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Abstract. We present a scheme that achieves self-stabilizing Byzantine
digital clock synchronization assuming a “synchronous” system. This syn-
chronicity is established by the assumption of a common “beat” delivered
with a regularity in the order of the network message delay, thus enabling
the nodes to execute in lock-step. The system can be subjected to severe
transient failures with a permanent presence of Byzantine nodes. Our
algorithm guarantees eventually synchronized digital clock counters, i.e.
common increasing integer counters associated with each beat. We then
show how to achieve regular clock synchronization, progressing at real-
time rate and with high granularity, from the synchronized digital clock
counters.

There is one previous self-stabilizing Byzantine clock synchronization
algorithm, which also converges in linear time (relying on an underlying
pulse mechanism), but it requires to execute and terminate Byzantine
agreement in between consecutive pulses. Such a scheme, although it
does not assume a synchronous system, cannot be easily transformed to
a synchronous system in which the pulses (beats) are in the order of
the message delay time apart. The only other digital clock synchroniza-
tion algorithm operating in a similar synchronous model converges in
expected exponential time. Our algorithm converges (deterministically)
in linear time.

1 Introduction

Clock synchronization is a very fundamental task in distributed systems. The
vast majority of distributed tasks require some sort of synchronization; and clock
synchronization is a very straightforward and intuitive tool for supplying this. It
thus makes sense to require an underlying clock synchronization mechanism to
be highly fault-tolerant. A self-stabilizing algorithm seeks to attain synchroniza-
tion once lost; a Byzantine algorithm assumes synchronization is never lost and
focuses on containing the influence of the permanent presence of faulty nodes.
We consider a system in which the nodes execute in lock-step by regularly
receiving a common “pulse” or “tick” or “beat”. We will use the “beat” notation
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in order to stay clear of any confusion with “pulse synchronization” or “clock
ticks”. Should the beat interval be at least as long as the worst-case execution-
time for terminating Byzantine agreement, then the system becomes, in a sense,
similar to classic non-stabilizing systems, in which algorithms are initialized syn-
chronously.! On the other hand, should the pulse interval length be in the order
of the communication end-to-end delay, then the problem becomes agreeing on
beat-counters or on “special” beats among the frequent common beats received.

The digital clock synchronization problem is to ensure that eventually all the
correct nodes hold the same value of the beat counter (digital clock) and as long
as enough nodes remain correct, they will continue to hold the same value and
to increase it by one following each beat.

The mode of operation of the scheme proposed in this paper is to initialize at
every beat Byzantine consensus on the digital clocks. Thus, after a number of
beats (or rounds), which equals the bound for terminating Byzantine consensus,
say A, all correct nodes have identical views on an agreed digital clock value
of A rounds ago. Based on this global state, a decision is taken at every node
how to adjust its local digital clock. At each beat, if the two most recently
terminated consensus instances show consecutive digital clock values then the
node increments its digital clock and initializes a new consensus instance on this
updated digital clock value. If the digital clocks are not synchronized, the new
consensus instance is initialized with the “zero” value. The algorithm converges
within 3 - A rounds. We use “clock’and “digital clock” interchangeably.

Related work: We present a self-stabilizing Byzantine clock synchronization
algorithm that assumes that common beats are received synchronously (simul-
taneously) and in the order of the message delay apart. The clocks progress
at real-time rate. Thus, when the clocks are synchronized, in-spite of perma-
nent Byzantine faults, the clocks may accurately estimate real-time.? Following
transient failures, and with on-going Byzantine faults, the clocks will synchro-
nize within a finite time and will progress at real-time rate, although the actual
clock-reading values will not be directly correlated to real-time. Many appli-
cations utilizing the synchronization of clocks do not really require the exact
real-time notion (see [12]). In such applications, agreeing on a common clock
reading is sufficient as long as the clocks progress within a linear envelope of
any real-time interval. Clock synchronization in a similar model has earlier been
denoted as “digital clock synchronization” ([1,8,10,14]) or “synchronization of
phase-clocks” ([11]), in which the goal is to agree on continuously incrementing
counters associated with the beats. The convergence time in those papers is not
linear, whereas in our solution it is linear.

The additional requirement of tolerating permanent Byzantine faults poses
a special challenge for designing self-stabilizing distributed algorithms due to
the capability of malicious nodes to hamper stabilization. This difficulty may be

! See [6] for such a self-stabilizing Byzantine clock synchronization algorithm, which
executes on top of a self-stabilizing Byzantine pulse-synchronization primitive.

2 All the arguments apply also to the case where there is a small bounded drift among
correct clocks.
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indicated by the remarkably few algorithms resilient to both fault models (see
[3] for a short review). The digital clock synchronization algorithms in [9] are, to
the best of our knowledge, the first self-stabilizing algorithms that are tolerant
to Byzantine faults. The randomized algorithm, presented in [9], operating in
the same model as in the current paper, converges in expected exponential time.

In [6] we have previously presented a self-stabilizing Byzantine clock syn-
chronization algorithm, which converges in linear time and does not assume
a synchronous system. That algorithm executes on top of a pulse synchro-
nization primitive with intervals that allow to execute Byzantine agreement in
between. The solution presented in the current paper only assumes that the
(synchronously received) beats are on the order of the message delay apart and
also converges in linear time. In [2] and [5] two pulse synchronization procedures
are presented that do not assume any sort of prior synchronization such as com-
mon beats. One is biologically inspired and the other utilizes a self-stabilizing
Byzantine agreement algorithm developed in [4]. Both these pulse synchroniza-
tion algorithms are complicated and have complicated proofs, while the cur-
rent solution is achieved in a relatively straightforward manner and its proofs
are simpler. Due to the relative simplicity of the algorithm, formal verification
methods, as were used in [13]|, can be used to increase the confidence in the
correctness of the proposed algorithm. An additional advantage of the current
solution is that it can be implemented without the use of local physical timers
at the nodes.

2 Model

We consider a fully connected network of n nodes. All the nodes are assumed to
have access to a “global beat system” that provides “beats” with regular intervals.
The communication network and all the nodes may be subject to severe transient
failures, which might eventually leave the system in an arbitrary state. The
algorithm tolerates a permanent fraction, f < %, of faulty Byzantine nodes.

We say that a node is Byzantine if it does not follow the instructed algorithm
and non-Byzantine otherwise. Thus, a node that has crashed or experiences some
other fault that does not allow it to exactly follow the algorithm as instructed,
is considered Byzantine, even if it does not behave maliciously. A non- Byzantine
node will therefore be called non-faulty.

We assume that the network has bounded time on message delivery when it
behaves coherently. Nodes are instructed to send their messages immediately af-
ter the delivery of a beat from the global beat system. We assume that message
delivery and the processing involved can be completed between two consecutive
global beats. More specifically, the time required for message delivery and mes-
sage processing is called a round, and we assume that the time interval between
global beats is greater than and in the order of such a round.

At times of transient failures there can be any number of concurrent Byzantine
faulty nodes; the turnover rate between faulty and non-faulty behavior of the
nodes can be arbitrarily large and the communication network may behave
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arbitrarily. Eventually the system behaves coherently again. At such a state
a non-faulty node may find itself in an arbitrary state.

Definition 1. The system is coherent if there are at most f Byzantine nodes,
messages arrive and are processed at their non-faulty destinations between two
consecutive beats.

Since a non-faulty node may find itself in an arbitrary state, there should be
some time of continues non-faulty operation before it can be considered correct.

Definition 2. A non-faulty node is considered correct only if it remains non-
faulty for Anoge rounds during which the system is coherent.’

Denote by DigiClockp(r) the value of the digital clock at node p at beat r. We
say that the system is in a synchronized_state if for all correct nodes the value
of their DigiClock is identical.

Definition 3. The digital-clock synchronization problem

Convergence: Starting from an arbitrary system state, the system reaches a
synchronized_ state after a finite time.

Closure: If at beat r the system is in a synchronized_ state then for every r’,
r >,

1. the system is in a synchronized_ state at beat r'; and

2. DigiClock(r") = (DigiClock(r)+r"—r) mod overlap,* at each correct node.

Note that the algorithm parameters n, f, as well as the node’s id are fixed
constants and thus considered part of the incorruptible correct code. Thus we
assume that non-faulty nodes do not hold arbitrary values of these constants.

2.1 The Byzantine Consensus Protocol

Our digital clock synchronization algorithm utilizes a Byzantine consensus proto-
col as a sub-routine. We will denote this protocol by BC. We require the regular
conditions of Consensus from BC, in addition to one additional requirement.
That is, in BC the following holds:

1. Agreement: All non-faulty nodes terminate 5C with the same output value.

2. Validity: If all non-faulty nodes have the same initial value v, then the output

value of all non-faulty nodes is v.

Termination: All non-faulty nodes terminate BC within A rounds.

4. Solidarity. If the non-faulty nodes agree on a value v, such that v #.1 (where
L denotes a non-value), then there are at least n — 2 - f non-faulty nodes
with initial value v.

w

3 The assumed value of A,oqe in the current paper will be defined later.
* “overlap” is the wrap around of the variable DigiClock. All additions to DigiClock
in the rest of the paper are assumed to be (mod overlap).
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Remark 1. Note that for n > 4f the “solidarity” requirement implies that if the
Byzantine consensus is started with at most 5§ non-faulty nodes with the same
value, then all non-faulty nodes terminate with the value L .

As we commented above, since BC requires the nodes to maintain a consistent
state throughout the protocol, a non-faulty node that has recently recovered
from a transient fault cannot be considered correct. In the context of this paper,
a non-faulty node is considered correct once it remains non-faulty for at least
Anode = A+ 1 and as long as it continues to be non-faulty.

In Appendix A we discuss how typical synchronous Byzantine consensus pro-
tocols can be used as such a BC protocol. The specific examples we discuss have
two early stopping features: First, termination is achieved within 2f + 4 of our
rounds. If the number of actual Byzantine nodes is f/ < f then termination is
within 2 f’ 4 6 rounds. Second, if all non-faulty nodes have the same initial value,
then termination is within 4 rounds.

The symbol A denotes the bound on the number of rounds it takes BC to
terminate at all correct nodes. That is, if BC has some early stopping feature, we
still wait until A rounds pass. This means that the early stopping may improve
the message complexity, but not the time complexity. By using the protocols in
Appendix A, we can set A :=2f + 4 rounds.

3 Digital Clock Synchronization Algorithm

The following digital clock synchronization algorithm tolerates up to f < 7%
concurrent Byzantine faults. We target for the digital clocks to be incremented
by “1” every beat and we target at achieving synchronization of these digital
clocks.

3.1 Intuition for the Algorithm

The idea behind our algorithm is that each node runs many simultaneous
Byzantine consensus protocols. In each round of the algorithm it executes a
single round in each of the Byzantine consensus protocols, but each Byzantine
consensus protocol instance is executed with a different round number. That is,
if BC takes A rounds to terminate, then the node runs A concurrent instances
of it, where, for the first one it executes the first round, for the second it exe-
cutes the second round, and in general for the i*" BC protocol it executes the i*"
round. We index a BC protocol by the number of rounds passed from its invo-
cation. When the A" BC protocol is completed, a new instance of BC protocol
is initiated. This mechanism, of executing concurrently A BC protocols, allows
the non-faulty nodes to agree on the clock values as of A rounds ago. The nodes
use the consistency of these values as of A rounds ago and the exchange of their
current values to “tune” the future clock values.

3.2 Preliminaries

Given a Byzantine consensus protocol BC, each node maintains the following
variables and data structures:
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Algorithm Digital-SSByz-ClockSync /* executed at each beat */

1. for each i € {1,.., A} do
execute the i*" round of the Agree[i] BC protocol;
2. send value of DigiClock to all nodes and store the received clocks of other
nodes in ClockV ec;
3. set the following:
(a) v:= the agreed value of Agree[A];
(b) DigiClock,,,.,:= the value appearing at least |5 | + 1 times in ClockVec,
and 0 otherwise;
4. (a) if (v=0) or (v = vVpres + 1) then
DigiClock = DigiClock,,,., + 1 (mod overlap);
(b) else
DigiClock := 0;
5. for each i € {2,..., A} do
Agree[i] := Agree[i — 1];
6. initialize Agree[l] by invoking BC(DigiClock).

7. VUprev = .

Fig. 1. The digital clock synchronization algorithm

1. DigiClock holds the beat counter value at the node.

2. ClockVec holds a vector containing the value of DigiClock each node sent
in the current round.

3. DigiClock,,, holds the value that appears at least % +1 times in ClockVec,
if one exists.

4. Agreeli] is the memory space of the i*" instance of BC protocol (the one

initialized ¢ rounds ago).

v holds the agreed value of the currently terminating 5C.

6. Uprev holds the value of v one round ago.

ot

Note that all the variables are reset or recomputed periodically, so even if
a node begins with arbitrary values in its variables, it will acquire consistent
values. The consistency of the variable values used for BC are taken care of
within that protocol.

Figure 1 presents the digital clock synchronization algorithm.

Remark 2. The model allows for only one message to be sent from node p to p’
within one round (between two consecutive beats). The digital clock synchro-
nization algorithm in Figure 1 requires sending two sets of messages in each
round. Observe that the set of messages sent in Step 2 is not dependent on the
operations taking place in Step 1, therefore, all messages sent by the algorithm
during each round can be sent right after the beat and will arrive and processed
before the next beat, meeting the model’s assumptions.

Note that a “simpler” solution, such as running consensus on the previous
DigiClock, adding to it A + 1 and setting it as the current DigiClock would
not work, because for some specific initial values of DigiClock the Byzantine
nodes can cause the non-faulty nodes to get “stuck” in an infinite loop of alter-
nating values.
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4 Lemmata and Proofs

All the lemmata, theorems, corollaries and definitions hold only as long as the
system is coherent. We assume that all nodes may start in an arbitrary state,
and that from some time on, no more than f of them are Byzantine. We will
denote by G a group of nodes that behave according to the algorithm, and that
are not subject to (for some pre-specified number of rounds) any new transient
faults. If, |G| > n — f and remain non-faulty for a long enough period of time
(2(A) global beats), then the system will converge.

For simplifying the notations, the proof refers to some “external” round num-
ber. The nodes do not maintain it, it is only used for the proofs.

Definition 4. We say that the system is CALM(a, 0), 0 > «, if there is a set
G, |G| = n — f, of nodes that are non-faulty during all rounds in the interval
[a, 0 —1].

The notation CaLm(a, o > () denotes that CALM(«, o) and o > (. Specifically,
the notation implies that the system was calm for at least 3 rounds. Notice that
all nodes in G are considered correct when the system is CALM (o, 0 > A).

Note that in typical self-stabilizing algorithms it is assumed that eventually
all nodes behave correctly, and therefore there is no need to define CaLMm(). In
our context, since some nodes may never behave correctly, and additionally some
nodes may recover and some may fail we need a sufficiently large subset of the
nodes to behave correctly for sufficiently long time in order for the system to
converge.

In the following lemmata, G refers to the set implied by CALM(«, o), without
stating so specifically.

Lemma 1. If the system is CALM(a,0 > A+ 1), then for any round (3, § €
[ + A+ 1,0], all nodes in G have identical v values after executing Step 2 of
Digital-SSByz-ClockSync.

Proof. Irrespective of the initial states of the nodes in G at the beginning of
round « (which is after the last transient fault in G occurred), the beats received
from the global beat system will cause all nodes in G to perform the steps in
synchrony. By the end of round «, all nodes in G reset BC protocol Agree[l].

Note that at each round another BC protocol will be initialized and after A
rounds from its initialization each such protocol returns the same value at all
nodes in G, since all of them are non-faulty and follow the protocol. Hence, After
A + 1 rounds, the values all nodes in G receive as outputs of BC protocols are
identical. Therefore v is identical at all g € G, after executing Step 2 of that
round.

Since this claim depends only on the last A+ 1 rounds being “calm”, the claim
will continue to hold as long as no node in G experiences a transient fault. Thus,
this holds for any round g, a + A < g < o. O

Lemma 2. If the system is CALM(a,0 > A + 2), then for any round § €
[ + A+ 1, 0], either all nodes in G perform Step 4.a, or all of them perform
Step 4.b.
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Proof. By Lemma 1, after the completion of Step 2 of round a4+ A 41 the value
of v is the same at all nodes of G, hence after an additional round the value
of Vprey is the same at all nodes of G. Since the decision whether to perform
Step 4.a or Step 4.b depends only on the values of v, and vprev, all nodes in G
perform the same line (either 4.a or 4.b). Moreover, because this claim depends
on the last A+ 2 rounds being “calm”, the claim will continue to hold as long as
no node in G is subject to a fault. a

Denote Ay := A + 2. All the following lemmata will assume the system is
CarM(a, B), for rounds S > A;. Therefore, in all the following lemmata, we
will assume that in each round (3, all nodes in G perform the same Step 4.x
(according to Lemma 2).

Lemma 3. If the system is CALM(«, 0 > Ay), and if at the end of some 3 >
a+ Ay — 1, all nodes in G have the same value of DigiClock, then at the end of
any 3, B < B < o, they will have the same value of DigiClock.

Proof. Since we consider only § > o + A; — 1, by Lemma 2 all nodes in G
perform the same Step 4.x. For round 3’ = 3+ 1, the value of DigiClock can be
changed at Lines 4.a or 4.b. If it was changed at 4.b then all nodes in G have the
value 0 for DigiClock. If it was changed by Step 4.a, then because we assume
that at round 3 all nodes in G have the same DigiClock value, and because
|G| =n— f >[5 +1], the value of DigiClock,,,,, computed at round 3’ is the
same for all nodes in G, and therefore, executing Step 4.a will produce the same
value for DigiClock in round [’ for all nodes in G.

By induction, for any 8 < 8/ < o, all nodes in G continue to agree on the
value of DigiClock. O

Denote Ay := Ay + A+ 1. All the following lemmata will assume the system is
CaLM(a, o), for o > As.

Lemma 4. If the system is CALM(«,0 > As), then at the end of any round
B,8 € [a+ Az — 1,0], the value of DigiClock at all nodes in G is the same.

Proof. Consider any round ' € [a + A1 — 1,a + Ay + A — 1]. If at the end
of 3 all nodes in G hold the same DigiClock value, then from Lemma 3 this
condition holds for any 8, 8 € [a + Az — 1,0]. Hence, we are left to consider
the case where at the end of any such ' not all the nodes in G hold the same
value of DigiClock. This implies that Step 4.b was not executed in any such
round 3. Also, if Step 4.a was executed during any such round (', and there
was some DigiClock value that was the same at more than 5 nodes in G, then
after the execution of Step 4.a, all nodes would have had the same DigiClock
value. Hence, we assume that for all 5, only Step 4.a was executed, and that no
more than 5 from G had the same DigiClock value.

Consider round " = a+ Ay + A. The above argument implies that at round
B" — A, Step 4.a was executed, and there were no more than 2 nodes in G with

2
the same DigiClock value. Since 5 < n — 2. f, the “solidarity” requirement of
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BC implies that the value entered into v at round 3" is L . Hence, at round 3"
Step 4.b would be executed.

Therefore, during one of the rounds 8 € [a + Ay — 1, + Ay + A], all the
nodes in G have the same value of DigiClock, and from Lemma 3 this condition
holds for all rounds, until o. a

Remark 3. The requirement that f < 7 stems from the proof above. That is
because we require that § < n—2-f (to be able to use the “solidarity” requirement
of BC). We note that this is the only place that the requirement f < % appears,
and that it is a question for future research whether this can be improved to the
known lower bound of f < 7.

Corollary 1. If the system is CALM(a, 0 > Asg), then for every round 3, 3 €
[+ Ay — 1,0 — 1], one of the following conditions holds:

1. The value of DigiClock at the end of round B+ 1 is “0” at all nodes in G.
2. The value of DigiClock at the end of round B + 1 is identical at all nodes
in G and it is the value of DigiClock at the end of round § plus “17.

Lemma 5. If the system is CALM(a,0 > Ag + A), then for every round 8 €
[+ Ay + A —1,0], Step 4.b is not executed.

Proof. By Corollary 1, for all rounds 3, 8 € [« + Ay — 1,0 — 1] one of the two
conditions of the DigiClock values holds. Due to the “validity” property of BC,
after A rounds, the value entered into v is the same DigiClock value that was at
the nodes in G, A rounds ago. Therefore, after A rounds, the above conditions
hold on the value of v, vpye,. Hence, for any round 8, 5 € [a+ Ay +A—1,0] one
of the conditions holds on v, Vprey. Since for both of these conditions, Step 4.a
is executed, Step 4.b is never executed for such a round S. ]

Corollary 2. If the system is CALM(a,0 > Ag + A), then for every round
B, B € [a+ Ay + A —1,0], it holds that all nodes in G agree on the value of
DigiClock and increase it by “1” at the end of each round.

Corollary 2 implies, in a sense, the convergence and closure properties of algo-
rithm Digital-SSByz-ClockSync.

Theorem 1. From an arbitrary state, once the system stays coherent and there
are n — f correct modes that are non-faulty for 3A + 3 rounds, the
Digital-SSByz- ClockSyncensures converges to a synchronized_ state. Moreover,
as long as there are at least n — f correct nodes at each round the closure prop-
erty also holds.

Proof. The conditions of the theorem implies that the system satisfies
CaLM(a, 0 > Ay + A). Consider the system at the end of round Ay + A and
denote by G a set of n — f correct nodes implied by CALM(a,0 > Ag + A).
Consider all the A instances of BC in their memory. Denote by BC; the instance
of BC initialized i (0 < i < A—1) rounds ago. By Lemma 5, Step 4.b is not going
to be executed (if the nodes in G will continue to be non-faulty). Therefore, at
the end of the current round,
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1. the set of inputs to each BC; contained at least | %] + 1 identical values from
non-faulty nodes, when it was initialized (denote that value I;);
2. for every i, 0 <i < A —1, either I; = [;41 or I; = 0;
3. Ip is the value that at least [ % | + 1 non-faulty hold in their DigiClockat the
end of the current round.

The first property holds because otherwise, by the “solidarity” property of 5C,
the agreement in that BC will be on L and Step 4.b will be executed. The second
property holds because otherwise Step 4.b will be executed. The third property
holds since this is the value they initialized the last BC with.

Observe, that each BC; will terminate in A — ¢ rounds with a consensus agree-
ment on I;, as long as there are n — f non-faulty nodes that were non-faulty
throughout its A rounds of execution. Thus, under such a condition, for that
to happen some nodes from G may fail and still the agreement will be reached.
Therefore, Corollary 2 holds for each node that becomes correct, i.e., was non-
faulty for A rounds, because it will compute the same values as all the already
correct nodes.

By a simple induction we can prove that the three properties above will hold
in any future round, as long as for each BC there are n — f non-faulty nodes that
executed it.

Thus, the three properties imply that the basic claim in Corollary 2 will con-
tinue to hold, which completes the proof of the convergence and closure proper-
ties of the system. O

Note that if the system is stable and the actual number of Byzantine faults f’
is less than f, then Theorem 1 implies that any non-faulty node that is not in
G (there are no more than f — f’ such nodes) synchronizes with the DigiClock
value of nodes in G after at most A global beats from its last transient fault.

5 Complexity Analysis

The clock synchronization algorithm presented above converges in 3 - A + 3
rounds. That is, it converges in 2(f) rounds (since A =2 f + 4 for our BC of
choice).

Once the system converges, and there are at least |G| = n — f correct nodes,
BC protocol will stop executing after 4 rounds for all nodes in G (due to the early
stopping feature of BC we use). During each round of BC, there are n? messages
exchanged. Note that we execute A concurrent BC protocols; hence, over a period
of A rounds, A -4 -n? messages. Therefore, the amortized message complexity
per round is O(n?). Note that the early stopping of BC does not improve the
convergence rate. It only improves the amortized message complexity.

6 Discussion

A Scheme for “Rotating Consensuses”. Although the current work is pre-
sented as a digital clock synchronization algorithm, it actually surfaces a more



360 E.N. Hoch, D. Dolev, and A. Daliot

general scheme for “rotating” Byzantine consensus instances, which allows all
non-faulty nodes to have a global “snapshot” of the state that was several rounds
ago. This mechanism is self-stabilizing and tolerates the permanent presence of
Byzantine nodes. This mechanism ensures that all non-faulty nodes decide on
their next step at the next round, based on the same information.

Our usage of consensus provides agreement on a global “snapshot” of some
global state. By replacing each Byzantine consensus with n Byzantine agree-
ments, this mechanism can provide a global “snapshot” of the states of all the
nodes several rounds ago. That is, instead of agreeing on a single state for
the entire system, we would agree on the local state of each node. Every time
the agreement instances terminate the nodes may evaluate a predicate that can
determine whether the past global state was legal. The nodes may then decide
whether to reset the non-stabilizing algorithm accordingly.

The next subsection specifies some additional results which can be achieved
using this scheme.

Additional Results. The digital clock synchronization algorithm presented
here can be quickly transformed into a token circulation protocol in which the
token is held in turn by any node for any pre-determined number of rounds and
in a pre-determined order. The pre-determined variables are part of the required
incorruptible code. E.g. if the token should be passed every k beats, then node
pi, i =14 %Clockmod n holds the token during rounds [k- (i — 1)+ 1,k - ¢].
Similarly, it can also produce synchronized pulses which can then be used to
produce the self-stabilizing counterpart of general Byzantine protocols by using
the scheme in [3]. These pulses can be produced by setting overlap to be the
pulse cycle interval, and issuing a pulse each time DigiClock = 0.

Digital Clock vs. Clock Synchronization. In the described algorithm, the
non-faulty nodes agree on a common integer value, which is regularly incre-
mented by one. This integer value is considered “the synchronized (digital) clock
value”. Note that clock values estimating real-time or real-time rate can be
achieved in two ways. The first one, is using the presented algorithm to cre-
ate a new distributed pulse, with a large enough cycle, and using the algorithm
presented in [6] to synchronize the clocks. The second, is to adjust the local
clock of each node, according to the value of the common integer value, multi-
plied by the predetermined length of the beat interval.> This way, at each beat
of the global beat system, the clocks of all the nodes are incremented at a rate
estimating real-time.

Future Work. We consider three main points to be interesting for future re-
search.

— Can the tolerance of the algorithm be improved to support f < 7

— Can the above mechanism be applied in a more general way, leading to a
general stabilizer of Byzantine tolerant algorithms without using the scheme
proposed in [3], which requires pulses that are sufficiently spaced apart?

5 This value need also be defined as part of the incorruptible code of the nodes.
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What happens if the global beats are received at intervals that are less than
the message delay, i.e. common clock beats. Is there an easy solution to
achieve synchronized clocks? If yes, can it attain optimal precision like the
current solution? If no, is the only option then to synchronize the clocks
in a fashion similar to [2,5,6]7 i.e. by executing an underlying distributed
pulse primitive with pulses that are far enough apart in order to be able
to terminate agreement in between. In that case, is there any advantage in
having a common source of the clock ticks or is it simply a replacement for
the local timers of the nodes?
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A BC Protocol

A typical synchronous Byzantine agreement / consensus protocol runs in a fixed
number of rounds (A) (for practical ones it is about 2f + 4) rounds (or phases).
If such a protocol will be invoked by at least n — f non-faulty nodes, without
having in their memory any residue of previous runs of the protocol, it will end
up producing a consensus value at all non-faulty nodes. Therefore, it is enough
to augment any such protocol with an initial action of resetting all variables used
in the protocol when it is invoked.

Our results require that the non-faulty nodes execute a consensus protocol. All
synchronous agreement protocols can be converted to consensus. The “Solidarity”
requirement poses no problem, since in consensus protocols all nodes exchange
values at the first round, and only a value that was sent by n — f nodes (at least
n — 2f of them are non-faulty) will be a candidate value at the next phase. It
requires setting the default value to L .

Specifically, the non-self-stabilizing protocols in [7,15] can be transformed to
the required BC protocol. Similarly the self stabilizing protocol in [4] can be
simplified to a synchronous protocol satisfying the required properties.

In the context of the current paper each node executes A copies of the mod-
ules, each copy is separated from the others, therefore, the messages of the non-
faulty nodes are separated for each copy. Faulty nodes may behave arbitrarily.
Notice that a node that just recovered from a transient fault invokes a clean
copy of BC which it executes correctly, while the other copies may still be af-
fected by the transient fault. Notice that after executing Line 5 of the digital
clock synchronization algorithm Digital-SSByz-ClockSync a non-faulty node can
distinguish between the A copies of 5C.
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