to BADp when executing Snitch in r. That is — q /∈
bBADpcr but q ∈ dBADper as required.

Corollary 8.10. Let p be a non-faulty node, let r0 be a global round, and let

r ≥ max{r0 + 2∆4c, rclean}. Also, let r′ = max{r−∆rmv + 1, r0 + 2∆4c, rclean}. Had p

been running RunningLoop(G) in phase with (G, r0) in the end of f + 1 rounds in

the round interval [r′, r] then for some r̂ ∈ [r′, r] we had that:

(1) Every non-faulty node was running RunningLoop(G) in phase with (G, r0) in

the end of r̂;

(2) and every non-faulty node q had dvq(G)er̂ = dvp(G)er̂.

Proof. Assume to the contrary that the claim is incorrect. From Claim 8.7 we have

that a “new” faulty node must have been added to BADp in each one of the rounds

in which p has been running in the end of (as r′ ≥ rclean).

56 Appendix: Proofs for the Agreement Primitive

Therefore, and since r− r′ < ∆rmv, we have that bBADpcr contained at least f + 1

nodes in contradiction to Claim 8.2.

Corollary 8.11. Let r ≥ rclean, let p be a non-faulty node, and let r′ = max{r −
∆rmv + 1, rclean}. Had p 4-casted A-share messages that were in phase with (G, r0) in

2f + 2 rounds in the round interval [r′ + 1, r]∆4c then for some r̂ ∈ [r′, r]∆4c we had

that:

(1) Every non-faulty node was running RunningLoop(G) in phase with (G, r0) in

the end of r̂;

(2) and every non-faulty node q had dvq(G)er̂ = dvp(G)er̂.

Proof. Had p 4-casted an A-share message in phase with (G, r0) in r̂ ∈ [r′+1, r]∆4c , we

deduce from Claim 8.4 that in the end of r̂ p has either been running RunningLoop(G)

in phase with (G, r0) or it had returned successfully from RunningLoop(G) after

running UpdateState(G) in phase with (G, r0). For the second case, by applying

Lemma 8.9 to r̂ we have that p has been running RunningLoop(G) in phase with

(G, r0) in the end of r̂ − 1 ∈ [r′, r]∆4c .

Also, from Claim 8.4 we have that in every round in the end of which p has been

running RunningLoop(G) in phase with (G, r0), p had 4-casted an A-share message

in phase with (G, r0).

Therefore, for every 4-cast that originated from a successful return we have at

least one 4-cast that originated from running in phase in the end of a round. Hence, p

has been running RunningLoop(G) in phase with (G, r0) in the end of at least f + 1

rounds in [r′, r]∆4c .

By applying Corollary 8.10 we have the required.

Claim 8.8 (Decay). In global round r ≥ rclean + (4f + 5)∆4c no non-faulty node will

be running RunningLoop(G) in phase with (G, r0) s.t. r0 < r − (4f + 5)∆4c.

Proof. Assume to the contrary that in r ≥ rclean + (4f + 5)∆4c some non-faulty node

p has been running RunningLoop(G) in phase with (G, r0) s.t. r0 < r − (4f + 5).

If on any round r′ ∈ {r − (4f + 5)∆4c, . . . , r − 3∆4c} it was true that:

(1) Every non-faulty node has been running RunningLoop(G) in phase with (G, r0)

in the end of r′;

(2) and every non-faulty node has had dv(G)er′ = m.

57

Then using Corollary 8.9, p could not have been running RunningLoop(G) in r in

contradiction to the assumption.

Also, from Corollary 8.8 at least n− t− f non-faulty nodes have 4-casted A-share

messages in phase with (G, r0) in the end of every round in [r−(4f+5)∆4c, r−2∆4c]∆4c

or else p could not have been running RunningLoop(G) in the end of r in contradiction

to the assumption.

Combining the above with Corollary 8.11, and since we will require that ∆rmv >

(4f + 4)∆4c, no non-faulty node could have sent A-share messages in phase with

(G, r0) in the end of 2f + 2 rounds in the interval [r − (4f + 5)∆4c, r − 3∆4c]∆4c .

Otherwise, p could not have been running RunningLoop(G) in phase with (G, r0) in

r, in contradiction to the assumption.

Therefore, since there are n− f non-faulty nodes, each have not sent more than

2f + 1 messages with the said phase in the said interval, and in every round in the

interval at least n− t− f non faulty nodes must have sent messages, we have that the

length of the interval is at most:

(n− f)(2f + 1)

n− t− f
=

(n− t− f + t)(2f + 1)

n− t− f

= (2f + 1) + 2
t · f

n− t− f
+

t

n− t− f

≤ (2f + 1) + 2
t · f
t+ 1

+
t

t+ 1

≤ (2f + 1) + 2
(t+ 1) · f
t+ 1

+ 1

= 4f + 2

Where the first inequality follows from the fact that n ≥ 3t+ 1.

However:

|[r − (4f + 5)∆4c, r − 3∆4c]∆4c| =
(r − 3∆4c)− (r − (4f + 5)∆4c)

∆4c

+ 1

= 4f + 2 + 1

> 4f + 2

in a contradiction!

58 Appendix: Proofs for the Agreement Primitive

Termination

Claim 8.9 (Termination). A non-faulty node p that is running RunningLoop(G) in

the end of global round r, r ≥ rclean+(f+3)∆4c, has rt(djoinedp(G)er) ≥ r−(f+3)∆4c.

Proof. First, let r′ = rt(djoinedp(G)er). Assume to the contrary that r′ < r − (f +

3)∆4c, and note that r − (f + 3)∆4c ≥ rclean.

By applying Corollary 8.4, we have that p has not restarted RunningLoop(G) in

r − (f + 3)∆4c, . . . , r where all of these rounds are ≥ rclean. Since p is still running

RunningLoop(G) in the end of r, we also know that p must have been running

RunningLoop(G) in the end of all of the said rounds.

From Corollary 8.9, if on any round r′ ∈ {r − (f + 3)∆4c, . . . , r − 3∆4c} it was

true that:

(1) Every non-faulty node has been running RunningLoop(G) in phase with (G, r0)

in the end of r′;

(2) and every non-faulty node has had dv(G)er′ = m.

p could not have been running RunningLoop(G) in the end of r in contradiction to

the assumption.

However, as said — p has been running in the end of the f + 1 rounds {r − (f +

3)∆4c, . . . , r− 3∆4c}. Since r− (f + 3)∆4c ≥ r−∆rmv + 1 and r− (f + 3)∆4c ≥ rclean
it follows from Corollary 8.10 in contradiction to the assumption, that in one of these

rounds the conditions presented in the previous paragraph held.

Agreement

Lemma 8.12. Let p be the first non-faulty node to set statep(G) = 1 when running

UpdateState(G) in phase with (G, r0) s.t. r0 ≥ rclean in global round r, r ≥ ι0, then:

(1) r ≥ r0 + 2∆4c;

(2) every non-faulty node will be running RunningLoop(G) in phase with (G, r0)

in the end of r;

(3) and every non-faulty node q will have dvq(G)er = dvp(G)er.

59

Proof. Note that for p to set statep(G) = 1 it had to execute Line 68 and pass the

condition in Line 67. Also, we may note that the condition in Line 10 is contained in

that of Line 67 and so from Claim 8.5 we have that r ≥ 2∆4c.

As for (2) and (3): p has set statep(G) = 1 using Line 68. Therefore, it has received

at least n − t 4-casts of A-share messages in phase with (G, r0), all with the same

value v and with confidence 2.

Let q be a non-faulty node. Since r ≥ rclean we can apply Corollary 8.3 to r, and

thus from the agreement properties of 4-cast, q must have raised the exact same

signals as well with confidence ≥ 1. Note that it is not possible that q has ignored

any of these signals by executing Line 52 in phase with (G, r0) in a previous round,

because then from Lemma 8.9 q must have set stateq = 1 prior to p in contradiction

with p being the first.

Therefore, the condition in Line 10 will hold for every non-faulty node with the

triplet (G, r0,m). Also, note that since no non-faulty node has had bstatep(G)cr = 1,

it follows from Lemma 8.9 that no non-faulty node will return successfully from

RunningLoop(G) in r.

As r ≥ r0 + 2∆4c we can use Claim 8.5 and the required follows.

Corollary 8.12. Let p be the first non-faulty node to set statep(G) = 1 when running

UpdateState(G) in phase with (G, r0) s.t. r0 ≥ rclean in global round r, r ≥ ι0, then

every non-faulty node q will raise {A-Accept, G,m, ρq0} s.t. rt(ρq0) = r0 all within the

round interval [r + ∆4c, r + 2∆4c]∆4c .

Proof. From Lemma 8.12 we have that:

(1) r ≥ r0 + 2∆4c ≥ rclean;

(2) every non-faulty node will be running RunningLoop(G) in phase with (G, r0)

in the end of r;

(3) and every non-faulty node q will have dvq(G)er = dvp(G)er.

Therefore, we can use Claim 8.6 and the required follows.

Corollary 8.13. Let p be the first non-faulty node to set statep(G) = 1 when running

UpdateState(G) in phase with (G, r0) s.t. r0 ≥ rclean in global round r, r ≥ ι0, then

no non-faulty node q will be running RunningLoop(G) in phase with (G, r0) on any

round r′ > r + 2∆4c.

60 Appendix: Proofs for the Agreement Primitive

Proof. Follows by applying Lemma 8.12 and then Corollary 8.9.

Corollary 8.14. Let p be a non-faulty node, and let r ≥ ι0. Had p raised a signal

{A-Accept, G,m, ρp0} s.t. rt(ρp0) ≥ rclean in r, it will not raise another signal of type

{A-Accept, G, ∗, ρp0} on any later round.

Proof. First, let r0 = rt(ρp0). From Definition 8.1 we have that r ≥ rclean + ∆4c. Also,

from Lemma 8.9 we have that p has been running RunningLoop(G) in phase with

(G, r0) in r −∆4c and had dstatep(G)er−∆4c = 1.

Therefore, some non-faulty node has been the first to set statep(G) = 1 while

running UpdateState(G) in phase with (G, r0) in round r′ s.t. rclean + ∆4c ≤ r′ ≤
r −∆4c.

Using Corollary 8.13, we have that p will not be running RunningLoop(G) in

phase with (G, r0) (required to raise the said signal) on any round > r + ∆4c. As for

round r + ∆4c, as p returned successfully in r we have from Lemma 8.10 that it will

not restart with the same phase in r + ∆4c.

Claim 8.10 (Agreement). Had a non-faulty node p raised {A-Accept, G,m, ρp0} in

global round r, r ≥ rclean + (4t + 8)∆4c, then every non-faulty node q has raised

{A-Accept, G,m, ρq0} within the global round interval [r − Φ, r − Φ + ∆4c] (for some

Φ ∈ [0, ∆4c]∆4c), s.t. rt(ρq0) = rt(ρp0).

Proof. From Lemma 8.9 we have that p has been running RunningLoop(G) in phase

with (G, r0) in the end of r −∆4c ≥ rclean + (4t + 7)∆4c with dstatep(G)er−∆4c = 1.

Putting in Claim 8.8, we have that r0 ≥ rclean.

Therefore, and from Definition 8.1, some non-faulty node has been the first to

set statep(G) = 1 while running UpdateState(G) in phase with (G, r0) in round r′

s.t. rclean + ∆4c ≤ r′ ≤ r −∆4c. From Corollary 8.12, we have that every non-faulty

node q has raised {A-Accept, G,m, ρq0} s.t. rt(ρq0) = r0 all within the round interval

[r′ + ∆4c, r
′ + 2∆4c]∆4c .

From Corollary 8.14 we know that r ∈ [r′ + ∆4c, r
′ + 2∆4c]∆4c as well. That is, for

some Φ ∈ [0,∆4c]∆4c the intervals [r′ + ∆4c, r
′ + 2∆4c]∆4c and [r − Φ, r − Φ + ∆4c]∆4c

are the same, and we have the required.

Validity

Lemma 8.13. Let G be a non-faulty node and let r0 ≥ rclean. Has a non-faulty node

p been running RunningLoop(G) in phase with (G, r0) in the end of r, then:

61

(1) r ≥ r0 + ∆4c;

(2) and G has invoked StartAgreement in r0.

Proof. (1) follows from Definition 8.1.

Assume to the contrary that G has not invoked StartAgreement in r0 but some

non-faulty node p is running RunningLoop(G) in phase with (G, r0) in the end of

r ≥ r0 + ∆4c.

From Corollary 8.3, and the unforgeability property of 4-cast, we have that no

non-faulty node will raise {4C-Accept, G, 〈A-init, ∗〉, 2} in r0+∆4c. Therefore, no node

will use Line 8 to restart RunningLoop(G) to be in phase with (G, r0) in r ≥ r0 + ∆4c.

Also, from Definition 8.1, no non-faulty node has been running RunningLoop(G)

in phase with (G, r0) before r0 + ∆4c. Thus, from Claim 8.4 no non-faulty will 4-cast

an A-share message in phase with (G, r0) in r0. Using Lemma 8.11, we have that the

condition in Line 10 will not hold in phase with (G, r0) for any non-faulty node in

r0 + ∆4c and so no non-faulty will use Line 15 to restart RunningLoop(G) to be in

phase with (G, r0) in r0 + ∆4c, either.

Combining with Corollary 8.8 we have that no non-faulty node will be running

RunningLoop(G) in phase with (G, r0) in the end of any round ≥ r0 + ∆4c, as

required.

Claim 8.11. Had a non-faulty G invoked StartAgreement with m in global round

r0, s.t. r0 ≥ rclean + (4f + 6)∆4c, then the condition in Line 5 will hold for every

non-faulty node p in round r0 + ∆4c and the condition in Line 10 will hold for none.

Proof. Since r ≥ ι0, G will execute Line 2 in round r0 and 4-cast 〈A-init,m〉 in r.

Note that since r0 + ∆4c ≥ rclean, from Corollary 8.3 and the validity property of

4-cast we have that every non-faulty node will raise {4C-Accept, G, 〈A-init,m〉, 2}
in r + ∆4c.

Assume to the contrary that the condition in Line 5 did not hold for some non-

faulty node p. Thus, p has either been running RunningLoop(G) in the beginning

of r0 + ∆4c — in which case from Lemma 8.7 it has been running RunningLoop(G)

in phase with (G, r̂0) in some previous round ≥ r0; or p has ignored the A-init 4-cast

received from G because it has executed Line 53 in some previous round ≥ r0 and

then from Lemma 8.9 we have that p has been running RunningLoop(G) in phase

with (G, r̂0) in the end of some previous round ≥ r0 −∆4c.

In any case, by applying Claim 8.8 we have that r̂ ≥ r0−∆4c−(4f+5)∆4c ≥ rclean.

62 Appendix: Proofs for the Agreement Primitive

However, from Lemma 8.13 this means that G has invoked StartAgreement in r̂ in

contradiction to the fact that G conforms with Definition 5.1 (as ∆a
wait > (4f + 6)∆4c).

As for the condition in Line 10. Note that we have shown that no non-faulty node

has been running RunningLoop(G) in phase with (G, ∗) in the end of any previous

round ≥ r0 −∆4c. From Claim 8.4 and Lemma 8.9, combined with Lemma 8.11 we

have that the condition in Line 10 will not hold for any non-faulty node in r0 +∆4c.

Corollary 8.15 (Validity). Had a non-faulty G invoked StartAgreement with m

in global round r0, s.t. r0 ≥ rclean + (4f + 6)∆4c, then in global round r0 + 2∆4c every

non-faulty node p would have raised {A-Accept, G,m, ρp0} s.t. rt(ρp0) = r0.

Proof. Note that from Claim 8.11 the condition in Line 5 will hold for every non-faulty

node p in round r0 + ∆4c. Therefore, from Corollary 8.1, in round r + ∆4c every

non-faulty node will restart RunningLoop(G) to be in phase with (G, r0) in the end

of r0 + ∆4c and will all set vp(G) = m.

Also, no non-faulty node will restart RunningLoop(G) using Line 15 since the

condition in Line 10 will not hold for any.

Using Claim 8.6 we have the required.

Unforgeability

Corollary 8.16. Let p,G be non-faulty nodes, and let r ≥ rclean + 2(4f + 6)∆4c be a

global round. Had p raised {A-Accept, G, ∗, ρp0} in global round r, then G had invoked

StartAgreement in rt(ρp0) = r −∆valid.

Proof. First, let r0 = rt(ρp0).

From Lemma 8.9 we have that p must have been running RunningLoop(G) in

phase with (G, r0) in r−∆4c, and from Claim 8.8 we have that r0 ≥ rclean+(4f+6)∆4c.

By applying Lemma 8.13 we have that G has invoked StartAgreement in r0, and

therefore, using Corollary 8.15 and Corollary 8.14 we have that r = r0 + ∆valid.

Properties and constants

Theorem 8.1 (Agreement). Agreement satisfies the properties of the Agreement

problem for ∆rmv = (4f + 4)∆4c + 1, ∆a
stb = 2(6f + 8)∆4c + 1 + 2∆4c

stb = O(f), ∆valid =

2∆4c, ∆agr = ∆4c, ∆term = (f + 3)∆4c, ∆decay = (4f + 5)∆4c, ∆a
wait = (4f + 6)∆4c + 1.

63

Proof. The requirements regarding ∆rmv in the previous claims are in Claim 8.8 and

in Claim 8.9, and the maximal is ∆rmv > (4f + 4)∆4c and so ∆rmv = (4f + 4)∆4c + 1

is enough.

The only requirement regarding ∆a
wait is in Claim 8.11 and is ∆a

wait > (4f + 6)∆4c

and so choosing ∆a
wait = (4f + 6)∆4c + 1 is enough.

The requirements regarding ∆a
stb are in the definitions of the claims regarding the

actual properties, and the maximal is ∆a
stb ≥ ∆rmv + 2∆4c

stb + 2(4f + 6)∆4c. Putting

in the requirement for ∆rmv we have that ∆a
stb = 2(6f + 8)∆4c + 1 + 2∆4c

stb is enough.

Note that assuming ∆4c and ∆4c
stb are constants we have that ∆a

stb = O(f) as required.

The other constants are taken from the bodies of the appropriate claims.

Corollary 8.17. Using the solution for 4-cast presented previously in this thesis,

we can choose ∆a
stb = 6(6f + 9) + 1 = O(f).

Proof. Putting in ∆4c = ∆4c
stb = 3 in Theorem 8.1, we have ∆a

stb = 2(6f + 8)∆4c + 1 +

2∆4c
stb = 2(6f + 8)3 + 7 = 6(6f + 9) + 1 = O(f) as required.

Chapter 9

Appendix: Concept for the

Semi-Synchronous Model

This appendix explains the general idea of how to translate node-invoked algorithms to

the the semi-synchronous model.1 The next paragraphs explain how to translate general

algorithms using a translated 4-cast primitive, and the last paragraph addresses the

translation of 4-cast itself.

Intuitively, what we propose is to generate an approximation to the global beat

system around the initial invocation message that will be sent using 4-cast.

The invocation message will be encapsulated in a 4-cast message, and so the

difference between the invocation times the correct nodes will associate with it will be

bounded. The time returned by this first 4-cast signal will be used as an approximation

to the “first global beat”, and each node will subsequently generate the next beats for

itself. The time between beats will have to account for the bound on the difference

between the invocation time approximations, and so will the width of the window in

which nodes will look for messages assumed to be sent in the previous “round”.

We expect this width to be around a small constant factor of the synchrony

constant of the translated 4-cast (which we expect to be a linear function of the

network delay and clock drift bound with small constant factors).

As for how to translate 4-cast itself, the idea is the same and a proposed algorithm

is provided as Algorithm 9.1.2 Note that this algorithm has been written intuitively

and its correctness has not been proved or tested. The constants appearing probably

1The model with the constant bound on message traversal time.
2The constant d appearing denotes the bound on message delivery time, as defined in [15].

65

need to be tweaked, but we believe the concept to be correct.

Algorithm 9.1 4-cast

1: procedure Start4-cast(m) ; ran by the sender G
2: send 〈4C-init,m〉 to all ; phase 1
3: end procedure

4: procedure 4C-JoinIn(G) ; ran by p continuously for every G ∈ P
5: if received 〈4C-flood,G,m〉 from ≥ t+ 1 nodes in (ρp − 4d, ρp] then ; phase 3
6: if received 〈4C-flood,G,m〉 from ≥ n− t nodes in (ρp − 3d, ρp − 1] then
7: schedule to send 〈4C-support,G,m〉 to all in ρp + 2d
8: end if

9: timeoutp(G)← ρp + 4d
10: end if

11: if received 〈4C-init,m〉 from G and ρp > timeoutp(G) then ; phase 2
12: schedule to send 〈4C-flood,G,m〉 to all in ρp + d

13: timeoutp(G)← ρp + 4d
14: end if

; phase 4
let maj1 be the value received the most amongst 4C-support messages received in (ρp−5d, ρp]
let #maj1 be the number of occurences of maj1
let maj2 be the value received the most amongst 4C-support messages received in

(ρp − 4d, ρp − 1]
let #maj2 be the number of occurences of maj2

15: if #maj2 ≥ n− t then
16: raise {4C-Accept, G,m, 2}; timeoutp(G)← −∞
17: else if #maj1 ≥ t+ 1 then
18: raise {4C-Accept, G,m, 1}; timeoutp(G)← −∞
19: else if ρp = timeoutp(G) then
20: raise {4C-Accept, G,⊥, 0}; timeoutp(G)← −∞
21: end if
22: end procedure

23: procedure 4C-Cleanup ; ran by p in the beginning of each round
24: if timeoutp(G) > ρp + 4d then
25: timeoutp(G)← −∞
26: end if
27: end procedure

Bibliography

[1] Ariel Daliot, Danny Dolev, and Hanna Parnas. Linear time byzantine self-

stabilizing clock synchronization. In Proceedings of 7th International Conference

on Principles of Distributed Systems (OPODIS-2003), La. Springer, 2003.

[2] Ariel Daliot and Danny Dolev. Self-stabilization of byzantine protocols. In Proc.

of the 7th Symposium on Self-Stabilizing Systems (SSS’05 Barcelona, pages 48–67,

2005.

[3] Ezra N. Hoch. Self-stabilizing byzantine pulse and clock synchronization. Master’s

thesis, The Hebrew University of Jerusalem, Israel, 2007.

[4] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In

Proceedings of the twentieth annual ACM symposium on Theory of computing,

STOC ’88, pages 148–161, New York, NY, USA, 1988. ACM.

[5] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast self-stabilizing byzantine

tolerant digital clock synchronization. In Proceedings of the twenty-seventh ACM

symposium on Principles of distributed computing, PODC ’08, pages 385–394,

New York, NY, USA, 2008. ACM.

[6] Cynthia Dwork and Larry Stockmeyer. Flipping persuasively in constant time.

SIAM J. Comput., 19:472–499, June 1990.

[7] Paul Feldman and Silvio Micali. An optimal probabilistic algorithm for syn-

chronous byzantine agreement. In Proceedings of the 16th International Colloquium

on Automata, Languages and Programming, pages 341–378, London, UK, 1989.

Springer-Verlag.

[8] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of

faults. J. ACM, 27:228–234, April 1980.

Bibliography 67

[9] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1996.

[10] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Sim-

ulations and Advanced Topics (2nd edition). John Wiley Interscience, March

2004.

[11] Jonathan Katz and Chiu yuen Koo. On expected constant-round protocols for

byzantine agreement. In In Advances in Cryptology — Crypto ’06, pages 445–462.

Springer-Verlag, 2006.

[12] Michael J. Fischer, Nancy A. Lynch, and Nancy A. Lynch. A lower bound for the

time to assure interactive consistency. Information Processing Letters, 14:183–186,

1981.

[13] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Simple gradecast based

algorithms. CoRR, abs/1007.1049, 2010.

[14] S. Dolev. Self-Stabilization. MIT Press, March 2000.

[15] Ariel Daliot and Danny Dolev. Self-stabilizing byzantine agreement. CoRR,

abs/0908.0160, 2009.

[16] Danny Dolev and Ezra N. Hoch. Byzantine self-stabilizing pulse in a bounded-

delay model. In Proceedings of the 9h international conference on Stabilization,

safety, and security of distributed systems, SSS’07, pages 234–252, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[17] ITU-T Rec. X.667 — ISO/IEC 9834-8. Generation and registration of universally

unique identifiers (uuids) and their use as asn.1 object identifier components.

2004.

	Acknowledgments
	Abstract
	Hebrew Abstract
	1 Introduction
	1.1 Contribution
	1.2 Thesis Outline

	2 Related Work
	2.1 Agreement Problems
	2.2 Self-Stabilizing Algorithms Tolerant to Byzantine Failures

	3 Model and Problem Statement
	3.1 Model
	3.2 The Agreement Problem

	4 The 4-cast Primitive
	4.1 Chapter Outline
	4.2 The 4-cast Problem
	4.3 Motivation
	4.4 Intuition for the Algorithm
	4.5 The 4-cast Algorithm
	4.6 Complexity Analysis

	5 The Agreement Primitive
	5.1 Chapter Outline
	5.2 The Agreement Problem
	5.3 Intuition for the Algorithm
	5.4 The Agreement Algorithm
	5.5 Complexity Analysis

	6 Conclusions and Future Work
	6.1 Turning Byzantine Failures to Fail-Stop
	6.2 Node-invoked Self-Stabilizing Byzantine Algorithms
	6.3 Future Work

	7 Appendix: Proofs for the 4-cast Primitive
	8 Appendix: Proofs for the Agreement Primitive
	9 Appendix: Concept for the Semi-Synchronous Model
	Bibliography

