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Abstract. This paper examines the sensitivity of endogenous bursters to a brief input pulse. The interneurons of
the lobster cardiac ganglion were selected as a case study.

Using a mathematical model specifically developed for the neurons in the cardiac ganglion of the lobster (Av-Ron
et al., 1993), we show a tight link between burst characteristics and certain other parameters. We show that cells
with different burst properties differ in their sensitivity to an input of a brief pulse.

Irrespective of these differences, all cells display a bimodal response to a brief pulse applied during the quies-
cent period. During the first three-quarters of the quiescent period, they respond by producing a single spike at
most. During the remaining one-quarter, the brief pulse can initiate the cells’ intrinsic burst. Our predictions fit
experimental results obtained by Tazaki and Cooke (1979).

The results obtained herein are discussed with respect to {ault tolerance considerations.
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therefore, start our long-range project by investigating
these two aspects.
We focus on the lobster Panulirus interuptus, as the

1. Introduction

This paper is the first in a series of studies that explores

possible mechanisms of fault tolerance in smail neu-
ronal networks. Fault tolerance in biological systems
can be ideally studied in the cardiac ganglion of the
lobster because this ganglion is vital to the existence of
the organism.

Fault tolerance of a network must certainly be in-
fluenced by the intrinsic properties of the individual
cells in the network and by their response to input. We,

bursting behavior of its interneurons has been analyzed
in some detail (Friesen, 1975a, b). The cardiac gan-
glion consists of four interneurons and five motoneu-
rons. All four interneurons exhibit bursting behavior
but differ in two of the three main characteristics of a
burst; all have the same cycle duration, but they differ
in both the frequency and the duration of the spiking
period (Friesen, 1975a).
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The firststep in our theoretical analysis was to extend
the work of Av-Ron (1992) by constructing mathemati-
cal “model cells” that exhibit the biologically observed
bursting characteristics. In the process of construct-
ing these model cells, we could show a close correla-
tion between a certain of parameters and the various
modes of bursting behavior. Having modeled the in-
trinsic properties of the various interneurons, we next
examined the effect of input on their behavior. We nat-
urally started with the most elementary input, a brief
depolarizing pulse. While model cells with different
burst properties show different sensitivity to input, all
model cells display a bimodal response to a brief pulse
applied during the quiescent period. During the first
three-quarters of the quiescent period, they respond by
producing a single spike at most. During the remain-
ing one-quarter, the brief pulse can initiate the cells’
intrinsic burst. These results resemble the experimen-
tally observed response (Tazaki and Cooke, 1979).

2. Biological Background

In the cardiac ganglion of the lobster Panulirus interup-
tus the five motoneurons (labeled 1 to 5 see schematic
diagram in Fig. 1) innervate the heart muscle directly
and the four interneurons (labeled 6 to 9 see diagram
in Fig. 1) innervate each other and the motoneurons.
These cells control the cycle of the ganglion and, thus,
the heart rate. Cell 9 is the first to fire in the ganglionic
spiking period, cell 8 follows and then cells 7 and 6.
Cell 6 is the main interneuron that drives the motoneu-
rons, which fire only during cell 6’s spiking period.
The ganglionic spiking period ends in the reversed or-
der; cell 6 stops first, followed by cell 7, then cell 8 and
finally cell 9 (Friesen, 1975a, b). '
Figure 1 depicts the firing frequency of the indi-
vidual interneurons during the ganglionic spiking pe-
riod. Cell 9 exhibits the longest spiking period with
the lowest frequency. Cell 6, on the other hand, has
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Frequency of firing of the interneurons: Experimental results. The instantaneous firing rate of each interneuron is plotted against

time. Note the lower average firing rate of cell 9 and its relatively long duration in comparison to cell 6 (redrawn from Friesen, 1975a). Inset:
Schematic representation of the cardiac ganglion of the lobster Panulirus interuptus showing the number and the location of the cell bodies.
Cells 1 to 5, the large cells, are motoneurons innervating the heart. Cells 6 to 9, the small cells, are interneurons (redrawn from Friesen, 1975a).
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the shortest spiking period and the highest frequency.
Cells 7 and 8 have intermediate frequencies and spik-
ing periods. Cell 9 was shown experimentally to be an
endogenous burster (Friesen, 1975b; Hartline, 1967).
Based on theoretical considerations, Av-Ron (1992) ar-
gued that the other three interneurons are also probably
endogenous bursters.

Imperative to our study is that the mathematical
model describing the neurons is based as much as
possible on experimental data. Also, the outputs of
the mathematical “model cells” must replicate the ob-
served biological behavior. With some minor modi-
fication (justiﬁéations are given in the text), we use
the mathematical model specifically developed for the
interneurons of the cardiac ganglion of the lobster by
Av-Ronetal. (1993). Since the mechanism underlying
bursting of the interneurons is not known, Av-Ron et al.
(1993) selected a mechanism that was both biologically
reasonable and as simple and general as possible.

3. The Mathematical Model Cells

The full model for a model cell is

dv

Con— = lupp = Ina(W, V) = Ix(W, V) = I (V)

dt
— Igica(Ca, V) — Ica (X, V) (n

In describing the currents, we follow a now-standard
approximation scheme (Rinzel, 1984). Thus,

Ia(W, V) = gnamo (VYA = WYV = Vi), (2)

w 4
Ix(W, V) =gk (T) V =W, 3
1L (V) = gLV — Vp), )

where, gna, gk and gy, are the corresponding ionic max-
imal conductances, while Vy,, Vk and V;, denote the
reversal potentials of the corresponding currents. In
(2), the steady-state sodium activation gate, moo(V), is
described by a general sigmoid function

1
1 + e—2a(V—V|/2) !

Fo(V;a, Vi) = (5)
where a controls the sigmoid’s steepness and V| /2, its
midpoint.

In this case,

Meo(V) = Foo(V; am, V). ©)

The recovery variable W is described by

AW WeolV) =W

PR O

where the steady-state value W, (V) is modeled simi-
larly to meo (V) by

Woo(V) = Foo(V; aw, Vi), ®)

and the relaxation time of recovery 7(V) is given by

1
(eaw(V—Vw) + e—aw(V—Vw)) ’

)=+ ®

This expression for (V) is based on the assumption
that W follows first-order kinetics for the transition
from an active to an inactive state (Av-Ron et al.,
1991).

The two additional currents in (1) Ica(X, V) and
Ix(ca)(Ca, V) are described somewhat differently from
the classical ones. The calcium current exhibits satu-
rative dependence on extracellular Ca?* concentration
even at low concentration (Hagiwara and Takahashi,
1967; Akaike et al., 1978). In line with convention, we
describe Ic,(X, V) as the product of membrane con-
ductance and the ion driving force:

Ica(X, V) = gcaX - Vaa(V). (10)

Here, miembrane conductance is accounted for by gc,,
the maximal calcium conductance, and X, the fraction
of open calcium channels. To model saturation, we
replace the conventional driving force (which was also
used by Av-Ron et al., 1993) by

VCaCe

v = ,
V)= i ke Keoo (V)

an

where V¢, is the maximal possible driving force and
Ce is the external calcium concentration. The term
Ke(V) is a sigmoid function of V given as

Kewo (V) = Foo(V; ake, Vie)- (12)

Kex(V) increases with depolarization and represents
the decreasing permeability of the channels to inward
movements of calcium as membrane depolarization in-
creases. The combined dependence of X and Keo(V)
on membrane potential generates the experimentally
observed bell-shaped dependence of I, on V (Llinas
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etal.,, 1981). Accordingly, X saturates at higher depo-
larizations where as Keo,(V) continues to rise. As a
result, Ic; first rises due to an increase in X but then de-
clines due to a saturation of X and increasing Keoo (V)
(for detailed a discussion see Parnas and Segel, 1989).

The third differential equation in the model describes
the time course of X:

dX  Xeo(V) =X

T - , (13)

where X ,(V'), stands for the fraction of open channels
at steady state and is described by the sigmoid curve

Xoo(V) = Fo(V, ax, Vx). (14)
The last current considered in the model, Ix(cy
(Ca, V), describes a current through a potassium chan-

nel that is activated in a saturative manner by intracel-
lular calcium, Ca. Thus,

- Ca
Ix(cay(Ca, V) = gK(Ca)m(V ~ V). (15)

The fourth differential equation in the model describes
the temporal distribution of intracellular calcium con-

centration. The calcium concentration rises due to the -
voltage dependent influx of calcium (first term in 16) ~

and declines due to a lumped removal process whose
rate is depicted in the second term of (16). There, R
stands for the maximal rate of removal and K, for the
half-saturation constant:

dCa Ca
— = Yea(—Ica(X, V) — R,
T cal(—1Ica( ) Cat K

(16)
Here, Ica(X, V) (from 10) is converted to internal con-
centration where Y¢, is the translation coefficient.

In summary, the model consists of four differential
equations: for V, the membrane potential (1); for W,
the recovery variable (7); for X, the fraction of open
calcium channels (13); and for Ca, the intracellular
calcium concentration (16). Of these, the first two are
fast, with intrinsic time scales of milliseconds. The
last two are slow, with intrinsic time scales of tens and
hundreds of milliseconds respectively.

Figure 2 depicts the behavior of the four model cells
((1)to (16)). The values selected for the various param-
eters were based on a detailed analysis carried out by
Av-Ron (1992). However, final adjustments of values
aimed at (1) showing a reasonable similarity to the cells
when connected to each other (see Fig. 1); (2) showing

Tuble 1. Parameters in which the various cells differ from each
other.

Parameter Cell 6 Cell 7 Cell 8 Cell 9
Zk(ca) (mS/cm?y 11 4.55 4.55 1.9
Zx (mS/cm?) 8 15 15 50
Zca (mS/cm?) 1.7 1.25 1.3 0.86
R (uM/msec) 0.0019  0.0012 000175  0.001

a stable burst pattern over time (we ensured stability
over 400 sec of simulation). The network simulation
was carried out with the aid of SONN, a software pack-
age developed in our laboratory (for details, see Parnas
and Rudolph, 1991). The parameter values common
to all model cells are provided in the legends of Fig. 2,
while those in which the model cells differ from each
other are summarized in Table 1.

The behavior of the model cells in Fig. 2 shows a
satisfactory resemblance to that of the cells in Fig. 1;
in particular, cell 9 is the first to fire and exhibits a
relatively low firing frequency at the beginning of the
spiking period. As in the experimental results the other
three model cells join in 100 to 200 msec later in the
sequence 8, 7, 6. Cell 6 is the first to stop after about
400 msec, followed by cell 7, cell 8, and finally cell 9.
Cell 6 shows the highest firing frequency (see both
Figs. 1 and 2). Cells 7 and 8 exhibit a fairly steady
rate of firing throughout the spiking period. Finally,
cell 9 starts with the lowest firing rate but this rises
once the other cells join in. In all four model cells, the
sharp fluctuations in frequency are due to input from
the other three cells. This is probably the reason for
the similar fluctuations seen in Fig. 1.

In spite of the resemblance between the model cells
(Fig. 2) and the cells (Fig. 1), there are still a number of
differences. For example, model cell 7 has a somewhat
shorter spiking period. Also, the decline in firing rate
in model cell 8 is less abrupt than in cell 8. We feel,
however, that model cells 6 and 9, on which the present
study concentrates, capture the main features of the ac-
tivity of the biological cells and hence are adequate for
further study. We selected cells 6 and 9 to study sensi-
tivity to input because these cells exhibit two extreme
modes of bursting behavior, while cells 7 and 8 exhibit
an intermediate mode.

To examine sensitivity to input, the intrinsic proper-
ties of model cells 6 and 9 must be ascertained when
they are isolated rather than connected to all interneu-
rons (Fig. 2). Figure 3 shows the bursting behavior
of isolated model cells 6 and 9. Notice the low firing
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Figure 2. Frequency of firing of the model cells. The burst shown was obtained after 200 sec of simulation to ensure stability of the results,
The instantaneous firing rate is plotted as in Fig. 1. Following the presentation of Friesen (1975a) we assign zero to the beginning of the spiking
period of cell 9. The values of the parameters common to the four cells are Cp,, = 1 uF/cm?, gNa = 100, VN, =55, Vk = 72,5 =1, g1 = 0.3,
Vi = =60, ap = 0.055, Viy = =30, aw = 0.045, Viy — 47, A = 0.02, Ve, = —180, Ce = 10 uM, Ke = 100 uM, ag, = 0.04, Vi, = 60,
ax = 0.18, Vx = —50, tx = 50 msec, Ky = 0.5 uM, K, = 0.5 uM, ¥ = 0.00002 M/uA - msec. Units: conductances (mS/cm?), voltages
(mV). The values of the parameters in which the cells differ from one another are given in Table 1. The parameter’s values described here will

be used in all calculations that follow.

frequency of the isolated model cell 9 (inset, Fig. 3) in
comparison to its firing frequency when connected in
the network (Fig. 2).

4. Correlation Between Burst Characteristics
and Model Parameters

Can the typical behavior of either cell 6 or cell 9 be
obtained by only one set of parameters or is it re-
tained in a domain of parameters? To answer this
question, we first defined group-6 and group-9, which
are variations of cells 6 and 9. To do this, we ex-
amined the burst characteristics of each cell in isola-
tion (Fig. 3) and arbitrarily defined the burst variations

around these characteristics (see schematic bursts in
Fig. 4).

Next, the parameters, in which cell 6 and 9 differ
(see Table 1), were systematically varied to discover
how the different parameters affect the burst charac-
teristics.  We found that an increase in both gg and
8x(ca), decreases the cycle duration, the spiking du-
ration, and the number of spikes. In contrast, an in-
crease in gc, increases all three characteristics. Finally,
an increase in R increases the spiking duration and
the number of spikes but decreases the cycle duration.
These results hold for a wide range of parameter val-
ues (i.e., 5 mS/em? < gx < 70 mS/cm?; 0 mS/em? <
gkca) < 30 mS/em?; 0 mS/em? < gc, < 5 mS/cm?
and 0.0005 uM/msec < R < 0.01 uM/msec). There
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Figure 3. The temporal pattern of membrane potential in model cells 9 and 6. The membrane voltage during one burst cycle is drawn. We
arbitrarily defined T = 0 to be at the beginning of the quiescent period. Inset: Firing frequency of isolated cell 9 (top) and cell 6 (bottom).

were some exceptions to the behavior described above.
For example, for some values of R in the domain of
study, the cycle duration increased (rather than de-
creased) as R increased. These cases, however, were
rare and were not considered further.

The results obtained from this rather tedious search
indicated that (gk, gx(cay) plane contains two discrete
areas, one where the variations of cell 6 can be found
and one where the variations of cell 9 exist (Fig. 4). Fur-
thermore, in the relevant domains, the values of the two
remaining parameters, gca and R, can be approximated
by a linear combination of the former parameters (see
(17) to (20)). Thus we found (by linear regression),
that for cell 6

gca = 0.0429823x + 0.122478gxca) + 0.013158
(n=9,0 =0.070521), (17)

R = 0.000012gx + 0.000173gxcay — 0.000022
(n =9,0 =0.000113). (18)

For cell 9 we found

0.001159gk + 0.401936gkca) -+ 0.010554

(n =19, 0 =0.049039), (19)
R = 0.000013gx + 0.000205 gk cay — 0.000016
(n =19, 0 = 0.000075). (20)

gCa

Where n is the number of cells, and ¢ is the standard
deviation of the specific variations from the linear com-
bination. :

5. The MCS(T) Function

We define the function MCS(T), to be the minimal
charge needed to shift the membrane potential, V(T),
above threshold, Vipesn (T) and consequently to evoke
a spike at time T during the cell cycle.

To quantify this charge, the mathematical model (1)
to (16) reduces the cell to an electrical circuit. This
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Figure 4. Correlation between burst characteristics and model parameters. The definition of bursters belonging to group-6 is given in the
upper schematic illustration. In order to obtain this kind of burster, the parameters 2k and gkcs) must reside in a rectangle, where 5 mS/cm? <
gx < 15 mS/cm?, and 4 mS/cm? < Zg(csy < 14 mS/cm?. The definition of bursters belonging to group-9 is given in the lower schematic
iHustration. For this kind of burster, the parameters gk and 8k(Ca) must reside in a parallelogram, where 25 mS/cm? < gk < 55 mS/cm?, and

0.0323Kk < gk(ca) < 0.0445K.

circuit contains a capacitor C,,, representing the mem-
brane capacitance, and a variable conductor, G (V),
representing the sum of the various channel conduc-
tances in the membrane. In such a circuit, the relation
between charge, Q, and voltage, V, is given by

0=V.C, 2n

In our case, the charge needed at time, 7', to cause
the desired shift in membrane potential is given by

MCS(T) = (Vrteesh(T) — V(T)) - . (22)

Numerical solution of the mathematical model (1)
to (16) allows evaluation of V(T'), but not Ve (7).

The section below presents a procedure to determine
Vrhresh (1) numerically.

5.1.  Determining Vrpea(T)

To understand how Vs (T) can be determined, we
begin with a phase plane analysis of the fast V — W
subsystem assuming the slow variables X and Ca to
have fixed values. Such a system can exhibit only
two types of behavior. In the first type, endogenous
oscillations, the cell fires continuously without any
input. In the second type, the cell is quiescent and
fires a spike only in response to an above-threshold
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V-nullcline, and therefore, the steady state (V;, W,) is stable.

input (ceils with this kind of behavior are often called
Sfollowers).

In such follower cells, the V and W nullclines inter-
sect once on the falling portion of the V nullcline to give
a stable steady state (V, W;) (see inset in Fig. 5). For
any initial values of V and W, the system will converge
to the stable steady state (V;, W;). For some initial val-
ues, however, the system will fire a single spike before
reaching that stable state, while for others it will reach
it without firing. In follower cells, Vipesn is defined
as the smallest V such that V > V,, and the system
generates a spike when the initial values are (V, W;).

In the model described here, both cell 6 and cell 9
show behavior much more complex than that of a fol-
lower cell. The system does not converge to a stable
steady state but rather to a limit cycle that is, cyclic
bursting behavior. An analysis of the kind undertaken
for the follower cell cannot be performed unless the
system is first simplified. Following Rinzel and Lee

Figure 5. The threshold during the quiescent period. The threshold of cell 9 (top) and cell 6 (bottom) as calculated from the model, using the
simplification that the Ca and X variables can be regarded as constant when Vppgegp is calculated. The membrane potential, V(T'), is shown for
comparison. Inset: A typical V-nullcline and W-nullcline for fixed values of Caand X. The two nullclines intersect in the falling portion of the

(1987), we base our simplification on the observation
that the model system can be divided into fast and slow
processes. In fact, it is these two processes with very
different time courses that generate the bursting behav-
ior (Rinzel and Lee, 1987). The fast process, which
includes V and W, accounts for the spikes during the
spiking period. The slow process, which includes X
and Ca, shifts the cell back and forth between endoge-
nous oscillations and the follower types of behavior.
Given that there are two time scales, a phase plane
analysis for cells 6 and 9 can be done for the fast
process, assuming the variables of the slow process
(Ca(T') and X (T)) to be fixed. At each point in time
T, we set the slow variables Ca and X to be Ca(7T)
and X (T") respectively and then calculated the stable
state of the fast process, taking X and Ca as constants.
As expected, the fast process acquires a stable steady
state throughout the quiescent period and so, one can
calculate Vrpesn(T') for the quiescent period (Fig. 5).
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Figure 6A depicts the MCS(T') of cells 6 and 9, dur-
ing the quiescent period, with V(T) and Vipes(T)
evaluated as described above. At the beginning of
this period, following the refractory period of the last
spike, Vrnesn (T) is still high (Fig. 5) but drops quickly
as the Na and K channels recover. After this drop,
V(T) is still high (Fig. 5) due to the persisting influx
of Ca, which outlasts the last spike. Consequently,
(Vrneesh (T') — V(T')) is small (Fig. 6A). Once the Ca
channels close (see gc, curve in Fig. 6B, 6C), V(T)

Unlike a follower cell, where the threshold acquires a
fixed value, the present model exhibits a time depen-
dent threshold because the slow variables Ca and X
vary over the quiescent period.

5.2, The Time Course of the MCS(T)

We begin our discussion with the quiescent period; the
spiking period will be discused later.

40 T Cells T T
E 30
3 20
§ 10
0
g T T T T
5~
S8
2
S

L]
LY
s 4 c |
o
§ S Gt
SE  2f 1
% | %cq
e}
QO 0 &a )
0 05 1 15
” ‘\\ L ¥ T T
16 N
— l 2 - T .~ ge" 6 -
3 08 | S ]
S 04 | celt9 e .
0 L —— e g
0 05 1 1.5 2

Time (sec)

Figure 6. The parameters that control the MCS(T') shape. A: The MCS(T) of cells 6 and 9. B: The conductances of cell 6 during the quiescent
period. Gy is the sum of all conductances. Not shown are gk and gn, because they are practically zero throughout the quiescent period. g;,,
also not shown, is constant and g; = 0.3 mS/cm?. C: Same as B but for cell 9. D: Ca concentration in cells 6 (dashed line) and 9 (solid
line) during the quiescent period. Since the quiescent period of cell 9 is shorter than that of cell 6, the last part of the solid line describes Ca

concentration at the beginning of the spiking period of cell 9.
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decreases but Vipesn (7)) is still high due to the high
concentration of Ca in the cell (Fig. 6D). This behav-
ior leads to a rise in the MCS(T) (Fig. 6A). Later,
when no more Ca enters, the removal of Ca becomes
dominant (Fig. 6D); consequently, Vipresn(T) declines
while V(T') rises (both behaviors are due to the closing
of calcium-dependent potassium channels (see gx(ca
in Fig. 6B, 6C)). As a result, MCS(T) declines, thus
acquiring a bell shape.

The observed difference in the amplitude of the
MCS(T) of cells 6 and 9 (Fig. 6A) is due to the higher
concentration of Ca in cell 6 (Fig. 6D). V(T) is lower
in this cell because more calcium-dependent potassium
channels are open. The threshold in cell 6 is higher for
the same reason (notice that at the end of the quiescent
period when Ca concentration in both cells is the same,
their thresholds coincide).

6. The MCPS(T, ¢,) Function

The MCS(T') described above highlights the key un-
derlying mechanisms that determine the sensitivity of
cells 6 and 9 to an input pulse where the pulse duration,
tp, approaches zero. To extend the above discussion to
longer pulses, we must consider the membrane con-

sidered V and C,,. We, therefore, define the function
MCPS(T, t,,) to be the minimal charge of a brief cur-
rent pulse needed to evoke a spike at time T. As an
extension of (22), MCPS(T, 1,,) is described by

(Vitresh(T) = V(T)) Gt (T)
(1 — e~ Gu(T)/Cn) s
(23)

MCPS(T, t,) =

Indeed, when ¢, — 0, MCPS(7, t,) — MCS(T).
In the context of (1) to (16) G (T') at any membrane
potential is

- Wy
cMﬂv=mm;wwim+“(->+gL
b s ——

8Nu e 8L
8K
C
+ ke e + gcaX . (24)
© Kd +Ca =~
8K(Ca) fes

Figure 7 depicts the MCPS(T, tp) forcell6andcell 9
for a brief pulse of r, = 2 msec. The difference in
the MCPS(T', t,) of cells 6 and 9 is much larger than

ductances, G(T), in addition to the previously con-

the difference in their corresponding MCS(T'). This is
because the denominator of (23) approaches 1 when 1,
does not approach zero and yet is short (¢, > 1 msec).
Under such conditions, the only difference between
MCS(T) (22) and MCPS(T, t,,) (23) is that Gy scales
the latter. Thus, the much higher G, in cell 6 (compare
G, in Fig. 6B, 6C) is the main reason for the higher
MCPS(T, t,) in cell 6.

Throughout the quiescent period, G,y is dominated
by gx(ca) (Fig. 6B, 6C). Since gx(ca) in group-9 is be-
tween 0.8 mS/cm? and 2 mS/cm? while in group-6
much higher and is between 4 mS/cm? and 14 mS/cm?
(Fig. 4), it follows that the MCPS(T, t,,) in group-6 is
always higher than that in group-9.

Two approximations were made in (23). First, we
assumed that G, (T') is constant during the pulse. Sec-
ondly, in calculating Vinesn(T) (Section 5.1), we as-
sumed that no external current is applied. This obvi-
ously does not hold in the present case. To appreciate
the magnitude of error introduced by these two approx-
imations, we compare the behavior of MCPS(T, tp) of
(23) to a numerically simulated solution.

Equations (1) to (16) were solved numerically and
a pulse current, Iy, was applied at various times, T,
during the cell cycle. The duration of the pulse was
fixed at £, = 2 msec and the minimal amplitude was
set so as to evoke a spike at time T. This amplitude
was then multiplied by the duration ¢, in order to obtain
the charge. The results are depicted in Fig. 7 (inset);
the MCPS(T, t,,) obtained from (23) (solid line) and
from the numerical simulations (dashed line) exhibit
similar behavior but differ in amplitude. The difference
between the two is more pronounced in cell 6 (compare
middle and top in inset to Fig. 7).

To understand the origin of these differences, we
return to the approximations made in the solution of
(23). We found that the first approximation, constant
G (T'), was quite accurate. The observed discrepancy
must, therefore, be attributed to the second approxima-
tion. Indeed, phase plane analysis of V and W reveals
that Vrpesn decreases as ILpp increases. Since the re-
quired Iy, in cell 6 is much higher than in cell 9, the
observed differences between the two MCPS(T,, t,) are
larger in cell 6. As the pulse duration approaches zero,
the distorting effect is diminished (bottom, Fig. 7 inset).
With such a brief pulse, Vs decreases momentarily
as Ipp is applied but soon returns to its original value
(where Ip, = 0).

With the aid of the numerical simulation we could
evaluate the MCPS(T, ¢,) during the spiking period.
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Figure 7. The MCPS(T', ¢,) of cells 6 and 9. The curves are solutions of (23) with t, = 2 msec. Inset: Numerical ((1) to (16)) versus the
analytical (23) MCPS(T', ¢;). In all cases solid line shows analytical solution and dashed line numerical one. Notice that when tp = 0

(tp = 0.0 msec, bottom) the two solutions coincide.

We found that, as expected, its value is high immedi-
ately after a spike and declines to zero before the next
spike commences.

7. Absolute and Relative Refractory Periods
of a Burst

We now examine the effect of an input current pulse
on the intrinsic behavior of the cells’ burst that is, cy-
cle duration, burst duration, and number of spikes. The
amplitude of the applied current must naturally, at least,
equal the MCPS(T, t,) amplitude to evoke a spike.
Hence, a brief pulse of 2 msec with an MCPS(T, tp)
amplitude (solution of (1) to (16)) was applied at each
time T'. The effect of this current (denoted MCPS-
amplitude current) on the above mentioned burst prop-
erties was examined.

The results for both cells 6 and 9 are shown in
Fig. 8. In Fig. 8E, we plotted the MCPS(T', t,,) graph

and divided it into three periods in which the applied
MCPS-amplitude current exhibits a distinct effect.

The effect of the applied MCPS-amplitude current
in the first period is exemplified in Fig. 8B by appli-
cation of current at 7 = 0.5 sec (that is, 0.5 sec from
the beginning of the quiescent period). As shown, the
burst characteristics of both cells are almost unchanged
(compare Fig. 8B to the control, Fig. 8A). During this
period, which lasts about three-quarters of the quies-
cent period, the only effect of the applied current is
to generate a single spike, and this increases the total
cycle duration by 50 msec.

The second period corresponds to the last one-
quarter of the quiescent period (exemplified in Fig. 8C
by an application of current at T = 2 sec in cell 6 and
T = 1.6 sec in cell 9). During this period, the ap-
plied current causes the spiking period to start earlier,
in fact to just follow the MCPS(T, t,) “‘evoked” spike
{compare Fig. 8C to the control, Fig. 8A).
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Figure 8. Effect of MCPS-amplitude current on the behavior of cells 6 and 9. For both cells, A: The “control” temporal pattern of membrane
potential. B: J = 180 uA/cm?, T = 0.5 sec for cell 6 and I = 20 uAlem?, T = 0.5 sec for cell 9. (note arrows). C: [ = 23 pAfem?, T =
2 sec for cell 6 and I = 10 uA/em?, T = 1.6 sec for cell 9 (note arrows). D: [ = 9 uAlcm?, T = 2.45 sec for cell 6 and / = 76 pA/cm?,
T = 2.6 sec for cell 9. (note arrows). E: The MCPS(T, tp) divided into three regions; solid line for the first period, dashed for the second, and

dotted for the third (see text). In all applications t, = 2 msec.

The effect is minimal when the current is applied dur-
ing the spiking period (dotted line in Fig. 8E) (compare
Fig. 8D to the control, Fig. 8A). The “evoked” spike
is sometimes added to the total number of spikes in
the burst and sometimes “replaces” one of the original
spikes, such that the total number of spikes in the burst
remains unchanged. In both cases, the overall behavior
of the burst remains the same.

Figure 8 shows that the two cells exhibit a very sim-
ilar behavior. Of particular interest is their bimodal
behavior during the quiescent period. The first period
(solid line in Fig. 8E), where the applied current can-
not “‘evoke” a burst, can be looked upon, as the burst
analog of the absolute refractory period following a
single spike. Hence, we denote it as burst absolute
refractory period (BAR). We denote the second period
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(dashed line in Fig. 8E) burst relative refractory period
(BRR). MCPS-amplitude current applied during this
period initiates the natural spiking period.

We next examined, at each time, T, during the
internal cycle of the cell, whether application of cur-
rents with amplitudes higher or lower than the MCPS-
amplitude current generate effects different from those
generated by applying the MCPS-amplitude current.
When we applied current with one-half the ampli-
tude of the MCPS current, there was no distinguish-
able effect on the cells’ behavior. Upon application
of a current with an amplitude twice as high as the
MCPS current, no additional effect, beyond the effect
of the MCPS current, was observed. We conclude that
the MCPS(T, t,) is a sufficient criterion for assessing
the sensitivity of the cells to a brief input current.

8. Mathematical Insight into the Burst
Refractory Periods

An important observation made in the preceding para-
graph concerns the unexpected bimodal effect of apply-
ing an MCPS-amplitude current during the quiescent
period. For about three-quarters of the period (BAR),

only a single spike is evoked, whereas an MCPS cur- )
rent during the last one-quarter, (BRR), evokes a full .

spiking period.

To highlight, mathematically, the underlying causes
of the bimodal response, we treat the model as includ-
ing both a fast and a slow process, each occurring on a
different time scale. As discussed earlier, the slow vari-
ables, Ca (the intracellular calcium concentration) and
X (the fraction of open calcium channels) are respon-
sible for the transition from a quiescent to a spiking
period. As can be seen for cell 6 (Fig. 9A), spiking
begins when Ca and X shift the fast system into an
unstable region (dashed lines). Thus, to understand
why the spiking period starts earlier, we must focus
on the effect of the MCPS(T, tp) evoked spike on Ca
and X.

We have found (not shown) that throughout the
quiescent period, the MCPS(T, t,,), together with the
evoked spike have a fairly constant effect on both slow
variables, with a more significant change in X. X in-
creases by aconstant AX (0.1 incell 6) and Caby acon-
stant AC (0.01 in cell 6). Figure 9B shows that when
the MCPS(T, t,,) is applied no eatlier than 7 = 1.94
sec (from the beginning of the quiescent period) the
fast system crosses from a stable to an unstable region
causing the spikes to begin earlier.

Sivan et al. (1995) have shown that the mathemat-
ical mechanism underlying bursting behavior differs
between cells 6 and 9. However, due to the resem-
blance between the BAR and BRR properties of the
two cells, we believe that in cell 9 the changes in X
and Ca are also responsible for the earlier occurrence
of spikes.

9. Discussion

We have explored the sensitivity of different burster
types to an elementary input, i.e., a brief depolarizing
pulse. The main results are as follows:

e We identified a domain of the relevant parameters
(8> 8x(Ca)> 8ca» R) where variations of cell 6, group-
6, are obtained and another domain of the same pa-
rameters where variations of cell 9, group-9, exist.

o The MCPS(T, ¢,) is a good indicator of the sensi-
tivity of cells to a brief input pulse. With a fixed
t,, at any time, T, application of currents smaller
than the MCPS current hardly affect the cell’s be-
havior, while higher currents have the same effect as
the MCPS current.

e Inall model cells, the magnitude of the MCPS(T, t),)
is closely linked to the characteristic bursting be-
havior of the cell. During the quiescent period, the
MCPS(T, t,) acquires a distinct bell shape. During
the spiking period MCPS(T, t,) magnitude corre-
lates with the refractory period that follows a single
spike that is, a very high amplitude immediately after
the spike that decrease toward the commencement of
the next spike.

o Fort, > 1 msec the magnitude of the MCPS(T, t,,)
during the quiescent period in group-6 is much
higher than that in group-9. This observation cor-
relates with the value of gg(Ca) which is up to 10
times higher in group-6 than in group-9.

e The effects of the MCPS-amplitude current on the
cell characteristics during the quiescent period is bi-
modal. BAR, burst absolute refractory period, lasts
about three-quarters of the quiescent period. Dur-
ing BAR, the cell, apart from firing one additional
spike in response to the current application, shows
practically no change in its intrinsic behavior. BRR,
the burst relative refractory period, begins just after
BAR and lasts until the beginning of the intrinsic
spiking period. During BRR, an application of cut-
rent initiates the intrinsic spiking period with some
variations.
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Figure 9. The fast system state during the cell cycle. A: Trajectory of (Ca, X, V) for cell 6. Below the trajectory is a plane, each point of
which describes the stability of the fast system if Ca and X are frozen at their instantaneous values. The plane is dashed or solid depending on
whether the steady state is unstable or stable. Note that spiking (except the two last spikes) takes place when the trajectory is in the unstable

domain of the plane. (For the mechani

underlying the last two spikes, see Sivan et al., 1995). B: The trajectory of (Ca, X) for cell 6 (solid

line). The dashed line divides the surface iiito a region where the fast system steady state is unstable (above the dashed line) and a region where
the fast system steady state is stable (below). T indicates the time from the beginning of the cycle. At each time, T, an arrow bar indicates a
fixed AX(= 0.1) and AC(= 0.01) added to the X and Ca values respectively at that time. This shows what would have been the new value of
X and Ca if the MCPS-amplitude current were applied at that time. Only at 7 = 1.94 sec that is, in the last quarter of the quiescent period, is

the fast system shifted to the unstable region.

These results are competible with results obtained
from biological experiments. Tazaki and Cooke (1979)
succeeded in recording from the small interneurons in
the cardiac ganglion of the crab Portunus sanguinolen-
tus but did not clearly identify from which cell record-
ings were made. These authors applied a brief input
of 0.5 msec at various time points during the quiescent
period and observed the bimodality predicted from our
model (Tazaki and Cooke, 1979, Fig. 14). In Mayeri’s
experiments (1973) the conditions were quite different
both from those considered here and those employed by
Tazaki and Cooke (1979); recordings were made from

the entire ganglion, and the input was a brief electric
shock. Under these conditions, the ganglion did not
respond with a burst when the input was applied dur-
ing the early part of the quiescent period, but a full
burst was seen when the input was applied toward the
end. When the electric shock was applied during the
latter part of the burst, it terminated the burst. Mayeri
(1973) also measured the threshold (minimal shock du-
ration needed to evoke a burst) during the quiescent
period. He found that from the time where a burst
could be evoked, the threshold declined throughout
the quiescent period. Mayeri’s results to some extent
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resemble ours and those of Tazaki and Cooke (1979).
The differences may result from the different experi-
mental conditions.

The burst mechanism presented in our work partly
falls into one of the categories discussed by Rinzel
(1987). It relies on oscillations of the slow process
which shifts the fast process from a firing to a nonfir-
ing mode. This applies both for cell 6 and cell 9. There
is, however, an important difference in cell 9 (discussed
in details in Sivan et al., 1995) as it fires when the fast
process is in a stable steady state.

Bertram (1993a, b) has presented model similar to
ours with respect to the two slow variables. He also
noticed that reset of the burst is possible following a
depolarizing perturbation in the quiescent period. Al-
though ourresults are similar his interpretation is some-
what different from ours. Bertram (1993b) focused on
the strength of the perturbation needed to terminate the
quiescent period (he defines termination as the firing of
even a single spike). In contrast, we distinguished be-
tween a period where only a single spike is evoked and
that where resetting of the full burst occurs. The effect
of perturbations on burst behavior was also discussed
by Rinzel (1985). The case discussed there differs from

ours as it concerned bistability as the underlying burst .

mechanism.

The long range goal-of this study is to examine the-

thesis that the structure of a network that is, number
of cells, connections between cells, and cell proper-
ties is based, at least in part, on considerations of fault
tolerance. Our results indicate, how cells in the car-
diac ganglion may, to some extent, tolerate erroneous
behavior of other cells in the ganglion. First, during
the BRR period, the endogenous bursters can become
synchronized even if their internal cycle is not exactly
the same. For example, cell 6, with a longer intrinsic
cycle than the rest of the interneurons (see Fig. 3), fires
its spikes with the other cells because synaptic input
onto cell 6 during its BRR period initiates its intrinsic
spiking period.

The BAR is a very powerful tool for overcoming an
erroneous input from a cell that may be firing irregu-
larly at low frequency during its quiescent period, due
to a high level of noise in the system or some intrinsic
malfunctioning. The other cells do not change their
intrinsic burst to follow this cell if these errors occur
at the beginning of their quiescent periods. This may
enable the system to maintain a sufficient interval be-
tween heart contractions.

Result 4 is of importance for yet another aspect
of proper functioning of the cardiac ganglion. The
MCPS(T, tp) of cell 6 is very high, and it is practically
impossible to make it fire even one spike during its
BAR interval. Cell 6 is the activator of the motoneu-
rons which activate the heart. As such, it must serve as
an effective barrier against too frequent stimulation of
the heart.

We have started our study with the most elementary
input a brief input pulse. We plan to extend this study to
include other inputs such as trains of brief pulses (repre-
senting inputs from oscillators or bursters) or prolonged
pulses (representing hormonal effects).
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