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Abstract

The Domain Name System, or shortly - DNS, is a protocol that is used for a naming
system for computers, services, or any other network resources. The most important
purpose of the protocol is to translate names, which are meaningful to humans, into
IP addresses, which are meaningful to computers, thus allowing us to easily locate
every computer or service around the globe.

The DNS was invented in 1983 by Paul Mockapetris and his original specifica-
tions appear in RFC 882 and 883. These were later (November 1987) superseded by
RFC 1034 and 1035. The earliest DNS servers were written in 1984 and 1985. The
latest server was called BIND (Berkeley Internet Name Domain), it holds its name
till today, with various versions.

DNS protocol was not designed to deal with security issues, therefore many hack-
ing methods were developed in order to insert wrong data into the DNS lookup tables,
or in its cache, every method that allows the insertion of wrong data into the DNS
cache called ‘cache poisoning’ and most of the attacks on DNS servers attempt to
perform that task. The main protection against those attacks in the DNS protocol is
the Transaction ID (TID) of the request. Unless the reply is returned with the same
TID as the original request, it is ignored. Therefore, in order to poison the cache
of the DNS server, the hacker must guess the right TID for the request. In previous
BIND versions, guessing the TID number was an easy task, since the TID field was
increased by 1 for every new request. In the latest BIND versions, every new TID
is a random number, thus making the guessing work much harder.

Nevertheless, there might be a situation when the hacker has an access to a
randomly given TID field. Perhaps as a person that has control over the main
routers, or he can in some way sniff the traffic of the network. In such a case the
hacker can generate poison attacks without any difficulty. Our work concentrates in
detecting and preventing such attacks. We assume that the hacker is an all knowing
person and therefore knows the TID number of every request leaving the DNS server.
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If an attack on the DNS Server successfully inserts invalid data into the DNS
cache, it is called cache poisoning attack. Any query for the poisoned record will
return the wrong IP to the user, thus directing him to the wrong site or service.

In this thesis we suggest algorithms to deal with such a case.
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Thesis Overview

DNS protocol is one of the most popular and vital protocols over the Internet. The
protocol is being used by us on a regular basis in order to translate names of sites
or other network components into IP addresses. DNS is working in the background
of our communication without us realizing when and how many requests we are
sending. Due to its extensive usage, we naturally tend to assume that the replies
returned by our local DNS server are both full and valid. This however, in not
necessary the case. DNS servers, even those who are updated to the latest software
release, can be hacked. Their records do not always contain the correct information
and this false information might eventually be sent to the user, who will be redirected
to a wrong site. The reason for that is the fundamental flaw in the lack of thought
about security issues when the protocol was first designed, almost thirty years ago.

In this thesis, in Chapter 3, we present some of the work that was done over
the years in order to prevent and minimize the attacks on the DNS servers. We
explain the attacks and the solutions proposed to solve them. Many of the attacks
presented, were either totally blocked or were minimized in order to lower the chance
for a successful attack by new versions of the DNS servers. However, it is possible
to assume that some attacks have not been found or have not been exposed to the
public. Those zero-day attacks may be implemented and might have devastating
effects on a command day.

All of the attacks presented assume that the hacker in not an all knowing person,
meaning that the hacker cannot see the traffic in the network. Instead the hacker
must rely on guessing, or carrying out massive searches. Both the guessing and
the massive search attacks, might trigger alarms at network monitoring devices. In
our work, we break this assumption and look on the case where the hacker can
examine any traffic leaving or incoming the DNS servers. In this case the hacker
can easily generate valid reply and send it to the DNS server, bypassing the network
monitoring devices.
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In Chapter 4 we describe our developed algorithm that identifies packets with
anomalous time arrival in relation to other packets with same characteristics (i.e:
replies of type A from certain Authoritative DNS Server). The packets with anoma-
lous time arrival are treated as anomalous packets and are delayed for a certain
period of time. Due to that, the algorithm is called ‘Delay Fast Packets algorithm’
or, in short, DFP algorithm. In case of a real attack, in the period of the delay a
valid reply from the real Authoritative DNS server arrives and the DFP algorithm
detects the case of multiple replies for one query and thus deduces that the DNS
server is under attack. The DFP algorithm drops both replies and lets the DNS
server issue a new query, as if regular packet loss had occurred.

We believe that the DFP algorithm, combined with other attack prevention and
detection techniques already implemented on the DNS servers, will drastically lower
the chances for a successful attack. Now not only the hacker needs to send the
correct data, he also has to manage to fit the reply into an a period of time he can
only guess.

At the end of the work in Chapter 5 and 6 we present in details the experiments
we conducted on real traffic captured on HUJI DNS server and describe the strong
and the weak points of the DFP algorithm.

9



Part I

DNS security
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Chapter 1

Introduction

DNS protocol was designed to make our lives easier, as described in RFC 1034 [1]
and RFC 1035 [2]. In the same way as we do not remember all the phone numbers
in the phone book we do not remember all the IP addresses of all the sites. This is
why DNS is very similar to the phone book service, the user gives it a name of the
site, for example ‘google.com’, and it returns him ‘209.85.229.106’, to which user’s
computer can then send the request for the page.

This role of the DNS puts it in a sensitive spot: the user must trust the DNS
server to return the correct result for his request. If, for any reason, the DNS server
makes a mistake, and returns the wrong IP address to the client, the user will access
a different site while assuming he is accessing the real ‘google.com’.

This mistake can occur because of the DNS caching system, which is used by
the DNS servers for speeding up the process of the requests. Hackers search for
opportunities to place faulty records into DNS’s cache. Once the hacker managed
to implant such a record (poison the cache) in the DNS, every user that requests
this (poisoned) record will receive the malicious site.

There are two main ways to attack a DNS server. The first way is by finding
bugs in the way the DNS protocol is implemented in a specific version of Berkeley
Internet Name Domain (BIND) [3]. In order to prevent this type of attacks, BIND
versions are constantly updated to fix the bugs in their DNS implementation. The
second way to attack a DNS server is by finding flaws in the protocol. In our research
we will concentrate on finding a solution to the second type of attacks. This way
of approach allows us to find a more fundamental solution to the lack of security in
DNS.
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Potential consequences of DNS Cache Poisoning

• Identity Theft
The hacker might create a site identical to the original site (for example ‘pay-
pal.com’). When the user connects the site, using the poisoned cache record,
he might leave personal information like user name, password, phone number,
address, etc. in the hands of the hacker.

• Distribution of Malicious Code
One of the hacker’s objectives is to distribute a malicious code. One way
to achieve the goal is to release the code into the Internet and wait. This,
however, will usually get random and few results. Poisoning the cache and
impersonating some original and popular site will focus the attack. Once a user
initiates a session with the hackers site the malicious code can be downloaded
to the user’s computer without his knowledge.

• Dissemination of False Information
False information or false advertising can be used to spread self serving in-
formation about an organization. This false information can be considered as
genuine when obtained from a trustworthy site like www.nasdaq.com.

• Man-in-the-middle Attack
In this attack the user opens a session with the hacker’s site, which in his turn
opens a session with the originally requested site. The user continues his work
with no suspicion, while all information that is flowing between the user and
the genuine site passes through and is intercepted by the hacker’s site.

DNS protocol flow

The following part will give a short explanation of the protocol, while emphasizing
the important issues:

In the ‘Name Resolution process’ there are two types of queries that a client can
make to a DNS server: recursive and iterative. While discussing ‘name resolution’,
one DNS server can be a client to another DNS server.

• Recursive queries

In a recursive query, the queried DNS server is required to respond with the
requested data or with an error stating that the data of the requested type or
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the domain name specified doesn’t exist. The name server cannot just refer
the client to a different name server. This type of query is typically done by a
client to its Local DNS Server.

• Iterative queries

In an iterative query, the queried DNS server returns the best answer it cur-
rently has back to the client. This type of query is typically done by a DNS
server to other DNS servers after it has received a recursive query from a client.

Figure 1.1: DNS protocol flow

Figure 1.1 shows an example for iterative query type, where all the queries are
handled by the Local DNS server.
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When an end user wants to access a certain site, for example google.com, his
browser initializes the following process:

1. The local cache of the end user is checked. If an answer is found, the cached
site is returned. If not, the end user sends query to the local DNS server.

2. The local DNS server receives the request and checks in its cache for an answer.
If an answer is found, it is returned. If it is not found, the ‘local DNS server’
sends the request to the root server.

3. The ‘ROOT DNS server’ returns a redirect reply with the ‘.com DNS server’
IP.

4. The ‘local DNS server’ sends the request to ‘.com DNS server’ for the IP
address.

5. The ‘.com DNS server’ returns a redirect reply with the ‘Authoritative DNS
server’ IP of the requested site.

6. The ‘local DNS server’ sends the request for the IP of the site to the ‘Author-
itative DNS server’.

7. ‘The Authoritative server’ finds the requested IP address for the given site
name and sends the reply to the ‘local DNS Server’.

8. The local DNS server returns the IP address and inserts the result to it’s cache,
in case anyone will ask for the same site in the near future.

DNS packet format

Figure 1.2 displays the format of a DNS packet, the important fields are explained
in this section.
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Figure 1.2: DNS packet format

• ID (or Transaction ID). 16 bits. Is used to match request and reply packets.

• QR. 1 bit. Request or Response flag.

QR Description

0 Request
1 Response

• AA. 1 bit. Authoritative Answer indicates that the responding DNS server is
the authority for the requested domain name in the corresponding request.

AA Description

0 Not authoritative
1 Is authoritative
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• Rcode. 4 bits. Return code. The following table describes the basic return
codes as they were defined in RFC 1035.

Rcode Description

0 No error.
1 Format error.
2 Server failure.
3 Name Error.
4 Not Implemented.
5 Refused.

• Total Questions. 16 bits.
Number of entries in the request list that were returned.

• Total Answer RRs. 16 bits.
Number of entries in the response resource record list that were returned.

• Total Authority RRs. 16 bits.
Number of entries in the authority resource record list that were returned.

• Total Additional RRs. 16 bits.
Number of entries in the additional resource record list that were returned.

• Questions[]. Variable length.
A list of zero or more request record structures. Each request contains a query
name, a query type and a query class. The query class is normally 1 for
internet address. The most popular query types are listed in the table 1.1
below.

Type Value Description

A 1 Host’s IP address
NS 2 Host’s or domain’s name server(s)

CNAME 5 Host’s canonical name, host identified by an alias domain name
MX 15 Host’s or domain’s mail exchanger
ANY 255 Request for all records

Table 1.1: Popular DNS Query Types
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• Answer RRs[]. Variable length.
A list of zero or more response record structures.

• Authority RRs[]. Variable length.
A list of zero or more authority record structures.

• Additional RRs[]. Variable length.
A list of zero or more additional record structures.

Work overview

In this thesis we developed a new algorithm to detect anomalies in DNS packets.
The algorithm identifies packets with anomalous time of arrival with respect to other
packets with the same characteristics. Those packets considered as ‘too fast’ packets
and are delayed for a certain period of time. In case of a real attack, in the period
of the delay a valid reply from the real Authoritative DNS server arrives and the
algorithm detects the case of multiple replies for one query and thus deduces that
the DNS server is under attack. The algorithm drops both replies and lets the DNS
server issue a new query, as if regular DNS packet loss occurred.

The algorithm was tested on real traffic at a HUJI DNS Server. We used a set of
experiments to find the optimal parameters for the algorithm. The algorithm uses
these parameters to detect these ‘too fast’ packets.
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Chapter 2

Notations and Definitions

This chapter provides the terms and notations, which are commonly used in the
IP/TCP based networks and DNS protocol specifications. These terms are necessary
for a full understanding of the algorithm purposed in this work. Further information
about IP, TCP and UDP can be found in RFC 791 [4], RFC 793 [5] and RFC 768
[6]

2.1 General Definitions

Definition 2.1 Define 5 Tuple as a five elements tuple representing a connection
in an IP/TCP based network. The 5 Tuple contains IP source, IP destination, TCP
source port, TCP destination port and IP next protocol (typically TCP or UDP).

Definition 2.2 Define local DNS server as the default DNS server for the user.
Each DNS request, from the user, is first forwarded to the local DNS server, and
only if the request can’t be fulfilled by the local DNS server it is forwarded to other
DNS servers.

Definition 2.3 Define Authoritative DNS server as the DNS server that gives
answers that have been configured by an original source, in opposed to answers that
were obtained via a regular DNS query to another Authoritative DNS server and
were stored in the cache.

Definition 2.4 Define DNS cache poisoning or shortly cache poisoning as
a maliciously created or unintended situation that provides data to a caching name

18



server that did not originate from authoritative Domain Name System (DNS) sources.
Once a DNS server has received such non-authentic data and caches it for future
performance increase, it is considered poisoned, supplying the non-authentic data to
the users of the server.

2.2 Round Trip Time

Definition 2.5 Define Round Trip Time(RTT) as the time required for a packet
to be transmitted from a specific source to a specific destination and back again.

The RTT usually depends on various factors including:

• The data transfer rate of the source’s Internet connection.

• The medium used for the transmission (copper, optical fiber, wireless or satel-
lite).

• The distance between the source and the destination.

• The number of machines connecting the source and the destination.

• The traffic load on the network.

• The number of other requests being handled by intermediate nodes and the
remote server.

• The speed with which intermediate nodes and the remote server function.

The RTT can range from a few milliseconds, when calculated between close
points (in same LAN), to several seconds, under worse conditions between points
separated by a large distance (as in satellite connection) .

In order to estimate the quality and the latency of the connection, end point
users constantly measure the RTT of their packets. However, due to the large
number of variables and unknowns, especially in the internet environment, RTT
estimation may vary drastically.
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2.2.1 TCP

After the source transmits a Transmission Control Protocol (TCP) packet to its
destination, it must wait a certain period of time for an acknowledgment. If the
acknowledgment failed to arrive within the expected period of time, the packet is
assumed to be lost and it is retransmitted. The question ‘How long TCP must
wait?’ strictly connects to the expected RTT time of the network. Over local area
connection (LAN), no more than a few microseconds will suffice. Over the Internet,
a few seconds would be required. And if the traffic goes over satellite connections
around the globe much more time is needed.

Since TCP must be able to work in every environment, TCP monitors the normal
exchange of data packets and develops an estimation of how long it should wait for
the next packet. This process is called ‘Round Trip Time estimation’. Correct
estimation has a crucial effect on the performance of the network: If the RTT is too
low, many packets will be retransmitted unnecessarily, thus slowing the network. If
the RTT is too high, the connection will spend valuable time sitting idle, waiting
for the timeout to arrive.

Due to the fact that every network has different characteristics, TCP must be
able to adjust the RTT estimation accordingly. Moreover, the characteristics, or
the layout of the network can change rapidly both for better (higher speed) or for
worse (lower speed). For example, switching from satellite medium communication
to optic fiber medium makes the network faster, while changing from ‘Data over
Carry Pigeon’ to ‘Data over Snail’ makes the network slower. Therefore, to be able
to adjust to the changes in the network, the TCP new RTT estimation should be
calculated for every new incoming TCP packet.

Definition 2.6 Define EstimatedRTT as the predicted RTT of the next packet
sent by the source.

The following formula shows how the new Estimated RTT is derived from the old
Estimated RTT and the new RTT sample:

EstimatedRTT = (1− α)× EstimatedRTT ′ + α×RTT .

The default α in today’s TCP implementation equals to 0.125. Such α means
that in EstimatedRTT calculations more weight is given to the ‘history part’ than to
the ‘newly received part’. This is done in order to smooth any negative or positive
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peaks. But even if a rapid change occurs in the network characteristics, TCP will
adjust it’s Estimated RTT in a very short time.

In order to identify lost packets TCP takes ‘safety margins’ as a deviation of the
RTT from the Estimated RTT.

Definition 2.7 Define DevRTT as the deviation of the RTT from the Estimate-
dRTT.

The following formula shows how the new DevRTT is calculated:

DevRTT = (1− β)×DevRTT ′ + β × |RTT − EstimatedRTT | .

The default β in today’s TCP implementation equals to 0.25. Then the Timeout
is set to:

TimeOut = EstimatedRTT + 4×DevRTT .

If an acknowledgment for a packet arrives after Timeout has elapsed (or does
not arrive at all), the packet is considered to be lost and will be retransmitted by
the source.

2.2.2 DNS

DNS mostly uses User Datagram Protocol (UDP) as a fourth lever protocol. DNS
queries usually have relatively small payload, which fits into single UDP packet.
Request from a client is followed by a single UDP packet from the server. Since
UDP does not provide any packet loss detection, the DNS Server must be able to
either issue a retransmission by itself or continue working without the lost packet.
Of course, in the DNS case, the lost request will be retransmitted. The basic RFC
advises that the retransmission interval should be based on prior statistics, if pos-
sible. Too aggressive retransmission can easily slow responses for the community
in large networks. The minimum retransmission interval depends on how well the
client is connected to its expected servers. Usually it should be 2-5 seconds.
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Chapter 3

Related Work

3.1 Attacks Overview

DNS is one of the most important services both in private networks and over the
Internet. It is hard to imagine how, without its service, we would surf the net, or
use any of its applications.

However, DNS popularity and our dependence on it, is also one of its drawbacks.
Every new connection to a site or to an application, usually begins with DNS query
for the IP address of the destination. If for any reason the returned IP is incorrect
the user might end up in hackers hands.

The main reason for such a problem is that the DNS protocol lacks any reference
or design of security. Therefore, over the years, the DNS Servers were constant target
of hackers. In the meanwhile the academy and the security companies made every
effort to prevent the attacks by fixing and patching the DNS Servers (thus improving
the software that implements the protocol). However, no changes were inserted into
the protocol itself.

This section will cover some of the most popular attacks over the years and
what was done to prevent them. And although some of the following attacks are no
longer possible, they are still interesting, since they emphasize the fact that DNS
was not designed as a secure protocol, thus DNS implementation was initially flawed.
The security limitation developed over the years whenever attacks were discovered.
Hence it is possible to assume that some of the attacks, on the most updated BIND
version are still unknown or not discovered. More fundamental work must be done
to prevent Zero-Day attacks from succeeding. Hence, as was mentioned, this work
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suggests an algorithm to detect and prevent Zero-Day attacks.

We will start with a presentation of some of the common DNS attacks as they
were published during the years in the Internet. All of the attacks are widely known,
but some still present a threat to even the most updated DNS server.

3.1.1 Additional Data Attack

The idea behind this attack is to issue a valid request and generate a valid reply
followed by some additional data. This data will be welcomed into the cache of the
DNS Server for future use. The following two examples for attacks are quite old
and will not work on the new BIND versions, but it is worth mentioning them, for
better understanding of the cache poisoning attempts and their potential damage.
The user can test his DNS server with the following website [7] for this vulnerability.
Figure 3.1 presents the packets flow of the two attacks.

Figure 3.1: Additional data attack

Unrelated Data Attack

The hacker issues a request to the DNS Server for some nonexistent domain, from
his controlled Domain. Since the DNS has no record for that domain, it will issue
a request to the Authority DNS Server of the domain. After receiving the request,
the hacker sends a valid reply, while adding an additional data. The additional data
contains IP address for domains that were not included in the original request. The
IPs of the ”nonexistent” domain and the added (not requested) domains are stored
in the cache of the DNS Server for future use.
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This attack does not work anymore: No domain is cached except of the original
domain in the request.

Related Data Attack

The hacker uses the same technique as in ‘unrelated data attack’, but this time the
data is some extra information that is related to the queried domain. Usually the
extra data contains MX, CNAME and NS records, those records point to the data
the hacker wants to be cached.

This attack does not work anymore: No data except of the queried data allowed
into the cache.

3.1.2 Transaction ID Guessing

The only real obstacle that stands between the hacker and successful cache poisoning
of the DNS Server is the Transaction ID field in the DNS protocol. Therefore, the
hackers look for weak spots in the protocol implementation that would allow them to
make a good guess of the Transaction ID and this way interfere with the traffic. The
next section is dealing with methods used by the hacker to overcome this obstacle
and with how the DNS Servers can be defended against it. Figure 3.2 presents the
packets flow of the attack.

Figure 3.2: Transaction ID Guessing
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Increment by One

The earliest BIND servers did very little for security issues. In order to avoid same
Transaction ID repeating at the same time in the network, the Server used ”Incre-
ment by One” method. Each new query was issued with the previous TransactionID+
1. Guessing the Transaction ID in such a case is a fairly easy job. This weakness
was patched and the new BIND versions issue random Transaction ID to each new
query.

Deriving Transaction ID number in BIND 9

As mentioned above, the Transaction ID number could be easily guessed, in earlier
BIND versions. However in the new (BIND 9) version the Transaction ID is a
randomly generated number, or more precisely, the Transaction ID is a PRNG -
Pseudo Random Generated Number. The algorithm that generates the PRNGs in
each of the BIND versions is open to the public and can be easily obtained and
studied. As shown in [8] BIND 9 versions 9.4.0-9.4.1, 9.3.0-9.3.4, 9.2.0-9.2.8, 9.1.0-
9.1.3 and 9.0.0-9.0.1. the PRNG algorithm is weak and the next random number
can be derived from the previous one. This particular problem was fixed in the 9.5.0
BIND version.

Birthday Paradox Attack

In order to perform this attack the hacker first sends, simultaneously, large quantity
of packets to the DNS server, requesting the same Domain Name. The DNS server
generates the same number of queries and sends them to the Authority Server. The
hacker generates the same amount of DNS bogus replies with random Transaction
ID. The birthday paradox dictates that a few hundreds of packets will suffice to
promise 50% success to match between Transaction IDs of at least one query and
one bogus reply. And thus manage in poisoning the cache of the DNS server. This
attack was fully described in [9] and [10].

The Birthday attack guaranties high chances of success with relatively low
number of packets required. While in regular packet spoofing the hacker sends
N replies for one query, thus the probability of success is N

T
where N is the number

of packets sent and T is the total number of packets possible (In the DNS case
T = 216 − 1 = 65535). In Birthday Paradox attack the hacker only needs to match
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one of the requests to one of the replies, the probability of success can be calculated
by the following formula:

P (success) = 1− 1(1− 1
T
)(1− 2

T
)...(1− N−1

T
) = 1− T !

TN (T−N)!
;.

The power of ‘Birthday Paradox attack’ over the ‘regular packet spoofing attack’
is that it requires relatively small number of packets in order to make a successful
attack. A mere 300 packets will promise 50% of success while 750 packets will
promise 99% of success. In the regular packet spoofing attack with 750 of packets
will only promise 750

65535
= 1.14% of success.

Birthday Paradox attack shows that even a randomly generated Transaction ID
used in the latest BIND versions is vulnerable to brute-force attacks.

3.1.3 Flood Attacks

Figure 3.3: Flood attack

In order to succeed in a brute force attack the hacker needs as much time as possible.
The time he can use starts when the DNS server generates the request and elapses
when the answer is received from the Authority DNS Server. Usually it is not enough
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to run extensive search for the valid Transaction ID on the packets. In order to gain
more time, the hacker may try to flood the Authority DNS Server trying to slow
it down and perhaps crashing it. The attack flow is similar to the Transaction ID
Guessing attack and its flow presented in Figure 3.3

3.2 Solutions

There are several offered solutions on how to deal and prevent cache poisoning
attacks and attempts [11], [12], [13], [16]. In this section we present some of them:

3.2.1 BIND Versions

BIND is the most used DNS software over the Internet [3], and because of that it is
a constant target to hackers attacks. New versions and version updates are released
constantly with new updates and patches for bugs and security issues. Therefore
one of the most important ways one can enhance the security of your local DNS
server is to run the most recent version of BIND, since all versions of BIND before
the most recent one, are probably susceptible to at least a few known attacks [8].

However, new attacks are probably not yet patched by the new version, therefore
can still affect your system. One way to find out about new attacks and the ways
to protect against them is to read the comp.protocols.dns.bind newsgroup regularly
[12].

3.2.2 DNS Configuration and Administration

One of the most popular mistakes is improper configuration of the DNS. When
misconfigured even the most updated DNS server is vulnerable to many known
attacks (not necessary cache poisoning) as described in [13], [14] and [15]. For
example, one of the important configurations is the restriction of Zone Transfers
commands to known and trusted IPs only.

When you are positive that the local DNS was attacked, there are several steps
that can be made to prevent further damage:

1. Make sure you are not infected with a spyware. Many spyware programs
modify the DNS configuration.
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2. Try to find out the IP address of the malicious DNS server.

3. Insert the malicious IP address into IPs Black List.

4. Clear the cache of the DNS Server, either with resetting the server or with any
other clear cache commands.

Other good practices when dealing with configuration are physically securing the
DNS Servers, hiding the version of the running BIND [17], removing all unnecessary
services running on the DNS Server, randomizing the UDP source port [18] and
regularly monitoring the DNS Servers and DNS log files [21].

3.2.3 Question Modifications

The main assumption in the following solutions is that the DNS protocol will not
change any time soon, hence some solution for the integrity of the transactions must
be found in the bounds of current specifications. The basic idea is to find fields
that can be modified in some way, and this modification will increase the number
of queries to such an amount that a hacker will have no chance to find and send
the right modification of the response before the real one from the Authentication
server arrives.

1. Bit 0x20 [19]: The idea is to use the Question section to add random bits to the
query, the DNS server will have to match those bits in any legitimate response
it generates. Most of DNS servers do not care if the question is presented
in upper or lower case, therefore a combination of the cases can provide the
essential random bits to the query. The difference between ‘A’ (0x41) and
‘a’ (0x61) or ‘Z’ (0x5a) and ‘z’ (0x7a) is the 0x20 bit (hence the name of the
algorithm). For example:

WWW.IETF.ORG 000 0000 000
WwW.iEtF.oRg 010 1010 101
wWw.IeTf.OrG 101 0101 010
www.ietf.org 111 1111 111

The number of bits generated by this method is a function of the length of
the domain, long domains will have many random bits, while short domains
will remain with only few bits, leaving their sites still vulnerable to the above
attacks.
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2. Random prefix [20]: This method proposes to use Wildcard Domain Names to
increase the entropy, for example if a user wants to resolve ‘www.example.com,
the DNS server will generate a random prefix for the query and send
‘ra1bc3twqj.www.example.com A’. The Authoritative DNS server will return
the same domain name with ‘www.example.com’ IP address. This method
using prefix of length 10 will generate about log2 36

10 ≈ 52 bits.

3.2.4 Secure DNS

Since DNS protocol does not include any security, Domain Name System Security
Extensions (DNSSEC) were developed as described in RFC 3833 [16], [22] DNSSEC
was designed to prevent cache poisoning by having all its answers digitally signed,
so the correctness and the completeness of the data could be easily verified.

DNSSEC is a new protocol and only lately some of its critical pieces were for-
mally defined. Deploying the protocol on large-scale networks is a challenging task.
The reason is that a minimal level of deployment is required for a user to gain benefit
from the new service. It is hard to find the first users who, for a certain period of
time, will be ready to pay the price of using a new protocol.

3.2.5 Our Contribution

In this work we propose an algorithm that deals with a stronger type of a hacker
than the one assumed in previous solutions (excluding the DNSSEC). Our hacker
can inspect (but not modify) any packet sent or received by the local DNS server.
Our solution can be implemented as a black box just after the DNS server, therefore
there are no modifications requirements nor in the DNS protocol nor in BIND server
code.
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Chapter 4

Algorithm: Delay Fast Packets

As was previously mentioned, DNS protocol usually uses User Datagram Protocol
(UDP) as a forth level protocol for its data communication. If, for some reason,
the request or the reply fail to reach their destination the DNS Server simply issues
another request. In such a case, the DNS Server needs to know how to handle the
situation that arises from packet delays, as these may be accidently interpreted as
packet losses. The way DNS operates is the most straight forward way: simply
accept the first valid reply (valid reply is a reply from Authoritative Server with
correct Transaction ID) and ignore all other replies. In other words, only the first
reply will be forwarded to the user and cached for future usage. This is a drawback
in the DNS security and a gateway to hackers to attack the DNS and poison the
cache.

This chapter presents a ‘Delay Fast Packets algorithm’ or shortly, DFP algorithm
that detects and prevents attempts of cache poisoning attack. The idea for the DFP
algorithm is the following observation: in order for an ‘attempted attack’ to become
a ‘successful attack’ it must beat the real reply (from Authoritative Server) in a
race back to the local DNS server. For succeeding in that, the hacker tries to send
a reply as soon as possible, usually much faster than it takes to the Authoritative
Server to generate a response. Our DFP algorithm identifies that exact point and
therefore, detects and prevents the attacks.
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4.1 DFP Algorithm Presentation

The main idea of the algorithm is to estimate the RTT between the DNS Server and
each of the Authoritative Servers it ever encounters and delay the replies that arrive
too fast according to the approximation (therefore it is called the DFP algorithm -
Delay Fast Packets algorithm). Moreover, the DFP algorithm estimates the RTT for
each service type the Authoritative Server can provide (MX, A, AAAA, CNAME,
PTR etc...). For some of those services RTT estimation is higher than for the
others due to more extensive Data Base search on the Authoritative side. For each
Authoritative Server and service type, the Estimated RTT predicts the average
time needed for the next reply to arrive. If for any reason, a reply comes too soon,
according to the DFP algorithm, the DNS Server waits for a certain amount of time.
If another valid reply arrives in that window of time, both replies are dropped, and a
new request is generated (as if regular DNS packet loss occurred). If the attacker is
persistent and sends reply for each request the user will experience Denial of Service
attack since the DFP algorithm will not pass any of the replies back to the user.
This attack is called DoS (Denial of service) and this subject is not covered in this
work.

In the following section (4.2) we present a simplified pseudocode that demon-
strates the idea of the DFP algorithm. In order to pass the idea without complicating
the pseudocode, the following DFP algorithm does not take care of multiple packets
attack. If the hacker decides to send multiple ‘valid’ replies for one request, the
following DFP algorithm will only drop the first two and will fail in dropping the
following hacker’s replies. However, the generalization of the DFP algorithm is easy:
for each fast packet, every reply for the same request must be saved for a certain
amount of time, and then all the replies must be dropped. Of course in order to
prevent an overflow in the memory of the DNS servers, only the minimal relevant
information must be stored, like 5-tuple and time until the replies are no longer
valid (the regular DNS timeout).

Another un-handled issue in the DFP algorithm is that ‘too fast’ packets affect
the RTT estimations. In case where there are no attacks, those ‘too fast’ packets
can mark a change in the topology of the network and thus must be considered in
the RTT estimations. However, in case of possible attacks, it would be a bad idea to
include them in the estimations, as they may be an attempt of the hacker to lower
our RTT estimations in order to make a successful attack in the close future. Hence
‘too fast’ packets must not affect the RTT until we are sure they are real and valid
replies and not attack attempts. This will be known only when a certain amount of
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time elapses and no other replies arrive in that period of time.

4.2 Pseudocode
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Algorithm 1 DFP - Delay Fast Packets

Main Method

1: PacketDictionary.Init()
2: StatsDictionary.Init()
3: loop
4: NewPacket ⇐ SniffDNSPacket()
5: ID ⇐ NewPacket.T ransactionID + NewPacket.Type
6: 5Tuple ⇐ NewPacket.5Tupple
7: IsQuery ⇐ NewPacket.IsQuery
8: if IsQuery then
9: if [5Tuple, ID] already in PacketDictionary then
10: PacketDictionaly[5Tuple, ID] = NewPacket
11: print DUP REQUEST FOUND: REMOVING PACKET AFTER TIMEOUT

12: else
13: PacketDictionaly.Insert([5Tuple, ID],NewPacket)
14: end if
15: else
16: RequestPacket ⇐ PacketDictionary.Get([5Tuple, ID])
17: if [5Tuple, ID] is delayed then
18: Drop all packets with ID [5Tuple, ID]
19: SEND: WARNING, ‘TOO FAST’ PACKET RECEIVED, POSSIBLE ATTACK

20: else
21: if RequestPacket not exists then
22: SEND: WARNING, UNMATCHED REPLY FOUND, POSSIBLE ATTACK

23: end if
24: RTT ⇐ NewPacket.T imeOfArrival−RequestPacket.T imeOfArrival

25: DelayT ime ⇐ StatsDictionary[[NewPacket.SourceIP ,
NewPacket.ReplyType].AddSample(RTT ,NewPacket.SourceIP ,
NewPacket.ReplyType])

26: DelayPacket(DelayT ime)
27: PacketDictionary.Remove([5Tuple, ID)]
28: end if
29: end if
30: end loop
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AddSample(RTT, IP, Type)

1: if First Sample for this IP and TYPE then
2: EstimatedRTT ⇐ RTT
3: DevRTT ⇐ 0
4: end if
5: EstimatedRTT ⇐ (1− α)× EstimatedRTT + α×RTT
6: DevRTT ⇐ (1− β)×DevRTT + β × |RTT − EstimatedRTT |
7: if RTT < EstimatedRTT −DevRTT × FactorWindow then
8: return (EstimatedRTT +DevRTT × FactorWindow)−RTT
9: else
10: return 0
11: end if

4.2.1 DFP Algorithm Documentation

Main Method (detailed by code rows):

(1,2) : The DFP algorithm uses two hashtables. PacketDictionary for match-
ing between the outgoing requests and the incoming responses. StatsDic-
tionary for storing the statistics for each Authoritative DNS server.

(3) : Main loop, runs indefinitely, as long as the program is operating.

(4) : Receiving new packet from the network device.

(5,6,7) : Extracting the parameters from the new packet, getting the 5 Tuple,
the Transaction ID, Packet Type and the IsQuery flag.

(8) : Management of the request packets.

(9) : Checking whether there is a packet with the same 5 Tuple and ID in the
PacketDictionary hashtable.

(10,11) : Replacing the new request with the old request in the PacketDic-
tionary hashtable. Note: This condition can only happens if no reply was
received and a new issued request has same 5 Tuple and the same ID as the
old request.

(12,13) : Inserting the new request into the PacketDictionary hashtable.

34



(15) : Management of the reply packets.

(16) : Getting the matching request packet with the right 5 Tuple and ID.

(17) : Checking that no delayed replie has same ID as the current reply.

(18,19) : If multiples IDs found, drop all of them and sends a warning.

(21,22) : If no matching request is found (we’ve got a reply with no request),
warning is sent, as this condition can never be fulfilled unless there is an
attack on the DNS server.

(23) : Management of the normal case when both reply and request are found.

(24) : Calculating the RTT between the DNS servers by measuring the differences
between the time of arrival of the request and the reply.

(25) : Running AddSample method on the new sample and the RTT.

(26) : Preventing the reply packet from entering the DNS server core, for the
amount of time indicated by the AddSample method.

(27) : Removing the request from the PacketDictionary Hashtable.

AddSample:

(1) : Checking whether this is the first sample for the IP and Type.

(2,3,4) : Initializing the Statistics parameters.

(5) : Calculating the EstimatedRTT with the given α.

(6) : Calculating the DevRTT with the given β.

(7) : Checking whether the packet is too fast according to the window determined
by the EstimatedRTT, DevRTT, FactorWindow parameters.

(8) : If it is a fast packet, return the time interval for which it must be delayed.

(9,10,11) : Otherwise, return 0.

35



4.3 DFP Algorithm Specifications

The DFP algorithm uses the following formula in order to detect ‘too fast’ packets:
RTT < EstimatedRTT − DevRTT × FactorWindow. Each DNS reply that ar-
rives too soon according to the formula is considered suspicious and delayed, giving
enough time for a possibly other reply with the same TID to arrive. The variables
in the formula are controlled by three parameters: α, β and FactorWindow. The
performance of the DFP algorithm, in terms of speed, detection accuracy and mem-
ory allocation, depends on how well those parameters are configured. In this section
we describe the consideration and the experiments that led us to choose the values
for these three parameters.

4.3.1 Window

Definition 4.1 Define Window as a certain point in time beginning after issuing
the DNS request, each reply that arrives before the window begins is considered sus-
picious, i.e: for www.xkcd.com Authoritative DNS server with type A, the window
might begin at 3400 ms, while for type MX it might begin at 3800.

Definition 4.2 Define Window Starting Point as the elapsed time since the
request to the beginning of the window.

Definition 4.3 Define False Alarm as a packet originated by the Authoritative
Server and arrives before the Window starting point and even if enough time is
passed no other reply with same TID will arrive. Each of those false alarms makes
the DNS server store the packet in memory for a short time and release it only after
it is safe.

The window is of a very dynamic nature, its starting point constantly changes
and shifts on the time axis. This is due to the dynamic nature of the Internet
network and the constant changes in the RTT of the arriving requests.

The window starting point dictates which packets are considered ‘too fast’ and
thus needed to be delayed, and which packets are in the normal time boundary thus
can pass through without any delay. In order to adjust the parameters that define
the window starting point, there are two main points to consider:

• Early starting point allows more packets to pass through, without delay. On
the one hand, this helps the DNS server to work faster without delaying too

36



many suspected packets (until it is safe to pass them on). However, on the
other hand, carefully planned attacks can try to hit just above the starting
point thus pass the filter without triggering an alarm.

• Late starting point delays more packets since it considers them as ‘too fast’
packets. On the one hand, this makes the work of the hacker much more diffi-
cult, making him compete on much smaller interval of time and thus making
his cache poisoning attempt much harder. However, on the other hand, late
starting point forces the DNS server to delay many packets, considering them
as a potential threat, this results in slower responses of the DNS server to the
users and much more memory consumption inside of the DNS server.

In the following sections (4.3.2 and 4.3.3) we refer to α, β and the FactorWindow.
We perform a set of experiments in order to demonstrate the influences of each of
the parameters on the window starting point and hence on the tradeoff between the
number of false alarms and the probability of detecting and preventing a protec-
tional attack. Please note that in order to emphasize the results more clearly the
two sets of experiments were made on different data sets (while the conclusions are
the same on each of the data sets available to us, we tried to find as clear graphs as
possible).

4.3.2 α and β Considerations

α and β are the two parameters influencing the EstimatedRTT and the DevRTT
parameters in the DFP algorithm. They determine the weight of the new RTT
sample against the history, thus, influence the window starting point. In order
to find how α and β influence the number of ‘fast packets’ detected by the DFP
algorithm, we conducted several experiments on real traffic without any attempted
attacks. In each experiment the number of false positives alarms was determined.
The following figures 4.1, 4.2, 4.3 demonstrate the results of the experiments run on
exactly the same traffic, using different values of α and β each time.

Note: The FactorWindow parameter is set to 2 in each of the following exper-
iments.

37



Figure 4.1, below, deals with the case of low values of α and β:

Figure 4.1: α=0.125, β=0.25, #FastPackets = 2

Low α and β values, as in TCP RTT estimation, smooth the Estimated RTT
function, since more weight is given to the history of the samples rather than to the
newest sample in comparison to higher values of α and β in the following experi-
ments. In each of the experiments the newest sample is given a much higher weight,
since it is better in predicting the future RTT. Estimated RTT is represented by a
red curve in the graph. However, for each peak in the RTT (dark blue curve) the
DevRTT (green curve) rises, as expected from the window starting point equation.
(Note, for example, the peak in RTT and rise of DevRTT at packet number 10). As
an immediate result, the window starting points lowers. Window starting point is
shown in purple color. This situation allows potentially bad packets a wider window
of opportunity to attack the DNS server.

We see that only two packets were considered ‘too fast’ in this configuration:
packet number 40 and packet number 79. It is shown in the graph that those packets
RTT time is exceeded the starting point.
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Figure 4.2, below, deals with the case of high values of α and β:

Figure 4.2: α=0.875, β=0.75, #FastPackets = 23

High values of α and β, give most of the weight to the newest sample (in com-
parison to other experiments). Hence the RTT deviation (green curve) is very small,
the window starting point is extremely late (purple curve) making DNS attacks at-
tempts very hard to succeed. However, this situation also creates many false alarms,
as any fluctuation in the RTT will probably put the new sample before the window
starting point.

We see that in this configuration about one fifth of the packets were considered
‘too fast’.
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Figure 4.3, below, deals with the case of medium values of α and β:

Figure 4.3: α=0.2, β=0.4, #FastPackets = 5

The values of α and β, are the median of the ‘Low’ and ‘High’ configurations.
The starting point that is created in this case is later than in the ‘Low’ configuration
and the RTT deviation (green curve) is higher than in ‘High’ configuration case.

We see that in this configuration five of the packets were considered ‘too fast’.

Our experiments show that most of the time the deviation of the RTT is rel-
atively low, therefore the created starting point is rather high. The change in the
deviation occurs when an extremely slow packet arrives, in this situation the window
starting point is lower for a short period of time and possible attacks have higher
chances of success. However, our experiments show that the slow packet situation
occurs seldom and we think it is more important to prevent false alarms that might
be created by valid ‘too fast’ packets. This consideration brought us to the decision
that the chosen configuration in our implementation of the DFP algorithm is the
‘Low’ version. However if the local DNS server can afford to maintain larger memory
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consumptions created by the false alarms, the better configuration is the one that
prevents more attacks, and in that case it is better to choose the ‘Medium’ or even
(if memory is not a problem) the ‘High’ configuration.

4.3.3 FactorWindow Considerations

After setting up the α and β parameters the configuration of the FactorWindow
parameter should be determined. This parameter goal is to lower the starting point
created by α and β, by a constant factor. As before, the tradeoff between the number
of false alarms and the probability of a successful attack dictates which value will
be chosen.

Note: The α and β parameters are set to 0.125 and 0.25 respectively in each of
the following experiments.
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Figure 4.4, below, deals with the case where FactorWindow = 1:

Figure 4.4: Factor Window value 1, #FastPackets = 28

FactorWindow = 1 means that the window starting point is modified only by
α and β, therefore the created starting point is high and the probability for a packet
to come before the starting point is high. In this case many packets have to be
delayed.

We see that in this configuration, about one third of the packets are considered
to be ‘too fast’.
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Figure 4.5, below, deals with the case where FactorWindow = 2:

Figure 4.5: Factor Window value 2, #FastPackets = 9

FactorWindow = 2 means that the starting point is two estimated deviations
from the estimated RTT. Using ‘Chebyshev inequality’ the probability for a packet
to exceed the starting point is less than 1

4
. However, in practice, the bound is tighter.

Our experiments show that only about 1
10

of the packets are considered as ‘too fast’.

We see that in this configuration, nine of the packets were considered ‘too fast’.
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Figure 4.6, below, deals with the case where FactorWindow = 3:

Figure 4.6: Factor Window value 3, #FastPackets = 1

FactorWindow = 3 means that the starting point is three estimated deviations
from the estimated RTT. Using ‘Chebyshev inequality’ the probability for a packet
to exceed the starting point is less than 1

9
. However, in practice, almost no packet

exceeds the starting point, it is so low that the attacker can easily infiltrate, even
without knowing that there is a detection and prevention DFP algorithm running.

We see that in this configuration, only one of the packets is considered ‘too fast’.

The main consideration for choosing the configuration of the FactorWindow
parameter is again the tradeoff between the number of false positives and the prob-
ability of successful attack. Using the results from the experiments, the value of
FactorWindow should be between 2 and 3. We have decided that the DFP algo-
rithm will run with FactorWindow = 2.
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4.4 Weaknesses

Definition 4.4 Define Window Ending Point as a point above the Estimated
RTT. Each reply arriving after the ending point will be considerer as ‘too slow’
packet.

The main assumption of the DFP algorithm is that the deviation from the
EstimatedRTT is close to zero. As it will be shown in the ‘Simulation’ part, this
assumption was proven to be true in many experiments carried out on real traffic.
But in some cases, the deviation rises for short periods of time. In those moments,
the opportunity for potential attacks is opened, since many ‘too fast’ packets fall
into the window starting point of : (EstimatedRTT −DevRTT )×FactorWindow
bound.

This situation occurs after a very slow packet is received. The ‘too slow’ packet
creates temporary increment of the deviation and lowers the starting point, as seen
in figures 4.7 and 4.8. The starting point returns to normal parameters after about
3-5 packets when the influence of the historic ‘too slow’ packet weakens. (The
influence depends on the α and β configuration used in the DFP algorithm, as
explained in previous section.) The temporary lowering of the starting point creates
an opportunity for a hacker to attack the DNS server.
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Example 1:

Figure 4.7: Low starting point created by high peaks
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Example 2:

Figure 4.8: Negative starting point

The way to prevent this weakness is to eliminate the ‘too slow’ packets from the
calculation of the deviation. Thus, preventing the temporary lowering of the starting
point. However the DFP algorithm must take into consideration the possibility of
a rapid change in the network characteristics or topology. Therefore, the ‘too slow’
packets must be considered when calculating the Estimated RTT. One of the ideas
for distinguishing between a single slow packet and a sequence of such packets is to
prevent the first few ‘too slow’ packets influencing the estimations, but after certain
number of ‘too slow’ packets in a row to include them in the calculations, making
the new RTTs build up new and correct estimations.

4.5 Memory Consumptions

The main consideration in choosing the configuration for the DFP algorithms is to
prevent attacks, for that the starting point should be as tight as possible to the Esti-
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mated RTT. However that thought will also create many false alarms (as explained
above), those false alarms are packets that the DNS server stores in memory until
it is sure that they are valid replies that arrived too soon. Then they are released
from the memory and sent to the user (and the cache). In this section we present
how different starting point values affect the memory consumption.

In Figure 4.9 we see how many packets are considered ‘too fast’ in each of
the configurations presented earlier in this work. In Figure 4.10 the same data is
presented in percentage mode. These figures will help us estimating what is the
amount of memory that must be allocated for the DFP algorithm in each of the
configurations.

Figure 4.9: Fast Packets in Different Configurations
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Figure 4.10: Percentage of Fast Packets in different Configuration

Our experiments show that an average reply is about 155 bytes long, the DFP
algorithm must allocate those bytes in memory for each delayed packet, usually for
about few hundred ms, until the reply is either released or dropped. The memory
the DFP algorithm requires depends on how busy is the local DNS server. Figure
4.11 estimates how many KB the DFP algorithm consumes assuming it handles 1000
packets at any given time:

Figure 4.11: Estimation of Memory in KB per 1000 packets
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Part II

Simulations
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Chapter 5

Experimental Results

5.1 Results of DFP Algorithm

The presented algorithm was implemented and tested on real traffic, collected from
HUJI DNS Server. The traffic was sniffed and saved in pcap files, that were later used
for different configurations testing and analysis. The traffic was filtered to contain
only DNS replies with Authoritative flag on, thus promising that the answers came
from an Authoritative serve. See Figure 5.1.

Figure 5.1: Standard pcap file

After the filtering process, the time between the arriving response and the de-
parting request was measured and each of the sampled RTTs was recorded in an
appropriate file, according to DNS IP address and DNS query type. See Figure 5.2.
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Figure 5.2: Sampled RTT (in ms) from the traffic organized by IP addresses and
query type

For each of the samples, the algorithm calculates the EstimatedRTT, the De-
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vRTT and with given FactorWindow it deduces which packets are considered to be
‘too fast’. Short example with ‘too fast’ packets can be found in Figure 5.3.

Figure 5.3: Estimations and fast packets deduction with two FactorWindow options

5.2 Attacks Detection

In order to test the DFP algorithm we have planted few random duplicate reply
packets with random arrival time in the tested traffic, the arrival times of the fake
replies were shorter than the real replies. The DFP algorithm with the above con-
figuration was able to classify all of the attacks as ‘too fast packets’ and therefore
delayed them until the real result arrived.

We strongly believe that there were no real attempts to attack HUJI local DNS
server while the samples were captured, since no duplicate packets were found beside
the fake packets planted by us.
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Chapter 6

Conclusions

6.1 Future Work

This work focuses on developing a new algorithm for detecting and preventing at-
tacks of the DNS servers. The strength of the algorithm is that it does not rely
on any known facts about the attacks themselves (i.e: signature strings, known IP
address, etc...). Instead the DFP algorithm relies only on the basic communication
and packet identification process in the DNS protocol: the 5-tuple, the Transaction
ID and the query type. We strongly believe that this work, implemented as an
integrated system on every DNS server, will greatly reduce the probability for a
successful attack of the known attacks as well as the unknown zero-day attacks.

Still, further research on possible optimizations for the algorithm is suggested
in order to improve its weak points. In the following section we present possible
directions for future research.

• Dynamic configuration: In the DFP algorithm the three parameters affect-
ing window width are configured only one time, before the algorithm begins.
In future research it is worthwhile to find a way to adjust the parameters dur-
ing the runtime of the algorithm, making the configuration dependant on the
characteristics of the network and the expected RTT values. It might be that
the dynamic configuration will be able to solve the sudden widening of the
window due to the rare and local problems with the RTT of a single packet.

• Too slow packets: In the DFP algorithm no special treatment exists to
handle the packets that arrive later than the upper bound of the window.
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Those packets may be considered as ‘too slow’ packets and must be treated
in a way that would prevent drastic widening of the window. On the one
hand, those slow packets can indicate a change in the network so they can
not be ignored in the estimation of the RTT. On the other hand, those slow
packets are usually just a temporary fault in the Authoritative DNS server or
one of the links in the network. Some way must be found that will manage to
distinguish between those two cases and treat each one of them accordingly.
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