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Abstract

The canonical problem of solving a system of linear equations arises in numerous contexts in
information theory, communication theory, and related fields. Gaussian belief propagation (GaBP)
has been shown to solve this problem in a manner that does not involve direct matrix inversion.
The iterative nature of GaBP allows for a distributed message-passing implementation of the
solution algorithm. Non-parametric Belief Propagation (NBP) is an extension of GaBP that
allows the prior distributions to be Gaussian mixtures instead of single Gaussian, which enables
approximating many complex distributions. The importance of these prior distribution is in solving
systems of linear equations with constraints on the values of x, the prior approximation is a very
intuitive yet accurate approximation.

We first address the problem of Low Density Lattice Codes (LDLC) decoding algorithm, with
bipolar constraints on x, and equal probability for x = 1,−1. In general the LDLC problem has
integer contraints on x, and the NBP solver supports this as well. We show that an NBP based
solver allows for low Symbol Error Rate (SER), especially when working close to channel capacity,
compared to present solvers. We also give some general convergence conditions borrowed from the
world of GaBP, and while no proof of convergence has been found to date we report preliminary
results which show good experimental convergence.

The Fault Detection problem further expands our formulation to allow for different probability
of x = 1, x = −1, resulting in a closely related problem. We again show the NBP based solver
has better results than current state of the art algorithms from several related fields. We also
compare a solution via NBP based on 3 different prior distributions, and show that best results
are achieved when we incorporate our full knowledge of the constraints on the solution into the
prior distribution.
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Chapter 1

Introduction

1.1 Introduction

Solving a linear system of equations Ax = b is one of the most fundamental problems in algebra,
with countless applications in the mathematical sciences and engineering as well as social sciences.
Non-parametric Belief Propagation (NBP) is an iterative message passing algorithm that we
propose to link to the solution of this problem under constraints on x, without direct matrix
inversion. In this thesis, we show how NBP can be used with two different prior distributions to
solve two different problems with similar formulation and establish that the more prior knowledge
is incorporated into the NBP prior the better it will approximate the true x solution.

1.2 Material Covered in this Thesis

This thesis is divided into two parts. The first part discusses the solution of the LDLC decoding
problem via NBP covers the following paper: [1]. The second part discusses the solution of the
Fault Detection problem via NBP, and the importance of the different priors, and was covered in
the following paper: [2].

Before we go on with the applications, we will survey some of the related works, focusing on
factor graphs and GaBP as the base and NBP as a relaxation of the original GaBP algorithm.
We will also survey recent work related to our two problems LDLC and FD, and current solutions
to these problem.

1



1.3. RELATED WORK CHAPTER 1. INTRODUCTION

1.3 Related work

1.3.1 Gaussian Belief Propagation

Factor graphs

Factor graphs provide a convenient mechanism for representing structure among random variables.
Suppose a function or distribution p(x) defined on a large set of variables x = [x1, . . . , xn] factors
into a collection of smaller functions p(x) =

∏

s fs(xs), where each xs is a vector composed of
a smaller subset of the xi. We represent this factorization as a bipartite graph with “factor
nodes” fs and “variable nodes” xi, where the neighbors Γs of fs are the variables in xs, and the
neighbors of xi are the factor nodes which have xi as an argument (fs such that xi in xs). For
compactness, we use subscripts s, t to indicate factor nodes and i, j to indicate variable nodes,
and will use x and xs to indicate sets of variables, typically formed into a vector whose entries
are the variables xi which are in the set.

The belief propagation (BP) or sum-product algorithm [3] is a popular technique for estimating
the marginal probabilities of each of the variables xi. BP follows a message-passing formulation,
in which at each iteration τ , every variable passes a message (denoted M τ

is) to its neighboring
factors, and factors to their neighboring variables. These messages are given by the general form,

M τ+1
is (xi) = fi(xi)

∏

t∈Γi\s

M τ
ti(xi) , M τ+1

si (xi) =

∫

xs\xi

fs(xs)
∏

j∈Γs\i

M τ
js(xj) . (1.1)

Here we have included a “local factor” fi(xi) for each variable, to better parallel our development
in the sequel. When the variables xi take on only a finite number of values, the messages
may be represented as vectors; the resulting algorithm has proven effective in many coding
applications including low-density parity check (LDPC) codes [4]. In keeping with our focus
on continuous-alphabet codes, however, we will focus on implementations for continuous-valued
random variables.

Gaussian Belief Propagation

When the joint distribution p(x) is Gaussian, p(x) ∝ exp{−1

2
xTJx + hTx}, the BP messages

may also be compactly represented in the same form. Here we use the “information form”
of the Gaussian distribution, N (x;µ,Σ) = N−1(h, J) where J = Σ−1 and h = Jµ. In this
case, the distribution’s factors can always be written in a pairwise form, so that each function
involves at most two variables xi, xj , with fij(xi, xj) = exp{−Jijxixj}, j 6= i, and fi(xi) =
exp{−1

2
Jiix

2
i + hixi}.

Gaussian BP (GaBP) then has messages that are also conveniently represented as information-
form Gaussian distributions. If s refers to factor fij , we have

M τ+1
is (xi) = N−1(βi\j , αi\j) , αi\j = Jii +

∑

k∈Γi\j

αki , βi\j = hi +
∑

k∈Γi\j

βki , (1.2)

M τ+1
sj (xj) = N−1(βij, αij) , αij = −J2

ijα
−1
i\j , βij = −Jijα

−1
i\jβi\j . (1.3)

2
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From the α and β values we can compute the estimated marginal distributions, which are Gaussian
with mean µ̂i = K̂i(hi +

∑

k∈Γi
βki) and variance K̂i = (Jii +

∑

k∈Γi
αki)

−1. It is known that

if GaBP converges, it results in the exact MAP estimate x∗, although the variance estimates K̂i

computed by GaBP are only approximations to the correct variances [5].

The GaBP algorithm is developed in full, thoroughly discussed and convergence is proven in
the following papers: [6, 7, 8, 9, 10, 11].

Nonparametric belief propagation

In more general continuous-valued systems, the messages do not have a simple closed form and
must be approximated. Nonparametric belief propagation, or NBP, extends the popular class of
particle filtering algorithms, which assume variables are related by a Markov chain, to general
graphs. In NBP, messages are represented by collections of weighted samples, smoothed by a
Gaussian shape – in other words, Gaussian mixtures.

NBP follows the same message update structure of (1.1). Notably, when the factors are
all either Gaussian or mixtures of Gaussians, the messages will remain mixtures of Gaussians
as well, since the product or marginalization of any mixture of Gaussians is also a mixture of
Gaussians [12]. However, the product of d Gaussian mixtures, each with N components, produces
a mixture of Nd components; thus every message product creates an exponential increase in the
size of the mixture. For this reason, one must approximate the mixture in some way. NBP
typically relies on a stochastic sampling process to preserve only high-likelihood components, and
a number of sampling algorithms have been designed to ensure that this process is as efficient as
possible [13, 14, 15]. One may also apply various deterministic algorithms to reduce the number
of Gaussian mixture components [16]; for example, in [17,18], an O(N) greedy algorithm (where
N is the number of components before reduction) is used to trade off representation size with
approximation error under various measures.

1.3.2 Low Density Lattice Codes

Lattices and low-density lattice codes

An n-dimensional lattice Λ is defined by a generator matrix G of size n× n. The lattice consists
of the discrete set of points x = (x1, x2, ..., xn) ∈ Rn with x = Gb, where b ∈ Zn is the set of
all possible integer vectors.

A low-density lattice code (LDLC) is a lattice with a non-singular generator matrix G, for
which H = G−1 is sparse. It is convenient to assume that det(H) = 1/det(G) = 1. An
(n, d) regular LDLC code has an H matrix with constant row and column degree d. In a latin
square LDLC, the values of the d non-zero coefficients in each row and each column are some
permutation of the values h1, h2, · · · , hd.

We assume a linear channel with additive white Gaussian noise (AWGN). For a vector of
integer-valued information b the transmitted codeword is x = Gb, where G is the LDLC encoding
matrix, and the received observation is y = x + w where w is a vector of i.i.d. AWGN with

3
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diagonal covariance σ2I. The decoding problem is then to estimate b given the observation
vector y; for the AWGN channel, the MMSE estimator is

b∗ = arg min
b∈Zn

||y −Gb||2 . (1.4)

Lattice codes provide a continuous-alphabet encoding procedure, in which integer-valued
information bits are converted to positions in Euclidean space. Motivated by the success of low-
density parity check (LDPC) codes [19], recent work by Sommer et al. [20] presented low density
lattice codes (LDLC). Like LDPC codes, a LDLC code has a sparse decoding matrix which can
be decoded efficiently using an iterative message-passing algorithm defined over a factor graph.
In the original paper, the lattice codes were limited to Latin squares, and some theoretical results
were proven for this special case.

LDLC decoder

The LDLC decoding algorithm is also described as a message-passing algorithm defined on a
factor graph [3], whose factors represent the information and constraints on x arising from our
knowledge of y and the fact that b is integer-valued. Here, we rewrite the LDLC decoder update
rules in the more standard graphical models notation. The factor graph used is a bipartite graph
with variables nodes {xi}, representing each element of the vector x, and factor nodes {fi, gs}
corresponding to functions

fi(xi) = N (xi; yi, σ
2) , gs(xs) =

{

1 Hsx ∈ Z

0 otherwise
,

where Hs is the sth row of the decoding matrix H . Each variable node xi is connected to those
factors for which it is an argument; since H is sparse, Hs has few non-zero entries, making the
resulting factor graph sparse as well. Notice that unlike the construction of [20], this formulation
does not require that H be square, and it may have arbitrary entries, rather than being restricted
to a Latin square construction. Sparsity is preferred, both for computational efficiency and
because belief propagation is typically more well behaved on sparse systems with sufficiently
long cycles [3]. We can now directly derive the belief propagation update equations as Gaussian
mixture distributions, corresponding to an instance of the NBP algorithm. We suppress the
iteration number τ to reduce clutter.

Variable to factor messages. Suppose that our factor to variable messages Msi(xi) are each
described by a Gaussian mixture distribution, which we will write in both the moment and infor-
mation form:

Msi(xi) =
∑

l

wl
siN (xi ; m

l
si, ν

l
si) =

∑

l

wl
siN−1(xi ; β

l
si, α

l
si) . (1.5)

Then, the variable to factor message Mis(xs) is given by

Mis(xs) =
∑

l

wl
isN (xs ; ml

is, ν
l
is) =

∑

l

wl

isN−1(xs ; βl
is, α

l
is) , (1.6)

4
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where l refers to a vector of indices [ls] for each neighbor s,

αl

is = σ−2 +
∑

t∈Γi\s

αlt
ti , βl

it = yiσ
−2 +

∑

t∈Γi\s

βls
ti , wl

it =
N (x∗; yi, σ

2)
∏

wls
siN−1(x∗; βls

si, α
ls
si)

N−1(x∗; βl

it, α
l

it)
.

(1.7)

The moment parameters are then given by νl

it = (αl

it)
−1, ml

it = βl

it(α
l

it)
−1. The value x∗ is any

arbitrarily chosen point, often taken to be the mean ml

it for numerical reasons.

Factor to variable messages. Assume that the incoming messages are of the form (1.6), and
note that the factor gs(·) can be rewritten in a summation form, gs(xs) =

∑

bs
δ(Hsx = bs),

which includes all possible integer values bs. If we condition on the value of both the integer bs and
the indices of the incoming messages, again formed into a vector l = [lj ] with an element for each
variable j, we can see that gs enforces the linear equality Hsixi = bs −

∑

Hsjxj . Using standard
Gaussian identities in the moment parameterization and summing over all possible bs ∈ Z and l,
we obtain

Msi(xi) =
∑

bs

∑

l

wl

siN (xi ; m
l

si, ν
l

si) =
∑

bs

∑

l

wl

siN−1(xi ; β
l

si, α
l

si) , (1.8)

where

νl

si = H−2
si





∑

j∈Γs\i

H2
jsν

lj
js



 , ml

si = H−1
si



−bs +
∑

j∈Γs\i

Hjsm
lj
js



 , wl

si =
∏

j∈Γs\i

w
lj
js , (1.9)

and the information parameters are given by αl

si = (νl

si)
−1 and βl

si = ml

si(ν
l

si)
−1.

Notice that (1.8) matches the initial assumption of a Gaussian mixture given in (1.5). At each
iteration, the exact messages remain mixtures of Gaussians, and the algorithm iteslf corresponds to
an instance of NBP. As in any NBP implementation, we also see that the number of components
is increasing at each iteration and must eventually approximate the messages using some finite
number of components. To date the work on LDLC decoders has focused on deterministic
approximations [20, 21, 22, 23], often greedy in nature. However, the existing literature on NBP
contains a large number of deterministic and stochastic approximation algorithms [13,17,16,14,
15]. These algorithms can use spatial data structures such as KD-Trees to improve efficiency and
avoid the pitfalls that come with greedy optimization.

The vector xs is defined to include only those entries of x for which Hs is non-zero. The
LDLC message update rules are then given as:

Variable nodes Each message has the form of a mixture of n Gaussians,

M τ
is(xi) =

n
∑

k=1

ckN (xi ; m
τ,k
is , v

τ,k
is ) ,

5
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where ck > 0 are the relative weights, with
∑

k ck = 1, and mτ,k
is and vτ,k

is are the mean and
variance of the kth mixture component. The variable-to-factor messages are initialized to be
Gaussian, with

M0
is(xi) = N (xi; yi, σ

2) . (1.10)

In subsequent iterations, these messages will also be Gaussian mixtures, given by

1

vτ,k
is

= 1
σ2 +

∑

t∈Γi\s

1

vτ−1,k
ti

,
mτ,k

is

vτ,k
is

= yi

σ2 +
∑

t∈Γi\s

mτ−1,k
ti

vτ−1,k
ti

. (1.11)

Factor nodes The factor-to-variable message

M τ
si(xi) =

∞
∑

b=−∞

Q(xi) (1.12)

Q(xi) =
∑

k

ckN (xi ; µsi(b), v
τ,k
si ) (1.13)

where

vsi = H2
si(

∑

k∈Γs\i

H2
ksvks)

−1 . µsi(b)vsi = H−1
si (b−

∑

k∈Γs\i

Hskmks) , (1.14)

Estimating the codewords. The original codeword x can be estimated using its belief, an
approximation to its marginal distribution given the constraints and observations:

Bi(xi) = fi(xi)
∏

s∈Γi

Msi(xi) . (1.15)

The value of each xi can then be estimated as either the mean or mode of the belief, e.g.,
x∗i = arg maxBi(xi), and the integer-valued information vector estimated as b∗ = round(Hx∗).

1.3.3 Fault Detection

Fault detection problems arise in most computer based engineering systems. Examples include
aerospace (e.g. , jet engine health monitoring [24, 25]), industrial process control [26], auto-
motive [27], telecommunications and networking [28, 29], computer systems [30], circuit fault
identification [31], and many others.

In most papers in the literature it is assumed that faults affect measurements in an additive
way. In fact there is a whole body of research devoted to optimal signature matrix design [32,33].
A number of publications are concerned with the problem of fault identification in linear dynamical
systems for both parametric [25] and binary faults [34, 35]. A number of heuristics have been
proposed to tackle this problem, including variations of least-squares [25] and methods based on
Kalman filtering [34, 24]. For some general references on this kind of work see [36, 37, 38].

6
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The problem of fault identification with binary measurements has been extensively studied
by the computer science community. The main references in this work are [39, 40], in which
this problem is posed as a logical constraint satisfaction problem and a number of heuristics are
proposed for solving it. More recent references on this type of problem are [41, 42], in which
the authors formulate this problem as a minimum set cover problem on a graph, which they
approximately solve using a method based on Lagrangian relaxation.

The idea of using convex relaxation as the basis for a heuristic for solving a combinatorial
problem is quite old. Some recent examples include compressed sensing [43], sparse regressor
selection [44], sparse signal detection [45], and sparse decoding [46]. The fault estimation problem
is (mathematically) closely related to several detection problems arising in communications. In
multi-user detection in code division multiple access (CDMA) systems, [47, 48, 6] the received
signal plays the role of the measurements, and the transmitted bit pattern plays the role of the
fault pattern; the goal is to estimate the transmitted bit pattern. (One important difference is
that in the multi-user detection problem, each bit typically has an equal probability of being 0
or 1, whereas in fault detection, the prior probabilities that a bit is 1 is typically much lower).
As has been pointed out in the literature, a good approach here is to solve a relaxed version
of the resulting combinatorial problem. For example in [49, 50] the authors propose a semi
definite programming (SDP) relaxation of the resulting mixed integer quadratic program. The
performance of this method is theoretically analyzed in [51], while the authors of [52] perform
an extensive experimental comparison of this SDP relaxation with various other heuristics. The
most related paper to this work is the work of Zymnis et al. presented in [53]. Zymnis proposes
an efficient Newton’s method [54, §9.5] for solving the fault identification problem. The method
can scale to large problems, and produces fault pattern estimation results of equal quality.

We note that several other works have proposed to use belief propagation for computing
inference in related problems [20,21,55]. Those algorithms use a factor graph formulation where
the messages sent are mixtures of Gaussians (using either parametric form or quantization).
[20, 21] performs decoding of Low Density Lattice Codes (LDLC), [55] proposes to utilize belief
propagation in the compressive sensing domain.

7



Chapter 2

LDLC

The non-parametric belief propagation (NBP) algorithm is an efficient method for approximated
inference on continuous graphical models. The NBP algorithm was originally introduced in [12],
but has recently been rediscovered independently in several domains, among them compressive
sensing [55,56] and low density lattice decoding [20], demonstrating very good empirical perfor-
mance in these systems.

In this chapter, we investigate the theoretical relations between the LDLC decoder and belief
propagation, and show it is an instance of the NBP algorithm. This understanding has both
theoretical and practical consequences. From the theory point of view we provide a cleaner and
more standard derivation of the LDLC update rules, from the graphical models perspective. From
the practical side we propose to use the considerable body of research that exists in the NBP
domain to allow construction of efficient decoders.

We further propose a new family of LDLC codes as well as a new LDLC decoder based on
the NBP algorithm . By utilizing sparse generator matrices rather than the sparse parity check
matrices used in the original LDLC work, we can obtain a more efficient encoder and decoder. We
introduce the theoretical foundations which are the basis of our new decoder and give preliminary
experimental results which show our decoder has comparable performance to the LDLC decoder.

The structure of this chapter is as follows. Section 2.1 rederive the original LDLC algorithm
using standard graphical models terminology, and shows it is an instance of the NBP algorithm.
Section 2.2 presents a new family of LDLC codes as well as our novel decoder. We further discuss
the relation to the GaBP algorithm. In Section 2.3 we discuss convergence and give more general
sufficient conditions for convergence, under the same assumptions used in the original LDLC work
[20]. Section 2.4 brings preliminary experimental results of evaluating our NBP decoder vs. the
LDLC decoder. We conclude in Section ??.

2.1 A Pairwise Construction of the LDLC decoder

Before introducing our novel lattice code construction, we demonstrate that the LDLC decoder
can be equivalently constructed using a pairwise graphical model. This construction will have

8



CHAPTER 2. LDLC 2.1. A PAIRWISE CONSTRUCTION OF THE LDLC DECODER

important consequences when relating the LDLC decoder to Gaussian belief propagation (Sec-
tion 2.2.2) and understanding convergence properties (Section 2.3).

Theorem 1. The LDLC decoder algorithm is an instance of the NBP algorithm executed on
the following pairwise graphical model. Denote the number LDLC variable nodes as n and
the number of check nodes as k1. We construct a new graphical model with n + k variables,
X = (x1, · · · , xn+k) as follows. To match the LDLC notation we use the index letters i, j, .. to
denote variables 1, ..., n and the letters s, t, ... to denote new variables n+ 1, ..., n+ k which will
take the place of the check node factors in the original formulation. We further define the self
and edge potentials:

ψi(xi) ∝ N (xi; yi, σ
2) , ψs(xs) ,

∞
∑

bs=−∞

N−1(xs; bs, 0) , ψi,s(xi, xs) , exp(−xiHisxs) .

(2.1)

Proof. The proof is constructed by substituting the edge and self potentials (2.7) into the belief
propagation update rules. Since we are using a pairwise graphical model, we do not have two
update rules from variable to factors and from factors to variables. However, to recover the LDLC
update rules, we make the artificial distinction between the variable and factor nodes, where the
nodes xi will be shown to be related to the variable nodes in the LDLC decoder, and the nodes
xs will be shown to be related to the factor nodes in the LDLC decoder.

LDLC variable to factor nodes We start with the integral-product rule computed in the xi

nodes:

Mis(xs) =

∫

xi

ψ(xi, xs)ψi(xi)
∏

t∈Γi\s

Mti(xi)dxi .

The product of a mixture of Gaussians
∏

t∈Γi\s

Mti(xi) is itself a mixture of Gaussians, where each

component in the output mixture is the product of a single Gaussians selected from each input
mixture Mti(xi).

Lemma 2 (Gaussian product). [11, Claim 10], [20, Claim 2] Given p Gaussians N (m1, v1), · · · ,N (mp, vp)
their product is proportional to a Gaussian N (m̄, v̄) with

v̄−1 =

p
∑

i=1

1

vi
=

p
∑

i=1

αi , m̄ = (

p
∑

i=1

mi/vi)v̄ =

p
∑

i=1

βiv̄.

Proof. Is given in [11, Claim 10].

Using the Gaussian product lemma the ls mixture component in the message from variable
node i to factor node s is a single Gaussian given by

M ls
is (xs) =

∫

xi

ψis(xi, xs)
(

ψi(xi)
∏

t∈Γi\s

M τ
ti(xi)

)

dxi =

1Our construction extends the square parity check matrix assumption to the general case.

9
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∫

xi

ψis(xi, xs)
(

ψi(xi)exp{−1
2
x2

i (
∑

t∈Γi\s

αls
ti) + xi(

∑

t∈Γi\s

βls
ti )}

)

dxi =

∫

xi

ψis(xi, xs)
(

exp(−1
2
x2σ−2 + xiyiσ

−2)exp{−1
2
x2

i (
∑

t∈Γi\s

αls
ti) + xi(

∑

t∈Γi\s

βls
ti )}

)

dxi =

∫

xi

ψis(xi, xs)
(

exp{−1
2
x2

i (σ
−2 +

∑

t∈Γi\s

αls
ti) + xi(yiσ

−2 +
∑

t∈Γi\s

βls
ti ) }

)

dxi .

We got a formulation which is equivalent to LDLC variable nodes update rule given in (1.7). Now
we use the following lemma for computing the integral:

Lemma 3 (Gaussian integral). Given a (1D) Gaussian φi(xi) ∝ N (xi;m, v), the integral
∫

xi

ψi,s(xi, xs)φi(xi)dxi , where is a (2D) Gaussian ψi,s(xi, xs) , exp(− xiHisxs) is proportional

to a (1D) Gaussian N−1(Hism,H
2
isv).

Proof.
∫

xi

ψij(xi, xj)φi(xi)dxi ∝
∫

xi

exp (−xiHisxs)exp{−1
2
(xi −m)2/v}dxi =

=

∫

xi

exp
(

(−1

2
x2

i /v) + (m/v −Hisxs)xi

)

dxi ∝ exp ((m/v −Hisxs)
2/(−2

v
)) ,

where the last transition was obtained by using the Gaussian integral:

∞
∫

−∞

exp (−ax2 + bx)dx =
√

π/a exp (b2/4a).

exp ((m/v −Hisxs)
2/(−2

v
)) = exp{−1

2
(v(m/v −Hisxs)

2)} =

= exp{−1
2
(H2

isv)x
2
s + (Hism)xs − 1

2
v(m/v)2} ∝ exp{−1

2
(H2

isv)x
2
s + (Hism)xs} .

Using the results of Lemma 3 we get that the sent message between variable node to a factor
node is a mixture of Gaussians, where each Gaussian component k is given by

M l

is(xs) = N−1(xs;Hism
ls
is, H

2
isv

ls
is) .

Note that in the LDLC terminology the integral operation as defined in Lemma 3 is called
stretching. In the LDLC algorithm, the stretching is computed by the factor node as it receives
the message from the variable node. In NBP, the integral operation is computed at the variable
nodes.

10
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LDLC Factors to variable nodes We start again with the BP integral-product rule and handle
the xs variables computed at the factor nodes.

Msi(xi) =

∫

xs

ψis(xi, xs)ψs(xs)
∏

j∈Γs\i

Mjs(xj) dxs.

Note that the product
∏

j∈Γs\i

M τ
js(xj) is a mixture of Gaussians, where the k-th component is

computed by selecting a single Gaussian from each message M τ
js from the set j ∈ Γs \ i and

applying the product lemma (Lemma 2). We get

∫

xs

ψis(xi, xs)
(

ψs(xs)exp{−1

2
x2

s(
∑

k∈Γs\i

H2
ksv

li
ks) + xs(

∑

k∈Γs\i

Hksm
li
ks) }

)

dxs. (2.2)

We continue by computing the product with the self potential ψs(xs) to get

=

∫

xs

ψis(xi, xs)
(

∞
∑

bs=−∞

exp(bsxs)exp{−1
2
x2

s(
∑

k∈Γs\i

H2
ksv

li
ks) + xs(

∑

k∈Γs\i

Hksm
li
ks) }

)

dxs =

=
∞
∑

bs=−∞

∫

xs

ψis(xi, xs)
(

exp(bsxs)exp{−1
2
x2

s(
∑

k∈Γs\i

H2
ksv

li
ks) + xs(

∑

k∈Γs\i

Hksm
li
ks) }

)

dxs =

=

∞
∑

bs=−∞

∫

xs

ψis(xi, xs)
(

exp{−1
2
x2

s(
∑

k∈Γs\i

H2
ksv

li
ks) + xs(bs +

∑

k∈Γs\i

Hksm
li
ks) }

)

dxs =

=

−∞
∑

bs=∞

∫

xs

ψis(xi, xs)
(

exp{−1
2
x2

s(
∑

k∈Γs\i

H2
ksv

li
ks) + xs(−bs +

∑

k∈Γs\i

Hksm
li
ks) }

)

dxs .

Finally we use Lemma 3 to compute the integral and get

=

−∞
∑

bs=∞

exp{−1
2
x2

sH
2
si(

∑

k∈Γs\i

H2
ksv

li
ks)

−1 + xsHsi(
∑

k∈Γs\i

H2
ksv

li
ks)

−1(−bs +
∑

k∈Γs\i

Hksm
li
ks) }dxs .

It is easy to verify this formulation is identical to the LDLC update rules (1.9).

2.2 Using Sparse Generator Matrices

We propose a new family of LDLC codes where the generator matrix G is sparse, in contrast
to the original LDLC codes where the parity check matrix H is sparse. Table 2.1 outlines the
properties of our proposed decoder. Our decoder is designed to be more efficient than the original
LDLC decoder, since as we will soon show, both encoding, decoding and initialization operations
are more efficient in the NBP decoder. We are currently in the process of fully evaluating our
decoder performance relative to the LDLC decoder. Initial results are reported in Section VI. Our
decoder is available for download on [57].

11
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Figure 2.1: The approximating function grelax
s (x) for the binary case.

2.2.1 The NBP decoder

We use an undirected bipartite graph, with variables nodes {bi}, representing each element of
the vector b, and observation nodes {zi} for each element of the observation vector y. We define
the self potentials ψi(zi) and ψs(bs) as follows:

ψi(zi) ∝ N (zi; yi, σ
2) , ψs(bs) =

{

1 bs ∈ Z

0 otherwise
, (2.3)

and the edge potentials:
ψi,s(zi, bs) , exp(−1

2
ziGisxs) .

Each variable node bs is connected to the observation nodes as defined by the encoding matrix
G. Since G is sparse, the resulting bipartite graph sparse as well. As with LDPC decoders [4],
the belief propagation or sum-product algorithm [58,3] provides a powerful approximate decoding
scheme.

For computing the MAP assignment of the transmitted vector b using non-parametric belief
propagation we perform the following relaxation, which is one of the main novel contributions of
this paper. Recall that in the original problem, b are only allowed to be integers. We relax the
function ψs(xs) from a delta function to a mixture of Gaussians centered around integers.

ψrelax
s (bs) ∝

∑

i∈Z

N (i, v) .

The variance parameter v controls the approximation quality, as v → 0 the approximation quality
is higher. Figure 2 plots an example relaxation of ψi(bs) in the binary case. We have defined
the self and edge potentials which are the input to the NBP algorithm. Now it is possible to run
the NBP algorithm using (1.1) and get an approximate MAP solution to (1.4). The derivation
of the NBP decoder update rules is similar to the one done for the LDLC decoder, thus omitted.
However, there are several important differences that should be addressed. We start by analyzing
the algorithm efficiency.

We assume that the input to our decoder is the sparse matrix G, there is no need in computing
the encoding matrix G = H−1 as done in the LDLC decoder. Naively this initialization takes

12
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Algorithm LDLC NBP

Initialization operation G = H−1 None
Initialization cost O(n3) -

Encoding operation Gb Gb
Encoding cost O(n2) O(nd), d≪ n

Cost per node per iteration O(q log(q)d) O(qd)
Post run operation Hx None

Post run cost O(nd) -

Table 2.1: Comparison of LDLC decoder vs. NBP decoder

Algorithm LDLC decoder NBP decoder

Update rules Two: factor to variables and vice versa One
Sparsity assumption Decoding matrix H Encoding matrix G
Algorithm derivation Custom Standard NBP

Graphical model Factor graph Pairwise potentials
Related Operations Stretch/Unstretch Integral

Convolution product
periodic extension product

Table 2.2: Inheret differences between LDLC and NBP decoders

O(n3) cost. The encoding in our scheme is done as in LDLC by computing the multiplication
Gb. However, since G is sparse in our case, encoding cost is O(nd) where d << n is the average
number of non-zeros entries on each row. Encoding in the LDLC method is done in O(n2) since
even if H is sparse, G is typically dense. After convergence, the LDLC decoder multiplies by the
matrix H and rounds the result to get b. This operation costs O(nd) where d is the average
number of non-zero entries in H . In contrast, in the NBP decoder, b is computed directly in the
variable nodes.

In addition to efficiency, there are several inherent differences between the two algorithms.
Summary of the differences is given in Table 2.2. First, we use a standard formulation of BP
using pairwise potentials form, which means there is a single update rule, and not two update
rules from left to right and right to left. This can potentially allow more efficient implementations,
since the LDLC decoder can be implemented using quantization, such that the convolution is
computed in the fft domain. In our framework, there is no convolution, and the product using
quantization is computed using elementwise product. Second, our formulation is different since
we use different self potentials. The self potentials are incorporated into the computation via the
product rule of the integral-product algorithm. Our self potentials perform operations which are
equivalent in the LDLC terminology to the convolution and periodic extension operation. The
integral computed in the NBP decoder is related to the stretch/unstretch operation of the LDLC
decoder.

13
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2.2.2 The relation of the NBP decoder to GaBP

In this section we show that simplified version of the NBP decoder coincides with the GaBP
algorithm. The simplified version is obtained, when instead of using our proposed Gaussian
mixture prior, we initialize the NBP algorithm with a prior composed of a single Gaussian.

Theorem 4. By initializing ψs(bs) ∼ N (0, 1) to be a (single) Gaussian the NBP decoder update
rules are identical to update rules of the GaBP algorithm.

Lemma 5. By initializing ψs(xs) to be a (single) Gaussian the messages of the NBP decoder are
single Gaussians.

Proof. Assume both the self potentials ψs(bs), ψi(zi) are initialized to a single Gaussian, every
message of the NBP decoder algorithm will remain a Gaussian. This is because the product (1.2)
of single Gaussians is a single Gaussian, the integral and (1.3) of single Gaussians produce a single
Gaussian as well.

Now we are able to prove Theorem 4:

Proof. We start writing the update rules of the variable nodes. We initialize the self potentials
of the variable nodes ψi(zi) = N (zi; yi, σ

2) , Now we substitute, using the product lemma and
Lemma 3.

Mis(bs) =

∫

zi

ψi,s(zi, bs)
(

ψi(zi)
∏

t∈Γi\s

Mti(zi)
)

dzi =

∫

zi

ψi,s(zi, bs)
(

exp(−1
2
z2
i σ

−2 + yiziσ
−2)

∏

t∈Γi\s

exp(−1
2
z2
i αti + ziβti)

)

dzi

∫

zi

ψi,s(zi, bs)
(

exp(−1
2
z2
i (σ−2 +

∑

t∈Γi\s

αti) + zi(σ
−2yi +

∑

t∈Γi\s

βti)
)

dzi =

∝ exp
(

− 1
2
z2
iG

2
is(σ

−2 +
∑

t∈Γi\s

αti)
−1 + ziGis(σ

−2 +
∑

t∈Γi\s

αti)
−1(σ−2yi +

∑

t∈Γi\s

βti)
)

. Now we get GaBP update rules by substituting Jii , σ−2, Jis , Gis, hs , σ−2yi :

αis = −J2
isα

−1
i\s = −J2

is(Jii +
∑

t∈Γi\s

αti)
−1, βis = −Jisα

−1
i\sβi\s = −Jis

(

α−1
i\s(hi +

∑

t∈Γi\s

βti)
)

.

(2.4)

We continue expanding

Msi(zi) =

∫

bs

ψi,s(zi, bs)
(

ψs(bs)
∏

k∈Γs\i

M τ
ks(bs)

)

dbs

14
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Similarly using the initializations ψs(bs) = exp{−1

2
b2s}, ψi,s(zi, bs) , exp(−ziGisbs).

∫

bs

ψi,s(zi, bs)
(

exp{−1
2
b2s}

∏

k∈Γs\i

exp(−1
2
b2sαis + bsβks)

)

dbs =

∫

bs

ψi,s(zi, bs)
(

exp{−1
2
b2s(1 +

∑

k∈Γs\i

αis) + bs(
∑

k∈Γs\i

βks)}
)

dbs =

exp{−1
2
b2sG

2
is(1 +

∑

k∈Γs\i

αis)
−1 + bsGis(1 +

∑

k∈Γs\i

αis)
−1(

∑

k∈Γs\i

βks)}

. Now we get GaBP update rules by substituting Jii , 1, Jsi , Gis, hi , 0 :

αsi = −J2
siα

−1
s\i = −J2

si(Jii +
∑

k∈Γs\i

αis)
−1, βsi = −Jsiα

−1
s\iβs\i = −Jsi

(

α−1
s\i(hi +

∑

k∈Γs\i

βks)
)

.

(2.5)

Tying together the results, in the case of a single Gaussian self potential, the NBP decoder is
initialized using the following inverse covariance matrix:

J ,

(

I G
GT diag(σ−2)

)

. We have shown that a simpler version of the NBP decoder, when the self potentials are
initialized to be single Gaussians boils down to GaBP algorithm. It is known [7] that the GaBP
algorithm solves the following least square problem minb∈Rn ‖Gb− y‖ assuming a Gaussian prior
on b, p(b) ∼ N (0, 1), we get the MMSE solution b∗ = (GTG)−1GTy. Note the relation to (1.4).
The difference is that we relax the LDLC decoder assumption that b ∈ Z

n, with b ∈ R
n.

Getting back to the NBP decoder, Figure 2 compares the two different priors used, in the
NBP decoder and in the GaBP algorithm, for the bipolar case where b ∈ {−1, 1}. It is clear that
the Gaussian prior assumption on b is not accurate enough. In the NBP decoder, we relax the
delta function (2.3) to a Gaussian mixture prior composed of mixtures centered around Integers.
Overall, the NBP decoder algorithm can be thought of as an extension of the GaBP algorithm
with more accurate priors.

2.3 Convergence analysis

The behavior of the belief propagation algorithm has been extensively studied in the literature,
resulting in sufficient conditions for convergence in the discrete case [59] and in jointly Gaussian
models [60]. However, little is known about the behavior of BP in more general continuous
systems. The original LDLC paper [20] gives some characterization of its convergence properties
under several simplifying assumptions. Relaxing some of these assumptions and using our pairwise
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Figure 2.2: Comparing GaBP prior to the prior we use in the NBP decoder for the bipolar case
(b ∈ {−1, 1}).

factor formulation, we show that the conditions for GaBP convergence can also be applied to
yield new convergence properties for the LDLC decoder.

The most important assumption made in the LDLC convergence analysis [20] is that the
system converges to a set of “consistent” Gaussians; specifically, that at all iterations τ beyond
some number τ0, only a single integer bs contributes to the Gaussian mixture. Notionally, this
corresponds to the idea that the decoded information values themselves are well resolved, and
the convergence being analyzed is with respect to the transmitted bits xi. Under this (potentially
strong) assumption, sufficient conditions are given for the decoder’s convergence. The authors
also assume that H consists of a Latin square in which each row and column contain some
permutation of the scalar values h1 ≥ . . . ≥ hd, up to an arbitrary sign.

Four conditions are given which should all hold to ensure convergence:

• LDLC-I: det(H) = det(G) = 1.

• LDLC-II: α ≤ 1, where α ,
∑d

i=2
h2

i

h2

1

.

• LDLC-III: The spectral radius of ρ(F ) < 1 where F is a n× n matrix defined by:

Fk,l =

{

hrk

hrl
if k 6= l and there exist a row r of H for which |Hrl| = h1 and Hrk 6= 0

0 otherwise

• LDLC-IV: The spectral radius of ρ(H̃) < 1 where H̃ is derived from H by permuting the
rows such that the h1 elements will be placed on the diagonal, dividing each row by the
appropriate diagonal element (+h1 or −h1), and then nullifying the diagonal.

Using our new results we are now able to provide new convergence conditions for the LDLC
decoder.
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Corollary 6. The convergence of the LDLC decoder depends on the properties of the following
matrix:

J ,

(

0 H
HT diag(1/σ2)

)

. (2.6)

Proof. In Theorem 1 we have shown an equivalence between the LDLC algorithm to NBP ini-
tialized with the following potentials:

ψi(xi) ∝ N (xi; yi, σ
2) , ψs(xs) ,

∞
∑

bs=−∞

N−1(xs; bs, 0) , ψi,s(xi, xs) , exp(xiHisxs) . (2.7)

We have further discussed the relation between the self potential ψs(xs) and the periodic extension
operation. We have also shown in Theorem 4 that if ψs(xs) is a single Gaussian (equivalent to the
assumption of “consistent” behavior), the distribution is jointly Gaussian and rather than NBP
(with Gaussian mixture messages), we obtain GaBP (with Gaussian messages). Convergence of
the GaBP algorithm is dependent on the inverse covariance matrix J and not on the shift vector
h.

Now we are able to construct the appropriate inverse covariance matrix J based on the pairwise
factors given in Theorem 1. The matrix J is a 2 × 2 block matrix, where the check variables xs

are assigned the upper rows and the original variables are assigned the lower rows. The entries
can be read out from the quadratic terms of the potentials (2.7), with the only non-zero entries
corresponding to the pairs (xi, xs) and self potentials (xi, xi).

Based on Corollary 6 we can characterize the convergence of the LDLC decoder, using the
sufficient conditions for convergence of GaBP. Either one of the following two conditions are
sufficient for convergence:

[GaBP-I] (walk-summability [60]) ρ(I − |D−1/2JD−1/2|) < 1 where D , diag(J).

[GaBP-II] (diagonal dominance [5]) J is diagonally dominant (i.e. |Jii| >=
∑

j 6=i |Jij|, ∀i).

A further difficulty arises from the fact that the upper diagonal of (2.6) is zero, which means
that both [GaBP-I,II] fail to hold. There are three possible ways to overcome this.

1. Create an approximation to the original problem by setting the upper left block matrix of
(2.6) to diag(ǫ) where ǫ > 0 is a small constant. The accuracy of the approximation
grows as ǫ is smaller. In case either of [GaBP-I,II] holds on the fixed matrix the “consistent
Gaussians” converge into an approximated solution.

2. In case a permutation on J (2.6) exists where either [GaBPI,II] hold for permuted matrix,
then the “consistent Gaussians” convergence to the correct solution.

3. Use preconditioning to create a new graphical model where the edge potentials are de-
termined by the information matrix HHT , ψi,s(xi, xs) , exp(xi{HHT}isxs) and the self
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potentials of the xi nodes are ψi(xi) , exp{−1

2
x2

iσ
−2 + xi{Hy}i}. The proof of the cor-

rectness of the above construction is given in [47]. The benefit of this preconditioning is
that the main diagonal of HHT is surely non zero. If either [GaBP-I,II] holds on HHT

then “consistent Gaussians” convergence to the correct solution. However, the matrix
HHT may not be sparse anymore, thus we pay in decoder efficiency.

Overall, we have given two sufficient conditions for convergence, under the “consistent Gaussian”
assumption for the means and variances of the LDLC decoder. Our conditions are more general
because of two reasons. First, we present a single sufficient condition instead of four that have
to hold concurrently in the original LDLC work. Second, our convergence analysis does not
assume Latin squares, not even square matrices and does not assume anything about the sparsity
of H . This extends the applicability of the LDLC decoder to other types of codes. Note that
our convergence analysis relates to the mean and variances of the Gaussian mixture messages.
A remaining open problem is the convergence of the amplitudes – the relative heights of the
different consistent Gaussians.

2.4 Experimental results

In this section we report preliminary experimental results of our NBP-based decoder. Our im-
plementation is general and not restricted to the LDLC domain. Specifically, recent work by
Baron et al. [56] had extensively tested our NBP implementation in the context of the related
compressive sensing domain. Our Matlab code is available on the web on [57].

We have used a code lengths of n = 100, n = 1000, where the number of non zeros in
each row and each column is d = 3. The non-zeros entries of the sparse encoding matrix G
were selected randomly out of {−1, 1}. We have used bipolar signaling, b ∈ {−1, 1}. We have
calculated the maximal noise level σ2

max using Poltyrov generalized definition for channel capacity
using unrestricted power assumption [61]. For bipolar signaling σ2

max = 4 n
√

det(G)2/2πe. When
applied to lattices, the generalized capacity implies that there exists a lattice G of high enough
dimension n that enables transmission with arbitrary small error probability, if and only if σ2 <
σ2

max. Figure 2.3 plots SER (symbol error rate) of the NBP decoder vs. the LDLC decoder
for code length n = 100, n = 1000. The x-axis represent the distance from capacity in dB as
calculated using Poltyrov equation. As can be seen, our novel NBP decoder has better SER for
n = 100 for all noise levels. For n = 1000 we have better performance for high noise level, and
comparable performance up to 0.3dB from LDLC for low noise levels. We are currently in the
process of extending our implementation to support code lengths of up n = 100, 000. Initial
performance results are very promising.
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Figure 2.3: NBP vs. LDLC decoder performance
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Chapter 3

Fault Detection

In this chapter we present a novel distributed method for identifying a pattern of faults, given a
set of noisy measurements of a system. The goal is to estimate the fault pattern most likely to
have occurred. An important secondary goal is to identify a (possibly empty) set of other fault
patterns, called the ambiguity group, that explain the measurements almost as well as the most
likely one.

In this work we propose a novel approach, based on the non-parametric belief propagation
algorithm. We propose a novel relaxation of the fault pattern prior using a mixture of Gaussians.
Our solution takes into account both the binary nature of the problem as well as the sparsity
(the prior knowledge about fault probability). As far as we know, this is the first time both
considerations are taken into account in this context. Using an extensive experimental study
we show that our approach has the best performance in detecting correct fault patterns relative
to recent state-of-the-art algorithms. Furthermore, unlike many of the reference algorithms,
our algorithm is distributed and can be applied in sensor networks for performing online fault
identification.

The structure of this Chapter is as follows. Section 3.1 introduces the fault identification
problem in terms of MAP estimation. Section 3.2 presents our novel solution which is based
on the non-parametric belief propagation algorithm. Section 3.3 details some local optimization
procedures for improving the quality of the computed solution. Section 3.4 compares the accuracy
of eight different state-of-the-art methods for solving the fault identification problem, and shows
that our proposed method has the highest accuracy.

3.1 Fault identification problem

In this section we describe the model in detail, and the basic MAP method for estimating the
fault pattern.
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3.1.1 Fault model and prior distribution

We consider a system in which any of the 2n combinations of n potential faults can occur. We
encode a fault pattern, i.e. , a set of faults, as a vector x ∈ {0, 1}n, where xj = 1 means that
fault j has occurred. We assume that faults occur independently, and that fault j occurs with
known probability pj. Thus, the (prior) probability of fault pattern x occurring is

p(x) =
n

∏

j=1

p
xj

j (1 − pj)
1−xj .

The fault pattern x = 0 corresponds to the null hypothesis, the situation in which no faults have
occurred. This occurs with probability p(0) =

∏n
j=1

(1 − pj). The expected number of faults is
∑n

j=1 pj .

3.1.2 Measurement model

We assume that m scalar real measurements, denoted y ∈ Rm, are available. These measure-
ments depend on the fault pattern x in the following way:

y = Ax+ v,

where A ∈ Rm×n is the fault signature matrix and v ∈ Rm is a vector of measurement noises,
this formulation assumes a linear addition of faults.

We assume the fault signature matrix A is known. Its jth column aj ∈ Rm gives the
measurement, if the measurement were linear and there were no noise, when only fault j has
occurred. For this reason aj is called the jth fault signature. Since x is a Boolean vector, Ax
is just the sum of the fault signatures corresponding to the faults that have occurred. So our
real assumption here is only that, without measurement noise and nonlinearity, the measurements
would be additive in the faults.

We assume the measurement noise v ∈ Rm is random, with vi independent of each other and
x, each with N (0, σ2) distribution.

3.1.3 Posterior probability

Let p(x|y) denote the (posterior) probability of fault pattern x, given the measurement y. We
define the loss of x, given the measurement y, as the log of the ratio of the posterior probability
of the null hypothesis to the posterior probability of x, i.e. ,

ly(x) = log
p(0|y)
p(x|y) = log

(

p(0)p(y|0)

p(x)p(y|x)

)

= log p(0) − log p(x) + log p(y|0) − log p(y|x)

= λTx+
m

∑

i=1

(log p(yi|0) − log p(yi|x)) ,
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where λj = log((1 − pj)/pj). In these expressions we have to interpret p(yi|x) and p(yi|0)
carefully. When y is a linear measurement, these are conditional densities; when yi takes on only
a finite number of values, as occurs with quantized measurements, these are actual probabilities.

The loss tells us how improbable it is that fault x has occurred, given the measurement y,
compared to the null hypothesis x = 0. If ly(x) = 0, the fault pattern x is just as probable as
the null hypothesis x = 0. If ly(x) = −1, the fault pattern x is e times more probable than the
null hypothesis.

We now work out the loss function more explicitly. Using linear measurements, the conditional
density of yi given x is

p(yi|x) =
1√

2πσ2
exp

(

−(yi − ãT
i x)

2/2σ2
)

,

where ãi is the ith row of A. Therefore we have

ly(x) = λTx+ (1/2σ2)

m
∑

i=1

(−y2
i + (yi − ãT

i x)
2) = λTx+ (1/2σ2)(−‖y‖2 + ‖Ax− y‖2)

= (1/2σ2)xTATAx+ (λ− (1/σ2)ATy)Tx,

which is a convex quadratic function of x.

3.1.4 MAP estimation

To find the fault pattern x with maximum posterior probability (or equivalently, minimum loss
ly(x)) we solve the problem

minimize ly(x)
subject to xj ∈ {0, 1}, j = 1, . . . , n,

(3.1)

with variable x. We have already seen that with linear or quantized measurements, the objective
function is convex. The constraint is that x is a Boolean vector, so a problem like this is sometimes
called a Boolean-convex program or a mixed-integer convex program. When the measurements
are linear, the MAP problem (3.1) is a convex mixed-integer quadratic program (MIQP).

Any solution of the MAP problem (3.1) is a MAP estimate of the fault pattern, i.e. , a
fault pattern that is most probable, given the measurement. It is also very useful to obtain
the ambiguity group, i.e. , the set of fault patterns with loss that is near to the loss of a MAP
estimate. If all other fault patterns have a loss much larger than the MAP estimate (i.e. , the
ambiguity group is empty), we can have high confidence in our estimate. On the other hand, if
several other fault patterns have a loss similar to the MAP loss, they explain the measurement
almost as well as the MAP estimate, and so must be considered possible values of the true fault.
One way to determine the ambiguity group is to find the K fault patterns with least loss, i.e. ,
highest posterior probability. From these ambiguity group candidates, we can form the ambiguity
group by taking only the patterns with loss near to the MAP loss.

The method we present in this paper is, like these methods, a heuristic for solving the MAP
problem (3.1) approximately. Our approach is based on using the Non-parametric belief propa-
gation algorithm for computing an approximate MAP solution.
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3.2 Solution via NBP

In this section we present our main novel contribution. We propose to utilize the non-parametric
belief propagation for solving the fault detection problem. We shift the problem from linear algebra
domain to the probabilistic domain and find the MAP assignment using probabilistic tools. As far
as we know, it is the first time this algorithm is linked to the solution of interior-point methods.

3.2.1 Non-parametric BP overview

Non-parametric belief propagation (NBP) is an inference algorithm for graphical models contain-
ing continuous, possibly non-Gaussian random variables [12]. NBP extends the popular class of
particle filtering algorithms, which assume variables are related by a Markov chain, to general
graphs. Such sample-based representations are particularly useful in high-dimensional spaces,
where discretization becomes computationally difficult. In NBP, messages are represented by col-
lections of weighted samples, smoothed by a Gaussian shape – in other words, Gaussian mixtures.

In the current work, we propose to utilize the NBP algorithm for solving the fault identification
problem. NBP can be easily formulated using a factor graph. NBP proceeds by sending messages
between the nodes of the factor graph, where the message at iteration τ + 1 is a function of the
incoming messages at iteration τ :

M τ+1
is (xi) = fi(xi)

∏

t∈Γi\s

M τ
ti(xi) , (3.2)

M τ+1
si (xi) =

∫

xs

gs(xs)
∏

j∈Γs\i

M τ
js(xj) . (3.3)

where Γi indicates the neighbors of node xi. It is reasonably straightforward to see that, if
initialized to Gaussians or Gaussian mixtures, the messages M will maintain the form of Gaussian
mixture distributions. For compactness, we have abused notation to use indices i, j as shorthand
for variable nodes (xi, xj) and s, t as shorthand for factor nodes (gs, gt). in which case it computes
messages as in (3.2)-(3.3). Note that the number of Gaussian mixtures which result from the
product procedure grows exponentially. For this reason, one must approximate the mixture
product in some way. NBP, relies on a stochastic sampling process to preserve only high-likelihood
components. A number of sampling algorithms have been designed to ensure that this process
is as efficient as possible [13, 14, 15]. These methods avoid incremental products, which have
the potential to discard important components in the early steps, before seeing all the incoming
messages [13].

Deterministic reduction of the Gaussian mixture components has also been applied to NBP.
In [17,18], an O(n) greedy algorithm is employed to trade off the complexity of the representation
(measured in terms of communication cost) with the resulting error under various metrics, where
n is the number of samples drawn before approximation. Other density approximation methods
could just as easily be applied [16].
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Figure 3.1: Factor graph representation of the NBP algorithm. To the right are the variable
nodes which are initialized with the observations as self-potentials (function f). To the left are
the factor nodes (function g) which represent the hidden variables x.

3.2.2 Custom NBP algorithm for solving the FD problem

The non-parametric belief propagation algorithm for solving the fault detection problem is best
described in terms of a factor graph [3], representing the information and constraints on x arising
from our knowledge of y and the fact that x ∈ {0, 1}. Specifically, the factor graph is a bipartite
graph with variables nodes {xi}, representing each element of the hidden vector x, and factor
nodes {fi, gs} corresponding to functions

fi(xi) = N (zi; yi, σ
2) , gs(xs) =

{

1 xs ∈ {0, 1}
0 otherwise

,

where As is the sth row of the fault signature matrix A. Each variable node xi is connected to
those factors for which it is an argument. We assume that A is sparse, As has few non-zero
entries, making the resulting factor graph sparse as well.

Since fi(xi) is Gaussian, corresponding to the observation likelihood (the channel model),
this product (3.2) is also a Gaussian mixture. The integration step is equivalent to a convo-
lution operation with a train of delta functions, which also preserves the form of a Gaussian
mixture model [20]. Typically, the algorithm is initialized using the local observations, so that
M0

is(xi) = fi(xi).

3.2.3 Problem relaxation

The main contribution of this work, is in proposing a new type of relaxation for the boolean
constraints function gx(xs). Unlike the convex relaxations described in the introduction which
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typically limit xs to the domain [0, 1], we relax the function gs(x) to be a mixture of two Gaussians

grelax
s (xs) ∝ wN (0, v) + (1 − w)N (1, v) .

and then we apply the NBP algorithm for computing the MAP assignment. The gaussian
mixture components are centered around the values {0, 1}. The precision parameter v controls
the approximation quality, as v → 0 the approximation quality is higher. w is a weight parameter
which weights the importance of the mixture components. In our setting, it captures our prior
knowledge of fault probabilities. Figure 2 plots an example relaxation of gs(x) where v = 0.1, w =
0.9.

Now, we use the self potentials grelax
s (x), fi(x) as an input to the NBP algorithm. Intuitively,

the benefit in allowing weighted combination in the Gaussian mixtures which form the prior, is
to use the weights for incorporating the prior fault occurrence into the computation. As reported
in Section 3.4, this construction indeed improves the accuracy of the computation.

3.3 Local optimization procedures

Next we describe two useful heuristics proposed in [53] that are used for improving the quality of
the solution: variable threshold rounding and local optimization procedure. Those mechanisms
are deployed using the output of our NBP algorithm. The heuristic purpose is to obtain an integer
solution out of the fractional solution.

3.3.1 Variable threshold rounding

Let z⋆ denote the optimal point in one of the convex relaxations. We refer to z⋆ as a soft decision,
since its components can be strictly between 0 and 1. The next step is to round the soft decision
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z⋆ to obtain a valid Boolean fault pattern (or hard decision). Let θ ∈ (0, 1) and set

x̂ = sgn(z⋆ − θ).

To create x̂, we simply round all entries of z⋆
i smaller than the threshold θ to zero. Thus θ is

a threshold for guessing that a fault has occurred, based on the relaxed MAP solution z⋆. As θ
varies from 0 to 1, this method generates up to n different estimates x̂, as each entry in z falls
below the threshold. We can efficiently find them all by sorting the entries of z⋆, and setting the
values of x̂i to one in the order of increasing z⋆

i .
We evaluate the loss for each of these, and can take as our relaxed MAP fault estimate the

one that has least loss, which we denote by xrmap. We can also take the K fault patterns with
least loss as candidates for the ambiguity group.

3.3.2 Local optimization

Further improvement in our estimate can sometimes be obtained by a local optimization method,
starting from xrmap. We describe here the simplest possible local optimization method. We
initialize x̂ as xrmap. We then cycle through j = 1, . . . , n, at step j replacing x̂j with 1 − x̂j . If
this leads to a reduction in the loss function, we accept the change, and continue. If (as usually is
the case) flipping the jth bit results in an increase in ly, we go on to the next index. We continue
until we have rejected changes in all entries in x̂. (At this point we can be sure that x̂ is 1-OPT,
which means that no change in one entry will improve the loss function.) Numerical experiments
show that this local optimization method often has no effect, which means that xrmap is often
1-OPT. In some cases, however, it can lead to modest reduction of loss, compared to xrmap.

This local optimization method can also be used to improve our candidate ambiguity group.
When we evaluate the loss of a candidate, we insert it in our list of K least loss fault patterns,
whenever it is better than the worst fault pattern in the list.

We refer to the procedure of convex relaxation, followed by variable threshold rounding, and,
possibly, local optimization, as relaxed MAP (RMAP) estimation. It is clearly not necessary to
solve the RMAP to high accuracy, since we round the entries to form our fault pattern estimate.

3.4 Numerical examples

3.4.1 Algorithms for comparison

We have implemented our NBP solver using Matlab, our implementation is available on [57].
Table I lists the different algorithms implemented. Our main algorithm for comparison is the
interior point method (IP) for solving the fault identification problem [53]. We have implemented
two algorithms which are variants of the NBP algorithm, D. Baron et al. compressive sensing BP
algorithm [55, 56] and the low density lattice decoder (LDLC) algorithm [20]. From the related
compressive sensing domain, we have implemented three algorithms: CoSaMP [62], GPSR [63]
and iterative hard thresholding (HardIO) [64]. We have further implemented the semidefinite
programming relaxation algorithm of [49, 50].
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Algorithm Short name Prior on x

NBP Solver NBP binary and sparsity
Newton method [53] IP x ∈ [0, 1]
Compressive sensing Belief Propagation [55, 56] CSBP sparsity
Low density lattice decoder [20] LDLC binary
Iterative signal recovery [53] CoSaMP sparsity
Gradient Projection for Sparse Reconstruction [53] GPSR lasso
Iterative hard thresholding [53] hardIO sparsity
Semidefinite programming [49, 50] SDP x ∈ [0, 1]
All zero hypothesis NON x is constant

Table 3.1: Algorithms for comparison

These algorithms run on one of two different yet equivalent formulations of the problem as
either boolean or bipolar representation. Following, we show that both formulations are equivalent
and therefore all algorithms are comparable:

x ∈ {−1, 1}n ⇔ x = (x+ 1)/2 ∈ {0, 1}n ,

y = Ax+ v ⇔ y = (2A)x+ v = y + A1 ,

min
x

‖Ax− y‖ s.t. x ∈ {−1, 1}n ⇔ min
x

‖(2A)x− y‖ s.t. x ∈ {0, 1}n .

While NBP has the built in flexibility to work with either formulation, the linear approximation
or sparsity assumptions force the other algorithms to use the boolean one. We aim to show that
by incorporating both sparse knowledge and bipolar knowledge of x’s nature into our solution
we achieve better results than by incorporating only sparse knowledge (as done in compressive
sensing) or only bipolar knowledge (as done in low density lattice decoding). The LDLC decoder
utilizes the knowledge of the bipolar nature of x but gives equal probability for x = 1, x = −1.
We will see how this assumption infers a different and indeed wrong prior probability over the
x’s which causes the algorithm to converge to the wrong value of x. The compressive sensing
algorithms (CoSaMP, hardIO) get twice the expected number of faults 2np as input, resulting
in always returning the largest 2np entries of x. However the lack of knowledge on the boolean
nature leads to a wrong solution space, which may lead to a wrong solution being returned, as
we will see in the results.

3.4.2 Experimental results

We consider an example with m = 50 sensors, n = 100 possible faults, and linear measurements.
The elements of A are chosen randomly and independently to be either −1 or 1 with A set to
be sparse with certain non-zero percentage q. We note that entries of A can be chosen to be
normally distributed however this would force us to employ extrapolation techniques which, for
the time being, may affect the runtime and accuracy of the algorithm. In the future, extrapolation
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ent methods used, applying local optimization
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Figure 3.4: Percentage of success of the different
methods used, without local optimization heuris-
tics

techniques targeted at Gaussian extrapolation may help expand this solution with very small effect
on behavior. We set the noise standard deviation to σ = 1. The fault probability is pj = 0.05
for all j, which means that the expected number of faults is 5. The problem would seem to be
quite challenging, since we have only 50 sparse measurements to estimate a fault pattern with
100 possible faults.

We define as a successful reconstruction a reconstruction run of an algorithm resulting in a
solution with equal or better likelihood than the true solution. Empirically, the possibility of such
a solution not being the true solution is experimentally very small for sparsity levels q > 0.2.
As all solutions are based on the principle of returning the most likely candidate as x judging
differently would create bias against good approximation in cases when the most Likely candidate
is not the true solution. The statistical chance of the true solution not being the most likely
candidate can be computed and these cases are not considered as errors by the algorithm.

3.4.3 Results discussion

Fig. 3.3,3.4 shows the success rates of the different methods tested with and without the local
optimization step. The x-axis represent the sparsity level of the fault pattern matrix A, y-axis
present the percentage of successful reconstruction of the correct random faults. For each sparsity
level, the graphs are an average over 200 runs. As shown in both graphs, our NBP based solver
gives the highest accuracy in detecting the faults, especially without the local optimization, and
at very sparse levels of A. The second best algorithm is the interior point method.

Fig. 3.3shows that the success rate of all algorithms with local optimization is very high, this
is an artificial result as local optimization is a powerful tool - as is shown by the ”NON” line,
showing success rate of the all zero hypothesis after local optimization. The local optimization also
introduces a not-increasing affect into the graphs, which results in arbitrary behavior especially
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for algorithms who’s success rate depends on local optimization. For this reason the rest of our
discussion will focus on the no local optimization graph.

In Fig. 3.4 We can distinguish 3 groups of algorithms. First the LDLC algorithm, which has
poor (< 10 percent) success rate for solution. The reason for this is that the prior distribution
that the LDLC prior forces on x values is biased towards an even number of x = 1, x = −1
values, and therefore the solution is a MAP under a different set of probabilities. The second
group is of CS algorithms, and while GPSR and CoSaMP have worse performance none of the
CS algorithms cross over the 90% success rate. This behavior is caused by the fact that these
algorithms also operate with partial knowledge as they are in no way aware of the boolean nature
of x. We can see that CSBP has the best success rate in this group, this is due to the fact that
the CSBP does hold some knowledge over the expected non-zero values. The prior consists of
two Gaussian mixture components centered at 0, and the standard deviation of the wider one
does in fact hold information which is more consistent with boolean solution, A wider Gaussian
would result in worse performance by this CS algorithm as well.

The third group is of NBP, IP and SDP - all targeted at this specific problem and built to
do well for problems both sparse and boolean in nature. The clear out performance of NBP with
the fault detection prior over the other two implementations using NBP offer evidence that by
including both sparse and binary knowledge we get a better performance. We can therefore state
that the closer the NBP prior is to our real knowledge of the nature of x, the MAP approximation
of NBP will also be closer to the real MAP. Within this group we can see note that NBP has
better performance for sparse A as the solutions of NBP are consistently more likely. To better
understand the differences between NBP and IP we need to compare their convergence.

Fig. 3.5 outlines convergence of our NBP solver vs. IP algorithm, in a system with m =
10, n = 15 faults. In this example two faults occurred. The x-axis represent the iteration
number, where positive numbers are IP iterations and negative number are NBP iterations. y-
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axis represent the intermediate value of xt
i, the ith value in round t. Blue colors indicate faults

and red colors indicate non-faulty locations. As clearly shown, after the first iteration NBP solver
has a very good distinction between the faulty and non faulty indices, while the IP method is quite
fluctuating until the 7th iteration. This advantage towards NBP is especially significant where
communications rounds are costly since it requires fewer rounds to converge to a good solution,
and even if it is stopped before it converges we see that through variable threshold rounding we
would have had the correct solution.

Fig. 3.6 uses a 3D plot for demonstrating convergence of the following algorithms: NBP,
CSBP, LDLC and IP in the same setting of m = 10, n = 15, where three faults occurred. Each
of the axis indicates a different fault of the three. It can be seen that in a few iterations the
NBP algorithm converges into the correct solution, while the IP method converges using many
more iterations to an approximate solution. However, the computational cost per iteration of the
NBP algorithm is much higher. NBP converges accurately to the vicinity of the real value of x,
because the prior distribution forces it to converge to the proximity of the fault. CSBP converges
to some positive value, while LDLC is again bound by the binary prior and is therefore the closer
than CSBP.
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Chapter 4

Conclusion and Future Work

We have shown that the LDLC decoder is a variant of the NBP algorithm. This allowed us to
use current research results from the non-parametric belief propagation domain, to extend the
decoder applicability in several directions. First, we have extended algorithm applicability from
Latin squares to full column rank matrices (possibly non-square). Second, We have extended the
LDLC convergence analysis, by discovering simpler conditions for convergence. Third, we have
presented a new family of LDLC which are based on sparse encoding matrices.

We are currently working on an open source implementation of the NBP based decoder, using
an undirected graphical model, including a complete comparison of performance to the LDLC
decoder. Another area of future work is to examine the practical performance of the efficient
Gaussian mixture product sampling algorithms developed in the NBP domain to be applied for
LDLC decoder. As little is known about the convergence of the NBP algorithm, we plan to
continue examining its convergence in different settings. Finally, we plan to investigate the
applicability of the recent convergence fix algorithm [10] for supporting decoding matrices where
the sufficient conditions for convergence do not hold.

We have also shown that by using the non-parametric belief propagation algorithm with the
right priors we are able to get the most accurate solution for the fault identification problem. The
algorithm is distributed and works well when the matrix A is sparse. In a communication network
where the communication is costly our algorithm is preferred since it involves a significantly lower
number of communication rounds.

An area of future work is to investigate the relation between NBP and interior point methods
on different problems.
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