
Byzantine Agreement with Optimal Early Stopping,
Optimal Resilience and Polynomial Complexity

Ittai Abraham∗
VMware Research
Palo Alto, CA, USA

iabraham@vmware.com

Danny Dolev†
Hebrew University of Jerusalem

Jerusalem, Israel
dolev@cs.huji.ac.il

ABSTRACT
We provide the first protocol that solves Byzantine agree-
ment with optimal early stopping (min{f +2, t+1} rounds)
and optimal resilience (n > 3t) using polynomial message
size and computation.

All previous approaches obtained sub-optimal results and
used resolve rules that looked only at the immediate children
in the EIG (Exponential Information Gathering) tree. At
the heart of our solution are new resolve rules that look at
multiple layers of the EIG tree.

1. INTRODUCTION
In 1980 Pease, Shostak and Lamport [PSL80, LSP82] in-

troduced the problem of Byzantine agreement, a fundamen-
tal problem in fault-tolerant distributed computing. In this
problem n processes each have some initial value and the
goal is to have all correct processes decide on some common
value. The network is reliable and synchronous. If all correct
processes start with the same initial value then this must be
the common decision value, and otherwise the value should
either be an initial value of one of the correct processes or
some pre-defined default value.1 This should be done in
spite of at most t corrupt processes that can behave ar-
bitrarily (called Byzantine processes). Byzantine agreement
abstracts one of the core difficulties in distributed computing
and secure multi-party computation — that of coordinating

∗Part of the work was done at Microsoft Research Silicon
Valley.
†Part of the work was done while visiting Microsoft Research
Silicon Valley. Danny Dolev is Incumbent of the Berthold
Badler Chair in Computer Science. This research project
was supported in part by The Israeli Centers of Research
Excellence (I-CORE) program, (Center No. 4/11), and by
grant 3/9778 of the Israeli Ministry of Science and Technol-
ogy.
1Other versions of the problem may not restrict to a value
on one of the correct processes, if not all initial values are
the same, or require agreement on a leader’s initial value,
which can be reduced to the version we defined.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC’15, June 14–17, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3536-2/15/06 ...$15.00.
http://dx.doi.org/10.1145/2746539.2746581.

a joint decision. Pease et al. [PSL80] prove that Byzantine
agreement cannot be solved for n ≤ 3t. Therefore we say
that a protocol that solves Byzantine agreement for n > 3t
has optimal resilience. Fisher and Lynch [FL82] prove that
any protocol that solves Byzantine agreement must have an
execution that runs for t + 1 rounds. Dolev et al. [DRS90]
prove that any protocol must have executions that run for
min{f + 2, t + 1} rounds, where f is the actual number of
corrupt processes. Therefore we say that a protocol that
solves Byzantine agreement with min{f + 2, t + 1} rounds
has optimal early stopping.

The protocol of [PSL80] has optimal resilience and optimal
worst case t + 1 rounds. However the message complexity
of their protocol is exponential. Following this result, many
have studied the question of obtaining a protocol with opti-
mal resilience and optimal worst case rounds that uses only
polynomial-sized messages (and computation).

Dolev and Strong [DS82] obtained the first polynomial
protocol with optimal resilience. The problem of obtaining
a protocol with optimal resilience, optimal worst case rounds
and polynomial-sized messages turned out to be surprisingly
challenging. Building on a long sequence of results, Berman
and Garay [BG93] presented a protocol with optimal worst
case rounds and polynomial-sized messages for n > 4t. In an
exceptional tour de force, Garay and Moses [GM93, GM98],
presented a protocol for binary-valued Byzantine agreement
obtaining optimal resilience, polynomial-sized messages and
min{f + 5, t + 1} rounds. We refer the reader to [GM98]
for a detailed and full account of the related work. Re-
cently Kowalski and Mostéfaoui [KM13] improved the mes-

sage complexity to Õ(n3) but their solution does not provide
early stopping and requires exponential computation.

Worst case running of t+ 1 rounds is the best possible if
the protocol is to be resilient to an adversary that controls t
processes. However, in executions where the adversary con-
trols only f < t processes, the optimal worst case can be
improved to f + 2 rounds. Berman et al. [BGP92] were the
first to obtain optimal resilience and optimal early stopping
(i.e. min{f + 2, t + 1} rounds) using exponential size mes-
sages. Early stopping is an extremely desirable property in
real world replication systems. In fact, agreement in a small
number of rounds when f = 0 is a core advantage of several
practical state machine replication protocols (for example
[CL99] and [KAD+07] focus on optimizing early stopping in
the fault free case).

Somewhat surprisingly, after more than 30 years of re-
search on Byzantine Agreement, the problem of obtaining
the best of all worlds is still open. There is no protocol with

optimal resilience, optimal early stopping and polynomial-
sized message. The conference version of [GM98] claimed
to have solved this problem but the journal version only
proves a min{f + 5, t + 1} round protocol, then says it is
possible to obtain a min{f + 3, t + 1} round protocol and
finally the authors say they believe it should be possible to
obtain a min{f + 2, t + 1} round protocol. We could not
see how to directly extend the approach of [GM98] to ob-
tain optimal early stopping. The main contribution of this
paper is solving this long standing open question and pro-
viding the optimal min{f + 2, t + 1} rounds with optimal
resilience and polynomial complexity. Moreover, our result
applies directly for arbitrary initial values and not only to
binary initial values, as some of the previous results.

Our Byzantine agreement protocol obtains a stronger no-
tion of multi-valued validity. If v 6= ⊥ is the decision value
then at least t+1 correct processes started with value v. The
multi-valued validity property is crucial in our solution for
early stopping with monitors. This property is also more
suitable in proving that Byzantine agreement implements
an ideal world centralized decider that uses the majority
value. We note that several previous solutions (in particular
[GM98]) are inherently binary and their extension to multi-
valued agreement does not have the stronger multi-valued
validity property.

Theorem 1. Given n processes, there exists a protocol
that solves Byzantine agreement. The protocol is resilient
to any Byzantine adversary of size t < n/3. For any such
adversary, the total number of bits sent by any correct pro-
cess is polynomial in n and the number of rounds is min{f+
2, t+ 1} where f is the actual size of the adversary.

Overview of our solution. At a high level we follow
the framework set by Berman and Garay [BG93]. In this
framework, if at a given round all processes seem to behave
correctly then the protocol stops quickly thereafter. So if the
adversary wants to cause the protocol to continue for many
rounds it must have at least one corrupt process behave in a
faulty manner in each round. However, behaving in a faulty
manner will expose the process and in a few rounds the mis-
behaving process will become publicly exposed as corrupt.

This puts the adversary between a rock and a hard place:
if too few corrupt processes are publicly exposed then the
protocol reaches agreement quickly, if too many corrupt pro-
cess are exposed then a “monitor” framework (also called
“cloture votes”) that runs in the background causes the pro-
tocol to reach agreement in a few rounds. So the only path
the adversary can take in order to generate a long execution
is to publicly expose exactly one corrupt process each round.
In the t < n/4 case, this type of adversary behavior keeps
the communication polynomial.

For t < n/3 a central challenge is that a corrupt process
can cause communication to grow in round i but will be
publicly exposed only in round i + 2. Naively, such a cor-
rupt process may also cause communication to grow both in
round i and i + 1 and this may cause exponential commu-
nication blowup. Garay and Moses [GM98] overcome this
challenge by providing a protocol such that, if there are at
most two new corrupt processes in round i and no new cor-
rupt process in round i+1 then even though they are publicly
exposed in round i+ 2 they cannot increase communication
in round i+1 (also known as preventing “cross corruption”).

At the core of the binary-valued protocol of Garay and
Moses is the property that one value can only be decided on
even rounds and the other only on odd rounds. This prop-
erty seems to raise several unsolved challenges for obtaining
optimal early stopping. We could not see how to overcome
these challenges and obtain optimal early stopping using this
property. Our approach allows values to be fixed in a way
that is indifferent to the parity of the round number (and is
not restricted to binary values).

Two key properties of our protocol that makes it quite dif-
ferent from all previous protocols. First, the value of a node
is determined by the values of its children and grandchil-
dren in the EIG tree ([BNDDS92]). Second, if agreement
is reached on a node then the value of all its children is
changed to be the value of the node. This second property is
crucial because otherwise even though a node is fixed there
could be disagreement about the value of its child. Since
the value of the parent of the fixed node depends on its chil-
dren and grandchildren, the disagreement on the grandchild
may cause disagreement on the parent and this disagreement
could propagate to the root.

The decision to change the value of the children when their
parent is fixed is non-trivial. Consider the following scenario
with a node σ, child σp and grandchild σpq: some correct
reach agreement that the value of σpq is d, then some correct
reach agreement that the value of σp is d′ 6= d and hence the
value of σpq is changed (colored) to d′. So it may happen
that some correct decide the value of σ based on σpq being
fixed on d and some other correct decide the value of σ based
on σpq being colored to d′. Making sure that agreement is
reached in all such scenarios requires us to have a relatively
complex set of complementary agreement rules.

To bound the size of the tree by a polynomial size we prove
that the adversary is still between a rock and a hard place:
roughly speaking there are three cases. If just one new pro-
cess is publicly exposed in a given round then the tree grows
mildly (remains polynomial). If three or more new processes
are exposed in the same round then this increases the size
of the tree but can happen at most a constant number of
times before a monitor process will cause the protocol to
stop quickly.

The remaining case is when exactly two new processes are
exposed, then a sequence of (possibly zero) rounds where
just one new process is exposed in each round, followed by a
round where no new process is exposed. This is a generalized
version of the “cross corruption” case of [GM98] where the
adversary does not face increased risk of being caught by
the monitor process. We prove that in these cases the tree
essentially grows mildly (remains polynomial).

In order to deal with this generalized “cross corruption”
we introduce a special resolve rule (special-bot rule) tai-
lored to this scenario. In particular, in some cases we fix
the value of a node σ to ⊥ (a special default value) if we
detect enough support. This solves the generalized “cross
corruption” problem but adds significant complications. Re-
call that when we fix a value to a node then we also fix
(color) the children of this node with the same value.

Suppose a process fixes a node σ to ⊥. The risk is that
some correct processes may have used a child σp with value
d but some other correct process will see ⊥ for σp (be-
cause when σ is fixed to ⊥ we color all its children to ⊥).
Roughly speaking, we overcome this difficulty by having
two resolve rule thresholds. The base is the n − t thresh-

old (resolve rule, it-to-rt rule) and the other is with a
n−t−1 threshold (relaxed rule). In essence this n−t−1
rule is resilient to disagreement on one child node (that
may occur due to coloring). We then make sure that the
special-bot rule can indeed change only one child value.
This delicate interplay between the resolve rules is at the
core of our new approach.

The adversary. Given n > 3t and φ ≤ t, as in [GM98],
we will consider a (t, φ)-adversary - an adversary that can
control up to φ corrupt processes that behave arbitrarily and
at most t− φ corrupt processes that are always silent (send
some default value ⊥ to all processes every round). The
(t, φ)-adversary will be useful to model executions in which
all correct processes have detected beforehand some common
set of at least t−φ corrupt processes and hence ignore them
throughout the protocol. Note that the standard t-adversary
is just a (t, t)-adversary.

2. THE EIG STRUCTURE AND RULES
In this section we define the EIG structure and rules.
Let N be the set of processes, n = |N | and assume that

n > 3t. Let D be a set of possible decision values. We
assume some decision ⊥ ∈ D is the designated default deci-
sion.

Let Σr be the set of all sequences of length r of elements of
N without repetition. Let Σ0 = ε, the empty sequence. Let
Σ =

⋃
0≤j≤t+1 Σj . An Exponential Information Gathering

tree (EIG in short) is a tree whose nodes are elements in Σ
and whose edges connect each node to the node representing
its longest proper prefix. Thus, node ε has n children, and
a node from Σk has exactly n− k children.

We will typically use the Greek letter σ to denote a se-
quence (possibly empty) of labels corresponding to a node
in an EIG tree. We use the notation σq to denote the node
in the EIG tree that corresponds to the child of node σ that
corresponds to the sequence σ concatenated with q ∈ N .
We denote by ε̄ the root node of the tree that corresponds
to the empty sequence. Given two sequences σ, σ′ ∈ Σ, let
σ′ < σ denote that σ′ is a proper prefix of σ and σ′ v σ
denote that σ′ is a prefix of σ (potentially σ′ = σ).

In the EIG consensus protocol each process maintains a
dynamic tree data structure IT. This data structure maps a
set of nodes in σ to values inD. Intuitively, this tree contains
all the information the process has heard so far. Each pro-
cess z also maintains two global dynamic sets F ,FA. The
set F contains processes that z detected as faulty, and FA
contains processes that z knows are detected by all correct
processes. The protocol for updating F ,FA is straightfor-
ward:

• In each round the processes exchange their F lists and
update their F and FA sets once a faulty process ap-
pears in t+ 1 or 2t+ 1 lists, respectively.
• When a process is detected as faulty every correct pro-

cess masks its future messages to ⊥.

The basic EIG protocol will be invoked repeatedly, and
several copies of the EIG protocol may be running concur-
rently. The accumulated set of faulty processes will be used
across all copies (the rest of the variables and data structures
are local to each EIG invocation). Therefore, we assume that
when the protocol is invoked the following property holds:

Property 1. When the protocol is invoked, no correct
process appears in the faulty sets of any other correct process.
Moreover, FAp ⊆ Fp and FAp ⊆ Fq for any two correct
processes p and q,

Each invocation of the EIG protocol is tagged with a pa-
rameter φ, known to all processes. An EIG protocol with
parameter φ, will run for at most φ+1 rounds. At the begin-
ning of the agreement protocol the faulty sets are empty at
all correct processes and the EIG protocol with parameter
φ = t is executed. Each additional invocation of the EIG
protocol is with a smaller value of φ. In the non-trivial case,
when the EIG protocol with parameter φ is invoked then
|
⋂
i FAi| ≥ t − φ. There will be one exception to this as-

sumption, and it is handled in Lemma 1. Thus, other than
in that specific case, it is assumed that we have a (t, φ)-
adversary during the execution of the EIG protocol with
parameter φ.

The basic EIG protocol for a correct process z with initial
value dz ∈ D is very simple:

1. Init: Set IT(ε̄) := dz, so IT(ε̄) is set to be the initial
value.

2. Send: in each round r, 1 ≤ r ≤ φ + 1, for every
σ ∈ IT ∩ Σr−1, such that z /∈ σ, send the message
〈σ, z, IT(σ)〉 to every process.

3. Receive set: in each round r, let Sr := {σx ∈ Σr}.
4. Receive rule: in each round r, for all σx ∈ Sr set

IT(σx) :=


⊥ if x ∈ F
d if x 6∈ F sent 〈σ, x, d〉 and d ∈ D;

IT(σ) otherwise.

Note: assigning of IT(σx) := IT(σ) when x /∈ F is crucial
for the case where x is correct and has halted in the previous
round. Thus, if a process is silent but is not detected (pos-
sibly because it has halted due to early stopping) z assigns
it the value it heard in the previous round.

We use a second dynamic EIG tree data structure RT.
Intuitively, if a process puts a value in a node of this tree
then, essentially, all correct processes will put the same value
in the same node in at most 2 more rounds. Processes use
several rules to close branches of the IT tree whose value
in RT is already determined by all. We present later the
rules for closing branches of the IT tree. To handle this, we
modify lines 2 and 3 as described below (and keep lines 1
and 4 as above).

2. Send: in each round r, 1 ≤ r ≤ φ + 1, for every
σ ∈ IT ∩ Σr−1, such that z /∈ σ, and the branch σ
is not closed send the message 〈σ, z, IT(σ)〉 to every
process.

3. Receive set: in each round r, let Sr = {σx ∈ Σr |
branch σx is not closed}.

Informally, ITz(σp) = d (where ITz denotes the IT tree
at process z) indicates that process z received a message
from process p that said that his value for σ was d. RTz(σp) =
d indicates, essentially, that process z knows that every cor-
rect process x will agree and have d ∈ RTx(σp) in at most
two more rounds.

Observe that we record in the EIG tree only informa-
tion from sequences of nodes that do not contain repeti-
tion, therefore, not every message a process receives will be
recorded.

At the end of each round, we apply the rules below to
determine whether to assign values to nodes inRT, assigning
that value in RT is called resolving the node.

2.1 The Resolve Rules
A key feature of our algorithm is that whenever we put a

value into RT(σ) we also color (assign) all the descendants
of σ in RT with the same value. Observe that this means
we may color a node σw in RT to d even if w is correct and
sent d′ 6= d to all other correct processes.

Rules for IT-to-RT resolve: The following definitions
and rules cause a node to be resolved based on information
in IT.

1. If IT(σw) = d then we say: (1) w is a voter of
(σ,w, d); (2) w is confirmed on (σ,w, d); (3) For all
v ∈ N \ {σ}, w is a supporter of v on (σ,w, d).

Note: the reason that we count w as a voter, as con-
firmed and as a supporter for all its echoers is that due
to the EIG structure w does not appear in the subtree
of σw.

2. If IT(σwv) = d , then we say that v is a supporter of
v for (σ,w, d).

Note: again we need v to be a supporter of itself be-
cause of the EIG structure.

3. If IT(σwvu) = d then we say that u is a supporter of
v for (σ,w, d).

4. If there is a set |U | = n− t, such that for each u′ ∈ U ,
u′ is a supporter of v on (σ,w, d) then we say that v
is confirmed on (σ,w, d).

Note: if σ contains no correct and w is correct, then
any correct child v (of σw) will indeed have n− t sup-
porters for σw and hence will be confirmed. Note that
one supporter is w, the other is v and the remaining
are all the n− t− 2 correct children of σwv. Also note
that w is confirmed, so all n − t correct will be con-
firmed on (σ,w, d).

5. If u 6= w has a set |V | = n − t, such that for each
v′ ∈ V , u is a supporter of v′ on (σ,w, d) and v′ is
confirmed on (σ,w, d) then u is a voter of (σ,w, d).

Note: this is somewhat similar to the notion of a Voter
in grade-cast ([FM97, FM88]). But there is a crucial
difference: all the n− t echoers need to be confirmed.
Also note that w is a voter for itself.

6. it-to-rt rule: If w has a set |U | = n−t, such that for
each u′ ∈ U , u′ is a voter of (σ,w, d) then if σw /∈ RT,
then put RT(σw) := d and color descendants of σw
with d as well.

Note: this is somewhat similar to the notion of a grade
2 in grade-cast. A crucial difference is that the n − t
voters needed are defined with respect to supported
echoers. This is a non-trivial change that breaks the
standard grade-cast properties. Also note that we not
only put a value in σw but also color all the descen-
dants.

7. round φ+ 1 rule: if IT(σw) = d and σ ∈ Σt then if
σw /∈ RT, then put RT(σw) := d.

Note: this is a standard rule to deal with the last
round.

Rules for RT tree resolve: The following definitions
and rules cause a node to be resolved based only on infor-
mation in RT (these rules do not look at IT).

1. If there is a set |U | = t+ 1, such that for each u′ ∈ U ,
RT(σwvu′) = d then we say v is RT-confirmed on
(σ,w, d).

Note: if any correct sees a node as confirmed then it
has n − t that echo its value. At least t + 1 of them
are correct and they all cause all correct to see the
node as RT-confirmed. Of course a node may become
RT-confirmed even if it was never confirmed by any
correct. Observe that if RT(σwu) = d then, by color-
ing, u is RT-confirmed on (σ,w, d).

2. If u 6= w has a set |V | = n − t, such that each v′ ∈ V
is RT-confirmed on (σ,w, d) and for each v′ ∈ V \{u},
RT(σwv′u) = d and if u ∈ V then also RT(σwu) = d,
then u is RT-voter of (σ,w, d).

Note: if any correct process sees a node as a voter then
it has n−t echoers that are confirmed. So each of these
n− t echoers will be RT-confirmed. So all correct pro-
cesses will see this node as RT-voter. Of course a node
can become RT-voter even if it was never a voter at
any correct process.

3. resolve rule: If w has a set |U | = t+1, such that for
each u′ ∈ U , u′ is a RT-voter of (σ,w, d) then if σw /∈
RT, then put RT(σw) := d, and color descendants
of σw with d as well. The rule applies also for node
σw = ε̄.

Note: if any correct process does it-to-rt rule then
this rule tries to guarantee that all correct processes
will also put this node in RT. The problem is that
special-bot rule (see below) may be applied to one
of the echoers and this may cause some of the RT-
voters to lose their required support. The following
rule fixes this situation. It reduces the threshold to
n− t− 1 but requires that all children nodes are fixed.

4. relaxed rule: If all the children of σw are in RT
(i.e.,∀σwv ∈ Σ: σwv ∈ RT) and exists a set |V | =
n − t − 1, such that for each v′ ∈ V , RT(σwv′) = d,
then if σw /∈ RT, then put RT(σw) := d, and color
descendants of σw with d as well. The rule applies
only for nodes |σw| ≥ 1.

Note: as mentioned above, the relaxed rule requires
a threshold of n− t−1 so that it can take into account
the possibility of one value changing to ⊥ due to the
following rule:

5. special-bot rule: If there is a set |V | = t+2−|σwu|
such that for all v ∈ V ,RT(σwuv) = ⊥ and for all u′ 6=
u such that σwu′ ∈ Σ, σwu′ ∈ RT then if σwu /∈ RT,
then putRT(σwu) := ⊥, and color descendants of σwu
with ⊥ as well. The rule applies only for |σwu| ≥ 2.

Note: This rule can be applied to at most one child.

6. special-root-bot rule: If exists a set |U | = t + 1
such that for each u ∈ U , RT(u) = ⊥ then if ε̄ /∈ RT,
then put RT(ε̄) := ⊥, and color descendants of ε̄ with
⊥ as well.

Note: this rule is important in order to stop quickly if
t+ 1 correct processes start with the value ⊥.

To prevent the data structures from expanding too much
processes close branches of the tree, and from that point on
they do not send messages related to the closed branches.
We use the notation {σ ∈ RT[r]} to denote an indicator
variable that equals true if RT(σ) was assigned some value
by the end of round r, and false otherwise.

Branch Closing and Early Resolve rules: There are
three rules to close a branch in IT two of them also trigger
an early resolve. By the end of round r, r ≤ φ,

1. decay rule: if ∃σ′ v σ such that σ′ ∈ RT[r−1], then
close the branch σ ∈ IT.

Note: this is the simple case: if a process already fixed
the value of σ′ in RT in round r−1 then it stops in the
end of round r, since by the end of round r+ 1 all cor-
rect processes will put σ′ in RT (and will interpret this
process’s silence in the right way during round r + 1).
There is no need to continue. Coloring will fix all the
values of this subtree.

2. early it-to-rt rule: if σ ∈ Σr−1 and exists U ⊆ N ,
U ∩ {u′ | u′ ∈ σ} = ∅, |U | = n− r, such that for every
u, v ∈ U \ F , IT(σu) = IT(σv), then if σ /∈ RT, then
put RT(σ) := IT(σ) and close the branch σ ∈ IT.

Note: this is a case where the process can forecast
that all correct processes will put σ in RT in the next
round (because the process sees that all children nodes
agree). So the process can fix σ in this round and stop
now, because all correct processes will fix σ in RT next
round (and will interpret this process’s silence in the
right way).

3. strong it-to-rt rule: if σ ∈ Σr−2 and exists U ⊆
N , U ∩ {u′ | u′ ∈ σ} = ∅, |U | = n− r+ 1 such that for
every u, v ∈ U \ F , where v 6= u, IT(σuv) = IT(σvu)
then, if σ /∈ RT, then put RT(σ) := IT(σ) and close
the branch σ ∈ IT.

Note: in this case all the correct children of σ except
for at most one will be fixed in the next round to the
same value, so the relaxed rule will be applied to σ
in the next round. So we can fix σ in this round and
stop now.

In each round all the above rules are applied repeatedly
until none holds any more.

The rules above imply that there are two ways to give a
value to a node in RT. One is assigning it a value using
the various rules, and the other is coloring it as a result of
assigning a value to one of its predecessors. We will use the
term color for the second one and the term put for the first
one.

Rules for fault detection and masking: The follow-
ing definitions and rules are used to detect faulty processes,
put them into F and hence mask them (all messages from
F are masked to ⊥). The last rule also defines an additional

masking. The process first updates its F and FA sets using
the sets received from the other processes during the current
round. A process is added to F or FA once it appears in
t+1 or 2t+1 sets, respectively. Next the process applies the
following fault detection rules. The fault detection is exe-
cuted before applying any of the resolve rules above. When
a new process is added to F , the new masking is applied
and the fault detection is repeated until no new process can
be added. Only then the resolve rules above are applied.

At process z by the end of round r:

1. Not Voter: If ∃σw ∈ Σr−1 and w 6= z and 6 ∃σ′ v σw
such that σ′ ∈ RT and it is not the case that there
exists a set |U | = n− t− 1 such that for each u′ ∈ U ,
IT(σwu′) = IT(σw) then add w to F .

Note: this is the standard detection rule after one
round - if anything looks suspicions then detect.

2. Not IT-to-RT: If ∃σw ∈ Σr−2 for which w does not
have a set |U | = n − t, such that for each u′ ∈ U , u′

is a voter of (σ,w, d), and 6 ∃σ′ v σ such that σ′ ∈ RT
then add w to F .

Note: this is the standard detection rule after two
rounds - if anything looks suspicions then detect.

3. If u, u 6= w, has a set |V | = n − t, such that for each
v′ ∈ V , u is a supporter of v′ on (σ,w, d) then we say
that u is an unconfirmed voter of (σ,w, d).

Note: the notion of an unconfirmed voter is exactly
that of a voter in the standard grade-cast protocol.

4. If w has a set |U | = t+1, such that for each u′ ∈ U , u′

is an unconfirmed voter of (σ,w, d) then we say that
σw is leaning towards d.

Note: the notion of leaning towards is exactly that of
getting grade ≥ 1 in the standard grade-cast protocol.

5. Not Masking: If σw ∈ Σr−3 is leaning towards d
and there exists u, |V | = t + 1, and d′ 6= d such that
for each v′ ∈ V , IT(σwuv′) = d′ and there exists
|σ′′| > |σ| such that IT(σ′′wu) 6= ⊥ then

(a) IT(σ′′wu) = ⊥;
(b) if by the end of the round 6 ∃σ′ v σ′′w such that

σ′ ∈ RT then add u to F .

Note: If σw is leaning towards d then u must have
heard at least t + 1 say d on σw. If t + 1 say u said
d′ then u must have said d′ to some correct. So u
must have received d′ from σw but in the next round
u hears t+ 1 say σw said d. So u must conclude that
w is faulty and u must mask him from the next round.
If u did not mask some σ′′wu then the Not Masking
rule will detect u as faulty and mask all such σ′′wu
for you and also mark you as faulty. The reason we
wait until the end of the round to add that node to
F is that it might be a node of a correct process that
stopped in the previous round and hence did not send
any messages in the current round, and therefore did
not send masking. In such a case we mask its virtual
sending, but do not add it to F .

Finalized Output: By the end of each round (after ap-
plying all the resolve rules), the process checks whether there

is a frontier inRT. A frontier (also called a cut) is said to ex-
ist if for all σ ∈ Σφ+1 there exists some sub-sequence σ′ v σ
such that σ′ ∈ RT.

1. Early Output rule: By the end of a round, if ε̄ ∈ RT,
output RT(ε̄).

2. Final Output rule: Otherwise, if there is a frontier,
output ⊥.

Observe that the existence of a frontier can be tested from
the current IT in O(|IT|) time.

Stopping rule: If all branches of IT are closed, stop the
protocol.

3. THE CONSENSUS PROTOCOL ANALY-
SIS

The EIG protocol implicitly presented in the previous sec-
tion is a consensus protocol Dφ, where φ, 1 ≤ φ ≤ t is a
parameter. Protocol Dφ runs for at most φ + 1 rounds and
solves Byzantine agreement against a (t, φ)-adversary. De-
note by G the set of correct processes, |G| ≥ n − t, where
n = |N |, and by S, S =

⋂
q∈G Fq, the set of processes that

are masked to ⊥ by all correct processes. Let s := |S|.
Our solution invokes several copies of the EIG protocol.

For each invoked protocol, Dφ, there are two cases: either
s ≥ t− φ, or we are guaranteed that the input of all correct
processes that start the protocol is the same (in particular,
it may be that some correct processes have halted and do
not start the protocol). The following lemma deals with this
latter case.

Lemma 1. [Validity and Fast Termination] For any (t, t)-
adversary, and n ≥ 3t+ 1,

1. if every correct process that starts the protocol holds
the same input value d then d is the output value of all
correct processes that start the protocol, by the end of
round 2, and all of them complete the protocol by the
end of round 3.

2. if all correct processes start the protocol and t+ 1 cor-
rect processes start with ⊥ then all correct processes
output ⊥ by the end of round 3 and stop the protocol
by the end of round 4.

3. For p, q ∈ G, no p will add q to Fp in either of the
above cases.

The only case in which not all correct processes invoke a
Dφ protocol is when some of the background running mon-
itors are being invoked by some of the correct processes,
while others may have already stopped. This special case is
guaranteed to be when the inputs of all participating cor-
rect processes is ⊥, and consensus can be still be achieved.
Lemma 1 implies the following:

Corollary 1. For any (t, t)-adversary, and n ≥ 3t+ 1,
if every correct process that invokes the protocol start with
input ⊥, then ⊥ is the output value at each participating
correct process by the end of round 2, and each participating
correct process completes the protocol by the end of round 3.
Moreover, for p, q ∈ G, no p will add q to Fp.

The gossip exchange among correct processes about iden-
tified faults ensures the following:

Lemma 2. For a (t, φ)-adversary and protocol Dφ, n ≥
3t + 1, assuming Property 1, for any k, 1 ≤ k ≤ φ + 1,
by the end of round k, for every two correct processes p, q,
FAp ⊆ Fq and FAp[k − 1] ⊆ FAp[k].

A node may initially assign a value using one of the “put”
rules and later it may color it to a different value. In the
arguments below we sometimes need to refer to the value
that was put to a node rather than the value it might be
colored to. Once a node has a value it is not assigned a
value using any put rule any more. Thus, the value assigned
using a put rule is an initial value that may be assigned to
a node before it is colored, or that node may never have a
value put to it. To focus on these put operations, we will
add, for proof purposes, that whenever a node p uses a put
rule for some σ, except round φ + 1 rule, it also puts σ
in PTp (The “Put-Tree”) and as a result at that moment,
PTp(σ) = RTp(σ). We do not color nodes in PTp, thus for
σ that is colored, but was not assigned a value prior to that,
PTp(σ) is undefined. We exclude round φ + 1 rule from
PT on purpose.

The following is the core statement of the technical prop-
erties of the protocol. The only way we found to prove all
these is via an induction argument that proves all properties
together. The theorem contains four items.

The detection part proves that correct processes are never
suspected as faulty. The challenge is that the various rules
instruct processes when to stop sending messages, and that
might cause other correct processes to be suspected as faulty.

The validity part proves that if a correct process sends a
value, it will reach the RT of every other correct process
within two rounds. It also proves that if a correct process
decides not to send a value (thus, closed a branch), the ap-
propriate node will be in RT of every correct process. The
third claim in the validity part is that if a process appears
in FA, then it appears in RT of every correct process within
two rounds.

The safety part intends to prove consistency in the RT.
The challenge is that coloring may cause the trees of correct
processes to defer. Therefore the careful statements looks
at PT, and which rule was used in order to assign the value
to it. The ⊥ value is a default value, therefore there is a
special consideration of whether the value the process puts
is ⊥ or not. The end result is that if a node appears in PT
of two correct processes, it carries the same value.

The liveness part shows that if a node appears in RT of
a correct process, it will appear in RT of any other correct
process within two rounds.

Theorem 2. For a (t, φ)-adversary and protocol Dφ, n ≥
3t + 1, assuming Property 1 and that all correct processes
participate in the protocol, then for any 1 ≤ k ≤ φ+ 1 :

1. No False Detection: For p, q ∈ G, no q will add p
to Fq in round k.

2. Validity:

(a) For σ ∈ Σk−3 if p ∈ G, sends 〈σ, p, dp〉, then
at the end of round k, at every correct process
x, either RTx(σp) = dp or ∃σ′ < σ such that
σ′ ∈ RTx. For k = φ+ 1, the property holds also
for any σ ∈ Σk−2 and for any σ ∈ Σk−1.

(b) If z ∈ FA in the beginning of round k−2, then by
the end of round k, at every correct process, either
RT(σz) = ⊥ or ∃σ′ < σ such that σ′ ∈ RT. For

k = φ + 1, the property holds for z ∈ FA in the
beginning of rounds k − 1 or k.

(c) For σ ∈ Σk−1, if p ∈ G, does not send 〈σ, p, d〉 for
any d ∈ D, then at the end of round k, at every
correct process x, ∃σ′ < σ such that σ′ ∈ RTx.

3. Safety: For p, q ∈ G, x ∈ N , |σx| ≤ φ,σx ∈ PTp[k],
then

(a) if p applies resolve rule to put PTp(σx) = d,
d 6= ⊥, and v is one of the RT-confirmed nodes on
(σ, x, d) in RTp used in applying this rule in RTp,
and in addition PTq(σxv) = ⊥, then q applied
special-bot rule to put σxv;

(b) if |σx| ≥ 1 and PTp(σx) = d, d 6= ⊥, then, by
the end of round k, |Vq| ≤ t, where Vq = {u |
PTq(σxu) = ⊥};

(c) if |σx| ≥ 1 and PTp(σx) = ⊥ and it wasn’t put us-
ing special-bot rule, then, by the end of round
k, |Vq| ≤ t, where Vq = {u | PTq(σxu) 6= ⊥};

(d) if σx ∈ PTq[k], then PTp(σx) = PTq(σx).
4. Liveness: For p, q ∈ G, if σ ∈ RTp[k − 2] then σ ∈
RTq[k]. For k = φ+ 1, if σ ∈ RTp then σ ∈ RTq.

The following Theorem summarizes the properties needed
from our protocol.

Theorem 3. For a (t, φ)-adversary and protocol Dφ and
n ≥ 3t+1 and assuming that all correct processes participate
in the protocol:

1. Every correct process outputs the same value.
2. If the input values of all correct processes are the same,

this is the output value. Every correct process outputs
it by round 2 and stops by round 3.

3. If t+ 1 of the correct processes hold an input value of
⊥, then all correct processes output ⊥ by the end of
round 3 and stop by the end of round 4.

4. If the actual number of faults is fφ < φ, then all correct
processes complete the protocol by the end of round fφ+
2.

5. If the actual number of faults is fφ = 0, and all cor-
rect processes start with the same initial value, then
all correct processes complete the protocol by the end
of round 1.

6. If the actual number of faults is fφ = 1, and all cor-
rect processes start with the same initial value, then
all correct processes complete the protocol by the end
of round 2.

7. If a correct process outputs in round k, it stops by the
end of round k + 1.

8. If a correct process stops in the end of round k, all
correct processes output by round k + 1 and stop by
round k + 2.

4. MONITORS
We follow the approach of [BG93, GM93, GM98] with

some modifications for guaranteeing early stopping.
In round r = 1 we run Dt using the initial values. For

each integer k, in round 1 < r = 1 + 4k < t − 1 we invoke
protocol Dt−1−4k whose initial values is either ⊥ (meaning
everything is OK) or bad (meaning that too many corrupt
processes were detected). We call this sequence of protocols
the basic monitor sequence. We will actually run 4 such
sequences.

4.1 The Basic Monitor Protocol
Each process z stores two variables: v ∈ D, the cur-

rent value, and early, a boolean value. Initially v equals
the initial input of process z and early := false. Later,
early = true will be an indicator that the next decision pro-
tocol must decide ⊥ (because there is not enough support
for bad). Each process remembers the last value of earlyq
it received from every other process q, even if q did not send
one recently.

Throughout this section we use the notation: r̄ ≡ r (mod 4).

Algorithm 1: The Basic Monitor protocol (at process
z)

1: if r̄ = 1:
2: if r < t− 1 then invoke protocol Dt+1−r with

initial value vz;
3: if r̄ = 2:
4: at the end of the round:
5: if |FA| ≥ r + 3 then set vz := bad
6: otherwise set vz := ⊥;
7: if r̄ = 3:
8: send vz to all;
9: at the end of the round:

10: if |{q | vq = bad}| ≤ t then set earlyz := true
11: otherwise set earlyz := false;
12: if r̄ = 0:
13: send earlyz to all;
14: at the end of the round:
15: if |{q | earlyq = true}| ≥ t+ 1 then set vz := ⊥;
16: if every previously invoked protocol produced

an output then set vz := ⊥.

The monitor protocol runs in the background until the
process halts. The monitor protocol invokes a new Dφ pro-
tocol every 4 rounds. In each round, the monitor’s lines
of code are executed before running all the other protocols,
and its end of round lines of code are executed before ending
the current round in all currently running protocols. This
is important, since it needs to detect, for example, whether
all currently running protocols produced outputs for deter-
mining its variable for the next round. At the end of each
round the monitor protocol applies the monitor halting and
monitor decision rules below to determine whether to halt
all the running protocols at once, or only to commit to the
final decision value.

When a process is instructed to apply a monitor decision
it applies the following definition. If it is instructed to halt
(monitor halting), then if it did not previously apply the
monitor decision, it applies monitor decision first and then
halts all currently running protocols that were invoked by
the monitor at once.

Definition 1 (monitor decision). A process that did
not previously decide, decides bad, if any previously in-
voked protocol outputs bad. Otherwise, it decides on the
output of Dt.

When a process is instructed to decide without halting,
it may need to continue running all protocols for few more
rounds to help others to decide. We define “halt by r + x”
to mean continue to run all active protocols until the end of
round min{r + x, t+ 1}, unless an halt is issued earlier.

4.2 Monitor Halting and Decision Conditions
Given that different processes may end various invocations

of the protocols in different rounds we need a rule to make
sure that all running protocols end by the end of round f+2.
The challenge in stopping all protocols by the end of f+2 is
the fact that individual protocols may end at round f+2 and
we do not have a room to exchange extra messages among
the processes. This also implies that we need to have a
halting rule at every round of the monitor protocol, since
f + 2 may occur at any round.

Each halting rule implies how other rules need to be en-
forced in later rounds, since any process may be the first to
apply a monitor halting at a given round and we need to en-
sure that for every extension of the protocols, until everyone
decides, all will reach the same decision despite the fact that
those that have halted are not participating any more. The
conditions take into account processes that may have halted.
A process considers another one as halted if it doesn’t re-
ceive any message from it in any of the concurrently running
set of invoked protocols, monitors and the gossiping of F .

To achieve that we add the following set of rules.
Monitor Halting Rules:

Hbad. Apply monitor halting if any monitor stops with out-
put bad. Otherwise if any monitor outputs bad, apply
monitor decision now and monitor halting by r + 2.

H1. Case r̄ = 1:

(a) If all previously invoked protocols stopped, apply
monitor halting.

(b) Otherwise, if only the latest invoked protocol did
not stop and |{q | earlyq = true or q halted}| ≥
n− t, then apply monitor halting.

(c) Otherwise, if only the latest invoked protocol did
not stop and |{q | earlyq = true or q halted}| ≥
t+ 1, then apply monitor decision now and mon-
itor halting by r + 2.

H2. Case r̄ = 2:

(a) If all previously invoked protocols stopped, apply
monitor halting.

(b) Otherwise, if only the latest invoked protocol did
not stop and |{q | earlyq = true or q halted}| ≥
n− t was true in the previous round, then apply
monitor halting.

(c) Otherwise, if only the latest invoked protocol did
not stop and |{q | earlyq = true or q halted}| ≥
t + 1 was true in the previous round, then apply
monitor decision and now and monitor halting by
r + 1.

H3. Case r̄ = 3: If all previously invoked protocols stopped,
apply monitor halting.

H4. Case r̄ = 0: If all previously invoked protocols stopped
and |{q | earlyq = true or q halted}| ≥ n − t then
apply monitor halting.

Lemma 3. If n > 3t and there are f , f ≤ t, corrupt
processes then all correct processes apply monitor halting by
the end of round min(t+ 1, f + 2).

Lemma 4. If the first process applies monitor halting in
round r on d then every correct process applies monitor decision
by round min{r+ 4, f + 2, t+ 1}, applies monitor halting by
round min{r+5, f +2, t+1}, and obtains the same decision
value, d.

Lemma 3 and 4 complete the correctness part of Theo-
rem 1. To simplify the polynomial considerations we look at
a pipeline of monitors.

4.3 Monitors Pipeline
The basic monitor protocol runs a sequence of monitors

and tests the number of faults’ threshold every 4 rounds
(Line 5). This allows the adversary to expose more faults in
the following round, and be able to further expand the tree
before the threshold is noticed the next time the processes
execute Line 5. To circumvent this we will run a pipeline of
3 additional sequences of monitors on top of the basic one
appearing above. Doing this we obtain that in every round r
one of the 4 monitor sequences will be testing the threshold
on the number of faults

Monitor sequence i, for 1 ≤ i ≤ 4 begins in round i
and invokes protocols every 4 rounds, in every round r,
1 < r = i + 4k < t − 1, it invokes protocol Dt−i−4k. Moni-
tor sequence 1 is the basic monitor sequence defined in the
previous subsection. Each monitor sequence independently
runs the basic monitor protocol (Figure 1) every 4 rounds.
In the monitor protocol, the test r̄ = j, which stands for
r̄ ≡ r (mod 4) in the basic monitor sequence, is replaced
with r̄i = j, which stands for r̄i ≡ r + 1 − i (mod 4) = j
(naturally only for r + 1− i > 0). Each of the four monitor
sequences decides and halts separately, as in the previous
section above.

Notice that protocol Dt is invoked only by the basic se-
quence (Sequence 1). For each of the three other monitor
sequences, the decision rule is: decide bad, if any invoked
protocol (in this sequence) outputs bad, and ⊥ otherwise.
Observe that Lemma 3 and 4 hold for each individual se-
quence.

We now state the global decision and global halting rules:

Definition 2 (Global Halting). If any monitor se-
quence halts with bad, or all 4 monitor sequences halt, the
process halts.

Definition 3. The global decision is the output of Dt,
unless any monitor sequence returns bad, in which case the
decision is bad.

The following are immediate consequences of Lemma 3
and 4 and the above definitions.

Corollary 2. If n > 3t and there are f , f ≤ t, corrupt
processes then all correct processes halt by the end of round
min(t+ 1, f + 2).

Corollary 3. If the first correct process halts in round
r on d then every correct process applies global decision by
round min{r+ 4, f + 2, t+ 1}, halts by round min{r+ 5, f +
2, t+ 1}, and obtains the same decision value.

5. BOUNDING THE SIZE OF THE TREE
Following the approach of [GM98], we make the following

definitions:

Definition 4. A node σz ∈ Σ is fully corrupt if there
does not exist p ∈ G and σ′ w σz such that σ′ ∈ RTp[|σz|+
2].

Definition 5. We say that a process z becomes fully cor-
rupt at i if exists a node σz ∈ Σ that is fully corrupt, |σz| = i

and for every previous node |σ′z| < i, node σ′z is not fully
corrupt.

The following is immediate from the definitions above.

Claim 1. If process z becomes fully corrupt at i then of
all the nodes of Σ that end with z only nodes of round i and
i+ 1 can be fully corrupt.

Proof. By definition of fully corrupt, all correct pro-
cesses will have z ∈ F in round i + 2. So in that round
and later all nodes will put ⊥ in RT for z.

Let CT, the corrupt tree, be a dynamic tree structure.
CT is the tree of all fully corrupt nodes (note that due to
coloring, the set of fully corrupt nodes is indeed a tree). We
denote by CT[i] the state of CT at the end of round i. By
the definition of fully corrupt, at round i we add nodes of
length i− 2 to CT.

We label the nodes in CT as follows: a node σz ∈ CT is a
regular node if process z becomes fully corrupt at |σz| and
σz ∈ CT is a special node if process z becomes fully corrupt
at |σz| − 1.

Let αi denote the distinct number of processes that be-
come fully corrupt at round i. For convenience, define α0 =
0 (this technicality is useful in Lemma 7). LetA = α0, α1, . . .
be the sequence of counts of process that become fully cor-
rupt in a given execution.

Following the approach of [GM98], we define wastei =
(
∑
j≤i αi)− i. So wastei is the number of processes that be-

came fully corrupt till round i minus i (the round number).
The following claim connects wastei to ∩p∈GFA[i+ 3]p the
set of fully detected corrupt processes at round i+ 3.

Claim 2. For any round 4 ≤ r ≤ t + 1, and any correct
process we have |FA[r]| ≥

∑
j≤r−3 αi.

Proof. By the definition of z becoming fully corrupt at
i, all correct processes will have z ∈ F in round i + 2. Due
to the gossiping of F , all correct processes will have z ∈ FA
in round i+ 3.

So if wastei ≥ 6 then in round r = i + 3 we will have(∑
j≤i αi

)
− i ≥ 6 so by Lemma 2 for each correct process

we have |FA[r]| ≥ r+3. In this case all correct processes will
start in the associated monitor sequence the next protocol
with initial value bad and the protocol and monitor sequence
and global protocol will reach agreement and halt on bad
by round i+ 6 (by Lemma 1).

We will now show that if the adversary maintains a small
waste (less than 6 by the argument above, but this will work
for any constant) then the CT tree must remain polynomial
sized.

The following key lemma shows that the adversary cannot
increase the number of leaves by “cross contamination”. In
more detail, if the adversary causes two fully corrupt pro-
cesses at round i1 followed by a sequence of rounds with
exactly one fully corrupt process at each round followed by
a round with no fully corrupt process at that round then
this action essentially keeps the tree CT growing at a slow
(polynomial) rate. We note that the focus on “cross con-
tamination” follows the approach of [GM98]. But they only
verify the case of two fully corrupt followed by a round with
no fully corrupt. We have identified a larger family of adver-
sary behavior that does not increase the waste (in the long
run). Our proof covers this larger set of behaviors and this
requires additional work.

Lemma 5. Assume 0 < i1 < i2 such that αi1 = 2, αi2 = 0
and for all i1 < i < i2, αi = 1 then for any σ ∈ Σi1−1∩CT it
is not the case that there exists σpτ ∈ Σi2+1 ∩ CT and there
exists σqτ ∈ Σi2+1 ∩CT (so there is at most one extension).
Moreover the size of the subtree starting from σp or σq and
ending in length i2 + 1 is bounded by O((i2 − i1)2).

See the additional analysis in Section 5.1.
To bound the size of CT, we partition the sequence A =

α0, α1, . . . by iteratively marking subsequences using the fol-
lowing procedure. For each subsequence we mark, we prove
that it either causes the tree to grow in a controllable man-
ner (so the ending tree is polynomial), or it causes the tree
to grow considerably (by a factor of O(n)) but at the price
of increasing the waste by some positive constant. Since the
waste is bounded by a constant, the result follows.

1. By Lemma 7 we know that if A contains a 0(1)∗0 (a
sequence starting with 0 then some 1’s then 0) then
it contains it just once as a suffix of A. Moreover,
this suffix does not increase the size of the tree by
more than O(n). Let A1 be the resulting unmarked
sequence after marking such a suffix (if it exists).

2. Mark all subsequences in A1 of the form 2(1)∗0 (a
sequence starting with 2 then some 1’s then 0). By
Lemma 5 each such occurrence will not increase the
number of leafs in CT (but may add branches that
will close whose total size is at most n2 over all such
sequences). Let A2 be the remaining unmarked subse-
quences.

3. Mark all subsequences in A2 of the form X(1)∗0 where
X ∈ {3, . . . , t} (a sequence starting with 3 or a larger
number followed by some 1’s then 0). By Lemma 8
each occurrence of such a sequence may increase the
size of the tree multiplicatively byO(n) leafs andO(n2)
non-leaf nodes, but this also increases the waste by
c − 1 > 1 (where c is the first element of the subse-
quence). Observe that the remaining unmarked subse-
quences do not contain any element that equals 0. Let
A3 be the remaining unmarked subsequences.

4. Mark all subsequences of the form Y (1)∗ where Y ∈
{2, . . . , t} (a sequence whose first element is 2 or a
larger number followed by some 1’s but no zero at the
end). Again, by Lemma 8 each such occurrence may
increase the size of the tree by O(n) leafs and O(n2)
non-leafs, but this also increases the waste by c > 1.
Let A4 be the remaining unmarked.

5. Since A3 contains no element that equals zero and we
removed all subsequences that have element of value 2
or larger as the first element then A4 must either be
empty or A4 is a prefix of A of the form (1)∗ (a series
of 1’s). Since it is a prefix of A then a sequence of 1’s
keeps at most one leaf. So the tree remains small.

Thus, the size of CT is polynomial, which by Lemma 6
bounds the size of IT. This completes the proof of Theo-
rem 1.

5.1 Additional Analysis
The following lemma bounds the size of IT as a function

of the size of CT times O(n7).

Lemma 6. If σ ∈ IT and |σ| > 7 then there exists σ′ < σ
with |σ′| ≥ |σ| − 7 such that σ′ ∈ CT.

The following lemma shows that the protocol stops early
if the adversary causes two rounds with no new fully corrupt
and only one fully corrupt per round between them.

Lemma 7. If exists 0 ≤ i1 < i2 such that αi1 = 0, αi2 = 0
and for all i1 < i < i2, αi = 1 then all processes will halt by
the end of round i2 + 5.

The following lemma shows that having a large number
(3 or more) of processes becoming fully corrupt at a given
round, followed by a sequence of 1’s and then maybe fol-
lowed by 0 does increase the number of leafs considerably.
Note that if αi1−1 + αi1 ≥ 6 then the monitor process will
cause the protocol to reach agreement and stop in a con-
stant number of rounds. So we only look at the case that
αi1−1 + αi1 < 6.

Lemma 8. If 2 < αi1 , αi1−1 + αi1 < 6, αi2 ∈ {0, 1} and
for all i1 < i < i2, αi = 1 then for any σ ∈ Σi1−1 ∩CT there
are at most O(i2 − i1) nodes of the form στ ∈ Σi2+1 ∩ CT.
Moreover the size of the subtree starting from σ and ending
in length i2 + 1 is bounded by O((i2 − i1)2).

6. CONCLUSION
In this paper we resolve the problem of the existence of

a protocol with polynomial complexity and optimal early
stopping and resilience. The main remaining open question
is reducing the complexity of such protocols to a low degree
polynomial. Another interesting open problem is obtaining
unbeatable protocols [CGM14] (which is a stronger notion
than early stopping).

We would like to thank Yoram Moses and Juan Garay for
insightful discussions and comments.

7. REFERENCES
[BG93] Piotr Berman and Juan A. Garay. Cloture

votes: n/4-resilient distributed consensus in
t+1 rounds. Mathematical Systems Theory,
26(1):3–19, 1993.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J.
Perry. Optimal early stopping in distributed
consensus. In Adrian Segall and Shmuel Zaks,
editors, Distributed Algorithms, volume 647 of
Lecture Notes in Computer Science, pages
221–237. Springer Berlin Heidelberg, 1992.

[BNDDS92] Amotz Bar-Noy, Danny Dolev, Cynthia
Dwork, and H. Raymond Strong. Shifting
gears: changing algorithms on the fly to
expedite byzantine agreement. Inf. Comput.,
97:205–233, April 1992.

[CGM14] Armando Castañeda, Yannai A.
Gonczarowski, and Yoram Moses. Unbeatable
consensus. In Fabian Kuhn, editor, Distributed
Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15,
2014. Proceedings, volume 8784 of Lecture
Notes in Computer Science, pages 91–106.
Springer, 2014.

[CL99] Miguel Castro and Barbara Liskov. Practical
byzantine fault tolerance. In Proceedings of
the third symposium on Operating systems
design and implementation, OSDI ’99, pages
173–186, Berkeley, CA, USA, 1999. USENIX
Association.

[DRS90] Danny Dolev, Ruediger Reischuk, and
H. Raymond Strong. Early stopping in
byzantine agreement. J. ACM, 37:720–741,
October 1990.

[DS82] Danny Dolev and H. Raymond Strong.
Polynomial algorithms for multiple processor
agreement. In ACM Symposium on Theory of
Computing, pages 401–407, New York, NY,
USA, 1982. ACM.

[FL82] Michael J. Fischer and Nancy A. Lynch. A
lower bound for the time to assure interactive
consistency. Inf. Process. Lett., 14(4):183–186,
1982.

[FM88] Paul Feldman and Silvio Micali. Optimal
algorithms for byzantine agreement. In ACM
Symposium on Theory of Computing, pages
148–161, 1988.

[FM97] Pesech Feldman and Silvio Micali. An optimal
probabilistic protocol for synchronous
byzantine agreement. SIAM J. Comput.,
26(4):873–933, 1997.

[GM93] Juan A. Garay and Yoram Moses. Fully
polynomial byzantine agreement in t + 1
rounds. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of
computing, STOC ’93, pages 31–41, New
York, NY, USA, 1993. ACM.

[GM98] Juan A. Garay and Yoram Moses. Fully
polynomial byzantine agreement for
processors in rounds. SIAM J. Comput.,
27:247–290, February 1998.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike
Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: speculative byzantine fault
tolerance. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems
principles, SOSP ’07, pages 45–58, New York,
NY, USA, 2007. ACM.

[KM13] Dariusz R. Kowalski and Achour Mostéfaoui.
Synchronous byzantine agreement with nearly
a cubic number of communication bits. In
Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC
’13, pages 84–91, New York, NY, USA, 2013.
ACM.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall
Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4:382–401, July
1982.

[PSL80] Marshall Pease, Robert Shostak, and Leslie
Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

	Introduction
	The EIG structure and rules
	The Resolve Rules

	The Consensus Protocol Analysis
	Monitors
	The Basic Monitor Protocol
	Monitor Halting and Decision Conditions
	Monitors Pipeline

	Bounding the size of the tree
	Additional Analysis

	Conclusion
	References

