

Distributed Wireless Sensor Networks

(WSNs) Bottleneck Detection

Thesis submitted in fulfillment of the requirement for the

degree of Master of Science

By

David Karpf-Cogan

The Rachel and Selim Benin School of Computer Science

and Engineering

The Hebrew University of Jerusalem

This work was carried out under the supervision of

Prof. Danny Dolev

September 2010

Abstract

In a world where wireless sensor networks (WSNs) are increasing in importance in

diverse fields, such as, industry, military, medical and home facilities. There is a constant

effort to improve the network‘s utilization and extend its life cycle. The detection and

handling of the bottlenecks in the WSNs is one area in which a significant effort is being

made in order to achieve that goal. Bottlenecks cause an increment in the number of

messages retransmitted over the WSN and for throughput deterioration and packet

transmission latency to increase. Moreover, in case a sensor that is part of the bottleneck

chain dies, some parts of the network would become inaccessible causing the network to

be partitioned into several sections. In a network that consists out of low power supplied

nodes prone to failure and characterized by random scattering, it is important that we

detect the bottleneck nodes to prevent the network being taken out of use.

The customary internet bottleneck detection tools and the latest WSNs detection tools,

that I encountered, are not message complexity oriented. Unfortunately, this is an

important character due to the extensive energy resources that are wasted in the course of

packet transmission in a limited power supplied sensors network For example, the energy

cost of transmitting one byte in MSP430 sensor for a range of up to 125 meters is

equivalent to 4,000 CPU cycles and for a range of up to 300 meters is equivalent to

32,000 cycles.

This article presents a modification to Wang et al [1] algorithm, which detects the

network boundary. Then, it suggests a new way to compute the network medial axis and

finally suggests few methods to allocate the bottleneck by using the computed medial

axis. The run time complexity of the algorithm is O(n) and the message complexity is

bounded by the max(O(nlog(n)) , O(m
2`

)), where m represents the number of nodes

constructing the medial axis.

Table of Contents

Abstract ... 2

1 Introduction ... 1

2 Related work ... 3

2.1 BFind .. 3

2.2 PathNeck .. 4

2.3 Max-Flow MinCut algorithm ... 6

2.4 DBND (Distributed Bottleneck Node Detection) algorithm 7

3 Proposed algorithm ... 10

3.1 Find the network inner and outer boundaries ... 10

3.1.1 Leader election in a multi-hop network .. 11

3.1.2 Build a shortest path tree... 15

3.1.3 Find cuts in the shortest path tree ... 16

3.1.4 Detect a coarse inner boundary ... 22

3.1.5 Find the extremal nodes .. 25

3.1.6 Find the outer boundary and refine the coarse inner boundary 26

3.1.7 Restore deleted nodes and refine inner boundary for multiple holes.......... 29

3.1.8 Proof of correctness for ―no inner holes‖ scenario 32

3.2 Proof of correctness in the continuous case ... 33

3.3 Boundary nodes numbering ... 39

3.3.1 Boundary leader election .. 39

3.3.2 The node numbering process .. 41

3.4 Find the medial axis of the sensor field.. 42

3.4.1 Build the Voronoi diagram ... 42

3.4.2 Medial axis ‗Clean up‘ .. 49

3.5 Network bottlenecks discovery methods.. 52

3.5.1 Constant threshold .. 52

3.5.2 Fraction of the widest part in the network as threshold 52

3.5.3 Variation of the average or median ... 53

3.5.4 Lowest percentile .. 54

4 Conclusion .. 55

5 Acknowledgements ... 57

6 References ... 58

Page 1 of 60

1 Introduction

The wireless sensor network (WSN) has become the talk of the day in the Distributed

Systems Group (DSG) community and in the industry as well. In September 1999 [25],

Business Week heralded it as one of the 21 most important technologies for the 21st

century. As the sensors become highly available, widely spread, cheap and easy to use

and deploy, the day when each of us will encounter sensor networks on daily basis is just

a matter of time. The wireless sensor networks today are used for sensing a variety of

environment conditions such as temperature, humidity, light and density of air pollutant,

for early fire detection, smart homes, military needs and for other varied purposes. The

main reasons for its popularity are the low price and the ease to form the network, where

in most places it is just ―plug and play‖ in WSN it is ―scatter and play‖.

The main drawbacks from the WSNs are the resource constraints they impose on us.

Unlike the traditional WSN, in most applications of wireless sensor networks, WSNs

have limited energy, low storage capacity, and weak computing capability. Many times,

due to the sensors accessibility difficulties, the resources, especially the energy of

sensors, may not be replaced or recharged. Hence, the lifetime of the WSN highly

depends on the energy consumption of sensors. Like the other wireless networks, the

position of sensor nodes has great impact on the performance of WSNs in terms of

coverage, communication cost, network‘s lifetime and resource management. Due to the

randomness of sensors deployment, there might exist some nodes connecting two or more

partitions without any backup nodes. This causes a delay of message propagation

between the partitions. It might also cause a message loss and in the case when one of the

nodes dies out, the whole network will be partitioned. These nodes are called bottleneck

nodes, and it is important to locate the bottleneck nodes in order to prevent network

partitioning or message transmission delay, that will lead to retransmission of messages

in the future. A more formal definition of bottleneck can be found in Daganzo[18]: An

active bottleneck is defined by an upstream queue and unrestricted flows present on

downstream sections . According to Zhang and Levinson [19], three main traffic

Page 2 of 60

characteristics are present at bottlenecks: flow drop, queue discharge flow, and the pre-

queue transition period.

The need for a new sensor bottleneck detection method arose, since the previous methods

were not message transmission efficient algorithms, a crucial characteristic for low

energy source devices, since the transmission energy cost for one bit equals to thousands

of sensor‘s CPU cycles. The first two Internet bottleneck detection tools [20, 21]

presented in the next section are so costly in message transmission aspects that they

require ad hoc servers and routers in order to execute properly. The WSNs designated

tools are much more efficient in that matter, but their complexity remains in the

polynomial region, where the MINCUT [22] algorithm complexity is O(n
3
) and the

DBND [23] complexity is bounded by O(n
2
). This paper will present an algorithm that its

run time complexity is O(n) and the message complexity is bounded by the

max(O(nlog(n)) , O(m
2`

)), where m represents the number of nodes constructing the

medial axis.

The algorithm presented in this paper provides a new approach for network bottleneck

discovery, where it suggests using the network medial axis for the bottleneck discovery.

Furthermore, the technique used for the medial axis calculation and ‗noises‘ removal is

also unique. One of the first steps executed in order to discover the medial axis is the

network boundary detection which is based on the boundary detection algorithm

presented by Wang et al [1]. Modifications were also made at the Wang algorithm in

order to execute in fully distributed way and the hops count were replaced by RSSI

(Received Signal Strength Indication) measurements, which are much more accurate for

sensors location indication. The rest of the article is divided as follows: Detailed related

work in section 3, the proposed algorithm in section 4 and summary and future work in

section 5.

Page 3 of 60

2 Related work

Bottleneck nodes have been concerned and studied extensively in Internet and traditional

wireless networks fields except WSNs. For Internet and traditional wireless networks, the

goal of concern is to avoid the congestion and improve the capacity of data flow,

resulting in the enhancement of network throughput. However, in WSNs, due to the

different network properties, the most important objective is how to save and balance the

energy consumption to prolong the lifetime of the whole network. So the related work for

other networks may not be suited for WSNs.

In this section we survey two of the latest internet bottlenecks detection tools, BFind [20]

and PathNeck [21], then we will present a centralized sensor network bottleneck

detection tool based on min-cut algorithm [22] and we will conclude with the distributed

sensor network bottleneck detection algorithm DBND [23] from 2010.

2.1 BFind

Akella et al [20] present bottleneck detection tool named BFind. Its design is motivated

by TCP‘s property of gradually filling up the available capacity based on feedback from

the network. First, BFind obtains the propagation delay of each hop to the destination.

For each hop along the path, the minimum of the (nonnegative) measured delays along

the hop is used as an estimate for the propagation delay on the hop. The minimum is

taken over delay samples from five traceroutes. After this step, BFind starts a process that

sends UDP traffic at a low sending rate (2 Mbps) to the destination. A trace process also

starts running concurrently with the UDP process. The trace process repeatedly runs

traceroutes to the destination. The hop-by-hop delays obtained by each of these

traceroutes are combined with the raw propagation delay information (computed initially)

to obtain rough estimates of the queue lengths on the path. The trace process concludes

that the queue on a particular hop is potentially increasing if across three consecutive

measurements, the queuing delay on the hop is at least as large as the maximum of 5ms

and 20% of the raw propagation delay on the hop. This information, computed for each

hop by the trace process, is constantly accessible to the UDP process. The UDP process

Page 4 of 60

uses this information (at the completion of each traceroute) to adjust its sending rate as

described below. If the feedback from the trace process indicates no increase in the

queues along any hop, the UDP process increases its rate by 200 Kbps (the rate change

occurs once per feedback event, i.e., per traceroute). Essentially, BFind emulates the

increase behavior of TCP, albeit more aggressively, while probing for available

bandwidth. If, on the other hand, the trace process reports an increased delay on any

hop(s), BFind flags the hop as being a potential bottleneck and the traceroutes continue

monitoring the queues. In addition, the UDP process keeps the sending rate steady at the

current value until one of the following things happen: (1) The hop continues to be

flagged by BFind over consecutive measurements by the trace process and a threshold

number (i.e. 15) of such observations are made for the hop. (2) The hop has been flagged

a threshold number of times in total (i.e. 50). (3) BFind has run for a pre-defined

maximum amount of total time (180 seconds). (4) The trace process reports that there is

no queue build-up on any hop implying that the increasing queues were only a transient

occurrence. In the first two cases, BFind quits and identifies the hop responsible for the

tool quitting as being the bottleneck. In the third case, BFind quits without providing any

reliable conclusion about bottlenecks along the path. In the fourth case, BFind continues

to increase its sending rate at a steady pace in search of the bottleneck. If the trace

process observes that the queues on the first three hops from the source are building, it

quits immediately without providing any conclusion about bottlenecks, to avoid flooding

the local network. That is due to the fact, that the first three hops almost always

encompass all links along the path that belong to the source stub network.

2.2 PathNeck

Pathneck is an active probing tool presented by Ningning et al [21] that allows end users

to efficiently and accurately locate the bottleneck link on an Internet path. Pathneck is

based on a novel probing technique called Recursive Packet Train (RPT), which

combines load and measurement packets. The load packets are UDP packets that are used

to interact with background traffic and to obtain available bandwidth information. The

measurement packets are organized as a packet train, which precede and succeed the load

Page 5 of 60

packets as shown in Figure 1. They are 60- byte UDP packets with the TTL fields set in

such a way that at each hop along the path, the measurement packet at both the head and

tail of the train will expire. This will trigger the transmission of two ICMP error packets

to the source. The inter-arrival time (called the ―gap value‖) of the ICMP packets at the

source can be used as an estimate of the packet train length at the router that generated

the two ICMP packets. The resulting sequence of packet train lengths at each hop can be

used to identify the hop that limits the available bandwidth on the path. Hops where the

packet train length increases have an available bandwidth that is lower than the packet

transmission rate at that hop—we will call these hops choke points. The downstream link

of a choke point is called a choke link. The last choke link is the bottleneck link. In

practice, queuing effects on both the forward and reverse paths and ICMP packet

generation times can introduce noise in the train length measurements. To deal with this,

Pathneck sends n consecutive RPTs (e.g., n = 10), called a probing set, and ―averages‖

across these n probes. Only if a link repeatedly (e.g., more than half the probes) creates a

significant increase in the train length (e.g., more than 10%) is it considered to be a valid

choke point. This requirement is the main reason that Pathneck sometimes cannot

identify a bottleneck. The last choke point on the path is typically the link with the lowest

available bandwidth, i.e., the bottleneck.

Figure 1: Recursive Packet Train (RPT).

Page 6 of 60

2.3 Max-Flow MinCut algorithm

The maximum flow problem is intimately related to the minimum cut problem. A cut is

ant set of directed arcs containing at least one arc in every path from the origin node to

the destination node. In other words, if the arcs in the cut are removed, then flow from the

origin to the destination is completely cut off. The cut value is the sum of the flow

capacities in the origin-to-destination direction over all of the arcs in the cut. The

minimum cut problem is to find the cut that has the minimum cut value over all possible

cuts in the network. In order to find the minimum cut we will make use of the max-flow /

min-cut theorem: for any network having a single origin node and a single destination

node, the maximum possible flow from origin to destination equals cut value for all cuts

in the network. To understand the relation between the max-flow and the minimum cut

we can see that the maximum flow through a series of linked pipes equals the maximum

flow in the smallest pipe in the series, i.e. the flow is limited by the bottleneck pipe. The

minimum cut is just a kind of distributed bottleneck, a bottleneck for a whole network as

opposed to a simple bottleneck for a series of pipes.

For WSNs, an algorithm called MINCUT was proposed by Mechthild et al [22]. In

MINCUT algorithm, the course of execution can be divided into two phases: (a) Global

information collection. All the nodes in the network have to broadcast their position

information to sink node, this course can be as messages flooding. (b) After getting the

global information, the sink node will compute and find the bottleneck node using

MINCUT algorithm. The MINCUT algorithm is computed as follows:

MINIMUM_CUT_PHASE(G, w, a)

A {a}

while A ≠ V

add to A the most tightly connected vertex

store the cut-of-the-phase and shrink G by merging the two vertices added last

MINIMUM_CUT(G, w, a)

while |V| > 1

MINIMUM_CUT_PHASE(G, w, a)

Page 7 of 60

if the cut-of-the-phase is lighter than the current minimum cut then store the cut-of-the-

phase as the current minimum cut

2.4 DBND (Distributed Bottleneck Node Detection)
algorithm

The implementation of the DBDN algorithm, presented by Gou et al [23], can be divided

into three phases. These include: (i) neighbor location information collection, (ii)

bottleneck node candidate selection and (iii) bottleneck node confirmation as follows:

(i) Neighbor location information collection - In the neighbor location information

collection phase, each node has to send its location information to its neighbors and

finally, each node can acquire all its neighbor location information. However, so many

nodes send packets simultaneously and each node has to switch between sending mode

and receiving mode repeatedly, causing the collision rate to be very high. Therefore, an

efficient way for the information collection is by dividing the collection phase into

rounds and in each round a limited set of nodes is defined as transmitters. The following

equation is taken from LEACH algorithm [24]: Each node is assigned with a random

value between 0-1 in each round, and if this value is less than a calculated threshold, the

node becomes a transmitter. The communication for each round includes the two phases:

transmitter election and location information broadcasting.

(ii) Bottleneck node candidate selection - After neighbor location information collection,

each node forms a neighborhood set and then performs the algorithm described in Figure

2 and decides whether it can be a candidate bottleneck node.

Page 8 of 60

Figure 2: Process of candidate collection.

The logic that stands behind the algorithm is that if at the end of the run S2 is not empty,

that means, the nodes at partition S1that wish to communicate with nodes at S2 has to,

with high probability, pass through node A, forming node A, a bottleneck candidate.

(iii) Bottleneck node confirmation - After the candidate selection, some nodes out of the

candidates are confirmed as the bottleneck nodes. If node A, as shown in Figure 3, is the

only relay connecting the different neighbor partitions, A is a bottleneck node. On the

other hand, if there is another area D, which can also connect the two different partitions,

node A is not a bottleneck node. In this phase, the actual bottleneck nodes can be selected

out of the candidate nodes with further confirmation. The confirmation process can be

divided into two steps: (a) First, after the candidate node selection, each candidate will

notify its neighbors. As shown in Figure 3, A is selected as a candidate, and it notifies all

its neighbors in area B {B1, B2, B3, B4} and area C {C1, C2, C3}. (b) Second, the

neighbor nodes will search the other possible ways to connect the different partitions,

such as path B-D- C. In this step, one node in area B will be selected randomly to send a

Page 9 of 60

confirmation message to a random node in area C. Within a certain time threshold T, if

the given node in area C receives the message, node A cannot be a bottleneck node.

However, if it does not receive the message, node A is a bottleneck node. In order to

reduce the hops and time of message transmission, the following rule will be used for

relay node selection: (a) For the message transmission, the source node will form a set of

its neighbor nodes, such as {N1, N2, N3, …}, and it computes the distance between

every neighbor node and the given destination node according to the known position,

forming a distance set {d1,d2, d3, …}. (b) The source node will choose the closest node

to the destination as the next-hop node. (c) After the next-hop node receives the message,

it repeats the steps (a), (b) till the message arrives at the destination node.

Figure 3: Process of bottleneck node confirmation.

Page 10 of 60

3 Proposed algorithm

In this paper, a light-weight distributed bottleneck detection tool is provided, that places

emphasis on the number of messages sent during that process. This section will deal with

the presented solution and discuss in detail the different steps in the algorithm, starting

with the network inner and outer boundaries detection and numbering, continues with

finding the medial axis and concludes with network bottleneck detection according to the

sensor network characteristics.

3.1 Find the network inner and outer boundaries

In order to find the network inner holes and outer boundaries, the following steps are

proposed: elect a leader for the network, build a shortest path tree with the leader as the

tree root, find cuts in the tree, detect the coarse inner boundary, find extremal nodes on

the boundaries, find the outer boundary and refine the coarse inner boundary.

The following assumptions regarding this proposal are being made.

Assumption 1: It is deduced that the sensor field topology problem that was previously

discussed will result in a simple geometric shape. Meaning that if the edge nodes in the

network are surrounded, then a geometric shape consisting of one cycle where each node

on the boundary has exactly one neighbor on each side will be formed.

Assumption 2: The closest neighboring boundary node to any other boundary node lies

on the same boundary side.

Page 11 of 60

3.1.1 Leader election in a multi-hop network

A network leader will be elected in order to span a shortest path tree with the leader as

the network root. A brief summary of the algorithm that was described and proven in

Cidon et al [12] will be provided.

3.1.1.1 The Propagation of Information with Feedback (PIF) algorithm

A message in this algorithm is of the form MSG (target, l, parent) where target specifies

the target node or nodes. A null value in the target header field indicates a broadcast to all

neighboring nodes and is used when broadcasting the message. The parent field specifies

the identity of the parent of the node that sends the message. It is important to note that a

node receives a message only when addressed in the target header field by its

identification number or when this field is null. The l Field determines the sender‘s

identity. The initiator called the source node broadcasts a message, thus starting the

propagation. Each node upon receiving the message for the first time stores the identity

of the sender from which it got the message which originated at the source and broadcasts

the message. The feedback process starts at the leaf nodes which are childless nodes on

the virtual tree spanned by the PIF algorithm A leaf node that is participating in the

propagation from the source and has received the message from all of its neighboring

nodes sends back an acknowledgment message called a feedback message which is

directed to its parent node. A node that got feedback messages from all of its child nodes

and has received the broadcasted message from all of its neighboring nodes sends the

feedback message to its parent. The algorithm terminates when the source node gets

broadcast messages from all of its neighboring nodes and feedback messages from all of

its child nodes.

Page 12 of 60

3.1.1.2 Algorithm for a fragment in the graph

A high level algorithm that operates at the fragment level is first presented here. In the

next section, a distributed algorithm for the entire network based on the one fragment

algorithm will be presented.

During the operation of the algorithm the nodes are partitioned into fragments. Each

fragment is a collection of nodes consisting of a candidate node and its domain of

supportive nodes. When the algorithm starts all the candidates in the graph are active.

During the course of the algorithm a candidate may become inactive in which case its

fragment joins an active candidate‘s fragment and no longer exists as an independent

fragment. The algorithm terminates when there is only one candidate in the graph and its

domain includes all of the nodes.

We define for each fragment an identity denoted by id(F) and a state. The identity of a

fragment consists of the size of the fragment denoted by id(F).size and the candidate‘s

identification number denoted by id(F).identity. The state of the fragment is work, wait or

leader. We associate two variables with each edge in the graph its current state and its

current direction. An edge can be either in the state internal in which case it connects two

nodes that belong to the same fragment or in the state external when it connects two

nodes that belong to different fragments. External edges will be directed in the following

manner: Let e be an external edge that connects two different fragments F and F‘. The

algorithm follows these definitions for directing an edge in the graph:

Definition 1: The relation id(F1) > id (F2) holds

if id(F1).size > id(F2).size or if [id(F1).size = id(F2).size and id(F1).identity >

id(F2).identity].

Definition 2: Let e be the directed edge (F1, F2) if id(F1) > id(F2) as defined in

definition 1.

Page 13 of 60

The edge e is considered an outgoing edge for fragment F1 and an incoming edge for

fragment F2, in case the relation above holds. In addition, F1 and F2 are considered

neighboring fragments.

When the algorithm starts each node is an active candidate with a fragment size of 1. The

algorithm is described for every fragment in the graph by a state machine. A fragment

may be in one of the following states wait, work or leader. A Fragment is in the virtual

state cease to exist when it joins another candidate‘s fragment. The initial state for all

fragments is wait and the algorithm terminates when there is a fragment in the leader

state.

The State Machine Formal Description

1. A fragment F enters the wait state when it has at least one outgoing edge.

2. A Fragment F transfers to the work state from the wait state when all its external

edges are incoming edges. In the work state it performs the following:

a. Count the new number of nodes in its current domain. The new size is

kept in the variable new_size.

b. Compare its new_size to the size of its maximal neighbor fragment, F‘.

i. If the new_size(F) > X*id(F‘).size then fragment F remains active.,

where X >1.

Let id(F).size new_size. F changes all of its external edges to the

outgoing state. Clearly, definition 2 holds here and at this step, all

of its neighbors become aware of its new size and F transfers to the

wait state.

ii. Else, fragment F ceases being an active fragment and becomes a

part of its maximal neighbor fragment F‘. External edges between

F and F‘ will become internal edges of F‘. F‘ does not change its

size or id, but may have new external edges, which connect it

through the former fragment F to other fragments. The new

external edges‘ state and direction are calculated according to the

Page 14 of 60

current size of F‘. It is clear that all of them will be outgoing edges

at this stage.

3. A fragment that has no external edges is in the leader state.

3.1.1.3 The distributed algorithm for nodes in the graph

The algorithm begins with an initialization phase in which every node is considered a

fragment consists out of one node. Every node in this phase broadcasts its identity.

During the course of the algorithm, a fragment that all of its edge nodes have heard PIF

messages from all their neighbors enters state work. The fragment‘s nodes report back to

the candidate node the number of nodes in the fragment and the identity of the maximal

neighbor. During the report the nodes also store a path to the edge node which is adjacent

to the maximal neighbor. The candidate node, at this stage also the source node,

compares the newly counted fragment size to the maximal known neighbor fragment

size. If the newly counted size is not at least X times bigger than the size of the maximal

neighbor fragment then the fragment becomes inactive and joins its maximal neighbor. It

is done in the following manner: The candidate node sends a message on the stored path

to the fragment‘s edge node. This edge node becomes the fragment‘s source node. It

broadcasts the new fragment identity, which is the joined fragment identity. At this stage,

neighboring nodes of the joined fragment disregard this message, thus the maximal

neighbor fragment will not enter state work. The source node chooses one of its maximal

fragment neighbor nodes as its parent node and later on will report to that node. From this

point, the joining fragment broadcasts the new identity to all other neighbors. In case the

newly counted size was at least X times that of the maximal neighboring fragment, the

candidate updates the fragment‘s identity accordingly and broadcasts it. Note, this is

actually the beginning of a new fragment PIF cycle. The algorithm terminates when a

candidate node learns that it has no neighbors.

Page 15 of 60

3.1.1.4 Leader election complexity

The presented leader election algorithm runs in O(n) time and O(n log(n)) message

transmission complexity. Proof can be found in Cidon et al [12].

3.1.2 Build a shortest path tree

The goal is to build a shortest path tree, by measuring the Received Signal Strength

Indication (RSSI) values, where the network leader functions as the tree root.

The root initiates the propagation process by sending a message containing the

accumulative RSSI (default set to zero) and the direct parent node ID (default set to the

leader ID).

Each node receiving a message calculates the RSSI by adding the RSSI of the message

with the accumulative RSSI stored in the message field. If this is the first message the

node received or the new RSSI is smaller than any RSSI the node had seen thus far, the

node performs the following two actions: 1) stores the new RSSI and the direct parent as

the new node‘s parent and 2) broadcasts the message. Before the node broadcasts a

message it stores its ID in the parent filed and the new RSSI in the accumulative RSSI

field. Otherwise, if the node has a smaller RSSI value stored than the one received in the

packet, the node discards the message.

Lemma 1: After O(d) time, where d is the network diameter and O(n) message sent, we

have a shortest path tree rooted at the network leader.

Proof: Every node at stage X broadcasts the build construction message to all its

neighbors. At stage X+1 all nodes receiving the messages select their parent by choosing

the closest node (by comparing the received RSSI) to be their direct parent. It is

impossible that a node will choose a parent at stage X+1 and change his election at a later

stage. This is due to the fact that if nodes b and c choose node a as there parent, there will

be no shorter path to b that goes through c. This can be proven by using the triangle

Page 16 of 60

inequality, which states that for any triangle, the sum of the lengths of any two sides must

be greater than the length of the remaining side, e.g. in a triangle ABC: C < A +B for

every edges A,B and C. Therefore, each node would broadcast a message only once,

since after decision of a direct parent on an arbitrary cycle, it would not receive messages

with a smaller RSSI. Hence, the message complexity is O(n) messages. For the run time,

the complexity is O(d), where d is the diameter, since the run time is derived from the

number cycles executed until the tree is constructed and this equals to the tree depth.

3.1.3 Find cuts in the shortest path tree

In order to find cuts in the tree, we will execute the following steps: (i) use Alstrup et al

[2] algorithm to label the nodes. (ii) Each node then will query its neighbors for their

nearest common ancestor. (iii) Execute a test to verify whether a cut exists.

After a cut is detected, the nodes in the cut will connect themselves into connected

components. Furthermore, each connected component agrees on the node closest to the

network root (ties are broken by the smaller ID). Note, the distance from the root is well

known to all nodes in the network, since we saved the accumulative RSSI from each node

to the root during the construction of the shortest path tree.

3.1.3.1 Network cuts definition

Intuitively, we define a network cut as neighboring nodes pair, (p, q), in the network

topology whose Least Common Ancestor, LCA(p, q), in the shortest path tree T is far

from p and q, with well separated paths to the LCA(p, q).

We will give a formal definition:

Definition 3: A cut pair (p, q) is a pair of neighboring nodes in the network satisfying the

following conditions: (i) The distance between p and q to LCA(p, q), y, is above a

threshold δ1. (ii) No node on the path (p-y) from p to y has a direct neighbor on the path

http://en.wikipedia.org/wiki/Triangle

Page 17 of 60

(q-y) from q to y except the lower and upper δ2 percent, that is the δ2 nodes closest to the

cut pair and the δ2 nodes closest to the LCA(p,q).

Figure 4: Definition of a cut pair (p,q).

The parameter δ1 in the definition of a cut pair specify the minimum size of the holes to

be detected, where the second condition assures us that the two paths are well separated.

The δ2 parameter allows one to detect among others, holes that spread out linearly,

meaning, holes that start narrow and gradually become wider. Typically, one chooses δ1

as some constant fraction of the diameter d of the sensor field. By triangle inequality, we

learn that the diameter of the network is at most 2d, where the diameter d is the distance

between the root r and the deepest node. In Wang et al [1] it can be seen that experiments

reported to use δ1 = 0.18d. Intuitively, we will choose δ2 as a fraction of δ1, in our

algorithm we chose δ2 = 0.2δ1, suggesting the majority of the hole to be well separated

(emitting the lower and upper 20%, results with 60% well separated).

In order to keep the algorithm fully distributed the network root can disseminate δ1 and δ2

through a message in the tree after the shortest path tree is built and hence the network

diameter is known.

Page 18 of 60

3.1.3.2 Algorithm to find the network cuts

In order to find the cuts in the network one must first find the LCA of every two

neighboring nodes and then check whether we can verify the two conditions declared in

definition 3.

3.1.3.2.1 Find the LCA

Alstrup et al [2] gave a distributed algorithm to compute the LCA. The idea is to label the

nodes of a rooted tree such that from the labels of two nodes alone one can compute in

constant time the label of their nearest common ancestor by bit manipulations. The labels

assigned by the algorithm are of size O(log(n)) bits where n is the number of nodes in the

tree. The network labeling algorithm run and the message complexity are O(n).

3.1.3.2.2 Verify distance to LCA

After assigning a label to each node, the nodes will be checked in order to satisfy the first

condition of definition 3: each node finds the nearest common ancestor he shares with

each of his neighbors. Finding the LCA between two nodes takes a constant time O(c) as

we mentioned above, therefore, the message complexity and run time is O(k), where k is

the connectivity level.

Since the results for the LCAs are nodes labels and identify nodes in the network by their

IDs, there are one of two options: (i) Each node can store, during the labeling process a

―translation table‖, which holds three values: the node‘s label, node‘s ID and the distance

from the node, for better results in terms of message complexity and algorithm run time,.

That way, two neighbors can check whether they fulfill the first condition in definition 3

in O(c) time, since the bit manipulation carried in order to get the LCA‘s label is constant

and so is the translation to distance from LCA and the comparison to δ1. (ii) In case one

does not wish to create translation tables, an upward tree traversal after receiving the

Page 19 of 60

LCA‘s label and accumulate the RSSI until it reaches the LCA is committed. Then, one

can verify the first condition of the definition: whether the distance from the initiating

nodes to the LCA exceeds δ1.

3.1.3.2.3 Verify the paths are “well separated”

The verification of the second condition, which confirms that there are no neighbors

between the two paths, except for the upper and bottom δ2 percent is done, iff the first

condition was satisfied. In order to do so, both nodes of the cut pair (p,q) flood a message

with their ID and TTL = 1. The direct parent in the path receiving the message broadcasts

the received message after setting the TTL to 1 again and accumulates the RSSI in

another field. The message would be passed upwards until we reach the LCA(p,q), which

stops the flooding and sends back PIF message to the cut pair after receiving the

messages from both paths initiated at p and q. If during that process there is a node on

one of the paths that received both messages (one with the ID of p and another with the

ID of q) and he is not in the upper or bottom δ2 percent of the path: it sends a message

back to the cut pair (p,q). When the cut pair receives a message from the LCA, it means

that all nodes on the paths had received the messages. Hence, if the cut pair received a

message from the LCA only and from no other nodes on the path, he concludes that the

second condition had fulfilled and therefore, there is a cut.

In order for the nodes to know whether they are on the bottom or upper δ2 percent of the

path, the following will be done: when the cut pair (p and q) broadcast the message to

their direct neighbors (TTL=1), each parent adds the RSSI of the received message to the

accumulative RSSI. That way, each node receiving a message can calculate immediately

whether he is in the closest δ2 percent to the cut pair. For the closest δ2 percent to the

LCA, each node can calculate by one of the following ways: (i) Each node knows its

distance from then LCA based on previous steps and therefore can calculate whether he is

in δ2 distance from the LCA. (ii) When the message returns from the LCA back to the

initiating p and q nodes through the two paths, the RSSI from the LCA can be calculated

Page 20 of 60

and the nodes which satisfy the second condition and are in a distance greater than δ2

from the LCA will send a reject message.

In either way, the message propagates till the LCA and back, therefore the time and

message complexity of that step is equal to the distance between the cut pair and their

LCA, which is upper bounded by the network diameter d. That is for every hole in the

network, hence, bounded by O(h*d), where h represents the number of holes in the

network. Therefore, the total time and messages complexity of this step is min(O(h*d) ,

O(n)).

Lemma 2: If there are neighbors across the two paths, (p-y) and (q-y), they will be found

by the above algorithm.

Proof: If it is assumed that exists a node p1 on the path p-y that has a neighbor node q1 on

the path q-y. At the one hand, we know for sure, that all nodes on the same path will

receive the message originating at the corresponding cut node, since the message is

propagated upward from the beginning of the path until it reaches the LCA by traversing

from descendent to its parent. In particular, node p1 that is on the path p-y will receive the

message. On the other hand, since the flooding process starting at p and q at roughly the

same time, causing each node on the path to broadcast a message to all its one hop

neighbors, node q1 on the q-y path, will broadcast a message that p1 will receive. Since,

the LCA sends the PIF message back to the cut pair, only after receiving the broadcast

messages from both paths, meaning all nodes at the two paths received, broadcasted and

transferred the message upward, it is inevitable that node p1 already sent node p a

message indicating he has a direct neighbor on the parallel path (that is, if p1 is not on one

of the edges of the path defined by δ2).

3.1.3.3 Multi hole case

When there are multiple holes and therefore multiple cuts in the network, one would

artificially merge the holes by removing nodes on cut branches, until there is only one

composite hole left. It would be necessary to remove all of the nodes on cut branches

Page 21 of 60

except the one branch furthest away from the root. The interior holes either connect to

themselves or connect to the outer boundary. This is done in the following way: Each cut

branch, once decided on a ―leader‖ (the closest node to root) floods the network with the

leader ID and distance from root. Each node in a cut branch that receives a message with

a leader farther away from root than his leader, virtually removes himself from the

network. This can be done by enabling a dead/alive bit. The outcome is, cut branches

closer to the network boundaries will merge with the boundaries and inner cuts will

merge with other interior holes, until there is one remaining hole. Thus, the multi-hole

case is turned into a single hole scenario, that we proved its correctness earlier. The

deleted nodes would be restored and the composite hole would be refined later on.

3.1.3.4 Single hole case

In case there are no internal holes in the network, an arbitrary node would be chosen as

the inner boundary and can skip the next step of the algorithm (the detection of coarse

inner boundary). Since the shortest path tree will be built from the inner boundary to all

other nodes in the next step of the algorithm, the network root node r would be chosen as

the inner boundary R for performance efficiency. That is, because the network is aware of

the root selection, thus no need to select an arbitrary node and inform the network.

Moreover, the shortest path tree to all nodes in the network rooted at r, has already been

created.

Alternatively, the values of δ1 and δ2 can be decreased until artificial holes can be found

and continue the algorithm from there.

Page 22 of 60

Figure 5: The cut pairs (in red) in a multi hole example.

3.1.4 Detect a coarse inner boundary

After the cut nodes have been detected, a coarse inner boundary R would have to be

located that encloses the (composite) interior hole. A coarse inner boundary R is a

shortest cycle enclosing the interior hole in the sensor field. Therefore, any multi-hole

sensor field has been turned into a single composite hole sensor field by removing all cut

branches except one and all the nodes in the remaining cut branch have the ID of the

node closest to the root. Thus, the closest node to root will find the shortest path to its

neighbor in the cut pair that does not go through any cut node. This can be implemented

in two different ways:

(i) Use the shortest path algorithm to find this path, while removing all the edges

between cut pairs in order to prevent the path from going through any cut nodes.

We presented in previous sections that building a shortest path tree is upper

bounded by O(n) messages.

Page 23 of 60

(ii) Alternatively, the two shortest paths from p and q to LCA(p, q) that have already

been obtained in previous steps can be used. Together with the edge pq, a cycle

has been obtained that encloses the hole. This cycle is not necessarily the shortest

cycle. But it can be greedily shrink to be as tight as possible, by the following k-

distance shrinking process. For any two nodes that are within k distance on the

cycle, one checks whether exists a shorter path between them. If so, the

corresponding segment is replaced in the original cycle with the shorter path and

by that the total length has been shorten. This step is repeated until no further

replacements can be done.

Figure 6: The coarse inner boundary a multi-hole scenario with all but one cut branch

removed, one interior hole connected to the outer boundary.

Lemma 3: Building a shortest path tree between the two nodes (p,q), the closets nodes in

the furthest cut component from the root, will result in a coarse inner boundary delimiting

all inner holes in the sensor network.

Page 24 of 60

q

q

p

Proof: All inner holes, except the furthest one from the network root, connect themselves,

either to a network boundary or to another inner hole/s when their cut pairs are removed.

We will prove that the shortest path between p and q, the two closets nodes in the furthest

component (a.k.a. component C) to the root creates a ring circling all the inner nodes not

connected to a boundary (called the composite hole H). We will assume without loss of

generality, that the Component C is composed of three inner holes x,y and z, where z is

the furthest away from the network root and (p,q) is the closest cut pair in the cut

component defining hole z. (see Figure 7).

Since all edges between the cut pairs in the component C are removed, a gap will be

formed from the inner hole z till the network boundary, forcing any continuous path p-q

to circle the inner hole z. We will assume that exists a path p-q that circles only the hole z

and does not circle the other holes x and y. But that stands in contradiction to our

definition of the composite hole C that connects holes x,y and z. Therefore, every path

that circles hole z, will circle x and y as well.

Figure 7: (i) and (ii) display the composite hole C composed out of inner holes x,y and z

before and after the removal of cut pairs respectively.

(i) (ii)

Page 25 of 60

3.1.5 Find the extremal nodes

An extremal node is a node whose minimum distance to nodes in the coarse inner

boundary R is locally maximal. To discover extremal nodes, we have the nodes on R

synchronize among themselves and start flooding the network at roughly the same time.

We can see how to synchronize distributed nodes in Elson [3] and Ganeriwal et al [4]

where the complexity is bounded by O(n). Each node in the network records the

minimum RSSI to nodes in the coarse inner boundary R. At the end of the run, each node

in the network holds the minimum distance to its closest node on boundary R. This is as

the nodes merge in R to a dummy root ζ, and build a shortest path tree T(ζ), rooted at ζ

for the whole network. The extremal nodes are the ones with locally maximum distance

to R. Each extremal node can detect itself by checking its direct neighbors. Intuitively,

the extremal nodes are on the outer boundary or are the ridges on the real inner boundary

of a concave hole as can be seen in Figure 8.

The message complexity in this process is upper bounded by O(n + k), where n is the

number of nodes and k is the connectivity degree. This is due to the fact that the

propagation is done locally, meaning, node does not forward a message with a greater

RSSI that it already encountered with. Therefore, each node sends up to a constant

number of messages, total of O(n) messages, plus the verification each node commits at

the end of the propagation process with all his neighbors in order to discover local

maximum, that is O(k) messages.

Page 26 of 60

Figure 8: (i) The coarse inner boundary R of multi-hole scenario and the extremal nodes.

(ii) Boundary R for one concave hole scenario and the extremal nodes (red) with locally

maximum distance from the coarse boundary.

3.1.6 Find the outer boundary and refine the coarse inner boundary

In this step an attempt is made to connect the extremal nodes into a consistent cycle.

Notice that here we only consider the case with one inner hole, since we have removed

the cuts to connect multiple holes into a composite hole. If this composite hole is a

convex, as in the multi-hole case, then all extremal nodes belong to the outer boundary

(see Figure 8(i)). If the composite hole is concave (see Figure 8(ii)), there will be two

types of extremal nodes, those on the outer boundary and those on the interior of R. We

use the following rule to differentiate extremal nodes on different sides of R. The

removal of R, together with neighbors of within distance Δ from R, partitions the network

into several connected components Ci, i = 1, . . . ,w. We select Δ, as a small fraction of

the network diameter d.

(i) (ii)

Page 27 of 60

An attempt will be made to connect the extremal points into extremal paths in each

connected component, which will then be further connected into boundary cycles. Focus

will first be on a particular connected component and describe how an extremal path is

constructed. Specifically, all of the nodes that are closest to Δ distance from R on the

upper bound will connect themselves through local flooding, this results in a path (or a

cycle) Pj along R. Then path Pj is refined so as to force it to go through the extremal

nodes in this connected component. Notice that each extremal node has shortest path

from the closest node on R. Next the extremal nodes will be connected by the shortest

path between two closest extremal nodes. To find the shortest path between two extremal

nodes, one either uses any shortest path algorithm or a greedy approach. For the latter,

there is a natural path between any two extremal nodes u, v, composed by the shortest

path from u to its closest point on Pj, u‘ , the shortest path from v to its closest point on

Pj, v‘, and a segment of Pj between u‘ and v‘. Then, this path can be greedily refined and

a shorter path between u and v can be found. By the above procedure, the extremal nodes

are connected into a path Pj, in each connected component. The step is bounded by O(n)

messages.

Lemma 4: The shortest path connecting the outer extremal nodes is a cycle, and is called

the outer boundary.

Proof: Due to assumption 1, it can be concluded that each outer extremal node has only

two other extremal nodes as its neighbors, one on each side. Connecting each outer

extremal node to its two neighbors will necessarily create one cycle due to assumption 2,

which promises that the edge connecting the two neighbors lie on the same boundary

side, not allowing any crossovers between two boundary sides that will result with more

than one cycle at the outer boundary.

It becomes necessary to check whether the path Pj produces a cycle for the inner

boundary. This is done in the following distributed way: Each node on the path checks

whether it has two adjacent neighbors, if so, then the path is actually a cycle, which is

called the inner boundary cycle. Otherwise, the nodes on the two path‘s edges, the ones

Page 28 of 60

who discovered they have only one neighbor, will connect themselves to the coarse

boundary R. We do so by flooding a message connection request locally till we reach the

closest node on R and branch to it. This can be done in the following way: when a

connecting message reaches a node on the boundary R, it returns on the same path to the

source edge, accumulating the RSSI. The source edge then, selects the shortest path to the

boundary R. The last thing left is to disconnect the original segment of R that is delimited

by the two nodes on R that the path Pj branched to. This will eventually come back and

close a cycle, called the inner boundary.

Lemma 5: connecting the two edges of the path Pj to the boundary R after removing the

redundant segment in R, will result with the inner boundary.

Proof: R is a cycle from definition, therefore, removing a segment delimited by two

nodes on the cycle and connecting a new path (line) between these two nodes, will also

result in a cycle. The inner boundary has to go through the inner extremal nodes and

generate a cycle. R is the tightest inner boundary surrounding the inner hole, by definition

above. Hence, connecting the path Pj to the boundary R by the shortest path between

them will guarantee the tightest inner boundary. Since, if exists a closer node to the inner

hole in the network, it would already be on the boundary R, except for the removed

segment on R, where in that case, there is no tighter boundary than the shortest path

between Pj to R.

So far, we classify extremal nodes and connect them into two cycles, corresponding to

the inner and outer boundary. Figure 9 shows the results of this stage for the two

examples.

Page 29 of 60

Figure 9: The outer boundary and the refined inner boundary in: (i) multi-hole example

(with cut nodes). (ii) one concave hole example.

3.1.7 Restore deleted nodes and refine inner boundary for multiple holes

The final step is to recover the inner holes in the sensor field and refine their boundaries.

The cut nodes that were removed earlier by the dead/alive bit will be restored, as can be

seen Figure 10(i). For each cut branch there is a leading cut pair (p,q) that is the closest to

the network root, as mentioned earlier. The two nodes in this cut pair (p,q) will be

connected. If p and q are not on the refined inner boundary R, one traverses upwards in

the shortest path tree T, and connect the edges, until a parent that is on the inner boundary

R is reached. As a result, the inner boundary R is partitioned into two boundary cycles, as

can be seen in (Figure 10(ii).

The two new boundary cycles will share nodes p, q. Then cycles are shrunk locally to

make them tight. Here, the shrinking procedure has a restriction that the shrunk path still

has to pass through the extremal nodes. Thus, the refined inner boundary is partitioned

(i) (ii)

Page 30 of 60

into a number of cycles, each representing the boundary of an inner hole. The step is

bounded by O(n). Figure 11 demonstrate the final result.

Figure 10: multi-hole example: (i) after recovering the cut nodes. (ii) after connecting

the ―leader‖ cut branch pair to inner boundary and partition R into two cycles .

Lemma 6: traversing upward from a cut pair (p,q) in the shortest path tree T will finally

reach a node on the interior boundary R.

Proof: The coarse boundary R was created after holes were detected and merged by

connecting nodes on tree T to get to the LCA. The refined R was created by shrinking the

coarse boundary every time we found a smaller shortest path between two nodes. Even

after refining the boundary, the ―root‖ of boundary R remains the LCA. The cut pair (p,q)

are decedent nodes of the same LCA, from the definition of a cut pair. Therefore, when

one traverse upwards from p and q towards the LCA, he knows for sure that he will

encounter nodes on R in his way, since in the worst case, one will encounter the LCA

itself, which is on the boundary R.

(i) (ii)

Page 31 of 60

Lemma 7: Connecting the edge pq (where p and q are a cut pair) to the boundary node R

will result in portioning R into two boundary cycles.

Proof: Since R is the refined boundary rooted at the LCA after the shrinking process

tightened the boundary to the hole, connecting the edge pq to the boundary nodes p and q

encounter on R, will either (i) close a tighter cycle around the hole, that could not have

been found thus far since p and q were deleted or (ii) transect the cycle of R and conform

a loosen path to the LCA. In either case the R would be split. Now, the reason this split

will close a cycle is because p and q will connect R from two different sides. This is

because p and q are neighbors with different ancestors that never meet, until the

intersection with R is reached in two different places creating inner cycle or the LCA is

reached and even then they will connect to the LCA from both sides conforming a cycle.

Note:

In the continuous case all of the boundary points are identified as extremal points.

However, in a discrete network, the shortest path is computed on a combinatorial graph.

Thus, not all of the boundary nodes are identified as extremal nodes. The boundary

refinement can be performed in an iterative fashion such that we commit message

flooding from the current boundary cycle and identify more extremal points until the

boundary cycle is sufficiently tight.

Wang et al [1] proved rigorously that the algorithm will correctly detect all the inner and

outer boundaries in a continuous domain with polygonal boundaries, the essence of the

proof can be found in section 4.2 below.

Page 32 of 60

Figure 11: The final boundary cycles created for multi-hole example.

3.1.8 “no inner holes” scenario

This section will prove the correctness of the algorithm in the scenario where there are no

inner holes. It was mentioned earlier the two approaches to solve that case, decreasing δ1

or choosing an arbitrary node as inner boundary

.

If one chooses to decrease the value of δ1, until he finds artificial holes, then the

algorithm continues with no change and the general proof applies here as well. If he

chooses an arbitrary node or the network root r as the inner boundary, then he will find

extremal nodes and create an outer boundary surrounding r. Since, the extremal nodes are

the ones with locally maximum distance to R, where R represents the nodes in the inner

boundary. This is as if one merge the nodes in R to a dummy root ζ, and build a shortest

path tree T(ζ), rooted at ζ for the whole network. ζ, is exactly what the network root r

represent. After it has been proven that the extremal nodes selection process functions the

same, the rest of the algorithm is straight forward, since the outer boundary is created by

connecting the extremal nodes into a consistent cycle. In this scenario, all extremal nodes

belong to the outer boundary, therefore, a simple shortest path tree between the extremal

Page 33 of 60

nodes will provide the refined cycle of the outer boundary. The algorithm can halt at that,

as the next two steps: restore deleted nodes and refine inner boundary are not relevant

when the inner boundary consists of one node and there are no nodes that where cut as

can be seen in Figure 12.

Figure 12: The outer boundary cycle created for no–hole scenario.

3.2 Proof of correctness in the continuous case

In this section meticulously demonstrated that the algorithm will correctly detect all the

inner and outer boundaries in a continuous domain with polygonal boundaries. This proof

is taken entirely from Wang et al [1]. The results apply also to non-polygonal domains,

since they are approximated by polygons. Let F be a closed polygonal domain in the

plane, with k simple polygonal obstacles inside; F is a simple polygon P, minus k disjoint

polygonal holes. F is referred to as the free space and its complement, O, as the obstacle

space. O consists of k open, bounded simple polygonal holes and an unbounded

complement of the simple polygon P. Denote by V the set of all vertices of F.

For any two points p, q ∈ F, we denote by g(p, q) the geodesic shortest path in F between

p, q. The Euclidean length of g(p, q) is denoted by d(p, q). The shortest path g(p, q) is not

necessarily unique. In fact, our algorithm aims to detect points with one or more shorter

paths to the root. Rigorously, given a root r ∈ F, the shortest path tree at r is the collection

Page 34 of 60

of shortest paths from each point in F to r. A geodesic shortest path is a polygonal path

with turn points at vertices of F [13]. We say that a vertex s ∈ V is a parent of a point p ∈

F if for some geodesic shortest path g(r, p), s is the last vertex along the path g(r, p) \{p}

at which g(r, p) turns. If the geodesic path is a straight line from r to p, then r is the parent

of p. The free space F can be partitioned to maximal regions, called cells, such that all the

points in the same cell have the same parent or set of parents. This partition is called the

shortest path map, SPM(r) (see Figure 13). The bisector C(vi, vj) is defined of two

vertices vi, vj as the set of points in F with the set of parents {vi, vj}. A point in F with

three or more parents is called an SPM-vertex. The union of all bisectors and SPM-

vertices, B, is often called the cut locus. The boundary detection algorithm makes use of

the properties of the shortest path map. List below are the useful properties that are

proved in [14].

Lemma 8([14]): Given a closed polygonal region F in the plane, with k simple polygonal

obstacles inside. The shortest path map at an arbitrary root r ∈ F has the following

properties.

1. Each bisector is the union of a finite set of closed sub-arcs of a common

hyperbola (a straight line is a degenerate case of a hyperbola).

2. The collection of bisectors and SPM-vertices, denoted by B, forms a forest.

3. There is at least one bisector point on the boundary of each obstacle.

4. F \ B is simply connected.

Page 35 of 60

Figure 13: A shortest path map SPM(r) for F with k = 8 obstacles (blue), showing the

bisector set B (red), which has one SPM-vertex, 7 connected components, and 9 arcs. R is

the shortest cycle corresponding to the red bisector arc. Other bisector arcs are blue,

having become part of the obstacle set for F′.

Lemma 9: For a region F with k polygonal holes inside and m SPM-vertices, there are

exactly k + m bisector arcs.

Proof: This follows from the fact that a tree of v vertices has v−1 edges, where, here, v =

k+1+m since the bisector arcs connect the k obstacle boundaries, the m SPM-vertices,

and the 1 outer boundary. In fact, our boundary detection algorithm finds the bisector

arcs. For completeness, it is re-state the outline of the boundary detection algorithm for

the continuous case. The focus is on the correctness of the algorithm so it is explained in

a centralized setting. The boundary detection algorithm for F works as follows.

1. Find the bisectors and SPM-vertices; each of them has at least two geodesic

shortest paths to the root r.

2. Delete bisector arcs until there is only one bisector arc left. Correspondingly,

connecting k − 1 holes into one composite hole. This results in a new domain F′

with only one interior hole O′ and one bisector arc.

Page 36 of 60

3. Find the shortest cycle R in F′ enclosing the inner hole O′.

4. Refine R to find both the inner boundary and outer boundary of F′. In particular,

the following algorithm was used for boundary refinement.

a. Compute the Voronoi diagram of R in F′. Find the extremal points,

defined as the points that do not stay on the interior of any shortest paths

from points of F′ to its closest point on R, denoted by E. Furthermore, it

was found for each extremal point the closest point(s) on R.

b. Order the extremal points by the sequence of their closest point(s) on R.

The extremal points are naturally connected into paths or cycles. Tour the

coarse boundary R and replace the segments of R by their corresponding

extremal paths. Touring the boundary twice will come up with two cycles

that correspond to the inner and outer boundaries.

5. Undelete the removed bisector arcs. Restore the boundaries of interior holes and

the outer boundary.

Next it will be proven that this algorithm correctly finds all the boundaries of F. The

proof consists of a number of lemmas.

Lemma 10: The domain F′ has one interior polygonal hole.

Proof: This is due to the fact in Lemma 8 that F \ B is simply connected. Thus, by

removing all but one bisector arc and all SPM-vertices, a polygonal region F′ is obtained

with one interior hole.

The focus becomes F′ now and it is argued that we indeed find the correct outer and inner

boundaries of F′ by the iterative refinement. The proof is only for the outer boundary R
+
,

the correctness of the inner boundary R
−
 can be proved in the same way. By the

refinement algorithm, it is possible to find the Voronoi diagram of R by a wavefront

propagation algorithm (e.g., [15]). The extremal points are the points that do not stay on

the interior of any shortest paths from points of F′ to its closest point on R. Due to the

properties of wavefront propagation, the extremal points must be either on the boundary

or on the medial axis, where wavefronts collide [14, 16]. However, since cycle R is a

Page 37 of 60

shortest path cycle surrounding the hole, we argue that the extremal points on the exterior

of R must stay on the boundary of F′.

Lemma 11: The extremal points are exactly the boundary points of F′.

Proof: First it is argued that all the inward concave vertices of R must be on the outer

boundary of F′. By the properties of geodesic shortest paths [17], all the vertices of R

must be vertices of F′. If an inward concave vertex is a vertex of the inner hole, then one

can move the concave vertex outward and shrink the cycle R, as shown in Figure 14(i)

(the vertex of the inner hole w cannot be on R). This is a contradiction.

Thus, the removal of cycle R partitions the space F′ into disjoint components {Cj}.

Correspondingly, it is denoted by Rj the segment of R that bounds the component Cj. By

the above argument, each boundary segment Rj is inward concave. The wavefront

propagation of R is actually composed of Voronoi wavefront propagation of each

segment of Rj to its bounded region Cj. Since each segment is concave and the Cj‘s are

disjoint, the wavefront propagation does not collide. All the extremal points can only

happen at wavefront-boundary collision. In fact, all the boundary points collide with the

wavefront propagation and thus are considered as extremal points.

At this point it is possible to consider R to be a coarse approximation to the outer (and

inner) boundary. By the refinement algorithm one can improve the approximation and

obtain the correct outer boundary. Specifically, the removal of R from F′ partitions the

space F′ into disjoint components {Cj}, j = 1, . . . ,w. For each connected component Cj ,

the extremal points connect themselves into either a path (with open endpoints) or a cycle

Pj .

 If w = 1, the extremal points form a cycle. R is already the inner boundary. All the

extremal points are on the outer boundary.

 If w ≥ 2 and one of Pj is a cycle, this cycle is the outer boundary. The rest of the

extremal points refine R to the inner boundary. Specifically, we replace the

segments on R by their extremal paths.

Page 38 of 60

 Otherwise, one will tour R and discover the inner and outer boundaries.

Specifically, as one travels along R and always prefer to branch on an extremal

path. When the cycle is closed, a boundary cycle R1 is obtained. Then we visit R

again, starting at an extremal point that is not on R1. Again it is prefered to branch

on extremal paths. This will provide a different cycle. The two cycles are inner

and outer boundaries. For an example, see Figure 14 (ii).

Figure 14: (i) All the inward concave vertices of R must be on the outer boundary of F′.

(ii) The dark cycle is the coarse inner boundary R. The cycles in blue and (dashed) red

are inner and outer boundaries.

With the correct inner and outer boundaries of F′, we are now ready to recover the real

boundaries of F. One simply puts back the deleted bisectors. Indeed, the boundaries of F′

are the boundaries of F plus all the bisectors and SPM- vertices. Thus, removing the

bisectors from the boundaries of F′ and obtain k + 1 cycles that are the real boundaries.

Theorem 1: Given a closed polygonal domain F in the plane, with k simple polygonal

obstacles inside, the boundary detection algorithm will find the boundary of the region

correctly.

Page 39 of 60

3.3 Boundary nodes numbering

In order to find a finer and improved medial axis, the boundary nodes will be numbered

sequentially. Boundary nodes are defined as all set of nodes that sit on inner or outer

network boundaries.

3.3.1 Boundary leader election

To enable the numbering of boundary nodes a leader should be elected at each boundary

cycle. Since, each boundary cycle is a ring and all nodes have a unique ID, we will

choose the node with the highest ID (for example) as the leader. In order to do so,

consider the following algorithm:

3.3.1.1 Leader election in a Ring Algorithm

1. Each node v does the following:

2. Initially all nodes are active. {all nodes may still become leaders}

3. Whenever a node v sees a message w with w > v, then v decides to not be a leader

and becomes passive.

4. Active nodes search in an exponentially growing neighborhood (clockwise and

counterclockwise) for nodes with higher identifiers, by sending out probe

messages. A probe message includes the ID of the original sender, a bit whether

the sender can still become a leader, and a time-to-live number (TTL). The first

probe message sent by node v includes a TTL of 1.

5. Nodes (active or passive) receiving a probe message decrement the TTL and

forward the message to the next neighbor; if the TTL is zero, probe messages are

returned to sender using a reply message. The reply message contains the ID of

the receiver (the original sender of the probe message) and the leader-bit. Reply

messages are forwarded by all nodes until they reach the receiver.

Page 40 of 60

6. Upon receiving the reply message: If there was no active node with higher ID in

the search area (indicated by the bit in the reply message), the TTL is doubled and

two new probe messages are sent (again to the two neighbors). If there was a

better candidate in the search area, then the node becomes passive.

7. If a node v receives its own probe message (not a reply) v decides to be the leader.

Proof of correctness: Let node z be the node with the maximum identifier. Node z sends

its identifier in clockwise direction, and since no node can turn off the leader-bit, at each

TTL expiration, the reply message directed to z will have the leader-bit ―on‖. Since the

message TTL grows (exponentially) every round, eventually, z will receive its own probe

message and declares itself to be the leader. Every other node will declare non-leader at

the latest when forwarding message z.

3.3.1.2 Leader election in a Ring complexity

The algorithm time is bounded by O(n) and message complexity is bounded by

O(nlog(n)).

Proof: The time complexity is O(n) since the node with maximum identifier z sends

messages with round-trip times 2, 4, 8, 16, . . . , 2 · 2
k
 with k ≤ log(n + 1). (Even if we

include the additional wake-up overhead, the time complexity stays linear.)

The message complexity is O(nlog(n)), since, if a node v manages to survive round r, no

other node in distance 2
r
(or less) survives round r. That is, node v is the only node in its

2
r
 neighborhood that remains active in round r + 1. Since this is the same for every node,

less than n/2
r
 nodes are active in round r+1. Being active in round r costs 2 · 2 · 2

r

messages. Therefore, round r costs at most 2 · 2 · 2
r
 ·

 = 8n messages, bounded by

O(n). Since there are only logarithmic (log(n)) many possible rounds, the message

complexity is thus O(nlog(n)).

Page 41 of 60

3.3.2 The node numbering process

The leader of each boundary cycle starts the numbering process by initializing its local ID

in the cycle to one and sends a message to its closest boundary node (e.g. clockwise) with

its local ID. Each node receiving the message increases the counter, stores the counter as

its local ID and forwards the message to the next node on the boundary. When the

message reaches the boundary leader, it issues a new message containing two values: the

number of nodes in the cycle (for latter normalization) and the boundary cycle ID (CID)

which can be any arbitrary unique number, e.g. the boundary leader ID. At the end of the

run, each node holds three values: local ID, number of nodes on the boundary and the

CID.

Lemma 12: The time and message complexity of the numbering process is O(m) for each

boundary cycle, where m is the number of nodes in the cycle. And the total message

complexity of all numbering processes in all the boundary cycles in the network is upper

bounded by O(n).

Proof: Since each boundary is a cycle, a message issued by one of the nodes will take m

message transmissions, where m is the number of nodes in the cycle until it reaches the

issuer. Therefore, the numbering process for a single boundary takes 2m time and

messages. Since boundaries cannot collide (from definition), each node in the network is

either a simple node or belongs to one of the boundaries. Hence, the numbering process

for all the boundaries in the network cannot exceed O(n).

Page 42 of 60

3.4 Find the medial axis of the sensor field

Once aware of the network boundaries and boundary nodes, one can find the medial axis.

Definition 4: The medial axis is defined as the set of nodes with at least two closest

boundary nodes. That means, one is looking for nodes that their distance to the closest

boundary nodes is equal up to some ε.

In the literature, many articles where written regarding the calculation of the medial axis,

as in [2,5,6,7,8]. A new method was chosen that gives better results under the sensor filed

assumptions (see assumptions 1 & 2) and the prior knowledge regarding the network

boundaries that was acquired.

Intuitively, the medial axis can be thought of as the Voronoi cell boundaries of the

Voronoi diagram. Therefore, the detection of nodes on the medial axis can be done

locally, in the distributed following way: Starting from all boundary nodes and flood the

network simultaneously. Each node thus records its closest boundary. All of the nodes

with the same closest boundary are naturally classified to be in the same cell of the quasi-

Voronoi diagram. Further, the nodes at which the frontiers collide, meaning they are in

the same distance within ε from at least two boundary nodes, belong to the medial axis.

The medial axis is 'cleaned up' from nodes having their closest points on the boundary in

a consecutive interval.

The steps mentioned above will be elaborated on, in the following sections.

3.4.1 Build the Voronoi diagram

The Voronoi diagram on the boundary nodes is computed in the following distributed

way. The boundary nodes will be marked as the Voronoi sites (see Figure 15). Essentially

all the boundary nodes flood the network simultaneously and each node records the

closest boundary node/s. A node p will not forward the message if it carries a RSSI

Page 43 of 60

greater than the smallest RSSI p has already received. Thus the propagation of messages

from a boundary node b is confined within b’s Voronoi cell. All the nodes with the same

closest boundary node are naturally classified to be in the same cell of the Voronoi

diagram. Nodes with more than one closest boundary node, defined by equal RSSI within

ε, to at least two different boundary nodes, stay on Voronoi edges or vertices.

Message suppression was used to reduce the communication cost. Since messages are

forwarded only within the cells, the number of messages transmitted by each node is

within a small constant, allowing the total message complexity to be bounded by O(n).

Figure 15: The Voronoi graph illustration (shown in dashed lines) and the Delaunay

complex for a set of boundary nodes.

In the next five lemmas, proof will be offered regarding the construction of Voronoi

diagram correctness in a network that contains holes, since the classic case of Voronoi

diagram is proven in the literature, as in [9, 10].

Voronoi site/

Boundary node

Delaunay edge

Voronoi edge

Voronoi vertex

Page 44 of 60

Lemma 13: Given a disk B containing at least two points on ∂R, for each connected

component of B ∩ R, either it contains a point on the inner medial axis, or its intersection

with ∂R is connected.

Proof (taken from [11]): One can take one connected component C of B ∩R and assume

that it does not contain a point on the inner medial axis and intersects ∂R in two or more

connected pieces. Now take point u in C that is not on ∂R. Now take u‘s closest point on

C ∩ ∂R. If the closest point is not unique, then u is on the inner medial axis and we have

a contradiction. Now the closet point p stays on one connected piece of C ∩ ∂R. Take u‘s

closest point on a different piece of C ∩ ∂R, denoted as q. See Figure 16. Now, a point x

is moved from u to q along the geodesic path between u and q, x‘s closest point on C ∩

∂R starts with p and eventually becomes q, so at some point x the closest point changes.

That point x is on the inner medial axis. This leads to a contradiction, and hence the claim

is true.

Figure 16: Each connected component of B ∩R either contains a point on the inner

medial axis or its intersection with ∂R is connected.

Lemma 14: For any two adjacent boundary nodes u, v on the same boundary cycle, there

must be a Voronoi vertex inside R whose closest boundary nodes include u,v.

Page 45 of 60

Proof (taken from [11]): Take two adjacent boundary nodes u, v and consider the set of

points in R with equal distance from u, v. The mid-point on the geodesic path connecting

u, v, denoted by x, is at an equal distance from u, v. Take a disk through u, v centered at x

and move the disk while keeping it through u, v. Its center will trace a curve called C(u,

v) with all the points on C(u, v) having equal distances from u, v. C(u, v) has two

endpoints p, q with q on the boundary segment in between u, v and p also on the

boundary. Take r = d(p, u) = d(p, v). See Figure 17. Here it is claimed that there must be

a Voronoi vertex on C(u, v) that involves u, v and it is proven by contradiction.

Otherwise, p‘s two closest boundary nodes are u, v : the ball Br(p) centered at p with

radius r contains no other landmark inside. When one takes r
−
 = r − ε with ε → 0. Thus

Br−(p) contains no boundary nodes. Now it can be seen that this will violate the sampling

condition if one can show that there is a point on the inner medial axis inside Br−(p)

(meaning that r
−
 ≥ ILFS(p)). The connected component of Br−(p) ∩ R that contains the

curve C(u, v), denoted by F is taken. By Lemma 13, if F does not contain a point on the

inner medial axis, then its intersection with the boundary ∂R is connected. Now, one does

a case analysis depending on how the boundary curve goes through u and v. In Figure 17

(i) & (ii), the ε-neighborhood of the boundary at u, v also intersects Br−(p) ∩ R. In (i), F ∩

∂R has two connected pieces, thus leading to a contradiction. In (ii), the boundary

between u, v through p is completely inside Br−(p), which has no other boundary node

inside. In this case there are only 2 boundary nodes, namely u, v, on the boundary cycle

containing p. This contradicts the sampling condition. If the boundary at v (or u, or both)

is only tangent to Br−(p) ∩R (meaning that Br−(p) does not contain any ε-neighborhood

of v, see Figure 17 (iii) & (iv)), we argue that F contains a point on the inner medial axis.

To see that, we take the ball Br(p) tangent at v with v‘s ε-neighborhood outside the ball.

Now we shrink it while keeping it tangent to v until it is tangent to two points on the

boundary of F. Now the center of the small ball B′ is on the inner medial axis, which is

inside Br−(p). Thus we have the contradiction. The claim is true.

Page 46 of 60

Figure 17: u, v are two adjacent boundary nodes. The point p on the boundary has its

closest boundary nodes as u, v. (i)-(iv) four possible cases.

Lemma 15: If there is a continuous curve C that connects two points on the boundary ∂R

such that C does not contain any point on Voronoi edges, then C cuts off a topological 1-

disk of ∂R with at most one boundary node inside.

Proof (taken from [11]): Without loss of generality it is assumed that C has no other

boundary points in its interior. Assume C connects two points p, q on the boundary. Since

C does not cut any Voronoi edges, C must stay completely inside the Voronoi cell of one

boundary node say u. Without loss of generality assume that u is to the right of boundary

point q. See Figure 18(i). Now the boundary of Voronoi cell of u is partitioned by the

Page 47 of 60

curve C, with one part completely to the left of C. Consider one of the intersections

between the Voronoi cell boundary of u with the region boundary ∂R, say p′. Consider

the ball Br(p′) with r = d(p′, u). The point p′ has two closest boundary nodes, with one of

them as u and the other to the left of C, denoted as w. Now, this ball cannot contain any

other boundary nodes besides u,w. It is argued by Lemma 13 that the component of Br(p′)

∩R containing p′ intersects ∂R in a connected piece. Otherwise Br(p′) contains a point on

the inner medial axis, which means r > ILFS(p′). Thus by the sampling condition there

must be a boundary node inside Br(p′). Now, since the component of Br(p′) ∩R

containing p′ intersects ∂R in a connected piece, this intersection is a continuous segment

between u and w on ∂R, completely inside Br(p′), by using the same argument as in the

previous lemma; see Figure 18 (ii). In this case, the curve C cuts off a segment of ∂R with

at most one boundary node inside. The claim is true.

Figure 18: (i) C is inside the Voronoi cell of boundary node u to the right of C. (ii) the

curve C cuts off a segment of ∂R with no other boundary node inside.

Page 48 of 60

Lemma 16: The Voronoi graph V(S) is connected.

Proof : That is a corollary from lemmas 14 & 15. This can be proven in negation, as

follows. If one assumes the V(S) is not connected, hence there is at least one possible

curve C that cuts R into two pieces without intersecting with the Voronoi diagram,

specifically, not cutting any Voronoi edges. In each cut section then, we can find some

boundary nodes. This contradicts lemma 15, which says if curve C did not intersect any

Voronoi edge, then exists maximum one boundary node in the form cut. Thus, the

Voronoi graph is connected.

Lemma 17: lemma 16 is correct even in a network containing holes.

Proof: Let us examine the different components that the Voronoi diagram consists of, we

will see that the boundary nodes (Voronoi sites) cannot be in any hole, since they are

only at the networks boundaries (from the boundary nodes definition). The Voronoi

vertices cannot be in the hole from definition, since they are nodes in R that are at equal

distance from at least two boundary nodes. The only components that can be set across

holes are the Delaunay edges (between two boundary nodes) or the Voronoi edges

(between two Voronoi vertices or network boundary). We will distinguish between two

cases. If the two nodes at the end of the edge, can communicate directly, than the edge

going across the hole represents real edge and the RSSI represents the real distance

between those two nodes.

Otherwise, since the Voronoi graph is connected (lemma 16), exists a shortest path

between those two nodes. Hence the edge is a virtual edge between the nodes and its

(RSSI) value represents the energy or the distance that a message has to go through

between the two nodes in reality.

Either way, the edge going across a hole is reachable and represents the best

approximation of the distance between nodes/vertices at the two ends.

Page 49 of 60

3.4.2 Medial axis ‘Clean up’

The nodes sitting on the Voronoi edges, where the cells frontiers collide are marked as

part of the medial axis. Since, there are as many cells as there are many boundary nodes,

the medial axis is too ‗noisy‘, as in Figure 19(i). We wish to clean up the medial axis

from nodes that their closest boundary nodes are on the same boundary cycle and are

close to each other. We will define ‗close to each other‘ by γ, where γ is a fraction of mi,

the number of nodes in the boundary cycle i. We will choose γ = 0.1 mi. All boundary

nodes know from previous steps, their logical ID (LID) in the boundary cycle, the

boundary cycle ID (CID) and the number of nodes in their cycle mi.

Therefore, each node on the medial axis will check whether its closest boundary nodes lie

on the same boundary cycle and are within distance γ from each other. If the answer to

those two questions is true, the node will remove himself then from the medial axis.

Since, the node with the highest LID is adjacent to the node with the lowest LID in the

boundary cycle, we will normalize the numbers so the check would be carried out in the

following way:

mi γ ≥ LIDx LIDy ≥ γ

Where, mi is the number of nodes in the boundary cycle i, LIDx and LIDy are the logical

IDs of the two closest boundary nodes x and y and γ = 0.1 mi.

Since all medial axis nodes know from previous steps their closest boundary nodes‘

logical ID (LID) in the boundary cycle, the boundary cycle ID (CID) and the number of

nodes in their cycle mi. it takes them O(1) to compute whether they should remove

themselves or not and no message transmission is required. See Figure 19(ii) for results

after the clean up process.

Page 50 of 60

Figure 19: The medial axis marked in red. (i) Before the ‗clean up‘ process. (ii) After the

‗clean up‘ process with γ=1.

Lemma 18: The cleaning method described results with refined medial axis.

Proof: In order to ‗clean up‘ the medial axis we wish to leave nodes that are on Voronoi

edges between two cells originated at two boundary nodes (Voronoi sites):

1. From different boundary cycles.

2. From two different sides of the same boundary cycle.

One can immediately see that we fulfill the first condition, since we remove only nodes

that are on the same boundary cycle. The dentition of ‗different sides‘ is a little vague,

since in a circle for instance, there are no clear sides. But it can be said that, the thing that

characterizes nodes from different sides is that they are well apart from each other. And

this is what γ gives us. We remove nodes that their boundary nodes are adjacent up to γ

distance from each other. That way, we handle Voronoi edges between adjacent boundary

nodes and we are not influenced by curves in the sensor field.

(i) (ii)

Page 51 of 60

The complexity of the cleaning process is O(c). That is, because all nodes commit the

check at approximately the same time, and no messages need to be passed, since the

values of the CID, LID and mi are known to all boundary nodes and can be passed as

parameters in the Voronoi cells construction, where all boundary nodes propagate a

message.

See Figure 20 to observe the results of the refined medial axis.

Figure 20: The refined medial axis diagram for the (i) multi hole example. (ii) concave

hole example

(i) (ii)

Page 52 of 60

3.5 Network bottlenecks discovery methods

There are several methods proposed in this section to identify bottlenecks once given the

medial axis. It was decided to give few methods and not to stick with one, since one

method might be more suitable than the other, based on the specific use case. In all the

methods represented below, we are using the medial axis, since the medial axis gives us

indication of the gap or distance between two network boundaries. Intuitively, the smaller

the gap is, the narrower the network become and lowers the entire network throughput,

causing the nodes in that area to become a bottleneck. A reminder, every node on the

medial axis knows its distance to the closest boundary nodes, since that is what defined

nodes on the medial axis.

3.5.1 Constant threshold

One can choose a constant threshold regardless of the network size, representing the

minimum distance between boundaries. Every node on the medial axis having a distance

to the boundaries that is less than the specified threshold is classified as a bottleneck. The

time and message complexity is O(c), since the distance to the nearest boundary nodes in

known to all nodes on the medial axis, leaving for them only to compare the distance to

the constant threshold individually and with no message transmission.

This method can be useful, when prior simulations indicated the minimal network width

necessary for an optimal throughput.

3.5.2 Fraction of the widest part in the network as threshold

One can choose the threshold as some fraction of the widest part in the network. This can

be carried out by informing the nodes in the medial axis of the distance to the boundaries

of all other nodes in the medial axis. Then, after taking the greatest distance, meaning the

widest part, each node can compute individually whether he is above the threshold, which

Page 53 of 60

is some fraction of that distance. This can be implemented by flooding the values

between the medial axis nodes and forwarding a message only when a node encounters a

value greater than any other value he had seen thus far. The time complexity is bounded

by O(m), where m represent the number of nodes on the medial axis and m<n, since the

time it takes for a packet to travel between the two furthest nodes is maximum m. The

message complexity is O(m
2
), since there are m messages transmitted in every interval

(every node transmits one message) and there are m intervals.

This method can be useful, when it is important not to reduce the highest achieved

throughput (the widest part) in the network in more than a constant fraction of it.

3.5.3 Variation of the average or median

One can choose a threshold as a variation of the average or the median, e.g. all nodes that

their distance to the boundaries is under the average distance or the median distance are

defined as bottlenecks. This can be implemented by message flooding (containing the

boundary nodes distance) between all medial axis nodes, where each node forwards to all

its neighbors every packet it receives from another medial axis node. Then each node

computes the average or median of the network individually. The time complexity is

bounded by O(m) and the message complexity is bounded by O(m
2
) as explained in the

above paragraph.

This method can be useful when one wants to take all the gaps under consideration and

hence look at the overall picture of the network. In this method one is also immune from

deviations in the network. Since, the average or the median would not be influenced

much if exists a small area in the network that is several orders of magnitude larger than

the rest.

Page 54 of 60

3.5.4 Lowest percentile

One can choose the threshold as the lowest percentile of gaps between network

boundaries. This can be implemented by flooding messages from all nodes containing the

nodes distance to the boundaries, same as above method only here each node has to store

all distances it receives in buckets or some other means in order to find out after receiving

the distances from all the nodes, whether he is the lowest percentile. The time complexity

is bounded by O(m) and the message complexity is bounded by O(m
2
) as explained in the

above paragraph.

This method is useful like the average and median threshold, when one wishes to look at

the overall picture of the network and be immune from extreme deviations. But also very

applicable in the real world, when we have a limited amount of new nodes we can

contribute to the system and we want to know where the network pain is. Since we are

aware of the amount of nodes in the network, we can deduce from that what is the

percentage of the nodes we are about to contribute, and add them to the area where the

lowest percentile found.

Page 55 of 60

4 Conclusion

This paper addressed the network bottleneck detection problem in WSNs. A brief

overview of the problem and motive as well as some research that was carried out in this

field was provided. A new distributed algorithm that addresses the problem and results

with the detection of the bottlenecked nodes in the network was provided. After the

algorithm execution is completed, the network inner and outer boundaries, as well as the

network medial axis are received as byproducts. The total run time complexity of the

algorithm is bounded by O(n) and the total message transmission complexity is bounded

by max(O(nlog(n)) , O(m
2`

)), where m represents the number of nodes constructing the

medial axis. A detailed breakdown can be seen in Table 1.

One can find at Wang et al [1], extensive simulations in various scenarios as for the

network inner and outer boundaries detection algorithm.

Future work might include committing simulations and experiments in the real world

with a large number of sensors, in order to examine the accuracy of the medial axis

discovery and the bottleneck detection suggested in this article. Furthermore, new

mathematical models can be suggested and investigated upon given the medial axis and

network boundaries to better address the problem.

Page 56 of 60

Step Time complexity Message complexity

Leader election n nlog(n)

Shortest path tree construction d n

LCA discovery n n

Network holes discovery n n

Coarse inner boundary detection d n

Extremal nodes detection n n

Outer boundary discovery n n

Inner boundary refinement n n

Ring leader election n nlog(n)

Boundary nodes Numbering d n

Voronoi diagram construction n n

Medial axis clean up c -

Bottlenecks detection with

constant threshold

c c

Bottlenecks detection – all other

methods

m m
2

Table 1: The algorithm complexity breakdown, where n represents the number of nodes

in the network, d represents the network diameter, m represents the number of nodes

constructing the medial axis and c stands for constant number.

Page 57 of 60

5 Acknowledgements

I would like to thank Prof. Danny Dolev for advising and supervising throughout the

presented work. Danny Dolev helped me by routing my ideas into a complete product and

in addition, offering valuable input and constructive criticism along the way.

I would like also to thank Bracha Hod that introduced the world of sensor networks to me

during my Master‘s degree and demonstrated infinite patience and optimism in our

collaborated work implementing communication protocols on the sensors in the DANSS

lab.

Last but not least, to my family for supporting and taking interest in my thesis and

especially for my father Prof .Dennis Cogan for proof reading my work.

Page 58 of 60

6 References

[1] Wang, Y., Gao, J., and Mitchell, J. S. B. (2006). Boundary recognition in sensor

networks by topological methods. In Proc. of the ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom). 122–133.

[2] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: a

survey and a new distributed algorithm. In Proc. 14th ACM Sympos. Parallel Algorithms

and Architectures, pp. 258–264, 2002.

[3] J. Elson. Time Synchronization in Wireless Sensor Networks.PhD thesis, University

of California, Los Angeles, May 2003.

[4] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor

networks. In Proc. 1st Internat. Conf. on Embedded Networked Sensor Systems, pp. 138–

149, 2003.

[5] H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory of medial axis

transform. Pacific Journal of Mathematics, 181(1):57–88, 1997.

[6] J. Bruck, J. Gao, and A. Jiang. MAP: Medial axis based geometric routing in sensor

networks. In Proc. ACM/IEEE Internat. Conf. on Mobile Computing and Networking

(MobiCom), pp. 88–102, 2005.

[7] D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of the

medial axis - a state-of-the-art report. In Mathematical Foundations of Scientific

Visualization, Computer Graphics, and Massive Data Exploration. Springer-Verlag,

2004.

Page 59 of 60

[8] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. J¨uttler, and M. Rabl:

Medial axis computation for planar free-form shapes. Computer-Aided Design, Vol. 40,

Elsevier, 2008

[9] F. Aurenhammer, ―Voronoi Diagrams—A Survey of a Fundamental Geometric Data

Structure,‖ ACM Computing Surveys, vol. 23, pp. 345-405, 1991.

[10] S. Fortune. Voronoi diagrams and Delaunay triangulations. In Computing in

Euclidean Geometry, F.K. Hwang and D.Z. Du, eds., World Scienti_c, 1992.

[11] S. Lederer, Y. Wang, and J. Gao. Connectivity-based localization of large scale

sensor networks with complex shape. In Proc. of the 27th Annual IEEE Conference on

Computer Communications (INFOCOM‘08), pages 789–821, May 2008.

[12] I. Cidon and O. Mokryn, ―Propagation and Leader Election in Multihop Broadcast

Environment‖, 12th International Symposium on DIStributed Computing (DISC98),

September 1998, Greece. pp.104–119.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[14] J. S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane.

Ann. Math. Artif. Intell., 3:83–106, 1991.

[15] M. Held. Voronoi diagrams and offset curves of curvilinear polygons. Computer

Aided Design, 30(4):287–300, 1998.

[16] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the

plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.

Page 60 of 60

[17] J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack

and J.Urrutia, eds., Handbook of Computational Geometry, pp. 633–701. Elsevier, 2000.

[18] Daganzo, C. F. (1997), Fundamentals of Transportation and Traffic Operations,

Elsevier, New York, 133–35, 259.

[19] Zhang, L. & Levinson, D. (2004), Some properties of flows at freeway bottlenecks,

Journal of the Transportation Research Board, 1883, 122–31.

[20] A. Akella, S. Seshan, and A. Shaikh, ―An Empirical Evaluation of Wide-Area

Internet Bottlenecks,‖ in IMC, 2003.

 [21] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang. Locating internet

bottlenecks: Algorithms, measurements, and implications. In Proc. ACM SIGCOMM,

August 2004.

[22] Mechthild Stoer, Frank Wagner, ―A Simple Min-Cut Algorithm,‖ Journal of the

ACM, Vol. 44, No. 4, July 1997, pp. 585–591.

[23] Haosong Gou, Younghwan Yoo, ―Distributed Bottleneck Node Detection in

Wireless Sensor Network‖. 10th IEEE International Conference on Computer and

Information Technology (CIT 2010). Busan, Korea, 2010.

[24] Haosong Gou, Gang Li and Younghwan Yoo, ―A Partion-Based Centrilized LEACH

Algorithm for Wireless Sensor Network Using solar Energy", in Proceedings of the

International conference on Convergence & Hybrid Information Technology 2009

(ICHIT 2009).

[25] P. Coy and N. Gross, ―21 ideas for the 21st century,‖ Business Week, pp. 78–167,

Aug. 1999

תיים רומציאת צווארי בקבוק תקש

 מבוזרות ברשתות סנסורים

 עבודה זו מוגשת במסגרת תואר מוסמך במדעי המחשב

 על ידי

 כוגן –דוד קרפף

 רחל וסלים בניןש "בית להנדסה ומדעי המחשב ע

 האוניבריסטה העברית

 העבודה נעשתה תחת פיקוחו של

 דני דולב' פרופ

 א"תשעהתשרי

 תקציר

(Distributed Wireless Sensor Networks)בעולם בו העיסוק ברשתות סנסורים אלחוטיות מבוזרות

ישנו עיסוק . ובמגזר הפרטירפואה , צבא, בתעשייה :כגון, גובר עם השנים וחולש על מגוון רחב של תחומים

מתמיד בניסיון להפיק תועלת מרובה יותר מרשתות אלו ומאמצים רבים נעשים על מנת לשפר את אורך חיי

גילוי מוקדם של צווארי בקבוק תקשורתיים ברשתות הסנסורים וטיפול הולם הם אבן דרך משמעותית . הרשת

במספר ההודעות הנזרקות ואי לכך לעלייה במספר צווארי הבקבוק גורמים לעלייה. בדרך להשגת מטרה זאת

ולעלייה בזמן (throughput)כמו כן צווארי הבקבוק גורמים לירידה בתפוקה , השליחות החוזרות ברשת

יכול להיווצר מצב שחלקים , במידה וסנסור השייך לצוואר הבקבוק מושבת, בנוסף לכך(. latency)התגובה

 . שיגרום לחלוקה של הרשת למספר קטעים מה, מהרשת ייהפכו לבלתי נגישים

בעלי , נדומלי של החיישנים המרכיבים אותןאשר מאופיינת על ידי פיזור ר, מבוזרותברשתות סנסורים

גילוי צווארי הבקבוק הוא צורך קריטי לשמירת פעילותה , אספקת חשמל נמוכה ומוגבלת המועדים לכישלון

 .התקינה של הרשת

לגילוי צווארי בקבוק באינטרנט ואף הכלים החדשים יותר לגילוי צווארי בקבוק הכלים הקיימים כיום

. אינם שמים דגש על מספר ההודעות הנשלחות בתהליך, ברשתות סנסורים אלחוטיות שאני נתקלתי בהם

שתשדורת ברשת לאור העובדה , למרות שזו תכונה חשובה ברשתות אשר אספקת החשמל שלהם מוגבלת

 MSP430אחד בחיישן מסוג תישידור ב, לדוגמא. ולה יקרה במונחים של צריכת אנרגיההיא פע אלחוטית

 -מטר שוות ערך לכ 744ולטווח של עד , (CPU)פעולות מעבד 8,444 -שוות ערך לכ, מטר 569לטווח

 .פעולות מעבד 76,444

לאחר . עם התאמות מסוימות, Wang [1]עבודה זו מתבססת על האלגוריתם למציאת גבולות הרשת שפרסם

היא מציגה מספר , לבסוף. של הרשת(medial axis)היא מציעה דרך חדשה לחישוב הציר התיכון , מכן

 .שיטות למציאת צווארי הבקבוק ברשת המתבססות על ממצאים אלו

וכמות ההודעות הנשלחות בתהליך חסום על ידי O(n) -תם חסום ביזמן הריצה של האלגור

max(O(nlog(n)) , O(m
2`

 .מייצג את מספר האיברים המרכיבים את ציר התיכון mכאשר , ((

