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Abstract

This paper presents the first hierarchical Byzantine
fault-tolerant replication architecture suitable to systems
that span multiple wide area sites. The architecture con-
fines the effects of any malicious replica to its local site,
reduces message complexity of wide area communica-
tion, and allows read-only queries to be performed lo-
cally within a site for the price of additional hardware. A
prototype implementation is evaluated over several net-
work topologies and is compared with a flat Byzantine
fault-tolerant approach.

1 Introduction

During the last few years, there has been considerable
progress in the design of Byzantine fault-tolerant replica-
tion systems. The current state of the art protocols per-
form very well on small-scale systems that are usually
confined to local area networks. However, current solu-
tions employ flat architectures that introduce several lim-
itations: Message complexity limits their ability to scale,
and strong connectivity requirements limit their availabil-
ity on WANs that usually have lower bandwidth, higher
latencies, and exhibit network partitions.

This paper presents Steward, the first hierarchical
Byzantine fault-tolerant replication architecture suitable
for systems that span multiple wide area sites, each con-
sisting of several server replicas. Steward assumes no
trusted component in the entire system, other than a valid
mechanism to pre-distribute private/public keys.

Steward uses a Byzantine fault-tolerant protocol
within each site and a lightweight, benign fault-tolerant
protocol among wide area sites. Each site, consisting of
several potentially malicious replicas, is converted into a
single logical trusted participant in the wide area fault-
tolerant protocol. Servers within a site run a Byzantine
agreement protocol to order operations locally, and they

agree upon the content of any message leaving the site for
the global protocol.

Guaranteeing a consistent agreement within a site is
not enough. The protocol needs to eliminate the ability
of malicious replicas to misrepresent decisions that took
place in their site. To that end, messages between servers
at different sites carry a threshold signature attesting that
enough servers at the originating site agreed with the con-
tent of the message.

Using threshold signatures allows Steward to save the
space and computation associated with sending and veri-
fying multiple individual signatures. Moreover, it allows
for a practical key management scheme where servers
need to know only a single public key for each remote site
and not the individual public keys of all remote servers.

The main benefits of our architecture are:
1. It reduces the message complexity on wide area ex-

changes from O(N2) (N being the total number of
replicas in the system) to O(S2) (S being the num-
ber of wide area sites), considerably increasing the
system’s ability to scale.

2. It confines the effects of any malicious replica to its
local site, enabling the use of a benign fault-tolerant
algorithm over the WAN. This improves the avail-
ability of the system over WANs that are prone to
partitions, as only a majority of connected sites is
needed to make progress, compared with at least
2f + 1 servers (out of 3f + 1) in flat Byzantine ar-
chitectures.

3. It allows read-only queries to be performed locally
within a site, enabling the system to continue serv-
ing read-only requests even in sites that are parti-
tioned away.

4. It enables a practical key management scheme
where public keys of specific replicas need to be
known only within their own site.

These benefits come with a price. If the requirement is
to protect against any f Byzantine servers in the system,
Steward requires 3f + 1 servers in each site. However, in



return, it is able to overcome up to f malicious servers in
each site.

Steward’s efficacy depends on using servers within
a site which are unlikely to suffer the same vulnerabil-
ities. Multi-version programming [1], where indepen-
dently coded software implementations are run on each
server, can yield the desired diversity. Newer techniques
[2] can automatically and inexpensively generate varia-
tion.

The paper demonstrates that the performance of Stew-
ard with 3f + 1 servers in each site is much better
even compared with a flat Byzantine architecture with a
smaller system of 3f + 1 total servers spread over the
same wide area topology. The paper further demonstrates
that Steward exhibits performance comparable (though
somewhat lower) with common benign fault-tolerant pro-
tocols on wide area networks.

We implemented the Steward system and a DARPA
red-team experiment has confirmed its practical surviv-
ability in the face of white-box attacks (where the red-
team has complete knowledge of system design, access
to its source code, and control of f replicas in each site).
According to the rules of engagement, where a red-team
attack succeeded only if it stopped progress or caused
consistency errors, no attacks succeeded. We have in-
cluded a detailed description of the red-team experiment
in [3].

The remainder of the paper is presented as follows.
We provide background in Section 2. We present our as-
sumptions and the service model in Section 3. We de-
scribe our protocol, Steward, in Section 4. We present
experimental results demonstrating the improved scala-
bility of Steward on WANs in Section 5. We discuss pre-
vious work in several related research areas in Section 6.
We summarize our conclusions in Section 7.

2 Background

Our work requires concepts from fault tolerance,
Byzantine fault tolerance and threshold cryptography. To
facilitate the presentation of our protocol, Steward, we
first provide an overview of three representative works in
these areas: Paxos, BFT and RSA Threshold Signatures.

Paxos: Paxos [4, 5] is a well-known fault-tolerant pro-
tocol that allows a set of distributed servers, exchang-
ing messages via asynchronous communication, to totally
order client requests in the benign-fault, crash-recovery
model. One server, referred to as the leader, coordinates
the protocol. If the leader crashes or becomes unreach-
able, a view change occurs, allowing progress to resume
in the new view under the reign of a new leader. Paxos re-
quires at least 2f + 1 servers to tolerate f faulty servers.
Since servers are not Byzantine, a single reply needs to

be delivered to the client.
In the common case, in which a single leader exists

and can communicate with a majority of servers, Paxos
uses two asynchronous communication rounds to glob-
ally order client updates. In the first round, the leader as-
signs a sequence number to a client update and proposes
this assignment to the rest of the servers. In the second
round, any server receiving the proposal accepts the pro-
posal by sending an acknowledgment to the rest of the
servers. When a server receives a majority of acknowl-
edgments – indicating that a majority of servers have ac-
cepted the proposal – the server orders the corresponding
update.

BFT: The BFT [6] protocol addresses the problem of
replication in the Byzantine model where a number of the
servers can exhibit arbitrary behavior. Similar to Paxos,
BFT uses an elected leader to coordinate the protocol and
proceeds through a series of views. BFT extends Paxos
into the Byzantine environment by using an additional
communication round in the common case to ensure con-
sistency both in and across views and by constructing
strong majorities in each round of the protocol. Specif-
ically, BFT requires acknowledgments from 2f + 1 out
of 3f + 1 servers to mask the behavior of f Byzantine
servers. A client must wait for f + 1 identical responses
to be guaranteed that at least one correct server assented
to the returned value.

In the common case, BFT uses three communication
rounds. In the first round, the leader assigns a sequence
number to a client update and proposes this assignment
to the rest of the servers by broadcasting a pre-prepare
message. In the second round, a server accepts the pro-
posed assignment by broadcasting an acknowledgment,
prepare. When a server receives 2f+1 prepare messages
with the same view number and sequence number as the
pre-prepare, it begins the third round by broadcasting a
commit message. A server commits the corresponding
update when it receives 2f + 1 matching commit mes-
sages.

Threshold digital signatures: Threshold cryptogra-
phy [7] distributes trust among a group of participants to
protect information (e.g. threshold secret sharing [8]) or
computation (e.g. threshold digital signatures [9]).

A (k, n) threshold digital signature scheme allows a
set of servers to generate a digital signature as a single
logical entity despite (k - 1) Byzantine faults. It divides
a private key into n shares, each owned by a server, such
that any set of k servers can pool their shares to generate
a valid threshold signature on a message, m, while any
set of fewer than k servers is unable to do so. Each server
uses its key share to generate a partial signature on m and
sends the partial signature to a combiner server, which
combines the partial signatures into a threshold signature



on m. The threshold signature is verified using the public
key corresponding to the divided private key.

A representative example of practical threshold digital
signature schemes is the RSA Shoup [9] scheme, which
allows participants to generate threshold signatures based
on the standard RSA[10] digital signature. It provides
verifiable secret sharing [11] (i.e. the ability to confirm
that a signature share was generated using a valid private
key share), which is critical in achieving robust signature
generation [12] in Byzantine environments.

3 System Model and Service Guarantees

Servers are implemented as deterministic state ma-
chines [13]. All correct servers begin in the same initial
state and transition between states by applying updates as
they are ordered. The next state is completely determined
by the current state and the next update to be applied.

We assume a Byzantine fault model. Servers are either
correct or faulty. Correct servers do not crash. Faulty
servers may behave arbitrarily. Communication is asyn-
chronous. Messages can be delayed, lost, or duplicated.
Messages that do arrive are not corrupted.

Servers are organized into wide area sites, each having
a unique identifier. Each server belongs to one site. The
network may partition into multiple disjoint components,
each containing one or more sites. During a partition,
servers from sites in different components are unable to
communicate with each other. Components may subse-
quently re-merge. Each site Si has at least 3 ∗ (fi) + 1
servers, where fi is the maximum number of servers that
may be faulty within Si. For simplicity, we assume in
what follows that all sites may have at most f faulty
servers.

Clients are distinguished by unique identifiers. Clients
send updates to servers within their local site and receive
responses from these servers. Each update is uniquely
identified by a pair consisting of the identifier of the client
that generated the update and a unique, monotonically in-
creasing logical timestamp. Clients propose updates se-
quentially: a client may propose an update with times-
tamp i+1 only after it receives a reply for an update with
timestamp i.

We employ digital signatures, and we make use of a
cryptographic hash function to compute message digests.
Client updates are properly authenticated and protected
against modifications. We assume that all adversaries, in-
cluding faulty servers, are computationally bounded such
that they cannot subvert these cryptographic mechanisms.
We also use a (2f + 1, 3f + 1) threshold digital signa-
ture scheme. Each site has a public key, and each server
receives a share with the corresponding proof that can be
used to demonstrate the validity of the server’s partial sig-

natures. We assume that threshold signatures are unforge-
able without knowing 2f + 1 or more secret shares.

Our protocol assigns global, monotonically increasing
sequence numbers to updates, to establish a global, total
order. Below we define the safety and liveness properties
of the Steward protocol. We say that:
• a client proposes an update when the client sends

the update to a correct server in the local site, and
the correct server receives it.

• a server executes an update with sequence number
i when it applies the update to its state machine.
A server executes update i only after having exe-
cuted all updates with a lower sequence number in
the global total order.

• two servers are connected if any message that is sent
between them will arrive in a bounded time. This
bound is not known beforehand, and it may change
over time.

• two sites are connected if every correct server of one
site is connected to every correct server of the other
site.

DEFINITION 3.1 S1 - SAFETY: If two correct servers
execute the ith update, then these updates are identical.

DEFINITION 3.2 S2 - VALIDITY: Only an update that
was proposed by a client may be executed.

DEFINITION 3.3 GL1 - GLOBAL PROGRESS: If there
exists a set of a majority of sites, each consisting of at
least 2f + 1 correct, connected servers, and a time after
which all sites in the set are connected, then if a client
connected to a site in the set proposes an update, some
correct server in some site in the set eventually executes
the update.

4 Protocol Description

Steward leverages a hierarchical architecture to scale
Byzantine replication to the high-latency, low-bandwidth
links characteristic of WANs. It uses relatively costly
Byzantine fault-tolerant protocols and threshold signa-
tures to confine malicious behavior to local sites. Each
site then acts as a single logical participant in a Paxos-
like, benign fault-tolerant protocol run on the wide area.
The use of this lightweight protocol reduces the number
of messages and communication rounds on the wide area
compared to a flat Byzantine solution.

Since each entity participating in our protocol is a site
consisting of a set of potentially malicious servers (in-
stead of a single trusted participant as Paxos assumes),
Steward employs several intra-site protocols to emulate
the behavior of a correct Paxos participant. For exam-
ple, while the leader in Paxos can unilaterally assign a



sequence number to an update, Steward instead uses a
BFT-like agreement algorithm, ASSIGN-SEQUENCE, at
the leading site to assign a sequence number. Stew-
ard then uses a second intra-site protocol, THRESHOLD-
SIGN, to sign the resulting Paxos proposal message.

One server in each site, the representative, coordinates
the local agreement and threshold signing protocols. The
representative of the leading site coordinates the wide
area agreement protocol. If the representative of a site
acts maliciously, the servers of that site will elect a new
representative. If the leading site is partitioned away, the
servers in the other sites will elect a new one.

Below we provide a description of Steward’s com-
mon case operation, the view changes algorithms, and the
timers. Complete pseudocode and a proof of correctness
can be found in [3].

4.1 The Common Case

During the common case, global progress is made, and
no leading site or site representative election occurs. The
common case works as follows:

1. A client sends an update to a server in its local site.
This server forwards the update to the local repre-
sentative, which forwards the update to the repre-
sentative of the leading site. If the client does not
receive a reply in time, it broadcasts the update.

2. The representative of the leading site initiates the
ASSIGN-SEQUENCE protocol to assign a global se-
quence number to the update; this assignment is en-
capsulated in a proposal message. The site then gen-
erates a signature on the constructed proposal using
THRESHOLD-SIGN, and the representative sends the
signed proposal to the representatives of all other
sites for global ordering.

3. When a representative receives a signed proposal, it
forwards this proposal to the servers in its site. Upon
receiving a proposal, a server constructs a site ac-
knowledgment (accept) and invokes THRESHOLD-
SIGN on this message. The representative combines
the partial signatures and then sends the resulting
threshold-signed accept to the representatives of the
other sites.

4. The representative of a site forwards the incoming
accept messages to the local servers. A server glob-
ally orders the update when it receives bN/2c dis-
tinct accept messages (where N is the number of
sites) and the corresponding proposal. The server
at the client’s local site that originally received the
update sends a reply back to the client.

We now highlight the details of the THRESHOLD-SIGN
and ASSIGN-SEQUENCE protocols.

Threshold-Sign: The THRESHOLD-SIGN intra-site
protocol generates a (2f + 1, 3f + 1) threshold signa-
ture on a given message 1. Upon invoking the protocol,
a server generates a partial signature on the message to
be signed and a verification proof that other servers can
use to confirm that the partial signature was created using
a valid share. Both the partial signature and the verifica-
tion proof are broadcast within the site. Upon receiving
2f+1 partial signatures on a message, a server combines
the partial signatures into a threshold signature on that
message, which is then verified using the site’s public
key. If the signature verification fails, one or more par-
tial signatures used in the combination were invalid, in
which case the verification proofs provided with the par-
tial signatures are used to identify incorrect shares; the
corresponding servers are classified as malicious. Further
messages from the corrupted servers are ignored.

Assign-Sequence: The ASSIGN-SEQUENCE intra-site
protocol consists of three rounds, the first two of which
are similar to the corresponding rounds of BFT. At the
end of the second round, any server that has received 2f
prepares and the pre-prepare, for the same view and se-
quence number, invokes THRESHOLD-SIGN to generate a
threshold signature on the representative’s proposal.

4.2 View Changes

Several types of failure may occur during system ex-
ecution, such as the corruption of a site representative or
the partitioning of the leader site. Such failures require
delicate handling to preserve safety and liveness.

We use two relatively independent mechanisms to
handle failures. First, if a protocol coordinator 2 is faulty,
the correct participants elect a new coordinator using a
protocol similar to the one described in [6]. Second, we
use reconciliation to constrain protocol participants such
that safety is preserved across views. Note that there is
a local and global component to both mechanisms, each
serving a similar function at its level of the hierarchy.

Below we provide relevant details of leader elec-
tion, intra-site reconciliation (via the CONSTRUCT-
COLLECTIVE-STATE intra-site protocol), local view
change, and global view change.

Leader Election: We refer the reader to [6] for a de-
tailed description of the intra-site representative election
protocol. To elect a leading site, each site first runs an
intra-site protocol to agree upon the site it will propose;
these votes are exchanged among the sites in a manner
similar to the intra-site representative election protocol.

1We could use an (f + 1, 3f + 1) threshold signature at the cost of
an additional protocol round.

2Within a site, the protocol coordinator is the local representative,
and, in the high-level protocol, the coordinator is the leading site.



Construct Collective State: The CONSTRUCT-
COLLECTIVE-STATE protocol is used as a building block
in both view changes. It serves two primary functions:
guaranteeing sufficient intra-site reconciliation to safely
make progress after a local view change and generating a
message reflecting the site’s level of knowledge, which is
used during a global view change.

A site representative invokes the protocol by sending
a sequence number, seq, to all servers within the site. A
server responds with a message containing the updates it
has ordered and/or acknowledged with a higher sequence
number than seq. The representative computes the union
of 2f + 1 responses, eliminating duplicates and using the
update from the latest view if multiple updates have the
same sequence number, and broadcasts it within the site.
When a server receives a union message, it collects miss-
ing messages from the union and invokes THRESHOLD-
SIGN on the union.

Local View Change: The local view change protocol
is triggered in the leading site after a local representative
election. The new representative invokes CONSTRUCT-
COLLECTIVE-STATE with the sequence number up to
which it has ordered all updates. Upon completion, cor-
rect servers (including the new representative) are recon-
ciled such that they can constrain the updates proposed in
the new view to preserve safety. The new representative
then invokes ASSIGN-SEQUENCE to replay all pending
updates contained in the union message.

Global View Change: The global view change pro-
tocol is triggered after a leading site election. The repre-
sentative of the new leading site invokes CONSTRUCT-
COLLECTIVE-STATE with the sequence number up to
which it has ordered all updates. The resulting union
message implicitly contains the sequence number up to
which all updates have been ordered within the site; cor-
rect servers invoke THRESHOLD-SIGN on a message con-
taining this number, and the representative sends the
signed message to all other site representatives. Upon
receiving this message, a non-leading site representative
invokes CONSTRUCT-COLLECTIVE-STATE and sends the
resultant union to the representative of the new leading
site. Servers in the leading site use the union messages
from a majority of sites to constrain the proposals they
will generate in the new view.

4.3 Timeouts

Steward relies on timeouts to detect problems with the
representatives in different sites or with the leading site.
Our protocols do not assume synchronized clocks; how-
ever, we do assume that the rate of the clocks at different
servers is reasonably close. We believe that this assump-
tion is valid considering today’s technology. Below we

provide details about the timeouts in our protocols.
Local representative (T1): This timeout expires at a

server of a non-leading site to replace the representative
once no (global) progress takes place for that period of
time. Once the timeout expires at f + 1 servers, the
local view change protocol takes place. T1 should be
higher than 3 times the WAN round-trip to allow a po-
tential global view change protocol to complete without
changing the local representative.

Leading site representative (T2): This timeout expires
at a server at the leading site to replace the representa-
tive once no (global) progress takes place for that period
of time. T2 should be large enough to allow the rep-
resentative to communicate with a majority of the sites.
Specifically, since not all sites may be lined up with cor-
rect representatives at the same time, T2 should be chosen
such that each site can replace its representatives until a
correct one will communicate with the leadings site; the
site needs to have a chance to replace f + 1 represen-
tatives within the T2 time period. Thus, we need that
T2 >(f+2)∗maxT1, where maxT1 is an estimate of the
largest T1 at any site. The (f + 2) covers the possibility
that when the leader site elects a representative, the T1
timer is already running at other sites.

Leading site (T3): This timeout expires at a site to
replace the leading site once no (global) progress takes
place for that period of time. Since we choose T2 to en-
sure a single communication round with every site, and
since the leading site needs at least 3 rounds to prove
progress, in the worse case, the leading site must have a
chance to elect 3 correct representatives to show progress,
before being replaced. Thus, we need T3 = (f + 3)T2.

Client timer (T0): This timeout expires at the client,
triggering it to broadcast its last update. T0 can have an
arbitrary value.

Timeouts management: Servers send their timers esti-
mation (T1, T2) on global view change messages. The
site representative disseminates the f + 1st highest value
(the value for which f higher or equal values exist) to
prevent the faulty servers from injecting wrong estimates.
Potentially, timers can be exchanged as part of local view
change messages as well. The leading site representa-
tive chooses the maximum timer of all sites with which it
communicates to determine T2 (which in turn determines
T3). Servers estimate the network round-trip according
to various interactions they have had. They can reduce
the value if communication seems to improve.

5 Performance Evaluation

To evaluate the performance of our hierarchical archi-
tecture, we implemented a complete prototype of our pro-
tocol including all necessary communication and cryp-



tographic functionality. In this paper we focus only on
the networking and cryptographic aspects of our proto-
cols and do not consider disk writes.

Testbed and Network Setup: We selected a network
topology consisting of 5 wide area sites and assumed at
most 5 Byzantine faults in each site, in order to quan-
tify the performance of our system in a realistic scenario.
This requires 16 replicated servers in each site.

Our experimental testbed consists of a cluster with
twenty 3.2 GHz, 64 bit Intel Xeon computers. Each com-
puter can compute a 1024 bit RSA signature in 1.3 ms
and verify it in 0.07 ms. For n=16, k=11, 1024 bit thresh-
old cryptography which we use for these experiments, a
computer can compute a partial signature and verification
proof in 3.9 ms and combine the partial signatures in 5.6
ms. The leader site was deployed on 16 machines, and
the other 4 sites were emulated by one computer each.
An emulating computer performed the role of a repre-
sentative of a complete 16 server site. Thus, our testbed
was equivalent to an 80 node system distributed across
5 sites. Upon receiving a message, the emulating com-
puters busy-waited for the time it took a 16 server site to
handle that packet and reply to it, including in-site com-
munication and computation. We determined busy-wait
times for each type of packet by benchmarking individ-
ual protocols on a fully deployed, 16 server site. We used
the Spines [14] messaging system to emulate latency and
throughput constraints on the wide area links.

We compared the performance results of the above
system with those of BFT [6] on the same network setup
with five sites, run on the same cluster. Instead of using
16 servers in each site, for BFT we used a total of 16
servers across the entire network. This allows for up to 5
Byzantine failures in the entire network for BFT, instead
of up to 5 Byzantine failures in each site for Steward.
Since BFT is a flat solution where there is no correla-
tion between faults and the sites where they can occur,
we believe this comparison is fair. We distributed the
BFT servers such that four sites contain 3 servers each,
and one site contains 4 servers. All the write updates and
read-only queries in our experiments carried a payload of
200 bytes, representing a common SQL statement.

Note that, qualitatively, the results reported for BFT
are not an artifact of the specific implementation we
benchmarked. We obtained similar results to BFT us-
ing our BFT-like intra-site agreement protocol, ASSIGN-
SEQUENCE, under the same conditions.

Bandwidth Limitation: We first investigate the ben-
efits of the hierarchical architecture in a symmetric con-
figuration with 5 sites, where all sites are connected to
each other with 50 milliseconds latency links (emulating
crossing the continental US).

In the first experiment, clients inject write updates.

Figure 1 shows how limiting the capacity of wide area
links effects update throughput. As we increase the num-
ber of clients, BFT’s throughput increases at a lower
slope than Steward’s, mainly due to the additional wide
area crossing for each update. Steward can process up
to 84 updates/sec in all bandwidth cases, at which point
it is limited by CPU used to compute threshold signa-
tures. At 10, 5, and 2.5 Mbps, BFT achieves about 58, 26,
and 6 updates/sec, respectively. In each of these cases,
BFT’s throughput is bandwidth limited. We also notice
a reduction in the throughput of BFT as the number of
clients increases. We attribute this to a cascading increase
in message loss, caused by the lack of flow control in
BFT. For the same reason, we were not able to run BFT
with more than 24 clients at 5 Mbps, and 15 clients at
2.5 Mbps. We believe that adding a client queuing mech-
anism would stabilize the performance of BFT to its max-
imum achieved throughput.

Figure 2 shows that Steward’s average update latency
slightly increases with the addition of clients, reaching
190 ms at 15 clients in all bandwidth cases. As client up-
dates start to be queued, latency increases linearly. BFT
exhibits a similar trend at 10 Mbps, where the average
update latency is 336 ms at 15 clients. As the bandwidth
decreases, the update latency increases heavily, reach-
ing 600 ms at 5 Mbps and 5 seconds at 2.5 Mbps, at 15
clients.

Adding Read-only Queries: Our hierarchical archi-
tecture enables read-only queries to be answered locally.
To demonstrate this benefit, we conducted an experiment
where 10 clients send random mixes of read-only queries
and write updates. We compared the performance of
Steward and BFT with 50 ms, 10 Mbps links, where nei-
ther was bandwidth limited. Figures 3 and 4 show the
average throughput and latency, respectively, of different
mixes of queries and updates. When clients send only
queries, Steward achieves about 2.9 ms per query, with a
throughput of over 3,400 queries/sec. Since queries are
answered locally, their latency is dominated by two RSA
signatures, one at the originating client and one at the
servers answering the query. Depending on the mix ratio,
Steward performs 2 to 30 times better than BFT.

BFT’s read-only query latency is about 105 ms, and its
throughput is 95 queries/sec. This is expected, as read-
only queries in BFT need to be answered by at least f +1
servers, some of which are located across wide area links.
BFT requires at least 2f + 1 servers in each site to guar-
antee that it can answer queries locally. Such a deploy-
ment, for 5 faults and 5 sites, would require at least 55
servers, which would dramatically increase communica-
tion for updates and reduce BFT’s performance.

Wide Area Scalability: To demonstrate Steward’s
scalability on real networks, we conducted an experiment
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that emulated a wide area network spanning several con-
tinents. We selected five sites on the Planetlab network
[15], measured the latency and available bandwidth be-
tween all sites, and emulated the network topology on
our cluster. We ran the experiment on our cluster because
Planetlab machines lack sufficient computational power.
The five sites are located in the US (University of Wash-
ington), Brazil (Rio Grande do Sul), Sweden (Swedish
Institute of Computer Science), Korea (KAIST) and Aus-
tralia (Monash University). The network latency varied
between 59 ms (US - Korea) and 289 ms (Brazil - Korea).
Available bandwidth varied between 405 Kbps(Brazil -
Korea) and 1.3 Mbps (US - Australia).

Figure 5 shows the average write update throughput
as we increased the number of clients in the system,
while Figure 6 shows the average update latency. Stew-
ard is able to achieve its maximum throughput of 84 up-
dates/sec with 27 clients. The latency increases from
about 200 ms for 1 client to about 360 ms for 30 clients.
BFT is bandwidth limited to about 9 updates/sec. The
update latency is 631 ms for one client and increases to
several seconds with more than 6 clients.

Comparison with Non-Byzantine Protocols: Since
Steward deploys a lightweight fault-tolerant protocol be-
tween the wide area sites, we expect it to achieve perfor-
mance comparable to existing benign fault-tolerant repli-

cation protocols. We compare the performance of our hi-
erarchical Byzantine architecture with that of two-phase
commit protocols. In [16] we evaluated the performance
of two-phase commit protocols [17] using a WAN setup
across the US, called CAIRN [18]. We emulated the
topology of the CAIRN network using the Spines mes-
saging system, and ran Steward and BFT on top of it.
The main characteristic of the CAIRN topology is that
East and West Coast sites were connected through a sin-
gle link of 38 ms and 1.86 Mbps.

Figures 7 and 8 show the average throughput and la-
tency of write updates, respectively, of Steward and BFT
on the CAIRN network topology. Steward achieved about
51 updates/sec in our tests, limited mainly by the band-
width of the link between the East and West Coasts in
CAIRN. In comparison, an upper bound of two-phase
commit protocols presented in [16] was able to achieve
76 updates/sec. We believe that the difference in per-
formance is caused by the presence of additional digi-
tal signatures in the message headers of Steward, adding
128 bytes to the 200 byte payload of each update. BFT
achieved a maximum throughput of 2.7 updates/sec and
an update latency of over a second, except when there
was a single client.
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6 Related Work

Agreement and Consensus: At the core of many repli-
cation protocols is a more general problem, known as the
agreement or consensus problem. A good overview of
significant results is presented in [19]. The strongest fault
model that researchers consider is the Byzantine model,
where some participants behave in an arbitrary manner.
If communication is not authenticated and nodes are di-
rectly connected, 3f +1 participants and f +1 communi-
cation rounds are required to tolerate f Byzantine faults.
If authentication is available, the number of participants
can be reduced to f + 2 [20].

Fail Stop Processors: Previous work [21] discusses
the implementation and use of k-fail-stop processors,
which are composed of several potentially Byzantine pro-
cessors. Benign fault-tolerant protocols safely run on
top of these fail-stop processors even in the presence of
Byzantine faults. Steward uses a similar strategy to mask
Byzantine faults. However, each trusted entity in Stew-
ard continues to function correctly unless f + 1 or more
computers in a site are faulty, at which point safety is no
longer guaranteed.

Byzantine Group Communication: Related with our
work are group communication systems resilient to
Byzantine failures. Two such systems are Rampart [22]

and SecureRing [23]. Although these systems are ex-
tremely robust, they have a severe performance cost and
require a large number of uncompromised nodes to main-
tain their guarantees. Both systems rely on failure detec-
tors to determine which replicas are faulty. An attacker
can exploit this to slow correct replicas or the communi-
cation between them until enough are excluded from the
group.

Another intrusion-tolerant group communication sys-
tem is ITUA [24, 25]. The ITUA system, developed by
BBN and UIUC, focuses on providing intrusion-tolerant
group services. The approach taken considers all partici-
pants as equal and is able to tolerate up to less than a third
of malicious participants.

Replication with Benign Faults: The two-phase com-
mit (2PC) protocol [17] provides serializability in a dis-
tributed database system when transactions may span
several sites. It is commonly used to synchronize trans-
actions in a replicated database. Three-phase commit
[Ske82] overcomes some of the availability problems of
2PC, paying the price of an additional communication
round, and therefore, additional latency. Paxos [4] is a
very robust algorithm for benign fault-tolerant replication
and is described in Section 2.

Quorum Systems with Byzantine Fault-Tolerance:
Quorum systems obtain Byzantine fault tolerance by ap-



plying quorum replication methods. Examples of such
systems include Phalanx [26, 27] and its successor Fleet
[28, 29]. Fleet provides a distributed repository for Java
objects. It relies on an object replication mechanism that
tolerates Byzantine failures of servers, while supporting
benign clients. Although the approach is relatively scal-
able with the number of servers, it suffers from the draw-
backs of flat Byzantine replication solutions.

Replication with Byzantine Fault-Tolerance: The first
practical work to solve replication while withstanding
Byzantine failures is the work of Castro and Liskov [6],
which is described in Section 2. Yin et al. [30] propose
separating the agreement component that orders requests
from the execution component that processes requests,
which allows utilization of the same agreement compo-
nent for many different replication tasks and reduces the
number of processing storage replicas to 2f + 1. Martin
and Alvisi [31] recently introduced a two-round Byzan-
tine consensus algorithm, which uses 5f + 1 servers in
order to overcome f faults. This approach trades lower
availability for increased performance. The solution is
appealing for local area networks with high connectiv-
ity. While we considered using it within the sites in our
architecture, the overhead of combining larger threshold
signatures of 4f + 1 shares would greatly overcome the
benefits of using one less intra-site communication round.

Alternate architectures: An alternate hierarchical ap-
proach to scale Byzantine replication to WANs can be
based on having a few trusted nodes that are assumed to
be working under a weaker adversary model. For exam-
ple, these trusted nodes may exhibit crashes and recov-
eries but not penetrations. A Byzantine replication algo-
rithm in such an environment can use this knowledge in
order to optimize performance.

Verissimo et al propose such a hybrid approach [32,
33], where synchronous, trusted nodes provide strong
global timing guarantees. This inspired the Survivable
Spread [34] work, where a few trusted nodes (at least
one per site) are assumed impenetrable, but are not syn-
chronous, may crash and recover, and may experience
network partitions and merges. These trusted nodes were
implemented by Boeing Secure Network Server (SNS)
boxes, limited computers designed to be impenetrable.

Both the hybrid approach and the approach proposed
in this paper can scale Byzantine replication to WANs.
The hybrid approach makes stronger assumptions, while
our approach pays more hardware and computational
costs.

7 Conclusions

This paper presented a hierarchical architecture that
enables efficient scaling of Byzantine replication to sys-

tems that span multiple wide area sites, each consisting
of several potentially malicious replicas. The architecture
reduces the message complexity on wide area updates, in-
creasing the system’s scalability. By confining the effect
of any malicious replica to its local site, the architecture
enables the use of a benign fault-tolerant algorithm over
the WAN, increasing system availability. Further increase
in availability and performance is achieved by the ability
to process read-only queries within a site.

We implemented Steward, a fully functional proto-
type that realizes our architecture, and evaluated its per-
formance over several network topologies. The experi-
mental results show considerable improvement over flat
Byzantine replication algorithms, bringing the perfor-
mance of Byzantine replication closer to existing benign
fault-tolerant replication techniques over WANs.
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