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Abstract

This thesis presents a modular protocol which is aimed to solve the clock
synchronization problem over a semi-synchronized system (also known as a
bounded-delay system). The protocol is a self-stabilizing protocol that can
cope with up to N

2
faulty processors subject to omission faults (where N

is the number of devices in the system). The protocol converges within a
�nite time, bounded by the number of faulty processors in the system. We
show that for such synchronization models this bound is a lower bound for
deterministic protocols. We used a modular methodology in order to divide
the task into three simpler sub-tasks. The modular method simpli�es the
constructed solution and also gives it the ability to easily adjust to other
systems using the same core protocol. This algorithm can be simply applied
as a wrapper around existing distributed protocols that assume a synchro-
nized faultless system, making it highly usable for porting legacy protocols
to modern systems.
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Hebrew Abstract
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Chapter 1

Introduction

Traditionally, distributed computing challenges such as clock synchronization
and fault tolerance are relevant in practice to areas such as internet proto-
cols or sensor networks. These areas are characterized by a relatively high
robustness to faults in the system, and by a reliable timing mechanism (such
as an accurate internal clock and steady communication overhead). Due to
the reliability of the system's components, such systems often assume that no
faults exist and manage to work comparatively smoothly with that assump-
tion. And, due to the reliable timing, such systems can also be assumed to be
fully synchronized (as if there exists an external clock that can be sampled
by every component in the system).

Nowadays, we are seeing a drastic increase in individual computing com-
ponents in a very wide spectrum of devices. Systems may now comprise
many devices, from relatively robust mobile phones to signi�cantly less ro-
bust wearable and embedded devices, which also have signi�cantly weaker
time evaluation capacities and unreliable fault-tolerance mechanisms. Any
protocol assigned to these systems needs to be tolerant of as wide a spec-
trum of faults as possible.

In addition, collaboration in such an enormous system with di�erent com-
ponents makes the synchronization between these components essential and
di�cult. Synchronization is crucial because subsets (or even subsets of sub-
sets) from the computing units have to cooperate with one another in order to
achieve their desired goal. On the other hand, it is far from trivial to achieve
the synchronization property when the private clock that each device holds
is highly unreliable.

When handling large-scale systems, we cannot assume that all (or even
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most) of the components in the system have a common starting point. De-
vices might plug in or out and start their execution with unknown starting
values and with no set schedule. Thus, self-stabilization is also crucial for the
system's correct functioning. Furthermore, modern systems are expected to
recover from every random state within a reasonable �nite time, which is
another important reason why self-stabilization is needed.

This thesis focuses on creating synchronization over a semi-synchronized
system (also known as the bounded-delay model). In distributed systems
many tasks rely on time being common to all components of the system.
Synchronizing a distributed system means establishing a counter that shows
the same value upon access by any component of the system. Algorithms
that achieve this are called synchronizers [1] and have been studied and un-
derstood since the early days of distributed computing [2]. Unfortunately, in
most systems, the time it takes to transmit a message and process it cannot
be precisely predicted or measured and usually varies among the devices in
the system. This makes the synchronized model impractical for real world
systems: apart from inconsistencies in end-to-end message delivery, it also
leads to inconsistent timing of each processor's clock value readings. Fortu-
nately, however, a wide range of scenarios �t the semi-synchronized system
model, in which reasonable bounds for the transmission and processing tim-
ings exist and are known by all the devices in the system.

Another signi�cant obstacle that comes into play in real world distributed
systems is clock drift. Signal propagation speed on computer chips depends
on many uncontrollable factors, such as temperature, variable component
quality, and voltage �uctuations. This means that, although every compo-
nent of the system is equipped with an almost identical clock, di�erent clocks
will exhibit di�erent drifts. We address the issue of clock drift in order to
simulate a synchronized system.

The constructed protocol is a self-stabilizing protocol. Conceptually, a
self-stabilizing model is one in which the system may be unstable and undergo
fairly arbitrary changes for an unknown (arbitrarily long) period. These
changes are thought of as transient errors. From some point, however, tran-
sient errors end and all processes start behaving according to their protocols.
A self-stabilizing algorithm is one in which the system's behavior is guar-
anteed to conform to its intended speci�cation within �nite time following
the last transient error. Formally, self-stabilizing algorithms are modelled as
starting out at an arbitrary initial state (corresponding to arbitrary transient
failures) and following the prescribed protocol, with the goal of converging
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into correct behavior in �nite time. Self-stabilization is a broad sub�eld of
fault-tolerance in distributed systems.

The error model that we address is the omission error model. By `omis-
sion' we mean that every faulty processor in the system might drop messages
addressed to it, or might drop messages that it is supposed to send. This
model �ts a very wide spectrum of errors common in distributed systems, for
example, loss of packets due to anomalies in the network's tra�c, unexpected
failures of links in the system, routing failures, etc. Omission faults are very
common in practice and pose a signi�cant challenge to many protocols. We
present a protocol that can cope with up to N

2
faulty processors (where N is

the number of processors in the system). Clearly, any deterministic protocol
that relies on the data from the other processors cannot cope with more than
N
2
faulty processors, and so our protocol is optimal in that sense.
The protocol uses a modular strategy to simplify the solution by dividing

it into several sub-tasks, each sub-task is assigned a protocol to handle it, and
every protocol acts as a building block - such that the �nal outcome is built
by layering these building blocks one on top of the other. These protocol
layers include simulations of properties that the system does not otherwise
have. Simulation is a well known technique, de�ned formally in [3] and in [4];
we use the simulation de�nition as described in [5].

The simulation technique uses layers, each layer simulating a system with
some extra characteristics beyond those of the layer below it. The lowest layer
is the actual communication system, and the highest layer has the properties
that we wish to achieve (fully synchronized, for example). Using a layered
model not only simpli�es the task, but also allows the protocol to be extended
to other natural directions by replacing only one of the layers. For example,
adjusting the protocol to cope with Byzantine faults instead of omission
faults requires changing only one layer, leaving the other layers untouched
(as mentioned in Chapter 7). The same argument holds for modifying the
algorithm from a deterministic solution to a randomized protocol that can
converge in expected constant time. Thus, the layering methodology gives
the protocol robustness and agility in addition to simplifying the solution.

Traditionally, systems used protocols that assumed the system was syn-
chronized and had no faults. Currently, such protocols try to make some
adjustments (as few as possible) in order to cope with faults and to support
bounded delay systems. Such changes are very di�cult and entail a high risk
of mishandling scenarios or damaging the properties of the original protocol.
This thesis takes such an existing protocol, and wraps it in a new layer that
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simulates the assumed fault tolerance and synchronization. The advantage
of using a protocol that wraps the original protocol is clear: every system can
keep working with its original protocol as an upper layer above our protocol
and due to this it is promised to have the assumed requirements. This allows
practical integration to existing systems with imperceptible e�ects.

To summarize, this thesis presents a modular protocol that aims to syn-
chronize a semi-synchronized system (also known as a bounded-delay sys-
tem). The resulting protocol is a self-stabilizing protocol that can cope with
up to N

2
faulty processors (where N is the number of processors in the sys-

tem), where the faulty processors are subject to omission faults. The protocol
converges within �nite time bounded by the number of faulty processors in
the system. It will be shown that for such a deterministic synchronization
model this bound is a lower bound. This algorithm can be simply wrapped
around existing distributed protocols that assume synchronized faultless sys-
tems, making it highly usable for porting legacy protocols to modern systems.

The rest of the thesis is organized as follows. Chapter 2 presents the
main literature pertaining to this research. Chapter 3 formally de�nes the
network and the error model; it also de�nes a simulation and describes how to
simulate one system over another. Each subsequent section formally de�nes
the sub-task of simulating a system over the previous layer, and presents a
protocol that can complete the respective sub-task:

• Chapter 4 presents the sub-task of simulating an emulated fail stop
system over a semi-synchronized system with omission faults.

• Chapter 5 presents the sub-task of simulating a pair-wise synchronized
system over an emulated fail stop system.

• Chapter 6 presents the sub-task of simulating a simulated synchronous
system over a pair-wise synchronized system.

Finally, Chapter 7 presents the main conclusions of this thesis and proposes
some natural directions for future research.
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Chapter 2

Related Work

2.1 Clock Synchronization Algorithms

Clock synchronization algorithms are algorithms that ensure that physically
dispersed clocks associated with di�erent processors in the system all have
a common knowledge of time. In other words, every processor in the sys-
tem has approximately the same view of time as all the others. The classic
approach for clock synchronization algorithms assumes that all clocks are ini-
tially synchronized and focuses on keeping them synchronized in the presence
of clock drift and faulty processors.

The �rst to present the problem was [2], later developed by [6], who
showed that in the presence of F Byzantine (i.e. maliciously failing) proces-
sors, 3F+1 processors are su�cient in order to keep the system synchronized.
They assumed that all clocks are initially "close enough" to each other, and
that the overall system is synchronized, and presented two algorithms that
keep the maximum di�erence between two non-faulty processors within a
certain bound, δ. These algorithms are based on statistical evaluations of
the clocks' values. Later, [7] and [8] proved the necessity of 3F +1 processors
to tolerate Byzantine faults, thus proving the optimality of the faulty vs.
non-faulty processor ratio presented in [6].

Paper [6] also presented a third algorithm that can handle up to N
2
faulty

processors but requires digital signatures, a model referred to as the authen-
ticated Byzantine model. This was further developed in [9] to use a clock
synchronization algorithm that can cope with any link or processor fault,
and not to restrict the ratio of faulty to non-faulty processors, so long as all
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non-faulty processors remain connected by reliable links.
Since the initial study in [6], the clock synchronization problem has been

extensively studied over the last three decades. Thus, several surveys can be
found, such as [10], [11], [12] and [13]. The surveys di�er from one another
by the way they categorize the di�erent clock synchronization algorithms:
in [10] and [11] the algorithms are classi�ed according to their accuracy and
precision; in [12] the surveyed algorithms are listed according to the system
synchrony (the upper bound on the communication latency) and the error
models it can tolerate, and in [13] a more ambitious classi�cation is made
by identifying repeated internal structures and basic building blocks that
are common for several sets of clock synchronization algorithms. Another
natural classi�cation distinguishes between deterministic, probabilistic and
statistical algorithms.

2.2 Self-Stabilizing Clock Synchronization

In this thesis, the focus was to solve the self-stabilizing clock synchronization
problem, which is de�ned as the clock synchronization problem without the
assumption of initial synchronization among the system components. Ini-
tial solutions, such as [14], used external protocols to establish the initial
synchronization.

As research in the self-stabilized clock synchronization problem has evolved,
initial suspicions of unsolvability have been dismissed. The �rst positive re-
sults were probabilistic algorithms [15] [16], which stabilize within exponen-
tial time for both synchronized and semi-synchronized models. The main
concept of this solution is to maintain a steady state in which all non-faulty
processors are synchronized, and to transfer to a prede�ned Reset state if a
processor identi�es that the system state is not steady. The possibility of
moving from the Reset state to the steady system state is decided proba-
bilistically (a coin �ip in the synchronized model and a random value in the
semi-synchronized model). [17] took a similar approach but di�ers in his
treatment of the unsteady state: after identifying an imbalance, a compo-
nent then transfers to a Restore state and follows a new protocol until the
stable state is reestablished.

Like [16], this thesis also prede�nes a Reset state to which processors
move upon noticing instability. However, our approach di�ers in that we use
deterministic criteria for moving out of the Reset state, where these criteria
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ensure that the time spent in the Reset state is bound by a constant. This
allows the entire protocol convergence time to be linearly upper bounded by
the number of the faulty processors (which, as mentioned, is optimal).

The next research milestone involved using a deterministic algorithm
known as the pulse synchronization problem to reduce the clock synchro-
nization time-bound from exponential to polynomial. [18] de�ned the pulse
synchronization problem based on the corresponding biological phenomenon,
and showed the direct connection between pulse synchronization and clock
synchronization. This was further developed in [19] and in [20], which com-
bine existing Byzantine consensus protocols in order to achieve pulse syn-
chronization, and then use a pulse synchronization protocol to solve the
clock synchronization problem on a semi-synchronized system with Byzan-
tine faults. This approach achieves a state-of-the-art clock synchronization
run-time bound of O(n), where n is the number of nodes in the system.

The current work also uses pulse synchronization to achieve the clock syn-
chronization, and also uses a similar approach of binding several algorithms
in order to solve the problem. However, while [19] and [20] incorporate the
external secondary algorithm as part of the primary algorithm's execution,
we use the more modular approach of dividing the problem into layers, with
each layer dependent only on the layers below it. This way, even if one
layer has not yet reached its stable state, the layers below it can nevertheless
complete their stabilization unhindered.

A randomized pulse synchronization algorithm was recently proposed [21]
that broadcasts a constant number of bits in constant time, and which can
achieve O(n) stabilization time with probability 1-2−Ω(n). This results in
O(n2) bits being sent by each non-faulty node during stabilization. Other
probabilistic solutions that reach expected constant convergence time use
common-coin protocols, as in [22]. This thesis focuses on the deterministic
model, although a very natural probabilistic approach can extend from this
research (as mentioned in Chapter 7).

This thesis uses a similar approach to [20] to handle clocks' drift in the
system, encapsulating the drift rate bound as part of the bound on the pro-
cessing and transmission time. This method is natural for bounded-delay
systems since the ability to reach full similarity between di�erent clocks is
restricted, as proven in [23], [24].

The linear bound on the number of faulty processors for the classic clock
synchronization problem was shown in [25]. The synchronized model pre-
sented here maintains this same lower bound; this is shown in Chapter 6,
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using a similar technique to the one used in [26], in which convergence to a
synchronized system is shown to encapsulate the classic synchronous consen-
sus problem (presented in [4]). Since this thesis' protocol converges within
the linear bound of the classic problem, it can also be considered optimal.

2.3 Simulations and Layers

This thesis relies heavily on a modular layer-based architecture, in which
each layer re�nes the previous layer by adding a few extra properties. The
�rst study of a reliable layer on top of an existing system was in [27], de�n-
ing the reliable message transmission problem (RMTP). This approach was
later expanded in [28] and [29], using a simulation layer to adapt the clas-
sic Byzantine consensus problem (which does not support broadcast) to a
Byzantine broadcast protocol, thus optimizing the message complexity of the
Byzantine consensus problem. [30] solved the clock synchronization problem
using a simulation layer referred to as publication, which is similar to the
broadcast method mentioned above.

Constructing two layers of simulation was �rst proposed in [31]. The
�rst layer is constructed similarly to [28] and [29], and ful�ls the similar goal
of enabling broadcast in the Byzantine consensus problem. However, [31]
takes the layering a step further and builds a second layer, which simulates
authenticated signatures over the broadcast mechanism. This allows the
execution of authenticated Byzantine protocols, such as in [9] and [6].

This thesis takes it one natural step further, and uses three layers of
abstraction to simulate the synchronized system. However, this thesis also
abstracts the modularity of the layers: each layer simulates a di�erent system
(e.g. fail-Stop, synchronized, etc.) as opposed to an isolated action (i.e.
broadcast, safe transmission, etc.). This allows each layer to be independent
of the layers above it, and to continue functioning for as long as the layers
below it allow.

This approach signi�cantly improves the system's convergence time, since
the lower layers can keep working towards their steady state even if the top
layers are not stable. This means that the convergence time of the entire
protocol becomes the sum - rather than the product - of the convergence
times of all layers. However, it also requires a more complex architecture,
including a dedicated interface between the layers that is able to handle the
various stages of instability. This introduces the disadvantage of greater
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fragility and complexity of interaction.
The system simulation methodology naturally leads to the use of the sim-

ulation formalization presented by [5], which focuses on the interface (API)
between the user and the simulation layer, as well as on the interface between
the simulation layer and the underlying system. This formalization simpli�es
the building of simulation layers so long as a suitable API is maintained for
every pair of layers. It is therefore more suitable for our model than other
approaches, such as the one presented in [3], where the main focus is on the
system's output and behavior.

2.4 Omission Error Model

This thesis uses the omission error model, as opposed to the Byzantine error
model used in most of the papers mentioned above. The omission error
model was �rst discussed in [32] in the context of communication networks,
and was referred to as changing topology networks since it is equivalent to the
problem of failing communication links that frequently change the underlying
network topology. It was part of the motivation for establishing the concept
of distributed network protocols (DNP) in [33] and was solved by [34], who
took advantage of the system's connection redundancy to ensure the quality
of service.

The model made its debut in the distributed systems literature, as the
omission error model, in [35]. Here, a broadcast primitive is used to maintain
a joint view of the system and thus identify and overcome any omissions.
A similar approach was taken in [36], showing that the use of broadcast
can improve the solution of the consensus problem even in the presence of
omission faults.

This thesis chooses to use the omission fault model as opposed to the
Byzantine fault model and uses a similar approach to [35] and [36] in or-
der to deal with these faults. The main reason for this is to simplify the
protocols used. However, a very natural extension would be to cope with
Byzantine faults, as mentioned in Chapter 7. This would require a change
to the lowest layer of the protocol, which currently shifts the error model
from omission to fail-stop. The grade-cast algorithm [37] simulates fail-stop
over a Byzantine error model in synchronized systems, and has been used in
layer-based protocols such as [38]. The adjustment of grade-cast protocol to
the semi-synchronous model is not trivial but seems to be achievable.
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Chapter 3

Model of the System and

Problem De�nition

3.1 Model of the System

In this thesis, we assume a semi-synchronous distributed system, and present
a protocol that simulates a synchronous system over it. These terminologies
will be de�ned formally in this section.

The system is modeled as a set of N processors P1, P2...PN , that com-
municate by message transmission. Each processor in the system has a set
(not necessarily �nite) of actions that it can perform. We assume a fully
connected network in which any pair of processors can reliably exchange
messages. We also assume that the network is reliable in the sense that ev-
ery message that is accepted by a processor in the system was indeed sent
by a sending processor.

3.1.1 Synchronous System:

In the synchronous system model all processors are connected to a global
pulse system, which provides a common pulse at a regular interval and each
pulse reaches all nodes simultaneously. In addition, all processors can send a
set of messages, receive all other messages, and complete all of their internal
processing between one pulse and another. The time interval between one
pulse and another is called a phase. A message sent from Pi to Pj at phase r
is guaranteed to reach Pj, and to be internally processed by Pj before phase
r + 1.
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3.1.2 Semi-Synchronous System:

Note that in the semi-synchronous model we refer to a global reference clock
and to local clocks. The global clock is a theoretical clock that we can use in
our proofs; every time interval mentioned in this thesis refers to this clock.
In this model, the processors do not have access to the global reference time.
However, processors have local clocks, which are not necessarily synchronized;
they may run arbitrarily fast or slow as long as they are 'close enough' to
each other in comparison. The concepts relating to local clock times are
clari�ed in the formal de�nitions in this section.

By a semi-synchronous system, we mean that there exists a constant
time τtrans, such that after the end of the transient faults, every message in
the system (including in transit messages) either reaches its destination or
gets lost within τtrans clock units. In addition, we assume the existence of
a constant bound, dtrans, on the time it takes to send/receive and process
messages. For every pair of non-faulty processors (Pi, Pj), τtrans + τprocess <
dtrans, where τprocess is the time Pj requires in order to process Pi's message.

Although we assume an upper bound on the processing and message
transmission time, the only assumption we make on the lower bound is that
it is positive. Formally, there exists a constant εmin ∈ (0, dtrans), such that a
message may pass from one processor to another, only εmin clock units after
it was sent (including the processing time).

De�nition 1. Each processor Pi is equipped with a hardware clock Hi that is
a continuous, strictly-increasing function Hi: R

+
0 → R+

0 , mapping the global
clock into Pi's local time.

De�nition 2. We mark the maximum drift rate between di�erent clocks in
the system as α > 1. α is de�ned such that for any two times (in the reference
clock), t, t′, t < t′ we mark T := t′−t, and it holds that: T ≤ Hi(t

′)−Hi(t) ≤
αT.

De�nition 3. A processor Pi is considered to be non-faulty if it complies
with the following conditions:

1. Pi operates according to the instructed protocol.

2. For every message that Pi sends to any other non-faulty processor Pj
at tsend, and is accepted and processed by Pj until tacc, it holds that
εmin < tacc − tsend < dtrans.
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A processor that is not non-faulty is said to be faulty.

We mark the upper bound on the number of faulty processors as F . Our
model assumes that N

2
> F ≥ 0.

In this thesis we consider two fault models for the faulty processors in the
system:

1. Omission faults - Any faulty processor might fail to send or receive
messages. Formally, if a certain processor Pi is faulty, then any message
that Pi sends to any other processor Pj might not be received by Pj,
and any message sent to Pi, may not be accepted by Pi.

2. Fail-stop faults - Any faulty processor might stop functioning at any
given point, including after sending messages to some but not all of the
other processors in the system. Once a faulty processor has stopped,
no non-faulty processor receives any more messages from it.

3.2 Problem Statement

De�nition 4. For every processor Pi we de�ne P
′
is phases according to the

global reference clock as a set of time intervals Di = {∆i1 ,∆i2 ...}, where
∆ik = [tk, tk′ ], tk′ > tk, which satis�es the following conditions:

1. For every ∆ik ∈ Di, where ∆ik = [tk, tk′ ], tk′ − tk ≥ dtrans.

2. Every message that was sent/accepted by Pi is associated with one of
Pi's phases. Formally, for every two processors Pi and Pj, and message
mij sent at time tk there exists a time interval ∆imij

∈ Di such that
tk ∈ ∆imij

.

3. If processor Pi sends a message to processor Pj then Pi will not send
another message to Pj in the same phase.

4. There is no overlap between any two phases. Formally, for every two
phases, ∆ik ,∆i` ∈ Di, where ∆ik = [tk, tk′ ], and ∆i` = [t`, t`′ ],∆ik ∩
∆i` = ∅.

Pi's local phase is de�ned as the mapping of its phases into its local clock.
So, for every phase ∆ik ∈ Di, where ∆ik = [tk, tk′ ], its corresponding local
phase is δik = [Hi(tk), Hi(tk′)].
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Note that the labelling of local phases is not necessarily the internal rep-
resentation of the local phase at the processor. The next de�nition captures
that.

De�nition 5. Each processor Pi holds a variable called θi[`] ∈ N+
0 , which

contains the phase labelling of its current local phase δi` . Pi changes its label
to the next label θi[` + 1] when it moves to the next local phase. Note that
every protocol can use a di�erent labelling function, L : N+

0 → N+
0 , to map

the local phase index (which is of cardinality ℵ0) to the value of θi[`], which
has a �nite range of values.

De�nition 6. We consider a distributed system to be pair-wise synchronized
if it complies with the following conditions:

1. All processors in the system have the prede�ned constant τ, such that
for each processor in the system Pi, and every dik ∈ Di, tk′ − tk ≥ τ .

2. For every pair of non-faulty processors (Pj, Pi) (j 6= i), if Pj sends a
message in its local phase δjk and Pi receives it in its local phase δi` ,
Pj will not send any messages in any ensuing local phases δjk′ , k

′ > k
until Pi stops receiving messages in its local phase δi` .

3. For every pair of non-faulty processors (Pj, Pi) (j 6= i), if Pj sends a
message in its local phase δjk and Pi received it in its local phase δi` ,
then if Pi sends a message in its local phase δi` , Pj will receive it in its
local phase δjk .

Observe that since this de�nition applies for every pair of processors,
it follows that if a system is pair-wise synchronized, then after a processor
sends a message, no other processor can send in any of their subsequent local
phases, until all of the processors �nish receiving messages in their current
local phase.

De�nition 7. We consider a pair-wise synchronized system to be a globally
synchronized system if for every pair of non-faulty processors (Pj, Pi), it holds
that θi[k] = θj[`], whenever a message sent from Pi at Pi's local phase δik
was received by Pj at Pj's local phase δj` .

De�nition 8. We consider a distributed system to be simulated self-Stabilizing
synchronous if it complies with the following conditions:
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1. Convergence - Starting from any arbitrary system state, the system
will be able to deterministically converge to a globally synchronized
system within a bounded time.

2. Closure - If at time t0 the system is globally synchronized, then the
system is globally synchronized for every time t ≥ t0.

Problem De�nition: These de�nitions lead us to the de�nition of the
central problem addressed in this thesis, speci�cally: Given a distributed
system S, a communication interface layer must be constructed that turns S
into a simulated self-stabilizing synchronous system.

3.3 Drift handling in the System

As stated, there exists an upper bound dtrans on message transmission du-
ration. We allow every processor in the system to use this bound as part of
executing the protocol's instructions. However, since every hardware clock
has its own particular internal drift, measuring dtrans with the hardware clock
is not suitable. However, this internal drift can be bound from above by an
constant, d. This constant is called the drifted transmission bound.

De�nition 9. We consider d ∈ R+
0 to be a drifted transmission bound in

a semi-synchronous system if for every processor Pi with the corresponding
hardware clockHi, it holds that if Pi sends a message at timeHi(t) to another
processor Pj then one of the following applies:

1. Pj will accept the message strictly before Hi(t) + d.

2. Pj will not receive the message from Pi (this option exists only if at
least one of them is faulty).

Remark 10. Note that this de�nition does not prevent an adversary from
instructing faulty processors to process the accepted message at any given
time.

Lemma 11. For any semi-synchronous system with maximum drift rate α,
d = αdtrans can be used as a drifted transmission bound for that system.

Proof. For every processor Pi, if Pi sends a message at Hi(tsend), then it will
either reach its destination or get lost before tsend + dtrans. Since d is de�ned
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by multiplying the upper bound on transmission time by the maximum drift
rate, we are guaranteed that Hi(tsend) + d > Hi(tsend + dtrans). Thus, either
the message is indeed accepted by the recipient processor, or it gets lost
within d global clock units.

Since the drifted transmission bound constant is measured locally by ev-
ery processor, we want to use a constant global bound on these local measure-
ments, in order to evaluate the global system's properties (e.g. convergence
time). We will again use the maximum drift rate to de�ne this bound, as
follows: danalysis = αd = α2dtrans.
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Chapter 4

Simulating a Fail-Stop Fault

Model over an Omission Fault

Model

In this section, we will show how to simulate a system with fail-stop faults
over a system with omission faults in a semi-synchronous system. The con-
sequence of such a simulation is that for any given protocol ϕ that achieves
a certain property in a system with fail-stop faults, we can achieve the same
property in a system with omission faults by running ϕ over the emulated
fail-stop system.

4.1 The FS Simulation Problem

In order to formally de�ne a simulation we must �rst de�ne the interface
through which the system interacts with the external world, i.e. with the
users of the system, or with upper layers.

De�nition 12. For a distributed system S, we mark the set of possible
inputs for this system as in(S ) and the set of possible outputs as out(S ).
Each input or output element has a type, a recipient and maybe also some
associated data. We de�ne the union of in(S ) and out(S ) as the system
interface of S and we refer to it as API(S).

De�nition 13. A sequence σ of elements from the interface (API(S)) of a
given distributed system S is considered an allowable sequence if it is allowed
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by S, i.e. by the properties of S's communication network, fault model, etc.
We mark the set of all allowable sequences over S as seq(S ).

De�nition 14. We say that a protocol ϕ is a simulation protocol that simu-
lates a distributed system S1 over another distributed system S2, if it satis�es
the following:

1. ϕ uses S2.

2. The interface of ϕ is API (S1 ).

3. For any sequence σin of inputs from in(S1 ), there exists an allowable
sequence σ ∈ seq(S1 ), such that σin is a subsequence of σ, and the
sequence of elements that ϕ produces from API (S1 ) is σ.

In other words, running with the simulation protocol over S2 has the same
sequence of events in the external world as running on top of S1.

A simulation protocol ϕ runs on every processor in the system as a
layer between the processor P and the system S2. The input elements from
API(S1) are sent from P to its instance of ϕ as part of the upper layer pro-
tocol, and the outputs of ϕ from API(S1) are sent back to P . Throughout
this thesis, when we refer to the processor that runs the instance of ϕ we will
call it the host processor.

In order to de�ne the fail-stop simulation we need the next de�nitions.

De�nition 15. A processor is active in the fail-stop simulation if it creates
output elements for its host, and sends the host's input elements to the other
processors.

A processor is inactive if it does not create output elements for its host,
and does not send the host's input elements to the other processors.

De�nition 16. An interface is an emulation fail-stop interface if it contains
a prede�ned message that is marked as 〈BTA〉 (back to active). 〈BTA〉 is a
message sent from the simulation layer to the host processor, and indicates
to the host processor that its simulation layer has returned to being active
after a period of time in which it was inactive.

De�nition 17. Given a protocol ϕ with a bounded runtime τoff that runs
on a semi-synchronous system S, we say that ϕ's run over S is an emulated
fail-stop run if the following condition holds:

24



For every faulty processor Pfault, if Pfault does not act according to ϕ's

rules at its mth local phase, it will be inactive for every local phase that is
larger or equal to m+ 1, until the end of ϕ's run. Every non-faulty processor
has no constraints on sending or receiving messages. Accepting a 〈BTA〉
message during the run does not prevent it from being considered as an
emulated fail-stop run.

More formally, a run of ϕ is an emulated fail-stop run, if for every se-
quence, σ ∈ seq(S ) σ = (e1, e2, ..., ei, ei+1, ...) that was produced by ϕ, for
each ei ∈ σ that does not comply with ϕ's rules, and was created by Pfault

in its mth local phase. Then for any ej ∈ σ (j ≥ i+ 1), ej was either created
by a processor other than Pfault, or was created by Pfault in its mth Local
Phase. Every non-faulty processor has no constraints on the elements that
this processor creates.

Note that the de�nition above does not preclude a faulty processor from
sending and receiving messages that are not part of running ϕ.

We now want to expand the emulated fail-stop run over a semi-synchronous
system to be a property of the system for a set of protocols.

De�nition 18. Given the constant τoff , a semi-synchronous system S is con-
sidered an emulated fail-stop system, if for every protocol ϕ with runtime
bounded by τoff , ϕ's run over S is an emulated fail-stop run.

The Fail-stop Simulation Problem: We are given a distributed semi-
synchronous system S subjected to omission faults and with a drifted trans-
mission bound d. Given the constant τoff , one must construct a simulation
protocol that, after a bounded time from the initial transient faults, simulates
an emulated fail-stop system with τoff . The simulated system is required to
keep the semi-synchronous property with another drifted transmission bound
(d̄trans).

In the following section we present a protocol that solves the fail-stop
simulation problem.

4.2 The FS Simulation Protocol (FSSP)

We will refer to the protocol that uses the simulation protocol (the host)
as ϕ. ϕ represents any protocol that has a runtime bounded by τoff and is
assumed to run over an emulated fail-stop system. We mark as e every API
element that is being used by ϕ in order to interact with the simulation layer.
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Next, we will present the FSSP by describing the assumption on each
processor, the messages that are being passed during its execution, and the
set of rules that instructs each processor.

4.2.1 Processors' Variables

Every processor in FSSP has the following variables:

• Set of timers:

1. T2d: Timeout timer, that elapses after 2d.

2. T3d: Timeout timer, that elapses after 3d + εmin (see De�ni-
tion 3.1.2).

3. Toff : Timeout timer, that elapses after τoff .

• An elements queue (FIFO), where the input elements from ϕ are stored
until they are handled.

• A parity bit that is used to distinguish between identical input elements
that were sent one after the other. Each time the processor handles
the next input element it �ips the parity bit.

• A local array of size N , which is called LatestElements and contains
the latest input elements (including the corresponding parity bit) that
were received from the various processors and a timestamp indicating
when each one was received.

4.2.2 Protocol's Messages

In order to ensure that faulty processors will disable themselves in case they
do not receive part of the messages in the system, every processor needs to
send two messages for each input element it receives from ϕ, one in order
to update all other processors and the other in order to verify that the mes-
sage was indeed accepted. This poses the intuition for the di�erent types of
messages in the protocol.

The protocol uses the following types of messages:

1. Element message 〈e, b〉 - A message that contains an input element e,
with its corresponding parity bit b. We distinguish between two types
of element messages:

26



(a) Update message 〈e, b〉 - If it is the �rst time that this input element
is being sent in FSSP.

(b) Veri�cation message 〈e, b〉 - If this element was previously sent as
an update message.

2. Empty message 〈0〉 - Used when the elements queue is empty. This
message is sent in order to verify that every processor will have to
receive eco messages even if its queue is empty.

3. Eco message 〈E, i〉 - When a processor receives an element message
〈e, b〉 or an empty message 〈0〉 from another processor i, it sends the
eco message 〈LatestElements, i〉 to all other processors.

For describing the protocol we make use of the following de�nitions:

De�nition 19. An element in LatestElements is considered to be an UpTo-
DateElement if it was updated in the last 3d.

De�nition 20. A received message is considered a RenewalMessage if it
contains at least one pair of values 〈e, b〉 associated with a certain processor
i, where the receiver's ith entry in LatestElements (the corresponding pair)
is not an UpToDateElement and is di�erent from 〈e, b〉.

Speci�cally:

• An element message 〈e, b〉 from processor i is considered to be a RenewalMessages,
if the ith entry in the receiver's LatestElements is not an UpToDateElement
and contains an element that di�ers from 〈e, b〉.

• An eco message 〈E, i〉 is considered to be a RenewalMessages if E has
at least one element 〈e, b〉 at some entry i, where the ith entry in the
receiver's LatestElements isn't an UpToDateElement and it di�ers from
〈e, b〉.

4.2.3 FSSP Rules

When a processor becomes inactive, it resets Toff and stops sending and
receiving elements from ϕ. In addition, it clears all existing messages in its
elements queue. Although the processor is inactive, it keeps accepting the
FSSP messages from other processors, and sends eco messages according to
FSSP.
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After Toff elapses the processor switches back to active and returns to
send and receive elements from ϕ. Once a processor switches to active mode
it sends a 〈BTA〉 message to its host (ϕ).

For a given element e, we call the action of sending an element message
〈e, b〉 to all other processors in the system a sending round. A sending round
ends when a new sending round starts. A sending round that starts with an
update message is called an update sending round, and a sending round that
starts with a veri�cation message is called a veri�cation sending round.

FSSP Protocol:
Every processor acts according to the following rules:

• For every received RenewalMessage:

� Update LatestElements for elements that are not UpToDateElements.

� If the updated element was addressed to your host and you are
active, forward it as an output element to your host.

• If an element message 〈e, b〉 from processor i was received, send an eco
message 〈LatestElements, i〉 to all other processors.

• When T3d elapsed:

1. Reset T3d & T2d.

2. If the previous sending round was an update sending round with
〈e, b〉, start a veri�cation sending round with the same pair (〈e, b〉).
If the previous sending round was a veri�cation sending round
with 〈e, b〉, �ip the parity bit, and start an update sending round
with the next input element ē from the elements queue 〈ē,¬b〉.
If the queue is empty, send an empty element message 〈0〉.

• When T2d elapsed: If you received less than (N −F ) eco messages that
contain your latest input value with your ID, change your status to be
inactive.

Note that every modi�ed element in LatestElements can only be for-
warded once as an output element to the host for every pair of update and
veri�cation sending rounds, since the modi�cation can only happen once ev-
ery update sending round as will be shown in Lemma 23.
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Remark 21. In the current protocol, the runtime of ϕ (τoff , resp.), needs to
take into consideration that every sending of an element in the system will
take at least 6d + 2εmin (2T3d). It is possible to overcome this limitation in
several ways, such as:

1. Use several instances of this protocol in a pipeline.

2. Enlarge LatestElements to be at the size of N2.

3. Cluster all elements sent by the processor in each round to a single
element.

We focus on the simpler version in the cost of the 2T3d latency for every
sending round.

Next, we will prove that the above protocol poses a solution to the fail-
stop simulation problem.

Lemma 22. After 7d + εmin from the end of the transient faults, all API
elements that are sent or received by FSSP are not e�ected by the transient
faults.

Proof. After 3d+εmin from the end of the transient faults, T3d had elapsed for
every processor in the system. This means that every active processor sent
an element message that was either received from its host's elements queue
or an empty element (if there were no elements in the queue). Therefore, all
input elements are not a�ected by the transient faults.

On the other hand, within 3d from the end of the transient faults, all
the elements that were in LatestElements when transient faults ended are
no longer UpToDateElements. After additional 3d + εmin, T3d will elapse in
at least one of the processors causing it to send a valid element message.
When a valid RenewalMessage is received (within d), the modi�ed element
is forwarded as an output element, where this output element is not a�ected
by the transient faults.

All claims from now on refer to the system states later than 7d + εmin
from the end of the transient faults.

Lemma 23. For any processor Pi that started a sending round at t with
〈e, b〉, during [t, t + 3d + εmin] every processor can only update P ′is value to
be 〈e, b〉.
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Proof. When Pi sends the element message 〈e, b〉, it means that for this
sending round that will last 3d + εmin (T3d), it will not send any element
message other than 〈e, b〉. All of the other processors will receive its element
message within d. Every processor that received the element message will
send an eco message that will arrive to the receivers within 2d (it might be
much less but at most 2d). So, we can conclude that as long as any other
processor can still receive an eco message that contains P ′is new value, Pi
will not send another element, because this sending round has not ended yet.
Only after all eco messages are accepted (t+3d+εmin) may Pi send the next
element message.

It is possible that eco messages that contain the previous value of Pi as
part of their LatestElements exist during [t, t + 3d + εmin] (because they
did not receive P ′is update message yet). These messages will not update
the receiver's LatestElements because either the receiver processor did not
get the update message 〈e, b〉 and hence will not consider the eco message
as a RenewalMessages. On the other hand, if the receiver processor got the
update message and updated the element, then this element is considered an
UpToDateElement and will not be changed by this eco message.

Lemma 24. If at a certain point in time t a processor Pi sends an update
message 〈e, b〉, every processor that receives this message will include P ′is
updated value in every eco message it sends during [t+ d, t+ 6d+ 2εmin].

Proof. Every processor that received the update message 〈e, b〉 accepted it
before t + d. From this point on, P ′is new value is updated in each of the
receivers' LatestElements, and therefore is part of every eco message they
will send. According to Lemma 23 Pi will not send another element message
until t+3d+εmin. Then according to the protocol's rules it will send the same
value in a veri�cation sending round. Then again, according to Lemma 23
we know that this value will not be changed until t+ 6d+ 2εmin. Therefore,
we are assured that all processors that received this message will keep this
value as part of their eco messages, as claimed.

Lemma 25. If at a certain point in time t a processor Pi sends an update
element 〈e, b〉 to N−F processors, every processor will either update 〈e, b〉 in
its LatestElements or will change its state to inactive before t+ 6d+ 2εmin.

Proof. According to Lemma 24 if Pi sends an update element 〈e, b〉 to N −F
processors, then during [t+ d, t+ 6d+ 2εmin], every one of them will contain
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P ′is updated value as part of its eco messages. Thus, every set of N − F
Eco messages must contain at least N − 2F eco messages that contain P ′is
updated value.

According to the protocol's rules, all processors must start a sending
round every 3d+εmin (when T3d elapses), and every processor needs to accept
N −F eco messages within 2d of the beginning of the sending round in order
to stay active. We can conclude that in order to stay active, every processor
needs to get N − F eco messages once every 5d + εmin < 5d + 2εmin. Since
the time window [t+d, t+6d+2εmin] is longer than 5d+εmin, we know that
every processor that did not get N − F eco messages during that period,
must have changed its status to inactive. Therefore, every processor that
stayed active must have got at least N − 2F > 1 eco messages that contain
P ′is updated value, and thus updated its LatestElements accordingly.

Lemma 26. For every processor Pi that sends an element message 〈e, b〉,
one of the following must hold:

• Every active processor will updated 〈e, b〉 for Pi in its LatestElements.

• Pi will become inactive within 2d ( i.e.,T2d).

Proof. If Pi sends its new element to at least N − F processors, according
to Lemma 25 all active processors will also update this element in their
LatestElements. But, if Pi did not send its message to N − F processors, it
will not get an eco message from any of them and will become inactive when
T2d elapses.

Lemma 27. After 13d + 3εmin from the end of the initial transient faults,
FSSP simulates a system with emulated fail-stop faults over a system with
omission faults.

Proof. According to Lemma 22 after 7d+ε all elements in the system are not
a�ected by the transient faults. According to Lemma 26 a processor whose
element was not received by all other active processors will become inactive
within 2d. In addition, according to Lemma 25, for every processor Pi that
sends a message and is still active, every other processor that fails to receive
Pi's messages will become inactive within 6d+ 2ε.

We must note that a processor that becomes inactive, stays inactive until
Toff elapses, which means at least as long as the prede�ned constant τoff . That
means that an element that does not follow the protocol's rules will cause
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the element creator not to produce any other elements for τoff , which causes
the system's interface to comply with the emulated fail-stop fault model.

Lemma 28. 2τoff + 13d + 3εmin after the end of the transient faults, every
run of ϕ on the system is an emulated fail-stop run.

Proof. Even if some non-faulty processors were inactive as part of the tran-
sient faults, eventually after Toff elapses they will return to be active. Non-
faulty processors will never become inactive, since inactive processors keep
sending eco messages. Therefore, we are guaranteed that all non-faulty pro-
cessors will always get enough eco messages. Thus, according to Lemma 22
τoff +7d+εmin after the end of transient faults all non-faulty processors return
to being active. Since the emulated fail-stop protocol ϕ runtime is bounded
by τoff , it is possible that when all non-faulty processors got back to be active,
ϕ is in the middle of its current run. But, after 2τoff every instance of ϕ will
have an emulated fail-stop run on the system, which is 2τoff +6d+2εmin after
the end of the transient faults.

Lemma 29. FSSP keeps the semi-synchronous property with the drifted
transmission bound d̄trans = 6d+ 2εmin.

Proof. According to the protocol's rules, a processor will not send an update
element message until the end of the second (veri�cation) sending round.
This means that a processor sends a message only once every 6d + 2εmin.
Therefore, 6d + 2εmin can be used as the upper bound for processing and
sending duration between every pair of processors in the simulated protocol.

So, as claimed, this protocol simulates a semi-synchronous system with
emulated fail-stop faults over a system with omission faults.

Lemma 30. For every non-faulty processor, once it is in active mode, it will
not become inactive.

Proof. Note that all processors (even those that are inactive) keep sending eco
messages. Thus, for every non-faulty processor Pgood that sends an element
message 〈e, b〉, Pgood is assured that all non-faulty processors will receive this
message within d. Therefore, all of them (even those potentially inactive)
will send to Pgood an eco Message 〈E, i〉 with the updated entry and with
Pgood's ID. By accepting these messages, Pgood will not change its status to
inactive, as claimed.
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4.3 FSSP as an Emulation layer

We presented a protocol that simulates an emulated fail-stop system. Next,
we'll want to use it as a layer where we can run protocols with a bounded
runtime. Therefore we call this layer, the emulation layer. Few remarks
regarding this layer:

• Given an emulation layer that has several layers above it, where each
layer has separated attributes in the API elements, it is possible for the
emulation layer to cope with di�erent values of τoff for each of the layers.
If a processor violates the rules of one of the layers, it will be inactive
for all the layers above the violated layer for the τoff that corresponds
to the violated layer. However, the layers below the violated layer
will continue to act as usual. In this way we can promise a faster
convergence in the lower layers even if the upper layer requires a higher
convergence time.

• We refer to protocols that are time bounded and therefore used τoff as
a bound of the protocols runtime. We can have a discrete version of
the simulation protocol if we refer to protocols that are bounded by the
amount of local phases. In this case, τoff will be a bound on the number
of the local phases in the protocol.
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Chapter 5

Adjusting a Semi-Synchronized

System to a Pair-Wise

Synchronized System in the

Emulated Fail-Stop Model

In this section, we present a protocol that given a semi-synchronous dis-
tributed system subjected to emulated fail-stop faults, can achieve the pair-
wise synchronized property.

In order to simulate a pair-wise synchronized system, we �rst need to
de�ne allowable sequences for such systems (De�nition 31). For every API
element we add a logical attribute in order to get a clearer de�nition of the
allowable sequences. We mark the API with the additional attributes as a
pair-wise synchronized interface.

Pair-Wise Synchronized Interface: An interface, where the following
logical attributes are added to the API elements:

• For an input element, add: (sender's current local phase (SCLP)).

• For an output element, add: (receiver's current local phase (RCLP)).

Note that the SCLP and RCLP are only logical �elds used for the de�-
nition and need not be sent as part of the element, since the sender knows
its SCLP and the receiver knows its RLCP without retrieving them from the
API element.
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Using these attributes, we can de�ne the pair-wise synchronized allowable
sequences. Informally, for every pair of processors Psend and Prec, with Local
phases k, `, respectively (i.e. Psend sent an input element in its local phase
k, and it was received by Prec in its local phase `), we require that Psend will
not create an input element of a local phase that is greater than k as long as
Prec keeps getting output elements for its local phase `.

De�nition 31. Let S be a semi-synchronous distributed system. A se-
quence σ ∈ seq(S) is a pair-wise synchronized allowable sequence, i� for
every quadruplet of elements in σ = (ei, ej, e`, ek), where i > j > ` > k, and
for which the following holds:

1. ei and e` are input elements that were produced by the same processor
Psend;

2. ej and ek are output elements assigned to some other processor Prec;

3. ei was received by Prec as the output element ej;

4. ej.RCLP = ek.RCLP (another output element that was received by Prec
in the same local phase);

then e`.SCLP = ei.SCLP.

Pair-Wise Synchronized Simulation Problem: Let S be a semi-
synchronous distributed system with a drifted transmission bound d sub-
jected to emulated fail-stop faults. We assume there exists a prede�ned con-
stant τ for the local phase duration (see De�nition 6). One must construct
a protocol, ψ, that after a bounded time from the stabilizing of the fail-stop
emulation layer, ψ will simulate a pair-wise synchronized system with local
phases of length τ over S.

In other words, for any set of inputs of API(S), ψ will generate a set of
output elements of API(S), such that the received sequence of elements σ, is
a pair-wise synchronized allowable sequence.

In order to accomplish this goal, we make use of another clocking pro-
tocol PWCP (Pair-Wise Clocking Protocol), which is presented in the next
subsection. PWCP receives d and τ as inputs, and it is assumed to run over
a fail-stop system and has a bounded runtime. We de�ne the local phases
of PWCP to be a sequence of windows of size d. Since the system is an
emulated fail-stop system, for every instance of PWCP, within d after a pro-
cessor violates the PWCP rules it ceases to participate in the current PWCP
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instance. Thus, every instance of PWCP can be considered as executing on
a fail-stop system.

We instruct the protocol ψ to run a sequence of instances of PWCP, such
that the starting system state of the PWCP instance is the ending system
state of the previous PWCP instance. In the next subsections we will present
PWCP and prove its properties. We will also show how it can be used by ψ
in order to solve the pair-wise synchronized simulation problem.

5.1 The Pair-Wise Clocking Protocol (PWCP)

We will now present PWCP. Given a drifted transmission bound d and the
prede�ned constant τ , we construct a self-stabilized protocol with a bounded
runtime, that can produce ticks bene�cial to indicate the appropriate time to
send and stop receiving messages in every local phase. Formally, the protocol
requirements are:

• Self-stabilization, as expressed by the following properties:

PWCP has an internal set of system states (see De�nition 35) C, such
that the following properties hold:

1. Steadiness: If the initial system state of PWCP is c ∈ C, then the
system state when PWCP �nishes its run is c̄ ∈ C.

2. Convergence: If the initial system state of PWCP is c /∈ C, then
after PWCP completes its run, the system state of PWCP is c̄ ∈ C.

• Local phase ticks: the protocol needs to provide to each of the proces-
sors two types of signals:

1. Send tick: When the host can start its sending session.

2. Stop receiving tick: When the host should stop receiving messages
of the current sending session.

The motivation for these properties is that after the emulation layer stabilizes,
by PWCP's convergence property, any of PWCP's instances will end in a
safe system state. Therefore, the system state in the beginning of the next
PWCP will also be in C. According to PWCP's steadiness property, each
of the following instances of PWCP will also start and �nish in a system
states that belongs to C. Thus, running sequences of PWCP will result in
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Figure 5.1: The PWCP Abstract State Machine

a traditional self-stabilized protocol. Using the convergence property, also
implies a bound on the protocol runtime.

After the system stabilizes, it will produce pairs of clock ticks that allow
the processors to send and receive their messages, while ensuring that the
pair-wise synchronized property (see De�nition 6) holds.

Notations Throughout this section we make use of the following notations:

1. D = τ
3
− εmin (assuming that 2d < τ

3
− εmin ).

2. X + 1 = mod (X, 3) + 1.

3. X + 2 = mod (X + 1, 3) + 1.

5.2 Processors' Variables

• Every processor remembers the last message it received from every
other processor, and when it was received.

• Every processor has a personal instance of the abstract state machine
appearing in Figure 5.1.

• Every processor has the following set of timers:

1. φ: The time elapsed since the processor arrived to the current
state.
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2. Td: Timeout timer, that for some ε1 < εmin, elapses after d+ ε1.

3. TD: Timeout timer, that elapses after D + εmin.

5.3 Protocol Messages and De�nitions

The protocol uses two types of messages:

1. State message <atX>: Sent to all others to notify them of your current
state.

2. Move message <moved to X>: Noti�es of a transition from the former
state to a new state X.

De�nition 32. For a certain processor P in state X, we say P is Ready to
move to X + 1, if all the accepted messages in the memory of P are either
in X or X + 1 and at least one of them (including a message from itself) is
from state X.

De�nition 33. For a certain processor P in state X, we de�ne a progress
move as a move to X+1 message, which was generated when all the accepted
messages in the memory of P were from its current state (X).

De�nition 34. For a certain processor P in state X, we de�ne a union move
as a move to X+1 message, which was generated when some of the accepted
messages in the memory of P were from the following state (X + 1).

De�nition 35. For a certain point in time t̃, we say that the system is in a
steady state if it holds that in the time window [t̃, t̃+D+ εmin] the following
conditions hold:

1. For every non-faulty processor P that was in state X at t̃, P moved to
state X + 1 until t̃+D + εmin.

2. All non-faulty processors were in the same state for at least ε̄.

3. All move messages that are in transit are for at most two consecutive
states (X + 1&X + 2).

4. All state messages that are in transit are for at most two consecutive
states (X&X + 1).
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We de�ne the set of safe system states C to be all system states that
apply the system's steady state.

De�nition 36. For a certain message M, we de�ne this message as clean if
M was generated after the system is assured to remove all transient messages,
and was created according to the protocol's rules.

A dirty message is a message that was created as part of the initial random
noise, or a message that was generated according to the protocol's rules but
before the time where there can't be any transient message.

Notation. We mark the following set of actions for a processor in state
X as a move action:

1. Move to state X + 1.

2. Send a move message <moved to X + 1>.

3. Reset all timers.

5.4 PWCP Protocol

We now present the PWCP protocol. Throughout this protocol we mark the
processor's current state as X.

PWCP(d,τ): Every processor acts according to the following rules:

• If a 〈BTA〉message (see De�nition 16) was received from the emulation
layer, go to the Reset state.

• Always remove messages older than 2d+ ε1 from the memory.

• If X 6= Reset, act according to the following order:

1. If there exists a set of messages in the memory from states 1,2 and
3, move to the Reset state.

2. If a move message <moved to Y> is received and Y = X + 1:

(a) Move to state Y.

(b) Send a state message <at Y>.

(c) Reset all timers.
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3. If TD elapsed and "Ready to move to X + 1" applies, then make
a move action.

4. If all of the following conditions hold make a move action:

(a) A state message was received or removed.

(b) φ > D.

(c) "Ready to move to X + 1" applies.

5. If Td elapsed:

(a) Send a state message <at X>.

(b) Reset Td.

• If X = Reset, and one of the following holds:

1. If a message is removed from memory (2d after it was received),
such that no messages are left in the memory:

Perform the following actions:

(a) Move to state 3.

(b) Send a state message <at 3>.

(c) Reset all timers.

2. If "Ready to move to 1" applies:

Perform the following actions:

(a) Move to state 1.

(b) Send a state message <at 1>.

(c) Reset all timers.

• When moving from state 1 to state 2, send a send tick to the host.

• When moving from state 3 to state 1, send a stop receiving tick to the
host.

5.5 Claims and Proofs

In this subsection, we will show that from any arbitrary initial state, the
system converges into one of the safe system states within a constant time.
In order to prove this property, we use the following set of lemmas.
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Lemma 37. 3d+ ε1 after the stabilizing of the fail-stop emulation layer, all
accepted messages in the system are clean messages.

Proof. From any arbitrary state, after 2d + ε1 the memory of all processors
no longer contains noisy data from the transient faults. This means that
only messages that were sent according to the protocol rules (even if they are
dirty) exist in the processors' memories. Therefore, all generated messages
from this point on are clean messages.

Dirty messages that were generated before 2d+ ε1 had passed, will reach
their destination within d. From that point on (after 3d+ε1), every accepted
message is a clean message.

We mark the point in time where all the sent messages are clean as tclean.

Lemma 38. For every processor P that is not in the Reset state at time
t0 > tclean, P must change its state before t0 + 4d+D + εmin.

Proof. We mark P 's current state as X. Let us assume in contradiction that
P stays at X until t0 + 4d + D + εmin. At t0 + d all other processors have
received P ′s message (we assume it is active until t0 + 4d+D+ εmin). Thus,
"Ready to move to X + 2" is not enabled from t0 + d and on. This implies
that from t0 + 2d and on, no <moved to X + 2> message can be accepted
or generated, which means that no processor from state X + 1 can move to
state X + 2.

Regarding processors in the Reset state, there exist two options to move
out of Reset:

• Moving to state X + 2 = 1 if "Ready to move to 1" applies - Since
"Ready to move to X + 2 = 1" is not enabled, no processor from the
Reset state can move to state 1.

• Moving to state X + 2 = 3 if no message remains in the processor's
memory - Since P is active for more than d in state X = 1, every
processor in Reset must have received a message from it. Therefore,
this option is not possible.

Before t0 + D + εmin TD elapses for P . Since P did not perform a move
action (according to our assumption) until t0+D+εmin, it means that "Ready
to move to X + 1" is not enabled for P . This implies that another processor
was at state X + 2 for the last d. We mark the processor at state X + 2 as
Q. We showed that Q could only move to X + 2 until t0 + 2d.
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Before t0 + 2d + D + εmin if Q is still at X + 2, TD will elapse for Q.
Therefore, we consider the following scenarios:

• Q moved to state X - in this case, within d P will get Q′s updated
message and will move to X + 1.

• Q is no longer active or moved to Reset state - in these cases, within
2d Q′s messages will be removed from P ′s memory and P will move to
X + 1.

• "Ready to move to X" does not apply for Q - this means that another
processor exists in state X + 1. But, since Q must be at X + 2 before
t0 + 2d, it must have a message of state X sent from P . Therefore, Q
will move to the Reset state (which was handled in the previous item).

Thus, until t0 + 4d + D + εmin, P will have to change its state (move
forward or switch to Reset) as claimed.

Notations:

• We mark ϑ = 4d+D+ε1 and call this time duration the Static Bound.

• Timing Notations:

1. We mark some point in time as t1 > tclean.

2. t2 = t1 + d.

3. t3 = t2 + ϑ.

4. t4 = t3 + 3d+D + εmin + ε1.

We will now prove that the creation of a <moved to 2> message is obli-
gated in the system.

Lemma 39. A clean move message will be generated before t4.

Proof. As mentioned in Lemma 37, all messages that were accepted after t1,
are clean messages. Let us assume by contradiction that no move message
was generated in the system before t5. According to our assumption, no clean
move message was generated during [t1, t5], and therefore, during [t2, t5] no
move message was accepted. According to Lemma 38, since t3−t2 = ϑ during
[t2, t3] every processor that is not in Reset must change its state. Since there
exists an active processor that is not in Reset state a move from Reset to
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state 3 is not enabled. By the protocol's rules a processor that moved to
state 2 or 3, must have sent or received a move message. Thus, if no move
message was generated it means that all processors are in state 1 or in Reset
state.

If all processors are in Reset state, within 2d + ε1 at least one of them
will remove all the messages in its memory and will move to state 3. For
every processor in Reset that received the state message of state 3, "Ready
to move to 1" applies for it, and it will move to state 1. For every processor
in Reset that did not receive the state message of state 3, it will remove all
messages in its memory and will move to state 3. Either way, after another
D+ εmin, TD will elapse for all processors. If there exist processors in states
1 and 3, then those in state 3 will create a clean move message. If there is
no active processor in state 3, it means that all processors that are in state
1 they will create a clean move message.

We can conclude that before t4, a clean move message will be generated
as opposed to our assumption.

Lemma 40. For a certain point in time t5 > tclean+3ϑ+4d+2D+εmin+ε1,
a clean <moved to 2> message will be generated before t5.

Proof. We mark two additional points in time:

1. t6 = t5 − (ϑ+ 4d+ 2D + εmin + 2ε1).

2. t7 = t6 +D + ε1

Since t6 > tclean and according to Lemma 39 a clean move message will be
generated before t7.

We will cover the three possibilities for this move message:

1. <moved to 2> - In this case the lemma holds.

2. <moved to 3> - In this case, there must be a processor in state 2 that
generated this message. We will mark this processor as P2. According
to Lemma 38, at least once every ϑ a processor that is not in Reset
must change its state. That means that P2 has moved to state 2 from
state 1 during [t6 − ϑ, t7]. In order for a processor to move to state 2,
it must either make a move action from state 1, or receive a <moved
to 2> message. Either way, a <moved to 2> message is generated in
the system prior to t7.
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3. <moved to 1> - In this case, there must be a processor in state 3 that
generates this message. We will mark this processor as P3.

• If P3 moved from state 2: In a similar way to what we have shown
in the previous item, P3 had moved to state 3 from state 2 during
[t6 − ϑ, t7], and from state 1 to state 2 during [t6 − 2ϑ, t7]. The
move from state 1 to state 2, was either caused by a clean <moved
to 2> message or caused the generation of such a message.

• If P3 moved from Reset state: We mark the time that P3 moved
to state 3 as tback. At tback there were no other processors in any
other state (otherwise P3 would have accepted a message from it).
On the other hand, from tback + d and on, processors in Reset had
accepted the <at 3> message from P3 and will move to state 1
since "Ready to move to 1" applies for them. Therefore, when
P3 generated the <moved to 1> message, "Ready to move to 1"
applied to any other processor in state 3. Thus, within tback +
d + D + ε1, all processors that are not in Reset will be at state
1. Within another D + ε1 (t5), "Ready to move to 2" will apply
to some of them and they will generate a clean <moved to 2>
message.

To conclude, in all three scenarios a clean <moved to 2> message will be
created prior to t5.

After proving that a clean <moved to 2> message generation is obligated,
we will now prove that it enables the protocol's convergence.

Lemma 41. If at time t̄ a processor (possibly faulty) P generated a clean
<moved to 2> message, then no non-faulty processor was in state 3 at that
time.

Proof. In order for P to generate a move message, the following conditions
must apply to it:

1. P must be at least D + εmin in state 1.

2. "Ready to move to 2" applies for P . Thus, all accepted messages in
P 's memory were from states 1 and 2.
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Since all accepted messages in P 's memory were from states 1 and 2, we
can conclude that no active processor can be in state 3, while staying there
for more than d. Since if a processor Q was in state 3 for more than d a
message from Q to P of state 3 must have arrived and "Ready to move to
X+1" would not have applied for P . In order to show that at t̄ no non-faulty
processor was in state X + 2, we need to prove that no non-faulty processor
moved to X + 2 during [t̄− d, t̄].

First we will show that processors that were in the Reset state will not
move to state 3 during [t̄−d, t̄]. Since P generated a move message, it means
that it was in state 1 for more than d. Therefore, all other processors have a
state message from it before t̄−d, including those in Reset. Thus, a processor
in Reset cannot move to state 3 because there are no messages in its memory.
Even if "Ready to move to 1" applies to a processor in Reset, it can only
move to state 1 and not to state 3.

Next we will show that processors that were not in Reset cannot move
to state 3 during [t̄ − d, t̄]. Since P must be at least D + εmin in state 1, it
means all active processors have received a message from P of state 1 before
t̄− (D+ εmin) + d < t̄− d− εmin. Therefore, for every processor Q that was
in state X + 1 during [t̄− d− εmin, t̄]:

1. "Ready to move to X+2" does not apply to Q because of P ′s message.

2. If Q receives a <moved to X+2> message it will switch to Reset, since
it has messages from state X received from P , its own message from
state X + 1, and the move message from state X + 2.

Thus, every processor Q that was in state X+1 during [t̄−d, t̄] cannot move
to state X + 2 during these periods of time.

In the upcoming lemmas we will show that all processors will share the
same state for at least εmin (De�nition 3.1.2).

Lemma 42. If at time t̄ a processor (possibly faulty) P generates a clean
<moved to 2> message, then within D + d, for at least εmin, all non-faulty
processors will be either in Reset state or in state 2.

Proof. According to Lemma 41, there is no processor in state 3 when the
move message is generated (at t̄). That means all processors that are not
in Reset are spread over states 1 and 2. We will show that all processors
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in state 1 will move to state 2 before any processor in state 2 can move to
state 3. In order to do so, we split the proof into two parts according to the
processors in state 1: processors in state 1 that were in Reset during [t̄−d, t̄],
and processors in state 1 that were not in Reset during [t̄− d, t̄].

• For every processor Q in state 1 that was not in Reset during [t̄− d, t̄].
Since Q was not in Reset for the last d, every processor in the system
has a message from Q in its memory. Processors that received Q′s
message from state 1 have the updated state 1 message as Q′s latest
message, and processors that have not received Q′s state 1 message
have a state 3 message as Q′s latest message. For each processor R
in state 2, R has P 's message from state 1 (which was received before
P made the move action). If the last message that R received from Q
was of state 3 it would have moved to Reset, since it has messages from
states 1,2 and 3 received from processors P,R and Q, respectively. If
the message that R received from Q was of state 1, "Ready to move to
3" will not apply for R until Q′s latest message will either be removed
or change to a state 2 message. Therefore, no processor in state 2 can
produce a <moved to 3> message as long as Q is still active in state 1.

On the other hand, since all processors that are not in Reset are in
states 1 and 2, "Ready to move to 2" applies for every processor in
state 1, which eventually (after TD elapses) will cause any one of them
to move to state 2. We can conclude that all processors that were out
of Reset state during [t̄− d, t̄] will in state 2.

• For every Processor S that was in Reset in the last d (during [t̄− d, t̄])
we showed that S cannot move from Reset to state 3, which means that
S might only move to state 1 if "Ready to move to 1" applies to it.
If "Ready to move to 1" applies to it, that means that S has at least
one message of state 3 and no messages of state 2. That means that
processors that have already moved to state 2 have not been there for
more than d before S moved to state 1.

On the other hand, S can only move to state 1 before t̄+d, otherwise it
will receive P 's message and "Ready to move to 1" will not apply to it.
Therefore, S will be in state 1 before t̄+ d, and the state message <at
1> from S will reach any processor in state 2 before t̄+2d < t̄+D+εmin.
Thus, the state message <at 1> from S will reach any processor before
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it can send a <moved to 3> message. And after the TD that belongs
to S will elapse, it will join state 2 as well.

Only after εmin from the time when all processors that were out of Reset state
are in state 2, may the updated messages of processors that moved from state
1 to state 2 be accepted by a certain processor in state 2, potentially allowing
it to move to state 3.

To conclude, within D + d, all processors will be in state 2 for at least
εmin before the next Progress move is enabled.

Lemma 43. Local Steadiness - For a certain point in time t̄, if all processors
out of Reset state were at the same state for more than εmin, then all active
processors will be in state 1 within 3(D + εmin).

Proof. If some processors are not in Reset (we mark their state asX), "Ready
to move to X + 1" will apply for them within d. This holds because even if
some will move to the next state after accepting a move message, "Ready to
move to X + 1" still applies for all processors in state X. Therefore, within
D + εmin, all of the processors will either get a <moved to X + 1> message
and will move to X + 1, or TD will elapse and they will make a move action
to X + 1. In both cases, all processors will be in the same state (X + 1)
within D+ εmin. As long as a processor is in Reset state it will not send any
message, so processors in Reset state will not a�ect the progress of processors
that are not in Reset state. Since the state machine is composed out of three
states, a round-trip takes 3(D + εmin).

Processors in Reset state can only move to state 1 if "Ready to move
to 1" applies for them. Let t̄ be the time when all processors out of Reset
are located in state 3. During [t̄, t̄ + D + ε], processors that were in state 3
might move to state 1, but they cannot move to state 2 (since TD has not
elapsed). On the other hand, within 2d all messages that were dent by faulty
processors and reached processors in Reset state have been removed from
their memories. Thus, at t̄ + 2d all processors that were in Reset at t̄ will
have "Ready to move to 1" apply for them and they will move to state 1,
before any processor can move to state 2. We can conclude that all processors
will be in state 1 for more than εmin.

Lemma 44. Steadiness - Once all the processors are in the same state, the
system reaches its steady state.
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Proof. Once all processors are in the same state X, within d from that state
"Ready to move to X + 1" will apply for them, because even if some will
move one state ahead, "Ready to move to X + 1" still applies for all the rest
that did not move. Therefore, within D + εmin, either all of the processors
will receive a <moved to X + 1> message and will move to X + 1, or TD will
elapse and they will move to X + 1. In both cases, we have all processors in
the same state for at least εmin within D + εmin.

On the other hand, once the �rst processor moves to state X+ 1, at least
D+ εmin need to pass in order for any processor to proceed from state X + 1
to state X + 2. That is because, in order for the �rst processor to move to
the next state, its TD must elapse, which can only happen D + εmin after
moving to state X + 1.

It also applies that no processor can move to Reset since the processors
are spread over at most two states, so the condition to move to Reset state
cannot apply for any of them.

Note that all four conditions required for the system steady state (De�-
nition 35) hold by using ε̄ = εmin:

1. Once every D + εmin, every processor moves one state ahead.

2. In every time window of D + εmin, all non-faulty processors are in the
same state for ε̄.

3. All move messages that are in transit are from either the state that was
common to all or from the following state.

4. All state messages that are in transit are from either the state that was
common to all or from the following state.

Thus, the PWCP reaches a state that complies with the steady state de�ni-
tion.

Lemma 45. Convergence - All non-faulty processors will get to a steady state
within 6(D+ εmin) + 8d from the stabilizing time of the FS Emulation layer.

Proof. According to Lemma 37 and Lemma 40 from the stabilizing time of
the FS Emulation layer a clean <moved to 2> message will be generated
within 3(D + varepsilon4) + 8d. According to Lemma 42 within D + d
all processors will be in state 2 for εmin, and due to lem:Local-Steadiness
this move causes all processors to be in the same state for some ε̄ within
3(D + εmin). According to Lemma 44 this brings us to a steady state.
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Lemma 46. Processors that became active in the Fail-Stop Emulation layer
after the system reached a steady state, will not damage the protocol's steadi-
ness

Proof. A Processor that became active in the Fail-Stop Emulation layer will
receive a 〈BTA〉 message and will move to Reset state. Since we assume the
system to be in a steady state, according to Lemma 43 within 3(D+εmin) the
joined processor will also be in the same state like all others, which means
that the Steadiness property holds. Meanwhile, all the rest of the processors
maintain the steadiness property, since the processor in Reset state does not
send any message.

Lemma 47. Processors that became active in the fail-stop emulation layer
before the system reached a steady state will not damage the protocol's con-
vergence

Proof. Throughout the proof of Lemma 45 processors in Reset state do not
harm the convergence, and if the steadiness property holds for the rest of the
processors out of Reset state, we showed in Lemma 46 that the system also
reaches a steady state.

So far, we proved the Self-Stabilization property of PWCP. Next, we will
present the properties of the ticks it generates.

Remark 48. Throughout this section we referred to drifted transmission
bound (d) which is measured according to the local hardware clock. But,
since the system convergence is a global property, we will bound the conver-
gence time by using danalysis (see Claim 11).

5.6 Ticking Mechanism

De�nition 49. We de�ne a processor synchronized round for each processor
to begin when entering state 1 in the state machine until the next time it
reaches state 1, without going through Reset.

According to Lemma 44, after the system reaches its steady state, every
non-faulty processor will complete a full synchronized round every 3(D +
εmin). Since D + εmin = τ

3
, 3(D + εmin) = τ . Thus, the duration of a

synchronized round corresponds to the time of the processor's local phase.
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De�nition 50. For a certain point in time �t after the system reaches a steady
state, we de�ne for each processor Pi its processor's simulation phase φi to
be a counter of processor synchronized rounds that have passed since �t.

Remark 51. φi is not known to the processors in the system, and is only used
for marking and proving purpose.

In order to present the ticks properties, we will show that processors
cannot be too far from one another. In order to formally express this demand,
we de�ne a distance function. The basic intuition is that a distance between
a pair of states is the minimal number of hops that are needed in order to
get from one of the states to the other. In order to attend the wrap around
in the state machine (from state 3 to state 1), we always look at two rounds
of the state machine (6 states overall). We distinguish between the rounds
using the parity of the simulation phase, which brings us to the following
de�nition:

De�nition 52. We de�ne the simulated distance between two processors x
and y with the corresponding state and simulation phase (Sx, φx) and (Sy, φy)
to be:

SDist(x, y) ={
∞ if x or y ∈ Reset
mod

(
{(mod(φx, 2) + Sx)− (mod(φy, 2) + Sy)} , 6

)
otherwise.

Lemma 53. For any given point in time �t after the system reaches its steady
state, the simulated distance (with respect to �t) of every pair of processors is
at most 1.

Proof. By de�nition, a safe system state implies that all processors will be
in the same state for at least εmin, in every time window of size D+ εmin. It
might be that some moved one state ahead before the others but they will
stay there for at least D + εmin (until TD elapses) since the �rst processor
moved, and within that time all of the rest will catch up.

Therefore, for every pair of processors {x,y}, one of the following must
hold:

1. φx = φy and | Sx − Sy |≤ 1.

2. | φx − φy |≤ 1 and WLOG (Sx = 1 ∧ Sy = 3).
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In both cases, SDist is not greater than 1.

Lemma 54. For every pair of non-faulty processors {x,y} if the simulation
distance between them is at most 1, then processor x will not send a send tick
in its φx + 1 simulation phase to its host before y sends a stop receiving tick
in its φy simulation phase to its host.

Proof. When processor x sends a send tick in its simulation phase φx + 1,
it means that x was in state 1 (of phase φx + 1 ) and moved to state 2.
According to Lemma 53 we know that when x moved to state 2, y (and all
other non-faulty processors) must have been in state 1 of its simulation phase
φy. Therefore, y had already sent a stop receiving tick in simulation phase
φy, when it moved from state 3 to state 1 (of phase φy) as claimed.

Lemma 55. For every pair of non-faulty processors {x,y}, if the simulation
distance between them is at most 1, then processor x will not send a stop
receiving tick in its φx simulation phase to its host before D has passed from
the time that y sent a send tick in its φy simulation phase to its host.

Proof. When processor x sends a stop receiving tick in its simulation phase
φx, it means that x was in state 3 (of phase φx ) and moved to state 1.
According to Lemma 53 we know that when x moved to state 1, y (and all
other non-faulty processors) must have been in state 3 of its simulation phase
φy. Therefore, all of them had already sent a send tick in simulation phase
φy, when moved from state 1 to state 2 (of phase φy), and an additional
D + εmin passed before moving to state 3. Therefore, at least D has passed,
since the send tick was sent as claimed.

Lemma 56. For a given ε > 0, for every non-faulty processor, the duration
of time that passes from one send tick to the next send tick is lower than τ .

Proof. According to Lemma 44, once the system is in its steady state ev-
ery processor will move one state ahead within D + εmin. Therefore, every
processor that generated a send tick at time tst1 by moving from state 1 to
state 2 must have made the same move within 3(D + εmin), which means
it generated another send tick within that time. Since D + εmin = τ

3
, then

3(D + εmin) = τ and the lemma holds.
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5.7 Simulate Pair-Wise Synchronized System

Using PWCP

In this subsection we will show how to use the ticks provided by PWCP in
order to simulate a pair-wise synchronized system with local phase of length
τ , and by that solve the pair-wise synchronized simulation problem. We show
how to construct a self-stabilized simulation protocol ψ, that can use PWCP
in order to simulate a pair-wise synchronized system (De�nition 6) with local
phases of length τ .

Thus, ψ needs to align with the following requirements:

1. We mark the time that passes between two consecutive send ticks sent
by ψ as Tst. For a given ε > 0, it holds that Tst ≤ τ + ε.

This implies that every local phase can be associated with a corre-
sponding pair of send ticks, without exceeding the bound of a local
phase duration. Therefore, ψ is aligned with the �rst pair-wise syn-
chronization requirement.

2. For every pair of non-faulty processors (Pi, Pj), if Pi sends a message
associated with its local phase `, that is received by Pj in its local phase
k. Then, Pi will not accept a send tick from PWCP in local phase `+1
before Pj accepts a stop receiving tick from PWCP in local phase k.

If no message of the next local phase is sent prior to accepting the send
tick, and no message associated with the current local phase is accepted
after accepting the stop receiving tick, the above requirement implies
the second pair-wise synchronization requirement.

3. For every pair of non-faulty processors (Pi, Pj), if Pi sent a message
associated with its local phase `, that was received by Pj at its local
phase k. Then, if Pj sent a message associated with local phase k Pi
will accept it in local phase `.

That means that the duration between the send tick and the stop re-
ceiving tick is long enough in order to receive all messages which are
related to the current local phase.

We assume every processor can send all of the API elements of a local
phase at the beginning of the phase. We also assume that a processor can
hold the API elements until it instructed to send them by PWCP.
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Protocol's description:
ψ uses PWCP in the following way (as shown in Figure 5.1):

• When a send tick is received from PWCP, send all input elements
associated with the current local phase. After sending these phase
messages do not send any more messages of the current local phase.

• When a stop receiving tick is received from PWCP, stop receiving mes-
sages associated with the current local phase (ignore future output
elements with the same local phase).

In the next set of lemmas, we will show that the protocol handles the
requirements stated above.

Lemma 57. For a given ε > 0 and for every processor in the system P , the
time duration between two contiguous send tick sent by P is less than τ + ε.

Proof. According to Lemma 56, after the system reaches its steady state the
duration between two contiguous send tick is less than τ .

Lemma 58. For every pair of non-faulty processors (Pi, Pj), if Pi sends a
message associated with its local phase ` that was received by Pj in its local
phase k. Then, Pi will not accept a send tick from PWCP in local phase `+1
before Pj accepts a stop receiving tick from PWCP in local phase k.

Proof. According to Lemma 54, in PWCP steady state, for every pair of
non-faulty processors (Pi, Pj), Pi invokes a send tick for the next local phase
only after Pj invokes its stop receiving tick of the current local phase.

Lemma 59. For every pair of non-faulty processors (Pi, Pj), if Pi sends a
message associated with its local phase ` that was received by Pj at its local
phase k. Then, if Pj sends a message associated with its local phase k, Pi
will accept it in its local phase `.

Proof. According to Lemma 55 in PWCP steady state, for every pair of non-
faulty processors (Pi, Pj), Pi invokes a stop receiving tick for the its current
local phase ` at least D after Pj invokes its send tick of the local phase k.
Since Pj sends all messages that are associated with local phase k when it
receives the send tick, after another d < D all of these messages have reached
to Pi before it generates the stop receiving tick.
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Chapter 6

Pulse Synchronization in

Pair-Wise Synchronized Systems

In this section, a protocol to assign synchronization to pair-wise synchronized
systems is presented. Given a pair-wise synchronized system S subjected
to emulated fail-stop faults, the protocol creates a common event for all
non-faulty processors in the system, which we call a common virtual pulse,
in a �xed prede�ned delay from one pulse to another. It will be shown
that creating this common virtual pulse deduces the global synchronization
property of the system. In addition, a lower bound of reaching this goal is
proven, and since the constructed protocol reaches this bound, it is considered
optimal.

6.1 Pulse Synchronization De�nitions

The pair-wise synchronized property implies a general property on the sys-
tem, which is captured by the following de�nition.

De�nition 60. In a pair-wise synchronized distributed system, where every
processor sends messages to all other processors during every local phase.
For a given time t0, let k1, k2, ..., kn be the indices of the processors' local
phases at time t0. For each m ∈ N, let Pj be the �rst processor to send a
message of local phase kj +m at tm > t0.

We de�ne the system's mth global phase (with respect to t0) to be the
period of time that passed from tm to tm+1.
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The following example demonstrates the de�nition in order to clarify it.
Let Pj be the �rst processor to send a message of its kj + 1 local phase at
t1 > t0, and let Pi be the �rst processor to send a message of its kj + 2 local
phase at t2 > t1. We de�ne the system's �rst global phase with respect to t0
to be the period that passes from t1 to t2.

Remark 61. The start and end points of the global phase are not known to
the processors in the system. This is due to the fact that the de�nition of
the starting points of the global phases depends on the time that a processor
sends a message of its next local phase, and no other processor can know the
sending time of another processor.

De�nition 62. A common virtual pulse is a recurring distributed event for
all non-faulty processors in the system, as simultaneous as possible and with
a frequency that matches a predetermined regularity.

In our context, we de�ne the predetermined regularity with respect to
the number of global phases.

Using these de�nitions, the formal problem can be presented as follows:
Pulse Synchronization Problem: Given a pair-wise synchronized dis-

tributed system S with the prede�ned length τ for the local phase (De�-
nition 4), and the a drifted transmission bound d (De�nition 9), subjected
to emulated fail-stop faults, and a constant T ∈ N. Let t0 be the point in
time where the pair-wise synchronized system stabilizes, meaning every se-
quence of messages from t0 is a pair-wise synchronized allowable sequence
(De�nition 31). One must construct a protocol ψ that from some point in
time t̃ ≥ t0, all non-faulty processors will generate a common virtual pulse
according to ψ in the same global phase such that from this pulse on, the
protocol generates a common virtual pulse every T global phases.

6.2 Pulse Synchronization Lower Bound

Next the lower bound on the number of global phases required for solving the
pulse synchronization problem is presented. The number of faulty processors
is notated as F , where the only assumption regarding F is that F < N

2
.

Theorem 63. For a given Constant T ≥ 2, let A be any protocol that solves
the pulse synchronization problem in a pair-wise synchronized system sub-
jected to Emulated Fail-Stop faults. Let t0 be the point in time at which the
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pair-wise synchronized system stabilizes (every sequence of messages from t0
is a pair-wise synchronized allowable sequence (De�nition 31)). There exists
a run over A that takes more than F global phases with respect to t0 until
the system generates a common virtual pulse, such that from this pulse and
on, the protocol generates a common virtual pulse every T global phases (i.e.
solves the pulse synchronization problem).

In order to prove Theorem 63, a reduction from the pulse synchronization
problem to the consensus problem [4] will be presented. The lower bound
of F + 1 phases for the consensus convergence is well known in distributed
protocols [25]. A mapping between the consensus problem and the pulse
synchronization problem will be presented. Using this mapping, the lower
bound on the convergence is deduced.

The Synchronous model referred to is the one presented in [25], where in
each phase the following steps are taken in the described order:

1. Each non-faulty processor sends its messages.

2. Each processor reads all messages addressed to it, processes them and
decides on its next actions.

Since the consensus problem is de�ned over a synchronous system and the
pulse synchronization problem is de�ned over a pair-wise synchronized sys-
tem, we need to justify the connection between the two. The following lemma
captures this.

Lemma 64. Let S be a Synchronous distributed system, which started at t0.
If each of the processors in S de�nes its Local phases in the following way:

• A new local phase starts at t0.

• Whenever a new synchronous phase starts, proceed to the next local
phase.

Then, every sequence of input and output elements σ ∈ seq(S) from t0 and
on is a pair-wise allowable sequence.

Proof. In order to prove the lemma two issues need to be handled:

1. Show that the local phase construction described in the lemma is
aligned with the local phase de�nition (De�nition 4).
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2. Prove that the sequences produced by the synchronous system are pair-
wise synchronized allowable sequences (De�nition 31).

According to the synchronous model [25], the duration of each phase is
su�cient in order to receive and process all messages sent by any of the
processors. In addition, every message that was sent or received by each of
the processors is associated with a single synchronous phase, and is hence
associated with a particular local phase. Finally, for every pair of processors
(Pi, Pj) every message sent from Pi to Pj must be associated with a di�erent
synchronous phase, implying that only one message from Pi to Pj can be
sent in every local phase. Since a new local phase starts at t0, the behavior
of the Local Phases cannot be a�ected by transient activities prior to t0.

After showing that local phases are well de�ned, the pattern of the con-
structed system's elements sequences can be examined. In the synchronous
model, every input element ein that was sent by processor Psend is promised
to reach, as an output element eout, the destination processor Prec before the
end of the current synchronous phase. In addition, Prec is assured to stop
receiving and processing all of its output elements prior to the end of the
current synchronous phase, which is also the end of its current Local phase.
Psend will not send any message until the synchronous phase starts, and since
each of the processors de�nes its Local phase according to the synchronous
phases, it is assured that Psend will not create any input element of its next
Local phase until Prec stops receiving output elements of its current Local
phase. To conclude, it was shown that every sequence of input and output
elements σ ∈ seq(S) is a pair-wise synchronized allowable sequence.

Lemma 64 shows that a synchronous system can be referred to as a pair-
wise synchronized system since the sequences of the API elements produced
by the system are pair-wise allowable sequences. Therefore, it allows us to
use a protocol assumed to run on a pair-wise synchronized system in order
to solve the consensus problem on a synchronous system.

In order to map the consensus problem to the pulse synchronization prob-
lem, the following observation is used. Let A be a protocol that solves the
pulse synchronization problem within ζ ≥ T global phases. Since A is a
self-stabilized protocol, it has a system state for the situation where all pro-
cessors create the common virtual pulse. We refer to this state as the pulse
system state. Furthermore, it has an additional system state for the global
phase that comes after the common virtual pulse. We refer to this state as
the post-pulse system state.
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The mapping between the consensus problem over a synchronous system
and the pulse synchronization problem over a pair-wise synchronized system
is captured in the following de�nition:

De�nition 65. Let A be any self-stabilized protocol that, given T ∈ [2, F ]
for the virtual pulse reoccurring rate, solves the pulse synchronization prob-
lem over a pair-wise synchronized system, within ζ ≥ T global phases. The
pair-wise consensus mapping (PWCM) maps A to a protocol that solves the
consensus problem over a synchronous system in the following way:

According to Lemma 64, A may be executed over a synchronized system.
For each of the processors, PWCM sets a counter C for the number of global
phases that pass since the last common virtual pulse (increased by 1 for every
new global phase). Given an instance of a binary consensus problem over a
synchronized fail stop system, every processor that has the initial value of 0
in the consensus problem, starts protocol A in the pulse system state and
is assigned with C = 0. Every processor with an initial value of 1 in the
consensus problem starts A in the post-pulse system state and is assigned
with C = 1.

In order to complete the mapping, we need to map the counter value (C)
to either 0 or 1 for the consensus problem. For that, we use the following
function:

Consensus Return Value =

{
1 if mod (C − mod (ζ, T )) = 1

0 otherwise.

Remark 66. In the presented mapping function, three assumptions were made
regarding the value of T :

1. T ≥ 2.

2. ζ ≥ T

3. T ≤ F .

Regarding the �rst assumption, note that if T = 1 it means that the pulse
is expected to be produced in every global phase. This implies the trivial
protocol that instructs the processor to always pulse. Also, note that the
PWCM mapping function will be mapped to a trivial solution of the consen-
sus problem of always returning 0.

Regarding the second assumption, since the pulse synchronization prob-
lem is de�ned by the pulse that from it and on, the reoccurring event holds,
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it implies that every protocol might need T global phases in order to reach
a pulse. Even a stable system that starts from the state when the pulse was
just created will need to wait T global phases in order to reach to the stable
pulse, which justi�es the assumption that ζ ≥ T .

Following the previous assumption, considering T ≥ F + 1 will force any
protocol to have a run longer than F + 1 global phases. Hence, the lower
bound of F+1 holds. Therefore, the reduction focuses on the scenarios where
T ≤ F .

Next, the correctness of the protocol constructed by PWCM function for
the consensus problem is proven, using the following set of lemmas:

Lemma 67. If all processors were in the �post-pulse system state� with
counter value 1 at the beginning of A′s run, all counters values will be
mod (ζ + 1, T ).

Proof. Since ζ > (T − 1), then after T − 1 global phases all processors will
generate the common virtual pulse (according to the de�nition of this system
state inA), and the counter will be set to 0 for all processors. We stop the run
after ζ−(T−1) global phases after the �rst common virtual pulse. Therefore
the value of the counter at the end of the run will be mod (ζ − T + 1, T ) =
mod (ζ + 1, T ), as claimed.

Since mod ( mod (ζ+1, T )− mod (ζ, T )) = 1, it holds that the return
value for the consensus problem with the suggested protocol in the scenario
that all processors have the initial value of 1 is 1 as expected.

Lemma 68. If all processors were in the �pulse system state� at the beginning
of A′s run, all counters values will be mod (ζ, T ).

Proof. Since ζ ≥ T , then after T global phases all processors will generate
the common virtual pulse, and the counter will be set to 0 for all processors.
We stop the run after ζ − T global phases after the �rst common virtual
pulse, and therefore the value of the counter at the end of the run will be
mod (ζ − T, T ) = mod (ζ, T ), as claimed.

Since mod ( mod (ζ+, T )− mod (ζ, T )) = 0, it holds that the return
value for the consensus problem with the suggested protocol in the scenario
that all processors have the initial value of 0 is 0 as expected.

Lemma 69. All processors will have the same counter value at the end of
A′s run.
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Proof. For any system state, we are promised by the properties of A that the
system reaches a common virtual pulse within ζ. After the common virtual
pulse is created all processors will set their counters to 0. Therefore we are
assured that all processors will have the same counter value from this pulse
and on.

Thus, it holds that the return value for the consensus problem, with
the suggested protocol in the scenario where processors have di�erent initial
values, will be the same value for all processors as expected.

To conclude, the suggested protocol solves the consensus problem in ex-
actly ζ global phases. If ζ ≤ F, we can conclude that such a protocol does
not exist. Therefore, every protocol that solves the pulse synchronization
problem might need at least F + 1 global phases in a deterministic model in
order to ensure a valid pulse in the system, as claimed in Theorem 63.

6.3 Gain the Globally Synchronized property

using the Common Virtual Pulse

In this subsection, we show that solving the pulse synchronization problem
deduces the global synchronization property to the system. First, a map-
ping between each processor's local phase and the system's global phase is
presented. Afterward, the usage of the common virtual pulse in order to
label each processor's local phase is shown. Finally, we show that if every
processor uses this labelling function for its local phase label, the result is an
agreed label for all processors, and by that achieves the globally synchronized
property.

First, the mapping between each processor's local phase and the system's
global phase is presented using the following lemmas.

Lemma 70. For each of the processors in the system Pi, which in t0 was in
its kth local phase, Pi sends all messages associated with its k+m local phase
during the mth global phase.

Proof. We mark the starting point of the mth global phase as tm (see De�ni-
tion 60). Let ti

m be the time when P i sent its �rst message of its k+m local
phase. It must hold that ti

m ≥ tm, otherwise the mth global phase would
have started at ti

m. Thus, the �rst message that P i sent on its k +m Local
Phase was during the mth global phase. If the system moved to global phase

60



(m+1), it means that some processor Pj that was in its `th local phase at
t0 sent a message of its ` + m + 1 local phase. According to the pair-wise
synchronized property, when Pj sent the �rst message of phase `+m, Pi had
�nished its k + m local phase, including stopping sending messages of that
phase. Therefore, all messages that Pi sent in its k + m local phase were
during the mth global phase.

Lemma 71. For each of the processors in the system Pi, which in t0 was in
its kth local phase, all messages received by Pi associated with its k+m local
phase were sent during the mth global phase.

Proof. Let k1, k2, ..., kn be the processors' local phase indices at t0. Let Pj be
the �rst processor to send a message at its kj + m local phase, and by that
starts themth global phase. Let P` be the �rst processor to send a message at
its k`+m+1 local phase, and by that starts the (m+1)th global phase. Since
every processor sends messages to all other processors on every local phase
(see De�nition 60), it means that Pj sends a message to all other processors in
its kj+m−1 Local Phase. According to the pair-wise synchronized property,
when Pj sent the �rst message of phase kj + m, all processors had stopped
receiving messages, including Pi, which stopped receiving messages of the
(ki +m− 1) local phase.

Using the same argument for P` shows that Pi had stopped receiving
messages of phase ki + m before P` sent its �rst message of local phase
k` + m + 1. Therefore, all messages accepted by Pi in its local phase k + m
were sent during the mth global phase.

Next, the Count From Pulse (CFP) labelling function for the processors'
local phase is presented. CFP assigns the number of local phases passed since
the last common virtual pulse as the current local phase label. Where the
label of the Local phase that follows the common virtual pulse is 0. If CFP is
used by all processors then the system is globally synchronized (Lemma 73).

De�nition 72. Each processor is assigned with a counter C ∈ [0, T ] that
counts the number of Local phases that passed since the last common virtual
pulse. The Count From Pulse (CFP) labelling function CFP : N+

0 → [0, T −
1] labels for each processor Pj, its local phase label θj[`] ∈ N+

0 (De�nition 5)
in the following way:

θj[`] = mod (C, T ) .
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Lemma 73. If all processors in the system are using the CFP labelling func-
tion, the globally synchronized property holds in the system.

Proof. Since the pulse synchronization problem is assumed to be solved, from
some point in time t̃, for every k ∈ N, all non-faulty processors generate a
common virtual pulse every kT global phases. Therefore, every processor
labels the current local phase as the number of local phases that have passed
since the last common virtual pulse according to the CFP labelling function.

The global phases in this proof are considered with respect to t̃, and the
local phase index of every processor in t̃ is marked as k1, k2, ..., kn. For every
pair of processors (Pi, Pj) in the system, when Pi sends a message to Pj in
Local phase ki + m, according to Lemma 70, this message was sent during
the mth global phase. According to Lemma 71, Pj must receive this message
during themth global phase, in P ′js kj+m Local phase. Let ki+`, kj+` be the
indices of Pi and Pj respectively, when the last virtual pulse was generated.
Hence, the counter value is C = m− `.

Ifm−` < T the label CFP assigned to P ′is ki+m local phase ism−`, and
the same holds for Pj. If m− ` = T it is possible that one of the processors
generates the common virtual pulse before the other and changes its counter
value to C = 0. But, since CFP assigns the same value when C = 0 and
when C = T , both processors will have label 0 as the local phase label. Since
both share the same local phase label it means that the globally synchronized
property holds in the system.

Note that it is possible that during the run, processors will have di�erent
values for their current local phase. However, we are promised according to
Lemma 73 that when a certain processor Pi receives a message from another
processor Pj, the Local phase Label that Pi and Pj assign to this message is
identical.

6.4 The Global Sync Protocol

In order to accomplish the common virtual pulse, we make use of another
clocking protocol GSP (Global Sync Protocol). GSP is assumed to run over
a Fail-Stop system, and runs for F + 1 local phases. We instruct a protocol
ψ that wants to use GSP in order to achieve the common virtual pulse, to
run a sequence of instances of GSP such that the starting system state of the
next GSP is the same as the ending system state of the last GSP.
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ψ's requirements are:

• Self-Stabilization, as expressed by the following properties:
GSP has an internal set of safe system states C such that following
properties hold:

1. Steadiness: If the initial system state of GSP is c ∈ C, then the
system state when PWCP �nishes its run is c̄ ∈ C.

2. Convergence: If the initial system state of GSP is c /∈ C, then
after GSP completes its run, the system state of GSP is c̄ ∈ C.

• Common virtual pulse, the protocol needs to provide to all of the pro-
cessors a common virtual pulse once every T global phases.

The motivation for these properties is that after the fail-stop emulation
layer stabilizes, by the convergence property of GSP, its instance will end its
run in a safe system state. Since each instance has a runtime bounded by
F + 1, a run of GSP over the stabilized fail-stop emulation layer simulates
a fail-stop run. Once the ending point of the former instance is in C, the
starting system state of the next GSP will also be in C. According to the
Steadiness property of GSP, each of its following instances will start and
�nish in system states that belong to C. Thus, running sequences of GSP
will result in a traditional self-stabilized protocol.

After the system stabilizes, it will produce a common virtual pulse every
T local phases, as needed.
Protocol's Variables:
Each processor in the protocol has an instance of the abstract state machine
appearing in Figure 6.1

6.5 The Protocol

For every processor in each local phase:

• Process all the messages received during the previous local phase in the
following way:

� If N −F messages are from the same state X move to state X+ 1
(according to the state machine).
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Figure 6.1: The GSP Abstract State Machine

� Otherwise, move to state 1 (including if you did not received any
message).

• Send the new state to all other processors.

• When state T is reached, create the common virtual pulse.

De�nition 74. We de�ne the safe system states set C as all the system
states where the following hold:

• The abstract state associated with the local phase is common for all
non-faulty processors.

• All the messages in transit are from the same state.

Claim 75. GSP is steady.

Proof. If all non-faulty processors are in the same state X and every one of
them has sent this state to all others, all processors will accept at least N−F
messages of that state. Thus, all processors will move to state X + 1 in the
next global phase and will send it as their next message.
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De�nition 76. A clean phase is a phase where no processor failed (acted
against the protocol's rules and became inactive).

Lemma 77. After a clean phase the system converges.

Proof. If all non-faulty processors are in the same state according to Lemma 75
we are �nished. Otherwise, given a clean phase, we are promised that all
non-faulty processors will receive the same set of messages. Thus, if N − F
processors are in the same state X, then all processors will move to state
X + 1. If there is no state with more than N − F − 1 processors, all proces-
sors will move to state 1. Either way, we reach a point where all non-faulty
processors are in the same state. In the next global phase, every processor
will sent its current state, which brings us to a safe state.

Lemma 78. Let t0 be the time where the pair-wise synchronized layer had
stabilized. The GS Protocol converges within F + 1 global phases past t0.

Proof. During a full run of the protocol there must be at least one steady
state, because we run it for F + 1 local phases which means that even if we
have one failing processor for each phase we still have a clean phase during
this instance of the protocol. According to Lemma 77 after a clean phase the
system reaches one of its safe system states.

After t0, the pair-wise synchronized layer is stable and every local phase
can be mapped to the corresponding global phase (Lemma 70 and Lemma 71).
Hence, F + 1 local phases that started after t0 represent F + 1 global phases
in the system.

Lemma 79. The GS Protocol produces a common virtual pulsee every T
global phases.

Proof. Once the system is in one of the safe system states all processors will
move one state ahead in every global phase and therefore will reach state T
every T global phases and will produce the common virtual pulse.

Therefore, ψ solves the pulse synchronization problem using GSP. Ac-
cording to Lemma 73, by using the CFP labelling function (De�nition 72)
the system can gain the globally synchronized property using the common
virtual pulse.
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Chapter 7

Conclusions and Future Work

In this thesis, a modular solution for a self-stabilized protocol that solves
the clock synchronization problem was presented. One important conclusion
from this research is the strength and advantages of dividing a complicated
task into sub-tasks. This method simpli�es the task, allowing one to reach
lower bounds with a set of rather simple algorithms. In addition, this ap-
proach allows one to switch between di�erent variants of the same concept
without the need to construct the whole algorithm from scratch. Therefore,
there are several natural directions that can evolve from this research by
expanding the basic concept of the protocol to other system models.

The main innovation in the research is the sub-task of creating the pair-
wise layer. Informally, this layer changes the model from a bounded-delay
model to a synchronous model with a constant (rather low) convergence time.
The idea of being only partly synchronized signi�cantly simpli�es the task of
reaching the full clocks' synchronization. In addition, this property can be
good enough for other protocols that are assumed to have an external pulse
to start the next phase in the system without any further addition (such
as [22]).

One natural way is to expand the protocol to deal with Byzantine faults.
In order to do that, there is a need to replace the bottom layer that simulates
the emulated fail-stop model on top of omission faults, in a layer that simu-
lates emulated fail-stop model on top of Byzantine faults. Such a simulation
already exists in synchronous systems and is known as grade-cast [37]. The
adjustments to the semi-synchronous are not trivial but seem possible.

Another possible direction is to switch to a probabilistic model instead
of the deterministic model. The main gain such a change can contribute is
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to move from linear-bounded convergence time to expected constant time.
There exists a probabilistic protocol [22] that assumes the system module
is Coherent, which is very a similar module to the pair-wise synchronized.
This protocol can achieve an expected constant convergence time using self-
stabilized coin �ipping algorithm (see more details in [22]).

There are other assumptions made in this protocol in order to simplify
it that may be dropped in future research, such as the full connectivity
assumption, which raises the question of what the bounds are on a network
with a limited connectivity.

Another simplifying assumption was made in the bottom layer, where a
kind of broadcast is being used in order to make sure that every message
can be covered by N − F of the processors. What should it take in order to
create private channels in the system? One possible solution is to sign every
element with the recipient public key so that only the recipient can open
them, yet they can still be propagated through the other processors. Other
solutions can be developed in future research.

A lower bound was presented for the deterministic model on the synchro-
nization problem that was raised. It is possible to come up with another
de�nition of synchronization simulations and try to understand the upper
and lower bounds with the other models.

Yet, getting to an optimal convergence time O(N) with three protocols
that are quite intuitive, and can be implemented in existing systems, is an
impressive achievement that shows the strength of the modular system.
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